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Generalized Digital Waveguide Networks

Davide Rocchess@ssociate Member, IEEERBNd Julius O. Smith, IJIMember, IEEE

Abstract—Digital waveguides are generalized to the multivari- trix. The associated wave variables were generalized;to a
able case with the goal of maximizing generality while retaining matrix of z transforms. From fundamental constraints assumed
robust numerical properties and simplicity of realization. Multi- at a junction of two or more waveguides (pressure continuity,

variable complex power is defined, and conditions for “medium nservation of flow iated multivariabl ttering rel
passivity” are presented. Multivariable complex wave impedances, ¢OnSérvaton otflo ), associated multivariable scattering rela-

such as those deriving from multivariable lossy waveguides, are tions were derived, and various properties were noted.

used to construct scattering junctions which yield frequency  In this paper, partially based on [27], we pursue a different
dependent scattering coefficients which can be implemented in path to vectorized DWNSs, starting with a multivariable gener-
practice using digital filters. The general form for the scattering alization of the well knowrtelegrapher’s equationf28]. This

matrix at a junction of multivariable waveguides is derived. An f lati id detailed phvsical int tati f
efficient class of loss-modeling filters is derived, including a rule ormulation provides a more aetailed physical interpretation o

for checking validity of the small-loss assumption. An example generalized quantities, and new potential applications are in-

application in musical acoustics is given. dicated. One purpose of this paper is to establish a boundary
Index Terms—Acoustic system modeling, digital waveguides, for convenient applicability of digital waveguide networks, i.e.,
multivariable circuits, waveguide. to understand which are the systems where propagation can

be accurately modeled using finite bunches of delay lines and
sparsely distributed filters.

The paper is organized as follows. Section Il introduces the
IGITAL waveguide networks (DWN) have been widelygeneralized DWN formulation, starting with the scalar case
used to develop efficient discrete-time physical models fand proceeding to the multivariable case. The generalized

sound synthesis, particularly for woodwind, string, and brag&ve impedance and complex signal power appropriate to

musical instruments [1]-[7]. They were initially developed fothis formulation are derived, and conditions for “passive”

artificial reverberation [8]-[10], and more recently they haveomputation are given. In Section llbssesare introduced, and

been applied to robust numerical simulation of two-dimensionsdme example applications are considered. Finally, Section IV

(2-D) and three-dimensional (3-D) vibrating systems [11]-[19presents a derivation of the general form of the physical
A digital waveguide may be thought of as a sampled transsattering junctions induced intersecting multivariable digital

mission line—or acoustic waveguide—in which sampled, unwaveguides.

directional traveling waves are explicitly simulated. Simulating

traveling-wave components in place of physical variables such [I. MULTIVARIABLE DWN FORMULATION

as pressure and velocity can lead to significant computational res

ductions, particularly n sound synth¢5|s apphcatpns, since tE'gnsiderations arising in acoustic simulation applications. The
m.odels for most traq]tmnal musmall mstrumgnts (in the.smn%ultivariable formulation is based an-dimensional vectors of
wind, and brass far_mlles), can be efﬁmently S|mu!at§d usINg OB assure” and velocity’p andu, respectively. These variables

or 'twoilong'delay Ilne's together with sparsely d|str|buteq SC%3n be associated with physical quantities such as acoustic pres-
tering j_unctlons af‘d filters [2], [20].’ [21]. More_ove_r, deSIrabIeSure and velocity, respectively, or they can be anything analo-
numerical properties ?re more ?asny ensured in this frame\_’vqgﬁus such as electrical voltage and current, or mechanical force
su_ch as Sta.b!"Fy [22], pa_s_swlty of rqunq-oﬁ errors, and MiNI5nd velocity. We call these dual variablkeischhoff variableso
mized senS|t|V|t_y to_coefﬁuent qqantlzat!op [23]_[25]’. [14]. distinguish them fromwvave variable$24] which are their trav-

In [26], a muItilvanabIe formulgpon of digital vyayegwdes Wa%litng—wave components. In other words, in a 1D waveguide, two
proposed m.Wh|Ch the real, posnwe, ch.aractenst]c '_mpe.dancec%mponents traveling in opposite directions must be summed to
the wayegwde _medlum (k_)e it an eleciric transm|35|_o_n line or 3?oduce a Kirchhoff variable. For concreteness, we will focus
acoustic tube) is generalized to ap ¢ para-Hermitian ma- on generalized pressure and velocity waves in a lossless, linear,

acoustic tubeln acoustic tubes, velocity waves are in units of
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|I. INTRODUCTION

his section reviews the DWN paradigm and briefly outlines
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wherep(z, t) denotes (scalar) pressure in the tube at the poimiass and tension. In the scalar case, we know that masses and
z along the tube at timein seconds. If the length of the tubespring constants must be positive for passivity. We generalize
is Lgr, thenz is taken to lie between 0 antlz. We adopt the this in the multivariable case by requiring that the mass and ten-
convention that increases “to the right” so that waves travelingion matrices be positive definite. Then we have, for example,
in the direction of increasing are referred to as “right-going.” energy measures which are positive quadratic fosAstv >

The constant: is the speed of sound propagation in the tubé, for any nonzero velocity-like vector, andd” Kd > 0 for

given byc = /K /u, whereK is the “tension? of the gas in any nonzero displacement-like vecibr

the tube, and is the mass per unit volume of the tube. The dual Differentiating (7) with respect t@ and (8) with respect to,
variable, volume velocity:, also obeys (1) withp replaced by and eliminating the term?u(z, t)/0zot yields them-variable

u. The wave (1) also holds for an ideal stringp ifepresents the generalization of the wave equation

transverse displacemetff, is the tension of the string, andis

2
its linear mass density. w = KMA%ZQJ) (10)
The wave (1) follows from the more physically meaningful ot oz
equations [30, p. 243] The second spatial derivative is defined here as
0p(xf) _ au(£7f) 82p(z,t) A [ 8%py(xy,t) 3P (T ,t) T
T Mo ) [ o2 } - [ pazf - paxgn ’ } - (1D
(()’UJ(LEIL) -1 E)p(l’f) . . .. . .
- = - 3) Similarly, differentiating (7) with respect to and (8) with
- o t taz, and eliminating)’p(=, £) /0ot yield
Equation (2) follows immediately from Newton’s second law ofespect tar, and elimina Ing"p(x, 1) /00t yields
motion, while (3) follows from conservation of mass and prop- O*u(z,t) M,lKBQu(z,t) (12)
erties of an ideal gas. o2 ox2

The general traveling-wave solution to (1), or (2) and (3), was

given by D'Alembert as [29] For digital waveguide modeling, we desire solutions of the

multivariable wave equation involving only sums of traveling

p(z,t) =pt(x —ct) + p~(z + ct) waves. Consider the eigenfunction
uw(w,t) =ut(z —ct) +u (z + ct) 4 pst+viz VX
wherep*, p~, u™, u~ are the right- and left-going wave com- p(z,1) = L Lostl+ -1 (13)
eS VmTm

ponents of pressure and velocity, respectively, and are referred
to aswave variablesThis solution form is interpreted as theypere s is interpreted as a Laplace-transform variable
sum of two fixed Wavesh'a'pes traveling in opposite (_1|rect|or%s: o + jw, I is them x m identity matrix,Xédiag(z),
along the tube. The specific waveshapes are determined by the ) ) ) ]
initial pressurep(z, 0) and velocityu(z, 0) throughout the tube V' =diag([v1, ..., vm]) is @ diagonal matrix of spatial

z € [0, Lg]. Laplace-transform variables (the imaginary partwpfbeing
' spatial frequency along théth spatial coordinate), and
B. Multivariable Formulation of the Waveguide 1T§[1, ..., 1] is them-dimensional vector of ones. Applying
Let us consider a set af waveguides. Given the vector of the eigenfunction (13) to (10) gives the algebraic equation
spatial coordinates
P 2T = KM 'V?2C,?V2, (14)
A T
=21 - T (5)

) ) We see that solutions exist only Whéi;;éKM‘1 is diagonal.
them pressure variables can be collected in a vector We interpretC, as the matrix of sound-speeds along the m co-

A H H 2y72 — 2
Pz, )2 [pi(x1,t) - plwm,t)]T. ©6) ordinate axes. Sina@,“V~ = s°I, we have
A straightforward multivariable generalization of (2) and (3) is V=+5Cp (15)
op(z, t) du(x,t) Substituting (15) into (13), the eigensolutions of (10) are found
—V =M — (7)
Ox ot to be of the form
op(x,t) ou(z, t) 1:C."'X
o - Ko ® pla.t) = (TEGTX) . (16)
where Similarly, applying the eigenfunction(:c,t)éeStIJFVX -1
op(z,t) o [0 Opm )] (9) to(12)yields
o Oz 0T,
andM andK arem x m (nonsingular, symmetric) positive def- V =+sC, " (7)

inite matrices playing the respective roles of multidimensional A
. Cered hore 1 ) ot the adiat whereC,’=M 'K is a diagonal matrix. The eigensolutions of
“Tension” is defined here for gases as the reciprocal of the adiabatic copi-

pressibility of the gas [30, p. 230]. This definition helps to unify the scatterinng) are then of the form
formalism for acoustic tubes with that of mechanical systems such as vibrating 8(
strings. u(z,t) =e

d:C, ' X) | 18)
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M~! andK are positive definite matrices whose product is term among the ideal modes [35]. Coupling among the modes
diagonal matrix, therefore they commutand the generalized can also be exerted by diffusive properties of the enclosure [34],
sound-speed matric€s, andC,, turn out to be the same [9].
A Note that the multivariable wave (10) considered here does
Cp =C,=C. (19) not include wave equations governing propagation in multidi-

Having established that (16) is a solution of (10) when conditi e”S'Or?a' me_dla (such as _mernbrar!es, spaces, and sohds)._ln
(14) holds on the matricelf andK, we can express the genera Igher dimensions, the solution in the ideal linear lossless case is

traveling-wave solution to (10) in both pressure and velocity gssupgrposnmn of waves travellngalﬁ directionsin them-di- .
mensional space [29]. However, it turns out that a good simu-

p(z,t) =pt +p~ lation of wave propagation in a multidimensional medium may
w(z,t) =ut +u" (20) in fact be obtained by forming meshof unidirectional wave-
guides as considered here, each described by (10); such a mesh

Wherep+éf(t1_0—1x), andf is an arbitrary superposition of of 1-D waveguides can be shown to solve numerically a dis-
right-going components of the form (16) (i.e., taking the minugretized wave equation for multidimensional media [13], [14],
sign), anq;—ég(tl+ C~'X) is similarly any linear combina- [18], [19].
tion of left-going eigensolutions from (16) (all having the plu
sign). Similar definitions apply fout andu~—. When the time
and space arguments are dropped as in the right-hand side dfrom (7), (16), and (18), we have

T. Multivariable Wave Impedance

(20), it is understood that all the quantities are written for the op (z,t) ou (z,t)
same time and positione. oz ot
When the mass and tension matriddsand K are diagonal, = +5C " 'p=— sMu

our analysis corresponds to consideringeparate waveguides
as a whole. For example, the two transversal planes of vibra- = p=+CMu. (22)
tion in a string can be described by (10) with = 2. In a  Similarly, from (8), (16) and (18) we get
musical instrument such as the piano [31], the coupling among =)
the strings and between different vibration modalities within a p=+KC ‘u. (23)
single string, occurs primarily at the bridge [32]. Indeed, thehem x m wave impedancis defined by the positive definite
bridge acts like a junction of several multivariable waveguidegatrix
(see Section V). A

When the matricedf and K are nondiagonal, the physical R=CM = KC™'. (24)

interpretation can be of the form . . . .
P Since K and M are positive definite we can factorize them

C22KM™! (21) uniquely? into products of positive definitsquare roots ak” =
K2 KY? andM = M2 M2, respectively. If the sym-

whereK is thestiffness matrixand M is themass density ma- . itive defini o/ dM_l/QT )
trix. C is diagonal if (14) holds, and in this case, the wave (10) [Eetnc, positive definite square ro and com
decoupled in the spatial dimensions. There are physical exa%qte’ from (8), (16) and (18), we can also write that
ples where the matricéd andK are not diagonal, even though R=K'?M'/? (25)
(21) is satisfied with a diagon@'. One such example, in the
domain of electrical variables, is given by conductors in a
sheath or above a ground plane, where the sheath or the gromgdscalar case.

plane acts as a coupling element [33, pp. 67—68]. In acoustics, € Wave impedanc& is the factor of proportionality be-

it is more common to have coupling introduced by a dissipatif@/€€n pressure and velocity in a traveling wave, according to
termin (10), but the solution can still be expressed as decoupled pt =Rut
attenuating traveling waves. An example of such acoustical sys- p =— Ru~ (26)
tems will be presented in Section 111-B. )
Besides the existence of physical systems that support multi-the cases governed by the ideal wave (I)s diagonal if
variable traveling wave solutions, there are other practical read only if the mass matriM is diagonal (sinc€ is assumed
sons for considering a multivariable formulation of wave promiagonal). The minus sign for the left-going wgwe accounts
agation. For instance, modal analysis considers the vectofor the fact that velocities must move to the left to generate pres-
(whose dimension is infinite in general) of coefficients of theure to the left. Thevave admittancés defined ad® = R™*.
normal mode expansion of the system response. For spaces ifio generalize even further, we can introduce frequency and
perfectly reflecting enclosureg can be compacted so that eaclspatial dependency in the wave impedance, thus departing
element accounts for all the modes sharing the same spatialfdim the realm of (10). A linear propagation medium in
mension [34].,p admits a wave decomposition as in (20), anthe discrete-time case is completely determined bywidse
C is diagonal. Having walls with finite impedance, there is anpedanceR(z, z). Deviations from ideal propagation impose
damping term proportional tdp/Jt that functions as a coupling considering frequency-dependent losses and phase delay, which

which resembles the classical definition of wave impedance for

MK =(M'K)T = K™ M T =KM™! 3In general, there are many other nonpositive definite square roots.
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determine a frequency-dependent and spatially-varying w&ee |z| > 1. In words, the real part of the sum of the active
impedance. Examples of such general cases will be givenpowers absorbed by a medium section is nonnegative. Thus, a
the sections that follow. Avaveguidas defined for purposes of sufficient condition for ensuring passivity in a medium is that
this paper as a length of medium in which the wave impedaneach traveling active-power component is real and nonnegative.
is either constant with respect to spatial positigror else it To derive a definition of passivity in terms of the wave
varies smoothly witk in such a way that there is no scatteringmpedance, consider a perfectly reflecting interruption in the
(as in the conical acoustic tube For simplicity, we will transmission line, such that- = «™*. For a passive medium,
suppress the possible spatial dependence and writeRinly, using (28), the inequality (29) becomes

which is intended to be am x m function of the complex

variablez, analytic for|z| > 1. R(2) +R*<i> >0 (30)
The generalized version of (26) is z*) =

p" =R(z)u" for |z| > 1, i.e., the sum of the wave impedance and its para-
1 conjugate is positive semidefinite.

p =—R* (—*>'u, 27) The wave impedand®(z) is anm-by-m function of the com-
z

plex variablez. Condition (30) is essentially the same thing as
whereR*(1/*) is the paraconjugate d®(z), i.e., the unique sayingR(z) is positive reai[42], except that it is allowed to be
analytic continuation (when it exists) from the unit circle to th§°MPlex, even for read.

complex plane of the conjugate transposed®6f) [39]. The matrix R"(1/2") is the paraconjugate of. Since
R*(1/z*) generalizesR(e/«) , to the entire complex plane,
D. Multivariable Complex Signal Power we may interpref{R(z) + R"(1/2")]/2 as generalizing the
The net complex poweinvolved in the propagation can beHerm|t|an part ofR(z) to thez-plane, viz., thepara-Hermitian
defined as [40] part . N o .
Since the inverse of a positive-real function is posi-
P=u'p=(ut +u )@ +p°) tive real, the corresponding generalized wave admittance

—ut Rut —u Ru+ I‘(Iz) = R™'(2) is positive real (and he_nce _analytic)|i11 > 1.
. . n the scalar case, wave propagation is said tdossless
u~ Ru™ —u* R'u” (and passive) if the wave impedance is real (and positive), i.e., it
é(P+ — P)+ (Py — Py™) (28) is a pure resistance. Taken, for instance, an infinitely extended
string, this implies that energy of wave motion fed into the string
where all quantities above are functions:ofis in (27). The will never return [29]. In the multivariable case, this concept
quantity P, = ut"Rut is calledright-going active powe(or generalizes by saying that wave propagation in the medium is
right-going average dissipated podgmwhile P~ = »~"R*u~ lossless if the impedance matrix is such that
is called theleft-going active powerThe termP, — P_, the
right-going minus the left-going power components, we call the R(z) =R* <i> (31)
net active powemwhile the termP, — Py * is net reactive power z*
These names all stem from the case in which the m&(fix is . . . . S .
positive definite for|z| > 1. In this case, both the comt;gnents"e" If B(2) is para-Hermitian (which implies its inver&z) is

. o : . 0).
of the active power are real and positive, the active power itse I . . . .
) . X : : : Most applications in waveguide modeling are concerned with
is real, while the reactive power is purely imaginary.

nearly lossless propagation in passive media. In this paper, we
will state results folR(z) in the more general case when appli-
cable, while considering applications only for constant and diag-
Following the classical definition of passivity [40], [41], agnal impedance matricd® As shown in Section II-C, coupling

E. Medium Passivity

medium is said to bpassiveif in the wave (10) implies a nondiagonal impedance matrix, since
there is usually a proportionality between the speed of propaga-
Re{P, + P} >0 (29) tionC andthe impedancR through the nondiagonal matrid

4There appear to be no tube shapes supporting exact traveling waves o[ﬁgre (24)]-
than cylindrical and conical (or conical wedge, which is a hybrid) [36]. How-
ever, the “Salmon horn family” (see, e.g., [29], [37]) characterizes a larger clgss \ultivariable Digital Waveguides
of approximateone-parameter traveling waves. In the cone, the wave equation

is solved for pressurg(z, t) using a change of variableg = px, wherex is The wave components of (20) travel undisturbed along each

the distance from the apex of the cone, causing the wave equation for the ci ; PR P o i
pressure to reduce to the cylindrical case [38]. Note that while pressure wa\%‘ékis' This propagationisimplemented digitally usingidirec

behave simply as nondispersive traveling waves in cones, the correspondindi@0al delay linesas depicted in Fig. 1. We call such a collection

locity waves aralispersive[38].
6 i . . A . .
5Note that|z| = 1 corresponds to the average physical power at frequengg A complex-valued function of a complex variatféz) is said to bepositive

w, wherez = exp(jwT), and the wave variable magnitudes on the unit circl&E@ f

may be interpreted as RMS levels. Hot > 1, we may interpret the power 1) zreal= f(z)real;

u(1/z*)p(z) as the steady state power obtained when exponential damping?) |z| > 1 = Re{f(z)} > 0.

is introduced into the waveguide giving decay time-constanivherez =  Positive real functions characterize passive impedances in classical network
exp(—T/7)exp(jwT) (for the continuous-time case, see [40, p. 48]). theory.
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0 p-:-(l- mT)  Defining ® as the ratid between the real and imaginary parts
‘——’ of V (®V; = V), the (36) and (37) become

—+
I\‘l
=]
i

- -1 —2
P, p(t+mT) Vi=(I-0% ws’C (39)

Y =20 (I-0?) 'w.Cc2 (40)

N 1
B
=

e o o Following steps analogous to those of (22), and substituting
. the traveling wave solutions in (7), thex m admittance matrix
p{t-mT)  turns out to be

1 AQ)

|
N
[

“m ‘

r=mM'(I-e)c'-imiv, (@
S

0) p(t+mT)
m “m m
z © which, for ® — 0 (and, therefore® — 0 andVy — 0),

collapses to the reciprocal of (24). For the discrete-time case,
we may mapl'(s,z) from the s plane to thez plane via the

¢ delav i bl i tioh: i bilinear transformation [43], or we may sample the inverse
otdelay ines amn-variable waveguioe sectiolvaveguide sec- Laplace transform oF (s, z) and take its: transform to obtain

tions are then joined at their endpoints via scattering junctio?s(:z z)
(discussed in Section V) to form a DWN. T

§

Fig. 1. Anm-variable waveguide section.

B. Example in Acoustics
Il. L ossyWAVEGUIDES

There are examples of acoustic systems, made of two or more
tightly coupled media, whose wave propagation can be simu-

The simplest viscous loss that can occur in a one-dimensiotaikd by a multivariable waveguide section. One such system is
propagating medium is accounted for by insertion of a term &n elastic, porous solid [30, pp. 609-611], where the coupling
the first temporal derivative into the wave (1) [29]. Similarlypbetween gas and solid is given by the frictional force arising
to insert losses into our multivariable formulation we start frorwhen the velocities in the two media are not equal. The wave

A. Multivariable Formulation

the wave equation equation for this acoustic system is (32), where the mabrix
9 oy takes form
0 I‘)(z?t) +KM_1¢K_18p(z7t) :KM—ld p(:’;?t) (32)
ot? ot o2 & — [ ) —cb} (42)
where® is am x m matrix that represents a viscous resistance. s

Equation (32) can be obtained by adding a term proportional tod i afl . he stiff dth .
Op(z,t)/0t to (8). As shown in Section I11-B, there are physicaf" 3) ISa CI)W rgsstart])ce. The stifiness and the mass matrices
systems that obey to such multivariable equation. are diagonal and can be written as

If we plug the eigensolution (13) into (32), we get, in the k, 0
Laplace domain K = { 0 kb:| (43)
P14+ sKM ‘@K ' = KM 'W?2C*V? (33 M- [ua 0 } (a4)

0 |’
or, by letting e
A Let us try to enforce a traveling wave solution with spatial
K '= (34) and temporal frequencids andw,, respectively
we get i(Ve—w, )2 | Pa

p=poe’VITD= [ﬁ } (45)

21 + sC*Y = C*V?. (35)
wherep, andp, are the pressure wave components in the gas

By restricting the Laplace analysis to the imaginary (frequency i the solid, respectively. We easily obtain from (32) the two
axiss = jws, decomposing the (diagonal) spatial freq”e”%lations

matrix into its real and imaginary par8 = Vg + jV7,

and eguating the real and imaginary parts of (35), we get the Jwe®k, " ps =(wslal? — Vp, (46)
equations sk Lpa =(ws2a? — V2)p, (47)
V2 -V;?=-C%w,? (36) )
ere
W V) =w,T. @n "

_ k@
The termV i can be interpreted as attenuation per unit length, a’ =ca 7+ I (48)
while V1 keeps the role of spatial frequency, so that the traveling ) ,  k,®
wave solution is Qs =es (49)

p= VX i(wtl+ViX) g (38) “Indeed,® is a diagonal matrix.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on October 14, 2008 at 16:25 from IEEE Xplore. Restrictions apply.



ROCCHESSO AND SMITH: GENERALIZED DIGITAL WAVEGUIDE NETWORKS 247

wavenumber vs frequency (loss coefficient = 0.001)
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frequency (Hz)
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frequency (Hz)

Fig. 2. Imaginary and real part of the wave number as functions of frequéhey (.001).

andc, ande, are the sound speeds in the gas and in the solidhere V' is the wave number, or spatial frequency, and it
respectively. By multiplying together both members of (46) angpresents the wave length and attenuation in the direction of

(47) we get propagation.
) o o ) Reconsidering the treatment of Section IlI-A and reducing it
vi= 9Ys (@™ + as”) to the scalar case, let us derive from (39) and (40) the expression
1 for ®
:i:i\/wg‘l(oz,,,2 — as2)? — 4w 292k, ky,.  (50)
Equation (50) gives us a couple of complex numbers¥for 0= lyw V7|2 (52)
2 s

i.e., two attenuating traveling waves forming a vegiaas in

(38_). It can be shown [30, p. 611] that, in the case of_small ﬂOWhich gives the unique solution for (39)

resistance, the faster wave propagates at a speed slightly slower

thanc,, and the slower wave propagates at a speed slightly faster

thanc, . Itis also possible to show that the admitance matrix (41) Q= _ Y +

is nondiagonal and frequency dependent. Tc?
This example is illustrative of cases in which the matri&es

andM are diagonal, and the coupling among different media #d1is shows us that the exponential attenuation in (38) is fre-

exerted via the resistance matdx If & approaches zero, we duency dependent, and we can even plot the real and imaginary

are back to the case of decoupled waveguides. In any case, Bagts of the wave numbér as functions of frequency, as re-

pairs of delay lines are adequate to model this kind of systenported in Fig. 2.
o . If the frequency range of interest is above a certain threshold,
C. Lossy Digital Waveguides i.e.,Yc?/w, is small, we can obtain the following relations from

Let us now approach the simulation of propagation in los$p3), by means of a Taylor expansion truncated at the first term
media which are represented by (32). We treat the one-dimen-
sional scalar case here in order to focus on the kinds of filters |vg| ~ <=
that should be designed to embed losses in digital waveguide { [vg| ~ grc.
networks [27], [44].
As usual, by inserting the exponential eigensolut6it*'*  Namely, for sufficiently high frequencies, the attenuation can
into the wave equation, we get the one-variable version of (3pg considered to be constant and the dispersion relation can be
52 ) considered to be the same as in a nondissipative medium, as it
2 tsT=V (51)  can be seen from Fig. 2.

2

ﬁ + 1. (53)

(54)
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Fig. 3. LengthL ; one-variable waveguide section with small losses.

phase delay and magnitude vs frequency
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Fig. 4. Phase delay (in seconds) and magnitude response introduced by frictional losses in a waveguide sectioh. gf fergtfor different values off".

Still under the assumption of small losses, and truncating theThe relations here reported hold for any 1-D resonator with
Taylor expansion 0B to the first term, we find that the wavefrictional losses. Therefore, they hold for a certain class of dissi-
admittance (41) reduces to the two “directional admittances”pative strings and tubes. Remarkably similar wave admittances

A ut 1 are also found for spherical waves propagating in conical tubes
IT=0(s) = — =Gy <1 + E) (see Appendix A).
p _ The simulation of a lengtli-r section of lossy resonator can
r—é —I*(=s") :“T =Gy <_1 + i) (55) proceed according to two stages of approximation. If the losses
p $ are small (i.e.Y =~ 0) the approximation (54) can be considered
whereG, = 1/uc is the admittance of the medium withoutvalid in all the frequency range of interest. In such case, we can
losses, and. = —2/Yc? is a negative shunt reactance thaump all the losses of the section in a single coefficignt=
accounts for losses. e(t/2)Yelr The resonator can be simulated by the structure of

The actual wave admittance of a 1-D medium, such as a tubég. 3, where we have assumed that the lergthis equal to an
is T'(s) while T*(—s*) is its paraconjugate in the analog dointeger numbern, of spatial samples.
main. Moving to the discrete-time domain by means of a bi- At a further level of approximation, if the values &f are
linear transformation, it is easy to verify that we get a couple efzen smaller we can consider the reactive component of the ad-
“directional admittances” that are related through (27). mittance to be zero, thus assuming = I'™ = G,.

In the case of the dissipative tube, as we expect, wave propOn the other hand, if losses are significant, we have to repre-
agation is not lossless, sind&(s) # R*(—s*). However, the sentwave propagation in the two directions with a filter whose
medium is passive in the sense of Section II-E, since the s@iraquency response can be deduced from Fig. 2. In practice, we
R(s) + R*(—s*) is positive semidefinite along the imaginaryhave to insert a filte€, having magnitude and phase delay that
axis. are represented in Fig. 4 for different valuesYaf From such
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phase delay and magnitude vs frequency
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Fig. 5. Phase delay (in seconds) and magnitude response of a first-order IIR filter, for different values of the coefficieset tol — e~ (/2T LR with the
same values ol used for the curves in Fig. 4.

filter we can subtract a contribution of linear phase, which cz p(®

A -m
be implemented by means of a pure delay. z * s
1) An Efficient Class of Loss FiltersA first-order IIR filter ©— p(t0) ©— pltLg)
that, when cascaded with a delay line, simulates wave propa«__ ;ML ’k_~_
tion in a lossy resonator of lengthg, can take the form PO
1—r Fig. 6. Lengthf. z one-variable waveguide section with small losses.
Gr(z) = (am +(1- a)) gkl

A that is a first-order high-pass filter. The discretization by

=Hp(z)z Ertfe/e, (56) impulse invariance can not be applied in this case because
the impedance has a high-frequency response that would alias

At the Nyquist frequency, and for ~ 1, such filter gains heavily.

Gr(e’™)~1—aandwe havetouse = 1 — e~(/2TeLr to  2) validity of Small-Loss ApproximationOne might ask

have the correct attenuation at high frequency. Fig. 5 shows th®w accurate are the small-loss approximations leading to (54).

magnitude and phase delay obtained with the first-order filtéve can give a quantitative answer by considering the knee of

G, for three values of its parameter the curve in Fig. 4, and saying that we are in the small-losses

By comparison of the curves of Fig. 4 with the responses oése if the knee is lower than the lowest modal frequency
Fig. 5, we see how the latter can be used to represent the lossfethe resonator. Given a certain value of frictidh) we can
in a section of one-dimensional waveguide section. Therefofiad the best approximating IIR filter and then find its knee
the simulation scheme turns out to be that of Fig. 6. Of courdegquencywy, corresponding to a magnitude that lis+ d
better approximations of the curves of Fig. 4 can be obtainéthes the asymptotic value, witha small positive number. If
by increasing the filter order or, at least, by controlling the zesuch frequencyy, is smaller than the lowest modal frequency
position of a first-order filter. However, the form (56) is particuwe can take the small-losses assumption as valid and use the
larly attractive because its low-frequency behavior is controlletheme of Fig. 3.
by the single parametet 3) Frequency-Dependent Frictionwith a further general-

As far as the wave impedance is concerned, in the digation, we can consider losses that are dependent on frequency,
crete-time domain, it can be represented by a digital filtso that the friction coefficienT is replaced byX'(ws). In such
obtained from (55) by bilinear transformation, which leads tocase, all the formulas up to (55) will be recomputed with this

new Y (wy).
2LF; 1—271 Quite often, losses are deduced from experimental data which

+ _
R" = Go 2LF,+1— (2LF, — 1)z} (57) give the valud’g (w;). In these cases, itis useful to calculate the
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value of Y'(ws) so that the wave admittance can be computed. Using conservation of velocity we obtain
From (39) we find

N
_1T ,
o_ |2VR| 8y =1 Z;'u,
V% + VR? N ) )
17 . * + *
and, therefore, from (52) we get =17y { [I‘z(z) + T (Z—*ﬂ p; — T (;)ml}
=1
2| VR (ws 2 64
T(ws) = 2|Vr(ws)] ‘*’_; + Va(ws)?. (59) (64)
Ws c
and
For instance, in a radius-cylindrical tube, the visco-thermal
losses can be approximated by the formula [45] T al 1 "
) pr=S1"> |Ti(2) +T5( = ) | p; (65)
3.0x 107° Jws i=1 #
Vi)l = =———1/5= (60)
@ 4 where
which can be directly replaced into (59). N 1
In vibrating strings, the viscous friction with air determines a g lq7 I 1 1 (66)
damping that can be represented by the formula [45] - Zl A '
[Vr(ws)| = a1 ;}—5 + as, (61) From (63), we have the scattering relation
Y
wherea; anday are coefficients that depend on radius and den- 2
sity of the string. p = = Ap*
Py
IV. MULTIVARIABLE WAVEGUIDE JUNCTIONS p;r 1
A set of N waveguides can be joined together at one of their =A|: =ps || —-p" (67)
endpoints to create aM-portwaveguide junctionGeneral con- f 1
N

ditions for lossless scattering in the scalar case appeared in [9].
Waveguide junctions are isomorphicadaptorsas used in wave where the scattering matrix is deduced from (65)
digital filters [24].

This section focuses on physically realizable scattering junc-
. - 2 . - A=51].-. - I (68)
tions produced by connecting multivariable waveguides having - . .
potentially complex wave impedances. A physical junction can U [Li+Tf - Tn+TR]

be realized as a parallel connection of waveguides (as in thef the pranches do not all have the same dimensionality
connection ofN tubes that share the same value of pressure\gh may still use the expression (68) by lettimgbe the largest

one point), or as a series connection (as in the connectioh Ofdimensionality and embedding each branch innavariable
strings that share the same value of velocity at one point). Thgypagation space.

two kinds of junctions are duals of each other, and the resulting
matrices share the same structure, exchanging impedance nd gaded Junctions
admittance. Therefore, we only treat the parallel junction.

17Ty +T7 -~ Tn+T%]

In discrete-time modeling of acoustic systems, it is often
useful to attach waveguide junctions to external dynamic

systems which act aslaad. We speak in this case ofleaded

~ We now consider the scattering matrix for the parallel jun¢ynction [26]. The load is expressed in general by its complex
tion of N m-variable physical waveguides, and at the same timgy nittance and can be considered a lumped circuit attached to
we treat the generalized case of matrix transfer-function wayg, gistributed waveguide network.

impedances. Equation (27) and (20) can be rewritten for eachrq gerive the scattering matrix for the loaded parallel junction
m-variable branch as of NV lossless acoustic tubes, the Kirchhoff’s node equation is re-

A. Parallel Junction of Multivariable Complex Waveguides

uf =T;(2)p; formulated so that the sum of velocities meeting at the junction
1 equals the exit velocity (instead of zero). For the series junction
u, =—TI7 (—*> D, (62) of transversely vibrating strings, the sum of forces exerted by
z the strings on the junction is set equal to the force acting on the
and load (instead of zero).

w —ut U The load admittancEp, is regarded aslamped driving-point

P =p; +p; =ps1 (63)

admittancd42], and the equation
Ur(z) =Tr(z)ps(z 69
whereT;(z) = R; *(z), ps is the pressure at the junction, and #) e(2)ps(2) (69)

we have used pressure continuity to equate p; for anys. expresses the relation at the load.
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Also, the forces provided by the spring, mass, and damper, add

p(t) = Pm (t> + Dk (t) + pu(t)- (73)

We can derive an expression for the bridge impedances using
the following relations in the Laplace-transform domain

Z, P =( £ ) vt

P.(s) =msUp,(s)
P,(s) =pU,(s). (74)

k U Equation (74) and (73) give the continuous-time load impedance

2y k
Ry(s) = 58 —m T o Lkl (75)

In order to move to the discrete-time domain, we may apply the

Fig. 7. Two pairs of strings coupled at a bridge. bilinear transform

1—z1
a—2
1421

For the general case &f m-variable physical waveguides,to (75). The factor is used to control the compression of the

the expression of the scattering matrix is that of (68), with ~ frequency axis. It may be set 8T so that the discrete-time
filter corresponds to integrating the analog differential equation
N
S = [1T (ZI‘I) 1+1';

S «—

(76)

-1 using the trapezoidal rule, or it may be chosen to preserve the

(70) resonance frequency.

i=1 We obtain
. . Ri(z) =
C. Example in Acoustics [(aQ_%_'_ﬁ) 2_2+(_2a2+%) z—1+(a2+%+ﬁ)]
As an application of the theory developed herein, we outline e [g(l _ Zinz)] e

the digital simulation of two pairs of piano strings. The strings
are attached to a common bridge, which acts as a coupling elée factorS in the impedance formulation of the scattering ma-
ment between them (see Fig. 7). An in-depth treatment of cduix (68) is given by

pled strings can be found in [32]. For a recent survey on piano .

modeling, we recommend [46]. 2
To a first approximation, the bridge can be modeled as a S(z)= | > Rij+ Ru(2) (77)
lumped mass-spring-damper system, while for the strings, a dis- i,j=1

tributed representation as waveguides is more appropriate. b:\fﬁrich is a rational function of the complex variakleThe scat-
the purpose of illustrating the theory in its general form, we re Sring matrix is given by
resent each pair of strings as a single 2-variable waveguide. This

approach is justified if we associate the pair with the same key Rin Ria Ry1 Rap
in such a way that both the strings are subject to the same ex- A =99 Riy Rip Ron Rap| I (78)
citation. Actually, the 2x 2 matricesM and K of (10) can be Rii Rip Rox Rapo
considered to be diagonal in this case, thus allowing a descrip- Rii Rip Rox Rapo

tion of the system as four separate scalar waveguides.
The it" pair of strings is described by the two-variabl
impedance matrix

which can be implemented using a single second-order filter
%aving transfer function (77).
This example is proposed just to show how the generalized
R, 0 theory of multivariable waveguides and scattering allows to ex-
R; = { 0 R; J press complex models in a compact way. As far as the simulation
' results are concerned, they could be found in prior art that uses
The lumped elements forming the bridge are connected in seriés, scheme of Fig. 7 for coupled strings [46].
so that the driving-point velocity is the same for the spring,

mass, and damper V. SUMMARY
We presented a generalized formulation of digital waveguide
u(t) = um(t) = ur(t) = upu(t). (72)  networks derived from a vectorized set of telegrapher’s equa-
8The symbols for the variables velocity and force have been chosen to mdi@Ns. Multivariable complex power was defined, and condi-
tain consistency with the analogous acoustical quantities. tions for “medium passivity” were presented. Incorporation of
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Fig. 8. One-variable waveguide section for a length-conical tract.

losses was carried out, and applications were discussed. An%d; even in this case the pressure can be expressed by the first
ficient class of loss-modeling filters was derived, and a rule faf (4), where

checking validity of the small-loss assumption was proposed.

Finally, the form of the scattering matrix was derived in the case TR VORI S, 83)

of a junction of multivariable waveguides, and an example in L Po=5e ’

musical acoustics was given. ,
Newton’s second law

APPENDIX du, 10p

PROPAGATION OFSPHERICAL WAVES (CONICAL TUBES) ot _;5 (84)

We have seen how a tract of cylindrical tube is governed by a lied to (83) allows to express the particle veloginas
partial differential equation such as (10) and, therefore, it admftsP" (83) allow xp particle veloaitya

exact simulation by means of a waveguide section. When the 1 N 1
tube has a conical profile, the wave equation is no longer (1), up(r,t) = <E F E) —Tes(ti’"/c). (85)
but we can use the equation for propagation of spherical waves P
[29] Therefore, the two wave components of the air flow are given
10 ( ,0p(r.t)\ 1 9%(r.t) (79) by
2o\ or T2 ot 1 1\ 1
. (_ N _) L a-r/e)
wherer is the distance from the cone apex. rs.oc/jpr
In the (79) we can evidentiate a term in the first derivative, w —S (i B l) A gstr/e) (86)
thus obtaining rs ¢/ pr

whereS is the area of the spherical shell outlined by the cone

*p(r,t) | 20p(r,t) _ 1 &p(r.t) (80) at pointr.

2 -2 2 . .
or roor ¢t Ot We can define the two wave admittances
If we recall (32) for lossy waveguides, we find some similari- n ut 1
; ; : =I'(s)=—=Go |1+ —
ties. Indeed, we are going to show that, in the scalar case, the pt sL

media described by (32) and (80) have structurally similar wave u— 1
admittances. ™ =-I"(=s") = — = Go (—1 + E) (87)
Let us put a complex exponential eigensolution in (79), with P
an amplitude correction that accounts for energy conservationjfereG, = S/pc is the admittance in the degenerate case of a
spherical wavefronts. Since the area of such wavefront is pQsj| tapering angle, anfl = r/c is a shunt reactance accounting
portional tor?2, such amplitude correction has to be inverselg, conicity [47]. The wave admittance for the coneligs),
proportional tor, in such a way that the product intensity (thahnd*(—s*) is its paraconjugate in the analog domain. If we
is the square of amplitude) by area is constant. The eigensalgnslate the equations into the discrete-time domain by bilinear
tion is transformation, we can check the validity of (27) for the case of
1 the cone.
p(rt) = ;GSHW (81)  Wwave propagation in conical ducts is not lossless, since
R(s) # R*(—s*). However, the medium is passive in the
wheres is the complex temporal frequency, anis the complex  sense of Section I, since the suffs) + R*(—s*) is positive
spatial frequency. By substitution of (81) in (79) we find th&emidefinite along the imaginary axis.
algebraic relation As compared to the lossy cylindrical tube, the expression for
s wave admittance is structurally unchanged, with the only excep-
U= ig- (82) tionofthe signinversion in the shuntinductance. This difference
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is justified by thinking of the shunt inductance as a representgis] S. A.Van Duyne and J. O. Smith, “Physical modeling with the 2-D dig-
tion of the signal that does not propagate along the waveguide.
In the case of the lossy tube, such signal is dissipated into heaﬂ'gl

in the case of the cone, it fills the shell that is formed by inter-

facing a planar wavefront with a spherical wavefront.

The discrete-time simulation of a lengtly, cone tract having
the (left) narrow end at distaneg from the apex is depicted in
Fig. 8.
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