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Synthesis of Lumped-Distributed Cascades 
with Lossy Transmission Lines 

ALOIS J. RIEDERER, MEMBER, IEEE, AND LOUIS WEINBERG, FELLOW, IEEE 

Absfract-In the analysis of large systems such as high-speed digital 
computing networks and circuits on an LSI or VLSI silicon chip, lossy 
lumped-distributed networks have been used to model their interconnec- 
tions. A solution of the synthesis problem for these networks will aid in the 
&sign of these circuits. 

Tbis paper establishes single-variable realizability conditions and synthe- 
sis procedures for the class of lossy lumped-distributed cascade networks 
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which contain lossy transmission lines and are described by a driving point 
impedance expression of the form 

where ai(s, zo), bi(s, zo) are two-variable, real polynomials in s and zo, 
with zo the characteristic impedance, u(s) the progagation constant, and 
‘f,, the total “electrical length” characterizing each of the lossy lines. 

Tbe cascade networks consist of commensurate, uniform and/or tapered, 
lossy (except distortionless 131, [4]) transmission lines interconnected by 
passive, lumped (lossless and/or lossy) two-ports and terminated in a 
passive load. This class includes general lines, leakage-free lines, K-lines 
and acoustic filters. The results also apply to cascades with noncom- 
mensurate lines and to cascades of mixed transmission-line types. 
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diffusive or UC-line 
L = 0, c = 0 

INTRODUCTION 

TABLE I 

F 

The analysis in [3], [4] establishing the expansion condi- 
1 tions for a driving-point impedance expression of the pre- 

P RESENT day technology requires that the analysis 
and synthesis of mixed lumped-distributed networks, 

scribed form deals with a completely general lumped-dis- 

that is, networks containing both lumped and distributed- 
tributed cascade and hence is easily adapted to chains 

parameter elements, be treated. Many design and simula- 
containing lossy transmission lines. Thus the realizability 

tion problems where loss is unavoidable or non-negligible, 
conditions first guarantee a cascade representation for any 

as in the modeling of the wiring on a silicon chip for 
input-impedance’expression satisfying them and secondly, 

large-scale integration (LSI) and very large-scale integra- 
ensure the positive realness of the lumped networks and 
the transmission lines in the cascade representation of the 

tion (VLSI) [l], demand a synthesis theory that realizes input impedance 2,. 
lossly’ mixed lumped-distributed coupling networks 
terminated in an arbitrary load. Other applications [2] of 

After stating the results in the form of a theorem and 

the lumped-distributed network model are to tunnel di- 
immediately illustrating them with a simple example, the 

. . 
odes, to the interconnecting WlreS lrl high-speed COmpUtlng 

incorporation of the characteristic impedances of the 

networks to cascaded transmission lines with differing 
(i - l)th and ith transmission fines intO the ChaiU-mat~x 

d 
characteristic impedances and accompanying parasitic 

escription of the i th lumped’network is investigated and 

lumped elements, and, perhaps most importantly, to the 
then used to formulate the realizability conditions. Specific 

approximation problem of more powerful filters. 
examples to illustrate this process and the synthesis proce- 

:In the first of our two previous papers [3] we treated the 
dure are then given. Within the examples section we also 

synthesis of lossless lumped-distributed cascade networks 
give a realizability lemma which represents a unified 

and then extended the results in the second paper [4] to 
synthesis theory for distributed cascade networks consist- 

cascade networks containing lossless and/or lossy lumped 
ing entirely of transmission lines. 

two-ports and lossless transmission lines. This paper, the %XJLTS 

third in a series of four presenting a unified theory for the The contributions of this paper are stated in the follow- 
synthesis of mixed lumped-distributed networks, ~ treats ing theorem: 
coupling networks containing lossless and/or lossy lumped Theorem : 
networks and lossy transmission lines connected in a Any irreducible 
cascade configuration. Included in this class are lumped- 
distributed cascade networks with commensurate, uniform 

t a,(s, ,o)eW-~)TOy(s) 

or tapered, and lossy transmission lines such as RC-lines, zo= i;o 

general lines, leakage-free lines, and even acoustic filters C bi(s, ,o)e(2i-~)T0y(s) 
PI. i=o 
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where zo, y(s), To, and their various permitted combina- i=l,2;..,n+l: 
tions are as specified in Table I, and ai, bi are single-vari- 
able algebraic expressions involving s-j with j = 0, 1,2, . . . i-l 

m and irrational functions of the type 6, dm, or 
equivalently a,, bi are two-variable real polynomials in 

pi A (a,-bo)E,-lk~oQk 
-= 
Qi i-l 

f, to, is realizable as a cascade of lossless and/or lossy (an + bn)Di-1 II L/c 
lumped two-ports interconnecting n lossy, uniform or 
tapered, commensurate transmission lines characterized by 
zo, their characteristic impedance, y(s) their propagation 
constant, To their electric length, and which is terminated 
in a passive load, Table I, if and only if: 

a) The 2i x2i determinants, formed from the algebraic- 
expression coefficients of Z,, and defined as 

k=O 

i-l 

Ki A 
tan + bn)ci-l n Lk 

k=O 
-= 

487 

and 

‘n--i+2 un-i+3 -** a, j bn-i+z bn-i+3 ... bn 

a1 U2 
. . . 

‘i / b, b, . . . b; 
-------------------------- L---------------------- 

a0 a1 
. . . 

ui-1 I bo b, ... bipl 

a0 
. . . ui-2 j b, ... bip2 

an 
U n-1 an 

‘n-i+1 u”-i+2 *** a, 

a0 a1 
. . . 

‘i-1 

a0 
. . . 

ui-2 

. . 
a0 

I 
atI I b0 

I 
I 
I 
I 
I 
I 
1 
I 
I 
I 

-I- 
I 
I 

I 
1 
I 
I 
I 
I 

4l 
42-l bn 

b,-i+, bn-i+2 . .-a b,, 
.-_------------------- 
b, b, ... hi-I 

b, ... bi-7 

b, 

, 

an I 4, .I 
an-1 - an 1 btl-1 bn. 

. 
I : 

‘n-i+1 ‘n-i+2 *‘* ‘18 j b,-i+, bn-i+2 ... b, 
________---------------l~~~~~~~~~~~----------- 

an-i U”-i+l ... U”-l I bn-i b”-i+l ... bn- 

a0 
. . . 

‘i-2 1 b, ..a bi- 
I 
I 
I 

a0 I bb 

with the nonspecified values of the above determinants with 
zeros; 

b) The algebraic expressions Qi, Pi, K,, L, defined by 
the irreducible ratios of the algebraic expressions for all 

1 

2 

, i=1,2;.. ,n-1 

7 i=l,2;.*,n-1 

0 a an - 4, E co A ao + bo _-. -= 
Do a,-bo’ Do a” +&I 
E C n=n 
Dn Dn 

=Q,=L,~l 

and 
c) The matrix [T] for zoi = noi/doi, i =1,2; . -,n 

[‘I ’ 4$M, 
noi-ldoi[(Qi + ei-lPi)+ei(Ki +ei-IL,)] noi-lnoi[(Qi + ei-lP,)-ei(Ki +.ei-lLi)I 
doidoiwl[(Qi - eielPi)+ei(Ki - eielLi)] noi-ldoi[(Qi-ei-,Pi)-ei(Ki-ei-lLi)] 1 
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with the common factors (resultants) of the matrix ele- real polynomials 2Gi,2E;; chosen from the definition 
ments 

Mi= {noi-ldoi[(Qi+ei-,Pi)+ei(Ki+ei-lLi)]; 2Gi21;;:Mf s e. e.n ._ n .d ._ d .(QiLi - PiKi) l-1 I 01 1 01 01 1 01 

noi-lnoi[(Qi+ ei-lpi)-ee,(Ki+ e,-lLi)]; 

doi-ldoi[(Qi-ei-lPi)+e,(Ki-ei-1Li)]; 
noi-ldoi[(Qi-ei-1P,)-ei(Ki-ei-1Li>I} 

ccl = n, = d, 4 1; e, = +l; noi, doi and the real poly- 
nomials 2Gi, 2E; of the definition 

2Gi2E;MF A (ei- ._ lvO, lnoidoi-ldoi)(QiLi - P,Ki) 
as specified below are such that 

1) D,sO, for i=l,2;*-,n; 
2) [T] is a real rational, positive real (PR) chain matrix 

[4:] for all i =1,2;. ., n with e, = + 1 and/or ei = - 1, noi, 
doi either explicitly specified by prescribing the transmis- 
sion-line type of the cascade or determined to be compati- 
ble with y(s) as in Table I, n, = d, A 1 and appropriate 

and 
3) The function .% = nOn(Qn+l + ~,f’,+,)/dO,(Q,+, - 

e,P,+d is real rational and positive real (pr). 
Furthermore, [q] represents the chain-matrix description 

of the i th lumped two-port connecting the (i - 1)th and i th 
transmission lines characterized by the propagation con- 
stant y(s) and the characteristic impedance zOi in the 
lumped-distributed cascade realization of Z,, while Z, is 
its termination. 

We illustrate the use of the theorem at the outset to 
demonstrate the ease of the realization technique and to 
help in the proof of the theorem: Can the following given 
Z, be realized with commensurate uniform RC-lines (toi 
= zo(s) = l/h, y(s) =& and To = real constant)? And if 
yes, what is its network realization? 

(1+&)(2+2&(2~+1) e2@ + 2sJs~~- S) + (l- sfi)(2-2fi”Is)(2& -l)e-‘$ 
z, = 

&(2+2fi+s)(2fi+l)e b 
b2 

2C -2~6 -&(2-2fi+s)l2fi-l)e-‘& 
(n = 2). 

1 0 

This Z, is of the specified form for an RC-line cascade and has an initial lumped two-port characterized by 

P 1 A a,-b. ~-4, -= ___.~ 
Ql a,1 + b” a0 - bo 

K 1 A un+bn a0 + bo l-&-h -= .-= 
Ll a,-b, u,+b,, l-s&+6 

or a chain-matrix description for z. = no /do = l& (RC- lines prescribed) of 

no[(Ql + Pl)- el(Kl + Ml 
[T1lp 4GfM, 

do[(Ql + pd+el(Kl + &)I 
d,[(Q,-P,)+e,(K,-L,)] no[(Ql -4)-elWl - -%)I 

1 2[(1+sh)+e,(l-sh)]di 2[(1+&)-e,(l-sfi)] =- 
4Gl-w [26+e,(--2&)]6 [26 - el( -2h)] I 

which for ei = + 1 becomes 

[Tlle,=+i= [i i], for4G,M,=46 

and for e, = - 1 

[Tl].l=-i= [y i], for4G,Ml=4. 
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Note only [T,lel=+, is realizable. The second lumped network is obtained from 

2 a ao - bo El Q, P 

Q2--'-'- a,+ 4, DI Ll 

(1+&)(2+2fi+S)(2&+1) &(2+2fi+.r)(26+1) 
2&(2-s) - 2sfi (1+s&+&) 

(1+sKS)(2+2&++)(2~+1) fi(2+2&++)(26+1) .(l-&+fi) 

(l-S6)(2-26+.9(26-l) -~(2-2~+.s)(2~-1) 

p2 
z= 2+2;+s 

and . 
K 2 A ‘PI+~” cl Ll 

L,=-‘-‘- ao -bo 4 Q, 

2&(2-s) - 2S& 
(l-&)(2-26+s)(2&-1) -@2-2&++)(2&1) 

(l+sfi)(2+2fi+s)(2fi++) &(2+2&+.9(2fi+1) 

(l-&)(2-2fi+s)(2&1) -&(2-2&+s)(2&-1) 

(l-s&+&) 
* (1+&+6) 

K, s 

- 

-== 
L2 2-2fi+s 

from which for zoi-r = zoi = z. = no/do = ki/& and 

[T,]hL 
[ 

n0do[<Q2 +elP2)+e2(K2 +elL2)l ~',[(Q2+e,P,)-e2(K,+e,L2)1 
4G2M2 &[<Q2 -elP2)+e2W2 --+,)I ~o~o[(Qz - e1P~)-e~(K2 - +,)I 1 

[T2],,=,2=+,=[1;s ;I=[; ;]-[; ;] with4G,M,=4& 

and 

P-a.,= +l,e,,=-l=&[; l-p] (notPR) Or z 

L 

= ~o(Q,+~ + enPn+l) 

4dQn+l - enP,+d 
are obtained. There is no need to find [ T21e, = _ r, e2 = + r and with 
[T2]el=e2E -1 since [T&, -1 is not PR. 

Finally, for the termination (n = 2) -a,= +1= 2. 

p3 PHl Ln+l -c-c- 
Q3 Q,+, K,r+, 

Again 

-%I,“= -1 

need not be determined since [T21e, = +1 e2= -1 is not PR. 
Hence, one possible cascade representation for the given 
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2, is 

cash 6 

fisinh& 
1 . coshh - smh& 2 

h 
6 sinh fi cash fi I 

[ 1 1 

and thus Z, is realizable as a mixed lumped-distributed 
cascade network containing K-lines. Note that there is no 
unique mixed lumped-distributed cascade representation 
but rather there exist 2” distinct (not all necessarily PR) 
representations for any given Z, of the theorem if the 
types of lines are prescribed. 

NECESSITY 

for a termination Z, = NL/DL and where for zoi = noi/doi 
and z,=l 

Yi = +“Oi-l(“OiYi + dOisi) 
1 

ui = poi&Ioiyi - b,,S,). 

For these definitions the analysis in the necessity proof 
of [3], [4] for lossless-line cascades becomes directly appli- 
cable to lossy-line cascades. Thus if the i th section of the 
proposed lumped-distributed cascade is described by the 

The necessity of the realizability conditions is estab- chain-matrix relation: 
lished by an analysis of the general cascade specified in the 
theorem. A large part of this analysis and thus of the xi-u; 
necessity proof has already been carried out by the authors Yi - “i 

in two recent papers [3], [4] for lossless transmission-line 
1 

cascade networks. The results of this analysis are easily coshy(s)To sinhy(s)To Ei+, 
extended to cascade networks containing lossy transmis- sinhy(s)T, coshy(s)To I[ Ii+1 
sion lines. The identical analysis becomes valid for lossy 
transmission-line cascades upon a redefinition of the chain 
matrix then the input impedance of a general lumped-distributed 

1 
cascade from the i th section through to and including the 
modified load 

which for lossless line cascades characterizes the i th lumped En+,/In+, = an+l,o/bn+l,o 
two-port network interconnecting the (i - 1)th and ith 
transmission lines. For lossy-line cascades (distortionless 
lines excepted) this matrix is redefined by incorporating is given by 
the characteristic impedances of the (i - 1)th and ith lossy 
transmission lines into the chain-matrix description of the n-if1 

lumped two-port network c ‘i,ke 
[Zk-n+r-l]y(s)To 

,,,-L[; ;I. 

E. 

I ’ ’ 

-f=zo,i= cgbi ke[2k~n+i.lly(r)To’ n+12ia1 

In particular, 
k=O ’ 

I 

coshy(s)To zoi-i sinhy(s)T, 

(l/zoi-l)SiAY(s)T, coshy(s)T, ]$J;; :] I 

with the two-variable, real polynomials in s and zoi 

ai, k = x,r, k + t&k 

-[ 

coshy( s) To zoi sinhy(s)T, 

I 

bi,k = Yi5.k + viti,k, n+l>i>l; O<k<n-i+l 

(l/zoi)si~Y(s)To coshY(s)T, li-l,k+l=ai,k+bi,k 

can be rewritten as ti-l,k =ai,k - bi,k 

coshy(s)T, sinhy(s)T, 
sinhy(s)To 

coshy(s)T, sinhy(s)T, 
sinhy(s)T, coshy(s)To 

Thus we may define for lossy lines the matrices in [3], [4] as 

1 
-[ 

xi + ui 
2gi Yi + ui 
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and, in particular, 
ripI ,=O 

‘i-1.1 = ai,o + bi,o = ( ui + ui) ti,o 

=(“i’“i)k~~+l(Uk~“k)(nL~dL) 

ti-l,O = ‘i.0 - bi,o = ( ui - q) ti,o 

=(“i-“i)k=~+i(uk-“k)(~~-d,) 

ti-l,n-i+2 ~ 0 

ri-l,n-i+2 =ar,rz-i+l + bi,n-i+l 

= txi + Yi)ri,n-i+l 

=(xi’Yi)k=~+l(Xk’yk)(‘~‘dL) 

ti-l,n-i+l = ‘i,n-i+l - bi n-i+1 

= Cx, - Y,)l;,,:i+l 

(a0 - bo) = (al.0 - bl,O) = kfil bk - uk)bL - dL) 

(a, + bn) = h,o -b,,o)=k~l(xk+y,)(n,+d,). 

Also derived in [3] is the evaluation of the determinants 
D, and E, of the theorem in terms of the chain-matrix 
elements of the lumped networks in a lumped-distributed 
cascade. The identical column manipulation procedure used 
to evaluate 0, and Ei is valid for obtaining the evaluation 
of C,. The expressions for C,, Di, and E,, which also apply 
to lossy-line cascades, are as follows: 

i-l 

i-I Lk 
5, (an+bn) Ci-1 kc0 

Li - (a0 *-*- -bo) Di-1 ‘fi Qk 

k=O 

i-l 

= (u.+u.). k;o(xk+yk)Lk 

(” - “‘I ;co(uk _ “,)Q, 

l<i<n+l 

where 

and 

X,+1 / Yn+l= U,+1 /“n+l = n,/d,. 

These new expressions for the irreducible ratios of the 
theorem can be refined further by induction to read 

ki-l(Xi - Yi) _ ‘iP, 
hi-l(xi + yi) hiQi 
hi-l(“i + “i) _ kiKi 

ki-l(ui- pi) kiLi ’ 

l=si<n+l 

if k, = ho e 1 and the common factors (or resultants) are 
defined by 

kiA {[ki-l(ui+“i)],[‘i-l(ui-“i)]} 

hi A { [ ki-l(xi - Yi)] > [‘,-1(X, + Yi)I > 
with {k,, hi} =l. 

However, substitution of the definitions for xi, y,, ui, 
and ui in terms of the lumped-parameter, chain-matrix 
elements and the characteristic impedance zoi = n,,/d,, in 

ci = (_ l)i(2)iCi-2)/2 
“kXk + ~kYk)i-k-lrk,n~k+ltk,O)r~,l/ri,n-i+l 

Di= (-l)i(2)i(i-2)/2 

kji~ ((- 
“kXk + UkYk)i-k+lrk,n-k+ltk,O) 

Ei = (-1)i(2)‘(i-2)‘2 fi ((- ukxk + Ukyk)i-k+lrk,,-k+ltk,O}ti,m-l/ti,O 
k=l ’ 

valid for i =1,2; . ., n. 
It is therefore possible to express the irreducible alge- 

braic-expression ratios Pi/Qi and Ki/L, of the theorem in 
terms of modified lumped-circuit parameters of the general 
cascade by substituting the various relations given above 
into these algebraic expressions to yield 

i-l 

34 (ao-bo) Ei-1 /!Jo’~ 

Qi- (a,+b,) ‘O,-1”-’ 
n Lk 

k=O 

i-l 

= (xi - y,) . k;,,(uk - “‘)” 
Cxi+Yi) 

i-l 

k;o(xk+Yk)Lk’ 

lgi<n+l 

the common-factor expressions: 

ki= {(ki-l[dOi-l(nOi~i-dO~i)+noi-l(~oiYi-doi’i)]); 

’ (hi-l[dOi-l( noia, -dotPi)-noi-l (noiYi-doiSi>])} 

hi= {(ki-l[dOi-l(nO~i+doiSi)-noi-l(~oiYi+doi’i)]); 

x Chi-lLdOi-l( noiai +doiPi)+~oi-~(~oiYi-doi’i)I)} 
demonstrates that at most ki = ei e + 1 and hi = + 1 for 
the modified lumped two-port description. Thus no com- 
mon factors are present in the various components of the 
ki, hi expressions above or 

{ ki-l, hi-l} =l 

{ kiel,(ui - q)} =l, { h,-r,(ui + ui)} =l 

{ki-l>(Xi+Yi)} ~1, {hi-l,(Xi+ Yi)} ~1 

{(“i+ui)~(ui-ui>}=l {(xi-Yi)~(xi+Yi)}=l 
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even if noi-i =nOi=no and doi-l = doi = do. For other- ever, none of these representations need be physically 
wise { ki, hi} +l and a common factor in Xi, yi, Ui, Vi realizable. 
would yield a Z, not in an irreducible form since ( ki- 1, However, if a given 2, is to represent the physically 
(ui - vi)} = nrddf(s) or { hi-i,(ui + vi)} = ncd&f(s) im- realizable lossy-line cascade: 
plies { ki-l,(Xi + y,)} = nrd$f(s) or { hi-l,(~i - y,)} = 
n;d&f(s), respectively, and similarly {(ui + ui),(ui - ui)) coshy(s);r, z,sinhy(s)T, 
= n;ddf(s) implies {(xi - yi),(xi + y,)} = nzd$f(s) for no 
and/or do containing irrational functions of s and (ri, &, 

[T,] I 
g sinhy( s) To coshy(s)T, ‘.’ 

yi, f$ real polynomials. 1 
Hence, coshy(s)T, z,sinhy(s)To k,_l*n- h.P. h,_l ui + vi _ k,K, Pi1 1 II .-_- 

hi-1 Xi+yi hiQi’ kipl q-vi k,L, 
~0 slnhy(s)T, coshy(s)T, *” D, 1 [ NL 

become for ki = e, = + 1 and hi = + 1 (all terms in Qi must then 
have a plus sign) 

n r7 [T], i=1,2;**,n 
xi - Yi ei-lri ui - vi _ e.n. -=- --II 
Xi + Yi Qi ’ ui + vi ei-le,L, must be PR chain matrices [4], [6] and NJD, pr while zo, 

y, and To must be such that the transcendental chain 
and we may write matrices characterize a particular transmission line type 

1 

-[ 
xi + ui xi - ui 

2gi Yi + “i Yi - “i 1 
1 =- 

[ 

(Qi + eiplPi)+ei(Ki + ei-IL,) (Qi + ei-IPi)-ei(Ki + e,-lLi) 1 4Gi (Qi-ei-,Pi)+ei(Ki-ei-lLi). (Qi-ei-,Pi)-ei(Ki-ei-lLi) ’ 

Thus the original matrix 

is recovered from the modified lumped two-port d,escription 

1 

-3 
xi + ui xi - ui 

2gi Yi + ‘i Yi - ui I=[:, zo~-l]$& :I[a i] 

as follows: 

[&I= ; y [ 1 i[xi+ui 
Xi - ui 1 0 I[ I - 2g, Yi + “i Yi - “i O zOf 

‘Oi-1 

or in terms of the algebraic-expression ratios 

“I= 4GtM, 
noi-,do,[(Qi+ei-,Pi)+ei(Ki+ei-,Li)I ~~~-~~~~[<Qi+e~-~P,)-ei(Ki+ei-~L,)I 
doi~,doi[(Qi-ei~,Pi)‘tei(Ki-ei~lL,)] d ._ 0, ~noi[<Qi-ei-~Pi)-ei(Ki-ei-~Li)l 1 

where M, represents any common matrix-element factor 
and e, = n, = d, p 1, while the termination becomes 

NL non nL A nOn xn+1 -= -.-=-.- 

DL do, d, don yn+l 

non <Q,+I + e,&+l) =-. 

don ten+, - enP,+l) ' 

Because of the presence of e,-i, ei in these last relations, 
there exist a total of 2” distinct lumped-distributed cascade 
representations for any Z, with the prescribed form and 
Z,, for which 0, s 0 i =1,2;. ., n. For noipl, noi unspeci- 
fied there are at least (2’?)2 distinct representations. How- 

(e.g., tapered RC-line). These conditions, specified in the 
theorem, are thus necessary for a Z, which is to represent 
any of the prescribed cascade networks of the theorem. 

SUFFICIENCY 

Sufficiency of the theorem’s conditions is established by 
showing that any Z, satisfying these conditions has a 
realizable lumped-distributed cascade representation of the 
types described in the theorem. 

In their recent paper [3] the authors showed that any Z,j 
of a specified form similar to the one of this paper and for 
which all the determinants Di s 0 (i = 1,2; * . , n) has a 
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(not necessarily realizable) lumped-distributed cascade rep- defined in ,terms of the (i - 1)th expansion parameters: 
resentation. This contention was established by using a 
generalization of the Kinariwala-synthesis procedure [7] 24, = (Ri-1,k + T-1.k) 
which yielded an i th expansion section described by the 2Bi,k = tR,-l,k - T-l,,) 

chain matrix: 
Ri-l,k = -y/i-lAi-l,k+l+q-lBi-l,k+l$ 

where Xi, y, q, y:, G[ were the real polynomials in s that and specifically, 
collectively represented the i th lumped expansion network 
and the hyperbolic matrix represented the uniform, lossless Ri-l,n-i+l= (Ai,,-i+l + Bi,n-i+l) = (4 + Yi)Pi,n-r+l 
transmission line of delay T and unity characteristic im- 
pedance. Ri-l,O = (At.0 + Bi.0) = (Q + T/i)qi,o 

The identical expansion process may be applied to any with 
Z, of the forms specified in this paper since the Di for both 
lossless-line cascades and lossy-line cascades involve only R n,o = bh+l,o + Bn,,,,) = @,,+I + Y,+h,+l,o 
the coefficients of their Z, expressions and not the Z, 
exponentials. For lossy-line cascades, however, the ith 

= WI+1 + Yt+1bL+1,0; 

expansion section is described by L,n-r+l = (Ai,n-i+l-Bi,n-i+l) = (xi- yi)Pi,n-i+l 

coshy(s)T, sinhy(s)T, 
sinhy(s)T, coshy(s)T, 1 

where Xi, q, I!J, y, G/ are algebraic expressions (or 
two-variable, real polynomials in s and z,,) and y, zO, and 
To are to specify the transmission line type. It remains to 
be demonstrated that this expansion section represents a 
physically realizable network of a lumped two-port and a 
specified transmission line. 

The defining two-variable polynomials of the lossy-line 
expansion section are obtained in a manner identical to the 
method that yielded the lossless-line section parameters in 
[3], [4]. They are determined from the irreducible ratios of 
algebraic expressions 

x _ Ai,n-i+l ul’ Ai 0 

F’ - Bi,,-i+l ’ 

--A 

F - Bi,o ’ 
i=1,2;..,n+l 

‘with Xi = Xi’, Y = q’, Q = q’, K = V,‘, except when the SJ 

coefficients ( j = 0, 1, . . . , n) of Xi’ and Yj’ or L$’ and 4’ 
are either both odd or even real constants (zero of course 
considered as even), for which case Xi = f X; and Y, = 4 y’ 
or U, = f q’ and 5 = $ y’, respectively; while for Ai,n-i+l 
= 0, Xi = 0 and F =l; for B,,,-i+l = 0, Xi =l and K = 0; 
for A,,, = 0, 4 = 0 and V, = 1; and for Bi,o = 0, UJ = 1, and 
F = 0. The irreducible ratios themselves are obtained from 
the remainder function after the (i - 1)th expansion step: 

n-i+1 

c Ai,ke 
[2k-(n-i+l)]y(s)Tn 

j-,z, = .“;:, 

c Bi,ke 
[2k-(n-i+l)]y(s)To 

k=O 

where the algebraic-expression coefficients of I_ ,Z, are 

L,O = (Ai. - Bi.0) = (U, - Y)qi,o 

with 

T,,, = (An+l,o - Bn,,,,) = (x,+1 - Y,+hn+l,o 
= ml+1 - K+1)%+1,0 

and 
i-l 

xk + Yk)Pi,n-it1 = tan + bn) I-I (- vkxk + ukr,> 
k=l 

h ~“k~~k~~i,O~~uO~~O~~~~~~~kxk~~kyk~ 
k=l 

with the common factors pi,nPi+i = Ai,n-i+l; Bi,n-i+l, 
$,o = Ai.0; Bi.0; and q-l,n-i+z = RI-l,-1 E 0; Al,, = ak, 

1,k = bk; pn+l,O = %+l,o and xn+l = &+1; K+, = K+,. 

Notice that no relationship is assumed to exist between 
the expansion polynomials Xi, Y:, q, r/;, GI (or Ai,j; Bi,j; 
Rj, I; T, I) of the sufficiency proof and the xi, y,, ui, u,, g, 
(or u~,~; b,,/; I;, j; ti, ‘) used in the necessity proof. 

Also denved in [3] are the evaluations of the determi- 
nants E,, D, in terms of the generalized synthesis parame- 
ters. The identical evaluation process used to determine 
E,, Di can also be applied to Ci for its evaluation and is 
valid for lossy-line cascades with the result that 

where H, A - V,X, + U,Y,. 
These results allow us to express the irreducible ratios of 

algebraic expressions of the theorem in terms of the gener- 
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i-l alized synthesis parameters: 
i-l 

Pi A ao-b, Ei-l k=O -=-.-. 
Qi an +bn Di-1 ielLk 

i-l 

i-i Q/t 
Uo-bo T-l,n-i+l k=O =-. .~ 
a” + bn T-l,0 

i-l ’ 

k!(, Lk 

i-l 

n Lk 5~ a, +b, Ci-1 k=o _-.-.- 

Li ao- b, Diwl i-1 

k!(, Qk 
i-l 

un+bn. - Ri-l,O 
n Lk 

k-0 .- 
Uo - bo Ri-l,n-i+l i-1 

,j?,J’ 

with E,,/D,, = C,/D,, A 1 or 

i-l 

Ki= k=O &+6. 
n (xk+yk)Lk 

Li Q-V, i-1 

I-I t”k - h)Qk 
k=O 

K ii txk+yk)Lk 
n+l xn+l+Y,+l k=O - 

L II+1 U n+l -K+1’ n 
k;otuk - vk)Qk 

with (U, - Vo) = (X0 + Y,) = Q, = Lo A 1. 
The specification of the generalized expansion parame- 

l<i,<n+l ters Xi, yi and CJ., V; as irreducible or their special defini- 
tions ensures that the algebraic expressions (Xi - q), (Xi + 
q) and (L$ + <), (vi - vi) are also irreducible. 

Hence the irreducible ratios of the theorem can be 
expressed in terms of the generalized synthesis parameters 
as 

3=x,-q 
Qi Xi+yl 

5, Y+r: 
l<i<n+l 

Li q-6 

with Xn+l=Un+l, Y,+,=V,+, since Qi=(Xi+~) and 
Li = (q - vi) by induction and 

with Jo = Xn+l/Y,+l = <Q,+, + f’n+lMQ,+l - C+d. 
However, no unique determination of the ith lumped 

expansion network from the given Z, in terms of the 
expansion parameters is possible in view of the following 
identities: 

(xi-l+~-l) (xi-l-q-l) (xi+q) (XyJ) tK+l+q+l) (xi+,-q+l) (yI-I+y-,) (q-,-F-l) (q+?q (r,-&) Pi+1 + Y+1> &+1- Y+1) 1 (&,-q-J (&+q-l) (q++) (yI-T/;) tx,+l+ui+l) t&+1-4+1>, = (q-,-y.:.--1) (q,+q,) 1 [ [Xl 
txi+q.> (4-S) 1 1 [Xl 

m+1+ vi+11 @::,I - vl+d 1 

(X,-l-&I) (XI-I+%1) 1 [ [xl (T-5) Pi+w = (y-,-q-1) (yi-1+q,) (xi-q) (xi+q) 1 [ [xl R+1+ vl+1> R+1- vi+J 
txi+l+ui+l) (xi+l-~+l> 1 

where 

~ coshy(s)To [xl [ sinhy(s)T, 
= sinhy(s)To coshy(s)To ’ 1 

The above matrix relations are specific cases of the general matrix product 
(Qi-I+ ei-2Pi-l)+ei-1(Ki-1+ ei-2Pi-1) (Qi-I+ ei-2Pi-l)-ei-l(Ki-l+ ei-2f’-1) 
(Qi-l-ei-2Pi-1)+ei-l(Ki-l-e,-2Pi-1) (Qi-l-ei-2Pi-1)-ei-1(Ki-1-ei-2Pi-1) 1 [ 1 x 

(Qi+ei-,Pi)+ei(Ki+ei-lLi) 
’ (Q,-ei-,Pi)+ei(Ki-eielLi) 

(Qi+ei-lPi)-ei(KI+ei-lLi) [ X] 
(Qi-ei-,Pi)-e,(K,-ei-,Li) I 

. (Qi+l+eiPi+l)+ei+l(Ki+l + eiLi+l) (Qi+l+ eiPs-l)-ei+l(Ki+l+ eiLi+l) 

(Qi+l-eiPi+1)+ei+l(Ki+l-eiLi+l) (Qi+l-e,Pi+l)-ei+l(Ki+l-eiLi+l) 1 
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for 
ei-* = + 1, ei-1 = +1, e(=+l, e,+,=+l 

ei-2 = +l, eipl= -1, e,=+l, ei+r= +l 

ei-2 = +1, eiel = -1, e,= -1, ei+l =+1 

respectively, and illustrate the fact that for e, = f 1 there 
are 2” distinct cascade representations in terms of the 
expansion parameters for any Z, of the prescribed form 
and forwhich D,*O, i=1,2;*.,n. 

Thus the general expansion cascade 

[T;‘][ x] . ..[T.“][ x] . ..[ x][p;] 
with 

495 

ante of a realizable lumped-distributed cascade containing 
lossy transmission lines. 

EXAMPLES 

We illustrate the realization techniques of this paper 
with two additional examples: the first specializes the 
results to cascades consisting of lossy or lossless transmis- 
sion lines (no lumped two-ports) and the second demon- 
strates the applicability of the cascade networks for which 
zOi is not specifically prescribed for a given y,(s) or to 
cascades consisting of a limited mix of transmission line 
types (e.g., for y,(s) = 6 RC lines and/or LG lines). The 

and 

[xl [ coshy(s)TO sinhy(s)T, 
= sinhy(s)TO coshy(s)T, 1 

(Qi + ei-,I’,)-ei(Ki’-t e,-lL,) 
(Qi - eielPi)-ei(Ki - eiAILi) 1 

x~+,/Y,+~ = (Q,+, + ~,c+~)/(Q,+~ - G,+~) 
and ea =l, may be rewritten as 

which for the following definitions: 

with Mi equated to any common matrix-element factors 
and 2G,,24 chosen from the definition 

second example serves as an introduction to a forthcoming 
paper on noncommensurate lines and mixed-line cascades. 

2Gi21$Mf A e,- e.n .- n .d .-.d -(QiLi - PiKi) 1 I 01 1 OI 01 1 01 
Before the first example we state a realization lemma for 

such that [T,] is PR (if possible), becomes 
a special class of distributed cascades which the results of 
this paper and those of [3], [4] prove. These distributed 

RI 
I 

coshy(s)T, zol sinhy(s)T, 
1 G slnhy(s)T, coshy(s)T, 1 cascades are composed exclusively of transmission lines of 

. . ’ 
the same type whether the type be lossy or lossless (e.g., all 
lossless, all distortionless, all RC, all general, etc.). 

.“I 
L 

Lemma: Any Z, of the forms prescribed in the theorems 
coshy(s)T, zoi sinhy(s)T, 

’ sinhy(s)T, coshy(s)T, ..’ 2 . 

of this paper and [3] is realizable as a distributed cascade 
network composed exclusively of n commensurate, uni- 

- 
‘Oi I [I 

L form or tapered, lossless or lossy transmission lines of the 
same or similar type (e.g., all RC or a mix of RC and LG 

Therefore, the conditions of the theorem are sufficient to lines, etc.) and terminated in a passive load if and only if 
guarantee any Z, satisfying them to be the input imped- for the definitions a) and b) of the two theorems and 
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i:=1,2;**, n+l 

‘) Qi 3 exists (or 0, s 0), 

Note that PI/Q, exists, PI/Q, = K,/L, and zol = (Q, + 
Pl)/(Ql - Rl) =1/26. Hence, by the lemma the first 
expansion section is the RC-line: 

2) 2 =2; and cosh(l.lfi) l/2& sinh(l.l&) 
2fisinh(l.l6) cosh(l.lfi) 1 

3) 
Q.+p. k!$Qk+pk) .I= while according to the theorem the first lumped-network 

zOi = zOi- 1 Qi-Pi 
)jo(Qk - 4) 

description is 

dol[(QI+ 4)+el(Kl + &)I dol[<Ql - Pl)+eI(Kl - Ll)l ndQl- &)-4Kl - &)I 
with zoo A 1 is such that 

a) for a prescribed line-type cascade 
zoi =, kiZO 

with z. the characteristic impedance of the prescribed fines 
and ki a positive real constant; 

b) for a limited mixed line-type cascade 
zoi = k,n,/d, 

with zgi compatible with y(s)= Tonod (e.g., for y(s) 
To& 

P a,-b, El Ql (3+66)(26--j = zoi = k,& or k,/Js; for y(s) = LA-.-.---= 
T&T, + l)(G + 1) , zoi = k,\l(sT, +l)/(sT, +l) , Q2 a,,+4 4 4 (3+6h)(26+3) 

or 

where e, = + 1 is chosen to eventually achieve a unit 
matrix for [T,], which is required if the realization cascade 
is to consist entirely of RC transmission lines. Thus for 
no,=1 and dol=2& or z o1 = l/2& with 2GlMl = Sfi, 
[Tl] becomes the unit matrix and the first expansion-sec- 
tion description from the theorem is identical to the one 
obtained by application of the lemma. 

ki\l( ST, + l)/( ST, + 1) ; etc.) and ki a real positive con- 
stant; and 

c) zOn+l is a pr rational function of S. 
Furthermore, the ith transmission line or ith expansion 
section in the distributed-cascade synthesis of Z, is char- 
acterized by the propagation constant y(s) with the total 
“electric length” To and the characteristic impedance zoi, 
while the cascade network termination is given by z~~+~. 

Now we consider the given impedance 

3(2& + 3) 2&(3)(2& + 3) 
66 26(2h - 6) 1+2fi .- 

3(2& + 3) 2&(3)(2& + 3) l-t26 

3(2h - 3) -2h(3)(2h - 3) 

z, = 
3(2fi + 3) e3.3$ + 6fie’,‘$ + 6&ew1.‘6 + 3(26 - 3) e-3.3$ 

2&3(2fi + 3) e3.3$ + (26 - 6) e 116 - (2fi + 6) e-1.l& - 3(2fi - 3) e-3.36 

and determine whether this Z, possesses an RC line which yields 
cascade realization. An examination of the form of Z. P 1 
shows that it could represent a realizable, commensurate, 2=- 

uniform or tapered, RC-line cascade since y(s) = T,h Q2 3 

with To =l.l and ai, bi are real polynomials of &. 
The initial network is obtained from 

K 2 A an +bn cl Ll (3+6@(2&+3) -zzY 
L2 (ao-bo) *D,‘e,= (3+6fi)(2&3) 

P >A b (3-6&)(2h+3) l-2& =- Ql -%= (3+6@(2&+3) 1+2fi 

1 a a0 + 6, K --= (3-6fi)(2&-3) _ l-26 
Ll a,-bo (3+6&)(2&-3) 1+2& ’ 

.- 

66 -2&(2h+6) 
3(2h - 3) -2&(3)(2h-3) 1+2di .~ 
3(2fi + 3) 2fi(3)(2fi + 3) 1+2fi 

3(2& - 3) -2&(3)(2fi -3) 
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so that we get 
K 1 A=- 
L, 3’ 

Note that all terms in the algebraic expression Qi must 
have the plus sign, otherwise the section in question will 
not be realizable. Using the lemma 

202 = ZOl 

Q2+P2 1 4 1 
*e,=P,=3== 

and the second section is the RC transmission line de- 
scribed by 

cosh(l.16) l/h sinh(l.16) 

fi sinh(l.16) 1 cosh(l.lfi) . 

Similarly 

or 

while for 

n+l 2&-3 
$=&= 2h+3 

z=L4fi 2 
L &6=’ 

Hence the given Z, has an RC-line cascade representation 
of 

this cascade expansion of Z,. However, Toy(s) 
=J(s +1)(2&Y +1j indicates that the only permitted zoi 
are zni = k;J( s + 1)/(2s + 1) and ki/(2s + l)/(s + 1) 
(Assume ki = 1 to simplify matters.) 

Calculating the various Pi/Qi and K,/L, yields 

p,-&Ti-Jm K,+Ti-J2s 
Q, - Js+i-+GTi -%- !Jzi+tzzi 

Because Pl/Ql = K,/L, and P2/Q2 = K,/L, we can im- 
mediately write 

Q,+Pl s-t1 s+l 
zo1= e, = r-- 

Q2 + P2 
2s+l zo2 = Zol’ ~ = 

Q2-P2 i- -2s+l’ 

These calculations assume the first two lumped networks 
desired are described by the unit chain matrix. 

But e, = +l and zoi = z1 = J(s +1)/(2s +l) or Zoi = 
z2 = (2s + l)/( s + 1) implies that there are four possible 

1/2fisinh(l.l&) . cosh(l.16) I[ l/h sinh(l.lfi) 
cosh(l.l@ ’ fi sinh(l.lfi) cosh(l.l@ 1 
3/h sinh(l.16) 2 Jr 1 cosh(l.lfi) 1 

and is pr. chain-matrix descriptions for the initial lumped network or 
It must be emphasized that the lemma applied to all 

distributed cascades even to those containing a variety of 
transmission line types. In fact,. zoi = zoi-,(Qi + Pi)/(Qi - 

[T,“,:=‘=[T,,‘= [; ;] 

Pi) whenever Pi/Qi = Ki/Li even in a lumped-distributed 
cascade realization of a given Z,, and Pi/Qi = Ki/Li = 0 
implies that the ith line is identical to the (i - 1)th or a 
two-unit length line (2To) can be extracted from Z, as the 
(i - 1)th line. 

As a second example we examine 

[T,1’,:=1=[T,21= Is,’ ,,!+,] 

[T,1’,:=-‘=[T,31= [2so+1 ‘;‘I 

[T&i=-‘= [T,,] = [; ;] 

and determine whether it is realizable as a lumped- of which only [T,,] and [T14] are PR. The second lumped 
distributed cascade. Note we are not specifying the lines in two-port will have four distinct chain-matrix representa- 
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tions (e2 = * 1, zo2 = z1 or z2) for each of the four initial CONCLUSIONS 
lumped-network descriptions or a total of 16 matrices. 
However, there is no need to find the 8 chain matrices With the results of this paper and of their previous work 
generated by [T,,] and [T13] since the latter are not PR. [3], [4] the authors have established a complete and unified 
Similarly, not all of the remaining 8 chain-matrix descrip- synthesis theory for commensurate, lumped-distributed 
tion of the second lumped network need be PR. In fact, cascade networks: the first paper [3] treats the class of 
only four lossless lumped two-ports and lossless transmission lines 

[T,,]‘,;= *l = ’ [o y] r77211r:=-1=[~ ;] 
and the class of lossless lumped two-ports and distortion- 
less lines. (Although this class is not specifically discussed, 

[T24];:=+1= [; ;] [T,,]:;=-‘= [; ;] 
the theorems in [3], [4] hold for distortionless line cascades 
if ST is replaced by ST + p.) The second paper [4] treats 
lossless/lossy lumped networks and lossless or distortion- 

are realizable. Carrying the expansion process to a conclu- less lines; while this third paper treats lossless/lossy lumped 
sion yields the following 16 realizable lumped-distributed two-ports and lossy (except distortionless) lines. The third 
cascade network representations for the given Z,: paper also gives a single set of realizability conditions for 

where 

cash /( s -t 1)(2s + 1) J(s+1)/(2s+l) sinhJ(s+1)(2s+l) 1 

or 

[ 
2s(s+l) (2s+1) x 2(2s+l) 

s+1 0 lr 2 I[ (s+l) 

[ 

(2s+1) 2s(s+oIr) x (s+l) 

0 (s+l) I[ 1 1[ 2(2s+1) 

iii ‘;ii:ll:l 

L1] [/(2s+l)/(s+l) sinh\/(s+1)(2s+l) cosh\/(s +1)(2s +l) 

and 

cosh{(s +1)(2s +I) (2s + l)/(s + 1) sinh (s + 1)(2s + 1) 

(s+1)/(2s+l) sinhd(s+1)(2s+l) 1 cosh\/(s+1)(2s+l) ’ 

The easiest to realize would be 

cosh2Toy(s) (s +1)/(2s +l) sinh2Toy(s) 1 o 

(2s +l)/(s +l) sinh2Toy(s) cosh2Toy( s) 1 [ 1 2s 1 

cash Toy ( s ) zi sinhT,y(s) 2 
l/z, sinh T,y( s) I[ 1 coshT,y(s) I ’ 
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the total class of distributed cascade networks not contain- cascade representation of any given Z,. Should any of the 
ing lumped-element networks. A forthcoming paper, com- C, = Ei = 0 then the corresponding lumped network is sim- 
pleting this series, will treat lumped-distributed cascades ply a connection made by a pair of wires and the corre- 
consisting of noncommensurate lines or transmission lines sponding transmission lines combine to a two-unit length 
of different types. line of the same characteristic impedance. 

The theory is a unified synthesis theory because it is 
formulated in terms of definitions which are identical for 
all classes of commensurate lumped-distributed cascade 
networks. In fact, the same definitions are also used in the 
formulation of the synthesis theory for non-commensurate 
lines. 

The commensurate specification for the n transmission 
lines in the cascade realization of Z, requires that their 
time constants (if they exist) be related as follows: 

Ll Li L -2.&T R,= . . . -&= . . . = R” ] 

Note that no transformations of variables are used to 
formulate the various realizability conditions, and that the 
definitions and synthesis procedures are given in terms of 
the algebraic-expression or real-polynomial coefficients of 
the prescribed Z,. Hence, the synthesis theory is given 
entirely as a single-variable formulation. 

and/or 

Cl ci C 
-= . . . “AT Gl =G-..=G” 2 

and that their electric lengths are given by either 

The evaluation of the various definitions or determinants 
which yield the cascade-expansion sections can easily be 
obtained through a column manipulation process [3] for 
one determinant, D,, since Ci, Di, Ei are obtained from 
D, by appropriate column and row deletions. 

xi\lR,G,pTo, xi\lR,c,ATo, or xiJL,G,‘To 

where R;, Li, Gi, Li, and xi are either the uniform or 
tapered (per unit length) [5] line parameters of the ith line 
with xi its total length. 

Realizability conditions for more specialized cascade 
configurations are easily written simply by adding ap- 
propriate conditions to those of the stated theorems. Thus 
if all the lumped networks in the cascade realization of a 
Z, of this paper are to be reciprocal two-ports, then the 
additional condition becomes 
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requires that 

ai, bi real polynomials in s 

Z+ i;O 

c b;e(2i-n)ST 

i=O 

with ai = e-(2i-n)flai, bj = e- czimn@bi satisfy the realizabil- 
ity conditions of the theorem in [3]. To obtain the network 
realization of the given Z, in terms of the lossless lumped 
networks and the distortionless lines we simply replace the 
lossless transmission lines in the realization of Zi with 
distortionless lines possessing a propagation constant (ST 
+ PI. 

In addition, the synthesis procedures of these papers 
extract the entire ith lumped two-port and its associated 
transmission line as an entity at each synthesis step. Hence, 
at most (n + 1) expansion steps are required to obtain a 
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Transactions Briefs 

CAD Modeling of Three-Terminal Piecewise-Linear 
Device Characteristics 

SAMIR S. ROFAIL 

Abstract-The purpose of this work is to construct a circuit analysis 
model synthesizing piecewise-linear characteristics of a three terminal 
device, using only IHV - terminal piecewise-linear resistors together with 
linear controlled sources. The model is based on representing the function, 
to be modeled, by a finite amount of tabulated data. 

I. INTRODUCTION 

The piecewise-linear technique is one of the methods that can 
be applied to handle nonlinear networks [l]-[3]. In applying such 
technique, one could first obtain the circuit model that realizes 
the network characteristics then piecewise linearize its elements 
[2]. Another approach is to express the terminal characteristics in 
a piecewise-linear spatial form [4], then realize the resulting 
surface using the appropriate piecewise-linear elements together 
with controlled sources. Van Eijndhoven and Jess [6] demon- 
strated that piecewise-linear systems can be decomposed into 
subsystems which, in turn, can be stored using a hierarchical tree 
structure. In their work, however, the (Y-Z) characteristics and 
dimensions of the basic piecewise-linear network elements forming 
a subsystem have not been investigated. This paper proposes a 
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Fig. 1. Three-terminal device. 

modeling scheme based on the second approach to realize the 
three-terminal piecewise-linear characteristic using only two- 
terminal piecewise-linear elements together with linear controlled 
sources. Investigating such an equivalent is conceptually im- 
portant to show whether multidimensional piecewise-linear ele- 
ments extend the existing range of mathematical network ele- 
ments. 

II. THECIRC~ITREALIZATIONOFATHREE-TERMINAL 
PWL CHARACTERISTICS 

Consider the three-terminal PWL device, Fig. 1, whose char- 
acteristics are represented by the following input and output 
descriptions, Fig. 2(a), (b): 

Z1=G(v,,v,) 

Z*=G*fb,V2) 0) 
where (Vi, V,), (Ii, Z2) are the independent and dependent sets of 
variables respectively; G,, G2 are piecewise-linear functions and 
the partitioning of Vi and I$ into linear regions, Fig. 3, is 
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