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Generalized Digital Waveguide Networks
Davide Rocchesso, Associate Member, IEEE,and Julius O. Smith, III, Member, IEEE

Abstract—Digital waveguides are generalized to the multivari-
able case with the goal of maximizing generality while retaining
robust numerical properties and simplicity of realization. Multi-
variable complex power is defined, and conditions for “medium
passivity” are presented. Multivariable complex wave impedances,
such as those deriving from multivariable lossy waveguides, are
used to construct scattering junctions which yield frequency
dependent scattering coefficients which can be implemented in
practice using digital filters. The general form for the scattering
matrix at a junction of multivariable waveguides is derived. An
efficient class of loss-modeling filters is derived, including a rule
for checking validity of the small-loss assumption. An example
application in musical acoustics is given.

Index Terms—Acoustic system modeling, digital waveguides,
multivariable circuits, waveguide.

I. INTRODUCTION

D IGITAL waveguide networks (DWN) have been widely
used to develop efficient discrete-time physical models for

sound synthesis, particularly for woodwind, string, and brass
musical instruments [1]–[7]. They were initially developed for
artificial reverberation [8]–[10], and more recently they have
been applied to robust numerical simulation of two-dimensional
(2-D) and three-dimensional (3-D) vibrating systems [11]–[19].

A digital waveguide may be thought of as a sampled trans-
mission line—or acoustic waveguide—in which sampled, uni-
directional traveling waves are explicitly simulated. Simulating
traveling-wave components in place of physical variables such
as pressure and velocity can lead to significant computational re-
ductions, particularly in sound synthesis applications, since the
models for most traditional musical instruments (in the string,
wind, and brass families), can be efficiently simulated using one
or two long delay lines together with sparsely distributed scat-
tering junctions and filters [2], [20], [21]. Moreover, desirable
numerical properties are more easily ensured in this framework,
such as stability [22], “passivity” of round-off errors, and mini-
mized sensitivity to coefficient quantization [23]–[25], [14].

In [26], a multivariable formulation of digital waveguides was
proposed in which the real, positive, characteristic impedance of
the waveguide medium (be it an electric transmission line or an
acoustic tube) is generalized to any para-Hermitian ma-
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trix. The associated wave variables were generalized to a
matrix of transforms. From fundamental constraints assumed
at a junction of two or more waveguides (pressure continuity,
conservation of flow), associated multivariable scattering rela-
tions were derived, and various properties were noted.

In this paper, partially based on [27], we pursue a different
path to vectorized DWNs, starting with a multivariable gener-
alization of the well knowntelegrapher’s equations[28]. This
formulation provides a more detailed physical interpretation of
generalized quantities, and new potential applications are in-
dicated. One purpose of this paper is to establish a boundary
for convenient applicability of digital waveguide networks, i.e.,
to understand which are the systems where propagation can
be accurately modeled using finite bunches of delay lines and
sparsely distributed filters.

The paper is organized as follows. Section II introduces the
generalized DWN formulation, starting with the scalar case
and proceeding to the multivariable case. The generalized
wave impedance and complex signal power appropriate to
this formulation are derived, and conditions for “passive”
computation are given. In Section III,lossesare introduced, and
some example applications are considered. Finally, Section IV
presents a derivation of the general form of the physical
scattering junctions induced intersecting multivariable digital
waveguides.

II. M ULTIVARIABLE DWN FORMULATION

This section reviews the DWN paradigm and briefly outlines
considerations arising in acoustic simulation applications. The
multivariable formulation is based on-dimensional vectors of
“pressure” and “ velocity” and , respectively. These variables
can be associated with physical quantities such as acoustic pres-
sure and velocity, respectively, or they can be anything analo-
gous such as electrical voltage and current, or mechanical force
and velocity. We call these dual variablesKirchhoff variablesto
distinguish them fromwave variables[24] which are their trav-
eling-wave components. In other words, in a 1D waveguide, two
components traveling in opposite directions must be summed to
produce a Kirchhoff variable. For concreteness, we will focus
on generalized pressure and velocity waves in a lossless, linear,
acoustic tube. In acoustic tubes, velocity waves are in units of
volume velocity (particle velocity times cross-sectional area of
the tube) [29].

A. The Ideal Waveguide

First we address the scalar case. For an ideal acoustic tube,
we have the followingwave equation[29]:

(1)
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where denotes (scalar) pressure in the tube at the point
along the tube at time in seconds. If the length of the tube

is , then is taken to lie between 0 and . We adopt the
convention that increases “to the right” so that waves traveling
in the direction of increasing are referred to as “right-going.”
The constant is the speed of sound propagation in the tube,
given by , where is the “tension”1 of the gas in
the tube, and is the mass per unit volume of the tube. The dual
variable, volume velocity , also obeys (1) with replaced by

. The wave (1) also holds for an ideal string, ifrepresents the
transverse displacement, is the tension of the string, andis
its linear mass density.

The wave (1) follows from the more physically meaningful
equations [30, p. 243]

(2)

(3)

Equation (2) follows immediately from Newton’s second law of
motion, while (3) follows from conservation of mass and prop-
erties of an ideal gas.

The general traveling-wave solution to (1), or (2) and (3), was
given by D’Alembert as [29]

(4)

where , , , are the right- and left-going wave com-
ponents of pressure and velocity, respectively, and are referred
to aswave variables. This solution form is interpreted as the
sum of two fixed waveshapes traveling in opposite directions
along the tube. The specific waveshapes are determined by the
initial pressure and velocity throughout the tube

.

B. Multivariable Formulation of the Waveguide

Let us consider a set of waveguides. Given the vector of
spatial coordinates

(5)

the pressure variables can be collected in a vector

(6)

A straightforward multivariable generalization of (2) and (3) is

(7)

(8)

where

(9)

and and are (nonsingular, symmetric) positive def-
inite matrices playing the respective roles of multidimensional

1“Tension” is defined here for gases as the reciprocal of the adiabatic com-
pressibility of the gas [30, p. 230]. This definition helps to unify the scattering
formalism for acoustic tubes with that of mechanical systems such as vibrating
strings.

mass and tension. In the scalar case, we know that masses and
spring constants must be positive for passivity. We generalize
this in the multivariable case by requiring that the mass and ten-
sion matrices be positive definite. Then we have, for example,
energy measures which are positive quadratic forms:

for any nonzero velocity-like vector, and for
any nonzero displacement-like vector.

Differentiating (7) with respect to and (8) with respect to,
and eliminating the term yields the -variable
generalization of the wave equation

(10)

The second spatial derivative is defined here as

(11)

Similarly, differentiating (7) with respect to and (8) with
respect to , and eliminating yields

(12)

For digital waveguide modeling, we desire solutions of the
multivariable wave equation involving only sums of traveling
waves. Consider the eigenfunction

(13)

where is interpreted as a Laplace-transform variable

, is the identity matrix, ,

is a diagonal matrix of spatial
Laplace-transform variables (the imaginary part ofbeing
spatial frequency along theth spatial coordinate), and

is the -dimensional vector of ones. Applying
the eigenfunction (13) to (10) gives the algebraic equation

(14)

We see that solutions exist only when is diagonal.
We interpret as the matrix of sound-speeds along the m co-
ordinate axes. Since , we have

(15)

Substituting (15) into (13), the eigensolutions of (10) are found
to be of the form

(16)

Similarly, applying the eigenfunction
to (12) yields

(17)

where is a diagonal matrix. The eigensolutions of
(12) are then of the form

(18)
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and are positive definite matrices whose product is a
diagonal matrix, therefore they commute2 ; and the generalized
sound-speed matrices and turn out to be the same

(19)

Having established that (16) is a solution of (10) when condition
(14) holds on the matrices and , we can express the general
traveling-wave solution to (10) in both pressure and velocity as

(20)

where , and is an arbitrary superposition of
right-going components of the form (16) (i.e., taking the minus

sign), and is similarly any linear combina-
tion of left-going eigensolutions from (16) (all having the plus
sign). Similar definitions apply for and . When the time
and space arguments are dropped as in the right-hand side of
(20), it is understood that all the quantities are written for the
same time and position .

When the mass and tension matricesand are diagonal,
our analysis corresponds to consideringseparate waveguides
as a whole. For example, the two transversal planes of vibra-
tion in a string can be described by (10) with . In a
musical instrument such as the piano [31], the coupling among
the strings and between different vibration modalities within a
single string, occurs primarily at the bridge [32]. Indeed, the
bridge acts like a junction of several multivariable waveguides
(see Section IV).

When the matrices and are nondiagonal, the physical
interpretation can be of the form

(21)

where is thestiffness matrix,and is themass density ma-
trix. is diagonal if (14) holds, and in this case, the wave (10) is
decoupled in the spatial dimensions. There are physical exam-
ples where the matrices and are not diagonal, even though
(21) is satisfied with a diagonal . One such example, in the
domain of electrical variables, is given by conductors in a
sheath or above a ground plane, where the sheath or the ground
plane acts as a coupling element [33, pp. 67–68]. In acoustics,
it is more common to have coupling introduced by a dissipative
term in (10), but the solution can still be expressed as decoupled
attenuating traveling waves. An example of such acoustical sys-
tems will be presented in Section III-B.

Besides the existence of physical systems that support multi-
variable traveling wave solutions, there are other practical rea-
sons for considering a multivariable formulation of wave prop-
agation. For instance, modal analysis considers the vector
(whose dimension is infinite in general) of coefficients of the
normal mode expansion of the system response. For spaces in
perfectly reflecting enclosures,can be compacted so that each
element accounts for all the modes sharing the same spatial di-
mension [34]. admits a wave decomposition as in (20), and

is diagonal. Having walls with finite impedance, there is a
damping term proportional to that functions as a coupling

2MMM KKK = (MMM KKK) = KKK MMM = KKKMMM

term among the ideal modes [35]. Coupling among the modes
can also be exerted by diffusive properties of the enclosure [34],
[9].

Note that the multivariable wave (10) considered here does
not include wave equations governing propagation in multidi-
mensional media (such as membranes, spaces, and solids). In
higher dimensions, the solution in the ideal linear lossless case is
a superposition of waves traveling inall directionsin the -di-
mensional space [29]. However, it turns out that a good simu-
lation of wave propagation in a multidimensional medium may
in fact be obtained by forming ameshof unidirectional wave-
guides as considered here, each described by (10); such a mesh
of 1-D waveguides can be shown to solve numerically a dis-
cretized wave equation for multidimensional media [13], [14],
[18], [19].

C. Multivariable Wave Impedance

From (7), (16), and (18), we have

(22)

Similarly, from (8), (16) and (18) we get

(23)

The wave impedanceis defined by the positive definite
matrix

(24)

Since and are positive definite we can factorize them
uniquely3 into products of positive definitesquare roots as

and , respectively. If the sym-

metric, positive definite square roots and com-
mute, from (8), (16) and (18), we can also write that

(25)

which resembles the classical definition of wave impedance for
the scalar case.

The wave impedance is the factor of proportionality be-
tween pressure and velocity in a traveling wave, according to

(26)

In the cases governed by the ideal wave (10),is diagonal if
and only if the mass matrix is diagonal (since is assumed
diagonal). The minus sign for the left-going wave accounts
for the fact that velocities must move to the left to generate pres-
sure to the left. Thewave admittanceis defined as .

To generalize even further, we can introduce frequency and
spatial dependency in the wave impedance, thus departing
from the realm of (10). A linear propagation medium in
the discrete-time case is completely determined by itswave
impedance . Deviations from ideal propagation impose
considering frequency-dependent losses and phase delay, which

3In general, there are many other nonpositive definite square roots.
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determine a frequency-dependent and spatially-varying wave
impedance. Examples of such general cases will be given in
the sections that follow. Awaveguideis defined for purposes of
this paper as a length of medium in which the wave impedance
is either constant with respect to spatial position, or else it
varies smoothly with in such a way that there is no scattering
(as in the conical acoustic tube4 ). For simplicity, we will
suppress the possible spatial dependence and write only,
which is intended to be an function of the complex
variable , analytic for .

The generalized version of (26) is

(27)

where is the paraconjugate of , i.e., the unique
analytic continuation (when it exists) from the unit circle to the
complex plane of the conjugate transposed of [39].

D. Multivariable Complex Signal Power

The net complex powerinvolved in the propagation can be
defined as [40]

(28)

where all quantities above are functions ofas in (27). The
quantity is calledright-going active power(or
right-going average dissipated power5), while
is called theleft-going active power. The term , the
right-going minus the left-going power components, we call the
net active power, while the term isnet reactive power.
These names all stem from the case in which the matrix is
positive definite for . In this case, both the components
of the active power are real and positive, the active power itself
is real, while the reactive power is purely imaginary.

E. Medium Passivity

Following the classical definition of passivity [40], [41], a
medium is said to bepassiveif

(29)

4There appear to be no tube shapes supporting exact traveling waves other
than cylindrical and conical (or conical wedge, which is a hybrid) [36]. How-
ever, the “Salmon horn family” (see, e.g., [29], [37]) characterizes a larger class
of approximateone-parameter traveling waves. In the cone, the wave equation
is solved for pressurep(x; t) using a change of variablesp = px, wherex is
the distance from the apex of the cone, causing the wave equation for the cone
pressure to reduce to the cylindrical case [38]. Note that while pressure waves
behave simply as nondispersive traveling waves in cones, the corresponding ve-
locity waves aredispersive[38].

5Note thatjzj = 1 corresponds to the average physical power at frequency
!, wherez = exp(j!T ), and the wave variable magnitudes on the unit circle
may be interpreted as RMS levels. Forjzj > 1, we may interpret the power
uuu (1=z )ppp(z) as the steady state power obtained when exponential damping
is introduced into the waveguide giving decay time-constant� , wherez =
exp(�T=�) exp(j!T) (for the continuous-time case, see [40, p. 48]).

for . In words, the real part of the sum of the active
powers absorbed by a medium section is nonnegative. Thus, a
sufficient condition for ensuring passivity in a medium is that
each traveling active-power component is real and nonnegative.

To derive a definition of passivity in terms of the wave
impedance, consider a perfectly reflecting interruption in the
transmission line, such that . For a passive medium,
using (28), the inequality (29) becomes

(30)

for , i.e., the sum of the wave impedance and its para-
conjugate is positive semidefinite.

The wave impedance is an -by- function of the com-
plex variable . Condition (30) is essentially the same thing as
saying is positive real6 [42], except that it is allowed to be
complex, even for real.

The matrix is the paraconjugate of . Since

generalizes , to the entire complex plane,
we may interpret as generalizing the
Hermitian part of to the -plane, viz., thepara-Hermitian
part.

Since the inverse of a positive-real function is posi-
tive real, the corresponding generalized wave admittance

is positive real (and hence analytic) in .
In the scalar case, wave propagation is said to belossless

(and passive) if the wave impedance is real (and positive), i.e., it
is a pure resistance. Taken, for instance, an infinitely extended
string, this implies that energy of wave motion fed into the string
will never return [29]. In the multivariable case, this concept
generalizes by saying that wave propagation in the medium is
lossless if the impedance matrix is such that

(31)

i.e., if is para-Hermitian (which implies its inverse is
also).

Most applications in waveguide modeling are concerned with
nearly lossless propagation in passive media. In this paper, we
will state results for in the more general case when appli-
cable, while considering applications only for constant and diag-
onal impedance matrices. As shown in Section II-C, coupling
in the wave (10) implies a nondiagonal impedance matrix, since
there is usually a proportionality between the speed of propaga-
tion and the impedance through the nondiagonal matrix
[see (24)].

F. Multivariable Digital Waveguides

The wave components of (20) travel undisturbed along each
axis. This propagation is implemented digitally usingbidirec-
tional delay lines, as depicted in Fig. 1. We call such a collection

6A complex-valued function of a complex variablef(z) is said to bepositive
real if

1) z real) f(z) real;
2) jzj � 1 ) Reff(z)g � 0.

Positive real functions characterize passive impedances in classical network
theory.
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Fig. 1. Anm-variable waveguide section.

of delay lines an -variable waveguide section. Waveguide sec-
tions are then joined at their endpoints via scattering junctions
(discussed in Section IV) to form a DWN.

III. L OSSYWAVEGUIDES

A. Multivariable Formulation

The simplest viscous loss that can occur in a one-dimensional
propagating medium is accounted for by insertion of a term in
the first temporal derivative into the wave (1) [29]. Similarly,
to insert losses into our multivariable formulation we start from
the wave equation

(32)

where is a matrix that represents a viscous resistance.
Equation (32) can be obtained by adding a term proportional to

to (8). As shown in Section III-B, there are physical
systems that obey to such multivariable equation.

If we plug the eigensolution (13) into (32), we get, in the
Laplace domain

(33)

or, by letting

(34)

we get

(35)

By restricting the Laplace analysis to the imaginary (frequency)
axis , decomposing the (diagonal) spatial frequency
matrix into its real and imaginary parts ,
and equating the real and imaginary parts of (35), we get the
equations

(36)

(37)

The term can be interpreted as attenuation per unit length,
while keeps the role of spatial frequency, so that the traveling
wave solution is

(38)

Defining as the ratio7 between the real and imaginary parts
of ( ), the (36) and (37) become

(39)

(40)

Following steps analogous to those of (22), and substituting
the traveling wave solutions in (7), the admittance matrix
turns out to be

(41)

which, for (and, therefore, and ),
collapses to the reciprocal of (24). For the discrete-time case,
we may map from the plane to the plane via the
bilinear transformation [43], or we may sample the inverse
Laplace transform of and take its transform to obtain

.

B. Example in Acoustics

There are examples of acoustic systems, made of two or more
tightly coupled media, whose wave propagation can be simu-
lated by a multivariable waveguide section. One such system is
an elastic, porous solid [30, pp. 609–611], where the coupling
between gas and solid is given by the frictional force arising
when the velocities in the two media are not equal. The wave
equation for this acoustic system is (32), where the matrix
takes form

(42)

and is a flow resistance. The stiffness and the mass matrices
are diagonal and can be written as

(43)

(44)

Let us try to enforce a traveling wave solution with spatial
and temporal frequencies and , respectively

(45)

where and are the pressure wave components in the gas
and in the solid, respectively. We easily obtain from (32) the two
relations

(46)

(47)

where

(48)

(49)

7Indeed,� is a diagonal matrix.
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Fig. 2. Imaginary and real part of the wave number as functions of frequency (� = 0:001).

and and are the sound speeds in the gas and in the solid,
respectively. By multiplying together both members of (46) and
(47) we get

(50)

Equation (50) gives us a couple of complex numbers for,
i.e., two attenuating traveling waves forming a vectoras in
(38). It can be shown [30, p. 611] that, in the case of small flow
resistance, the faster wave propagates at a speed slightly slower
than , and the slower wave propagates at a speed slightly faster
than . It is also possible to show that the admitance matrix (41)
is nondiagonal and frequency dependent.

This example is illustrative of cases in which the matrices
and are diagonal, and the coupling among different media is
exerted via the resistance matrix. If approaches zero, we
are back to the case of decoupled waveguides. In any case, two
pairs of delay lines are adequate to model this kind of system.

C. Lossy Digital Waveguides

Let us now approach the simulation of propagation in lossy
media which are represented by (32). We treat the one-dimen-
sional scalar case here in order to focus on the kinds of filters
that should be designed to embed losses in digital waveguide
networks [27], [44].

As usual, by inserting the exponential eigensolution
into the wave equation, we get the one-variable version of (35)

(51)

where is the wave number, or spatial frequency, and it
represents the wave length and attenuation in the direction of
propagation.

Reconsidering the treatment of Section III-A and reducing it
to the scalar case, let us derive from (39) and (40) the expression
for

(52)

which gives the unique solution for (39)

(53)

This shows us that the exponential attenuation in (38) is fre-
quency dependent, and we can even plot the real and imaginary
parts of the wave number as functions of frequency, as re-
ported in Fig. 2.

If the frequency range of interest is above a certain threshold,
i.e., is small, we can obtain the following relations from
(53), by means of a Taylor expansion truncated at the first term

(54)

Namely, for sufficiently high frequencies, the attenuation can
be considered to be constant and the dispersion relation can be
considered to be the same as in a nondissipative medium, as it
can be seen from Fig. 2.
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Fig. 3. Length-L one-variable waveguide section with small losses.

Fig. 4. Phase delay (in seconds) and magnitude response introduced by frictional losses in a waveguide section of lengthL = 1, for different values of�.

Still under the assumption of small losses, and truncating the
Taylor expansion of to the first term, we find that the wave
admittance (41) reduces to the two “directional admittances”

(55)

where is the admittance of the medium without
losses, and is a negative shunt reactance that
accounts for losses.

The actual wave admittance of a 1-D medium, such as a tube,
is while is its paraconjugate in the analog do-
main. Moving to the discrete-time domain by means of a bi-
linear transformation, it is easy to verify that we get a couple of
“directional admittances” that are related through (27).

In the case of the dissipative tube, as we expect, wave prop-
agation is not lossless, since . However, the
medium is passive in the sense of Section II-E, since the sum

is positive semidefinite along the imaginary
axis.

The relations here reported hold for any 1-D resonator with
frictional losses. Therefore, they hold for a certain class of dissi-
pative strings and tubes. Remarkably similar wave admittances
are also found for spherical waves propagating in conical tubes
(see Appendix A).

The simulation of a length- section of lossy resonator can
proceed according to two stages of approximation. If the losses
are small (i.e., ) the approximation (54) can be considered
valid in all the frequency range of interest. In such case, we can
lump all the losses of the section in a single coefficient

. The resonator can be simulated by the structure of
Fig. 3, where we have assumed that the lengthis equal to an
integer number of spatial samples.

At a further level of approximation, if the values of are
even smaller we can consider the reactive component of the ad-
mittance to be zero, thus assuming .

On the other hand, if losses are significant, we have to repre-
sent wave propagation in the two directions with a filter whose
frequency response can be deduced from Fig. 2. In practice, we
have to insert a filter having magnitude and phase delay that
are represented in Fig. 4 for different values of. From such
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Fig. 5. Phase delay (in seconds) and magnitude response of a first-order IIR filter, for different values of the coefficientr,� is set to1� e with the
same values of� used for the curves in Fig. 4.

filter we can subtract a contribution of linear phase, which can
be implemented by means of a pure delay.

1) An Efficient Class of Loss Filters:A first-order IIR filter
that, when cascaded with a delay line, simulates wave propaga-
tion in a lossy resonator of length , can take the form

(56)

At the Nyquist frequency, and for , such filter gains
and we have to use to

have the correct attenuation at high frequency. Fig. 5 shows the
magnitude and phase delay obtained with the first-order filter

for three values of its parameter.
By comparison of the curves of Fig. 4 with the responses of

Fig. 5, we see how the latter can be used to represent the losses
in a section of one-dimensional waveguide section. Therefore,
the simulation scheme turns out to be that of Fig. 6. Of course,
better approximations of the curves of Fig. 4 can be obtained
by increasing the filter order or, at least, by controlling the zero
position of a first-order filter. However, the form (56) is particu-
larly attractive because its low-frequency behavior is controlled
by the single parameter.

As far as the wave impedance is concerned, in the dis-
crete-time domain, it can be represented by a digital filter
obtained from (55) by bilinear transformation, which leads to

(57)

Fig. 6. Length-L one-variable waveguide section with small losses.

that is a first-order high-pass filter. The discretization by
impulse invariance can not be applied in this case because
the impedance has a high-frequency response that would alias
heavily.

2) Validity of Small-Loss Approximation:One might ask
how accurate are the small-loss approximations leading to (54).
We can give a quantitative answer by considering the knee of
the curve in Fig. 4, and saying that we are in the small-losses
case if the knee is lower than the lowest modal frequency
of the resonator. Given a certain value of friction, we can
find the best approximating IIR filter and then find its knee
frequency k, corresponding to a magnitude that is
times the asymptotic value, witha small positive number. If
such frequency k is smaller than the lowest modal frequency
we can take the small-losses assumption as valid and use the
scheme of Fig. 3.

3) Frequency-Dependent Friction:With a further general-
ization, we can consider losses that are dependent on frequency,
so that the friction coefficient is replaced by . In such
case, all the formulas up to (55) will be recomputed with this
new .

Quite often, losses are deduced from experimental data which
give the value . In these cases, it is useful to calculate the
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value of so that the wave admittance can be computed.
From (39) we find

(58)

and, therefore, from (52) we get

(59)

For instance, in a radius-cylindrical tube, the visco-thermal
losses can be approximated by the formula [45]

(60)

which can be directly replaced into (59).
In vibrating strings, the viscous friction with air determines a

damping that can be represented by the formula [45]

(61)

where and are coefficients that depend on radius and den-
sity of the string.

IV. M ULTIVARIABLE WAVEGUIDE JUNCTIONS

A set of waveguides can be joined together at one of their
endpoints to create an-portwaveguide junction. General con-
ditions for lossless scattering in the scalar case appeared in [9].
Waveguide junctions are isomorphic toadaptorsas used in wave
digital filters [24].

This section focuses on physically realizable scattering junc-
tions produced by connecting multivariable waveguides having
potentially complex wave impedances. A physical junction can
be realized as a parallel connection of waveguides (as in the
connection of tubes that share the same value of pressure at
one point), or as a series connection (as in the connection of
strings that share the same value of velocity at one point). The
two kinds of junctions are duals of each other, and the resulting
matrices share the same structure, exchanging impedance and
admittance. Therefore, we only treat the parallel junction.

A. Parallel Junction of Multivariable Complex Waveguides

We now consider the scattering matrix for the parallel junc-
tion of -variable physical waveguides, and at the same time,
we treat the generalized case of matrix transfer-function wave
impedances. Equation (27) and (20) can be rewritten for each

-variable branch as

(62)

and

(63)

where , is the pressure at the junction, and
we have used pressure continuity to equateto for any .

Using conservation of velocity we obtain

(64)

and

(65)

where

(66)

From (63), we have the scattering relation

...

...
... (67)

where the scattering matrix is deduced from (65)

(68)

If the branches do not all have the same dimensionality,
we may still use the expression (68) by lettingbe the largest
dimensionality and embedding each branch in an-variable
propagation space.

B. Loaded Junctions

In discrete-time modeling of acoustic systems, it is often
useful to attach waveguide junctions to external dynamic
systems which act as aload. We speak in this case of aloaded
junction [26]. The load is expressed in general by its complex
admittance and can be considered a lumped circuit attached to
the distributed waveguide network.

To derive the scattering matrix for the loaded parallel junction
of lossless acoustic tubes, the Kirchhoff’s node equation is re-
formulated so that the sum of velocities meeting at the junction
equals the exit velocity (instead of zero). For the series junction
of transversely vibrating strings, the sum of forces exerted by
the strings on the junction is set equal to the force acting on the
load (instead of zero).

The load admittance is regarded as alumped driving-point
admittance[42], and the equation

(69)

expresses the relation at the load.
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Fig. 7. Two pairs of strings coupled at a bridge.

For the general case of -variable physical waveguides,
the expression of the scattering matrix is that of (68), with

(70)

C. Example in Acoustics

As an application of the theory developed herein, we outline
the digital simulation of two pairs of piano strings. The strings
are attached to a common bridge, which acts as a coupling ele-
ment between them (see Fig. 7). An in-depth treatment of cou-
pled strings can be found in [32]. For a recent survey on piano
modeling, we recommend [46].

To a first approximation, the bridge can be modeled as a
lumped mass-spring-damper system, while for the strings, a dis-
tributed representation as waveguides is more appropriate. For
the purpose of illustrating the theory in its general form, we rep-
resent each pair of strings as a single 2-variable waveguide. This
approach is justified if we associate the pair with the same key
in such a way that both the strings are subject to the same ex-
citation. Actually, the 2 2 matrices and of (10) can be
considered to be diagonal in this case, thus allowing a descrip-
tion of the system as four separate scalar waveguides.

The pair of strings is described by the two-variable
impedance matrix

(71)

The lumped elements forming the bridge are connected in series,
so that the driving-point velocity8 is the same for the spring,
mass, and damper

(72)

8The symbols for the variables velocity and force have been chosen to main-
tain consistency with the analogous acoustical quantities.

Also, the forces provided by the spring, mass, and damper, add

(73)

We can derive an expression for the bridge impedances using
the following relations in the Laplace-transform domain

(74)

Equation (74) and (73) give the continuous-time load impedance

(75)

In order to move to the discrete-time domain, we may apply the
bilinear transform

(76)

to (75). The factor is used to control the compression of the
frequency axis. It may be set to so that the discrete-time
filter corresponds to integrating the analog differential equation
using the trapezoidal rule, or it may be chosen to preserve the
resonance frequency.

We obtain

The factor in the impedance formulation of the scattering ma-
trix (68) is given by

(77)

which is a rational function of the complex variable. The scat-
tering matrix is given by

(78)

which can be implemented using a single second-order filter
having transfer function (77).

This example is proposed just to show how the generalized
theory of multivariable waveguides and scattering allows to ex-
press complex models in a compact way. As far as the simulation
results are concerned, they could be found in prior art that uses
the scheme of Fig. 7 for coupled strings [46].

V. SUMMARY

We presented a generalized formulation of digital waveguide
networks derived from a vectorized set of telegrapher’s equa-
tions. Multivariable complex power was defined, and condi-
tions for “medium passivity” were presented. Incorporation of
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Fig. 8. One-variable waveguide section for a length-L conical tract.

losses was carried out, and applications were discussed. An ef-
ficient class of loss-modeling filters was derived, and a rule for
checking validity of the small-loss assumption was proposed.
Finally, the form of the scattering matrix was derived in the case
of a junction of multivariable waveguides, and an example in
musical acoustics was given.

APPENDIX

PROPAGATION OFSPHERICAL WAVES (CONICAL TUBES)

We have seen how a tract of cylindrical tube is governed by a
partial differential equation such as (10) and, therefore, it admits
exact simulation by means of a waveguide section. When the
tube has a conical profile, the wave equation is no longer (1),
but we can use the equation for propagation of spherical waves
[29]

(79)

where is the distance from the cone apex.
In the (79) we can evidentiate a term in the first derivative,

thus obtaining

(80)

If we recall (32) for lossy waveguides, we find some similari-
ties. Indeed, we are going to show that, in the scalar case, the
media described by (32) and (80) have structurally similar wave
admittances.

Let us put a complex exponential eigensolution in (79), with
an amplitude correction that accounts for energy conservation in
spherical wavefronts. Since the area of such wavefront is pro-
portional to , such amplitude correction has to be inversely
proportional to , in such a way that the product intensity (that
is the square of amplitude) by area is constant. The eigensolu-
tion is

(81)

where is the complex temporal frequency, andis the complex
spatial frequency. By substitution of (81) in (79) we find the
algebraic relation

(82)

So, even in this case the pressure can be expressed by the first
of (4), where

(83)

Newton’s second law

(84)

applied to (83) allows to express the particle velocityas

(85)

Therefore, the two wave components of the air flow are given
by

(86)

where is the area of the spherical shell outlined by the cone
at point .

We can define the two wave admittances

(87)

where is the admittance in the degenerate case of a
null tapering angle, and is a shunt reactance accounting
for conicity [47]. The wave admittance for the cone is ,
and is its paraconjugate in the analog domain. If we
translate the equations into the discrete-time domain by bilinear
transformation, we can check the validity of (27) for the case of
the cone.

Wave propagation in conical ducts is not lossless, since
. However, the medium is passive in the

sense of Section II, since the sum is positive
semidefinite along the imaginary axis.

As compared to the lossy cylindrical tube, the expression for
wave admittance is structurally unchanged, with the only excep-
tion of the sign inversion in the shunt inductance. This difference
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is justified by thinking of the shunt inductance as a representa-
tion of the signal that does not propagate along the waveguide.
In the case of the lossy tube, such signal is dissipated into heat;
in the case of the cone, it fills the shell that is formed by inter-
facing a planar wavefront with a spherical wavefront.

The discrete-time simulation of a length- cone tract having
the (left) narrow end at distance from the apex is depicted in
Fig. 8.
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