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GENERALIZATIONS OF NOETHER’S THEOREM IN CLASSICAL
MECHANICS*

WILLY SARLETt AND FRANS CANTRIJNt}

Abstract. In this paper, a review is presented of various approaches to the generalization of the version of
Noether’s theorem, which is presented in most textbooks on classical mechanics. Its motivation is the
controversy still persisting around the possible scope of a Noether-type theorem allowing for velocity-
dependent transformations. Our analysis is centered around the one factor common to all known treatments,
namely the structure of the related first integral. We first discuss the most general framework, in which a
function of the above-mentioned structure constitutes a first integral of a given Lagrangian system, and show
that one cannot really talk about an “interrelationship” between symmetries and first integrals there. We
then compare different proposed generalizations of Noether’s theorem, by describing the nature of the
restrictions which characterize them, when they are situated within the broadest framework. We prove a
seemingly new equivalence-result between the two main approaches: that of invariance of the action
functional, and that of invariance of dé (6 being the Cartan-form). A number of arguments are discussed in
favor of this last version of a generalized Noether theorem.

Throughout the analysis we pay attention to practical considerations, such as the complexity of the
Killing-type partial differential equations in each approach, which must be solved in order to identify
“Noether-transformations”.

1. Introduction. Since the publication of Emmy Noether’s paper [42] on invariant
variational problems more than half a century ago, there has been a never-ending
stream of new contributions to the subject, aimed at establishing some generalization
of the original theorem, or at clarifying certain methodological aspects. Let us mention
some of the aspects which have frequently been discussed in the literature; it should
be understood that the list of quoted references is not exhaustive, and that the papers
in question usually contain much more than what is quoted here. In most treatments
(in mechanics or in field theory), Noether-transformations are considered to be
invariance transformations of an action functional (Lovelock and Rund [36], Logan
[34], Hill [23]). Alternatively (but not equivalently), they can be regarded as invariance
transformations of the Lagrangian density itself, up to gauge-terms (Palmieri and Vitale
[457). Still other treatments place a version of Noether’s theorem, and corresponding
generalizations, within the broader context of dynamical symmetries of the Euler—
Lagrange equations (Katzin and Levine [27], [28], [29]). Finally, once the condition of
some invariance of the action functional is no longer imposed, the second point of view
allows further generalizations to be built up by allowing additional terms in the
variation of the Lagrangian, which vanish along solutions of the motion equations
(Candotti et al. [7], Rosen [49], [50]). In this last type of Noether-transformations, the
bond with any invariance principle is completely lost, since these transformations do
not even constitute dynamical symmetries of the equations of motion. Note, however,
that in all cases considered above, the explicit formula for the computation of the
related conservation law is the same. Obviously, if there is no agreement in the
literature even about what, conceptually, should be called a Noether-transformation,
questions about the existence and form of a converse to Noether’s theorem (i.e., the
determination of a Noether-transformation related to a given constant of the motion)
must be somewhat controversial. So it is not surprising that this methodological aspect
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also has been under discussion in many publications (Fletcher [16], Dass [12], Steudel
[56], Palmieri and Vitale [45], Saletan and Cromer [51], Candotti et al. [8], Crampin
[11], Djukic and Vujanovic [14]).

We now focus our attention on the case of particle mechanics, more specifically,
on systems described by second-order Euler-Lagrange equations. Before describing
what type of generalizations are referred to in the title of the present paper, it is
necessary that we first agree about the scope of the theorem to be generalized.
Therefore, when talking about the classical Noether theorem in this paper, we will
always be referring to the following statement.

Consider infinitesimal transformations of time and coordinates, whereby the first-
order variations are assumed to be functionally dependent on time and coordinates only
(i.e., not on velocity), then, to each such transformation, leaving the action functional
invariant up to a constant (i.e., with gauge variance) corresponds a constant of the motion.

Keeping in mind a number of references quoted earlier, this is a very restrictive
version of Noether’s theorem. Even the original version by Noether [42], and par-
ticularly the way it is found in Bessel-Hagen’s paper [5], are more general, and allow
a dependence on velocities and derivatives of higher order, although the full con-
sequences of such a dependence were not explored in any depth (see § 5 for more
details). However, what we call the ‘““classical Noether theorem” is the version which
is mentioned in all the textbooks quoted earlier, and taking this as our starting point
at least has the advantage that all treatments of it, although sometimes different in
approach or in the complexity of the proof, are in full agreement. The disagreements
start when generalizations of this theorem are presented, aimed at allowing the
variations to depend on velocities. We refer here to papers by Lévy-Leblond [33],
Djukic [13], Crampin [11] and Lutzky [38], for example.

A deeper analysis of these papers reveals conceptual differences, which are
sometimes subtle but are nevertheless too fundamental to neglect. In other words, a
generalization to velocity-dependent transformations, which one would expect to be a
rather straightforward matter nowadays, still appears to create confusion. And such a
generalization is needed, if only in order to establish an unambiguous inverse Noether
theorem. It is interesting to note that a number of people quite recently have promoted
the use of the so-called Lie-method of extended groups (which applies to general
differential equations) in the case of Lagrangian systems (Prince and Eliezer [46], [47],
Eliezer [15], Leach [32]). The use of Noether’s theorem there, is criticized precisely
because of that “troublesome” need for velocity-dependent transformations. By using,
instead, the original Lie-method with velocity-independent transformations, the
dimension of the Lie-algebra of infinitesimal generators is kept finite, which opens
better perspectives for the determination of the complete algebra of symmetries and
associated constants of the motion. We do not share this criticism of Noether’s theorem,
but will come back to this question later.

It is the purpose of the present paper to give a comparative survey of different
approaches to the generalization of the classical Noether theorem for velocity-dependent
transformations. The differences among previous treatments (or their equivalence) will
be explained by situating them within the broadest possible framework. The nontrivial
equivalence we will establish between the two main themes in the literature will be one
of the arguments (among many others) in favor of what we feel should be called
Noether’s theorem. This will entail mild criticism of a too general concept of Noether-
transformations, in which the elegant one-to-one correspondence between equivalence
classes of symmetries and first integrals is completely lost. It is hoped that this
contribution will help to resolve the confusion around Noether’s theorem, although in
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such an enterprise one always runs the risk of creating an opposite effect in the eyes of
those who do not agree with one’s ultimate conclusions.

In § 2, we briefly recall the classical Noether theorem, and prove an invariance
property of the corresponding first integral, which seems to be largely unknown in the
literature. As already mentioned, there is one common element in all treatments of
generalizations of Noether’s theorem: they all give rise to the same formula for the
related first integral. We therefore will take this formula as the starting point for our
analysis, which is the opposite of most other treatments. To be more precise, in § 4 we
will determine necessary and sufficient conditions for the generator of an infinitesimal
transformation to yield a first integral of a given Lagrangian system according to the
accepted formula. This will set the stage, in a natural way, for the broadest possible
version of a Noether theorem with an inverse. It will, however, also clearly show that
there is too much freedom within this framework. We make use of the concise and
powerful tools offered by the calculus on differentiable manifolds, but only in purely
local considerations and in a way accessible to a large audience. Section 3, therefore,
is devoted to a review of the way Lagrange’s equations can be defined by a characteristic
vector-field of the two-form d6, derived from the so-called Cartan-form [10]. It also
recalls some basic results about curves on the tangent-bundle and symmetries of
vectorfields and of the fundamental two-form dé.

The general scheme of the paper should now be clear. Realizing that too much
freedom arises in the discussion presented in § 4, a more appropriate generalization of
the classical Noether theorem must come from introducing supplementary restrictions.
Therefore, the different extensions which are available in the literature, will be
characterized by the nature of the supplementary restrictions they encompass.

In § 5, we distinguish between four possible restrictions. First, there is the method
in which variations of the velocities are computed along arbitrary curves, leading to
a ‘“Noether-identity” which is required to hold for all ¢, g, ¢, 4, while an equality
along integral curves of the given system would suffice to guarantee a similar invariant.
This approach is, essentially, the original Noether theorem, and (apart from inevitable
differences in details) can also be found in work by Djukic [13], Palmieri and Vitale
[45] and Kobussen [30], [31].

A second type of restriction consists of requiring the term characterizing the
gauge-variance to be independent of velocities. This has been advocated by Lutzky
[38], and is also implicitly present in Lévy-Leblond’s treatment [33)]. Thirdly, one
might think of imposing the condition that the generator of the infinitesimal transfor-
mation be a general dynamical symmetry of the vectorfield governing the given system.
Finally, it might look advantageous to restrict the dynamical symmetry a bit further,
by requiring the generator to be a df-symmetry. In this last approach, a nice one-to-one
correspondence between classes of symmetries and constants of the motion is most
apparent (see, e.g., Crampin [11]).

Section 6 contains the key theorem of our analysis. It establishes the full
equivalence between the first and the last alternative, which is an argument on its own
for calling either of these the appropriate version of Noether’s theorem. A number of
other arguments are listed in the extensive discussion of § 7, in which, e.g., attention is
paid to the connection with Hamiltonian mechanics and with the Lie-method of
extended groups. Finally, the Poisson theorem in Lagrangian mechanics, which is most
easily obtained within the context of df-symmetries, is presented in an appendix.

2. The classical Noether theorem. Many excellent versions of the classical
Noether theorem can be found in textbooks. We can refer e.g., to Saletan and Cromer
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[51], Lovelock and Rund [36] or Logan [34]. For a rigorous modern treatment in
continuum mechanics, see e.g., the paper by Trautman [58]. We therefore content
ourselves here with a rather intuitive sketch, which is sufficient to provide us with
formulae for later use. Consider the variational principle

t
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The Lagrangian L is assumed to be regular, meaning that the Hessian (3°L/34" 84")
is invertible. Denoting the elements of the inverse matrix by g™ (¢, g, 4), we have (with
summation convention)
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We denote the normal form of (2) by
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Consider now an infinitesimal transformation in the (¢, q)-space, defined by

(6) i=t+er(tq), q'=q'+e'tq),

where 7 and ¢’ are functions of coordinates and time, but do not depend on velocities.
By means of (6), each curve ¢t - q(t), defined on an interval [a, b], is transformed (for
sufficiently small ¢) into a (parameter-dependent) curve - §(f) in the new variables
(see Logan [34]). We then have, to first order in &,

at'_q'+et
dt 1+e7
The infinitesimal transformation (6) is said to leave the action integral invariant up to

gauge terms, if a function f(¢, q) exists, such that for each differentiable curve ¢ > q(¢),
we have
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where [#1, t,] is any subinterval of the interval [a, b] on which q(¢) is defined.
This will be the case if and only if
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Since this is required to hold for a whole family of curves t > g(t), we get the following
identity in ¢, g, 4,

oL _, L i g df
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After some straightforward manipulations, this can be rewritten as
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An infinitesimal transformation (6), satisfying (10) for a given Lagrangian system and
some f, will be called a classical Noether-transformation corresponding to L, and thus,
we have the following theorem.

THEOREM 2.1. (Classical Noether theorem). To each Noether-transformation (6)
corresponds a constant of the motion F(t, q, q), given by

(11) F(1,q,4)=f(, q)—[Lﬁ%(g" —q"f)].

This result follows trivially from (10).

Remark. While (10) was needed in order to recognize the explicit form of the
related first integral, it is (9) which can be used as a partial differential equation to
determine the components £’, 7 of a Noether-transformation, where of course, 7 and
£' must be interpreted as,

,_or i 97 ; as
(12) T—at(t,q)+qaq,~(t,q), &= (tq)+q (tq)

We will refer to (9) as a Killing-type equation. The concept of a Killing-equation
(Killing-vectorfield, etc.) is well known in Riemannian geometry. The use of this
terminology in the present context can be motivated as follows. For a particle without
external forces, and for a group of infinitesimal transformations (6) in which time is
preserved, invariance of the action integral implies invariance of the metric tensor
characterizing the kinetic energy of the particle, and therefore yields the original
Killing-equation. The system of partial differential equations for £’ and 7, which results
from (9) after substitution of a general Lagrangian which is polynomial in ¢, have been
called generalized Killing-equations by various authors (see e.g., Vujanovic [59],
Djukic [13] and Logan [34]). For the sake of having a common terminology for
comparable equations in the various approaches discussed later on, we will go one step
further. Specifically, we will talk about Killing-type equations, whenever we encounter
the set of partial differential equations from which Noether-transformations have to
be determined in each approach. These equations, of course, are no longer related to
invariance of a metric tensor.

Returning to (6), we can introduce the so-called generator of this infinitesimal
transformation, namely the differential operator

0 i 0
13 Y(O)= 3 —+¢ t, ’
(13) () 5 +6.0) 5o
and its extension to (¢, g, §)-space,
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with

15) n'=¢£-4',

£' and 7 being defined by (12).

We then come to an interesting property of the Noether-invariant (11), which is
almost never mentioned in the quoted literature, at least not in the context of
Lagrangian mechanics. The only explicit proof of it of which we are aware has been
given by Lutzky [37]for the case of a system with one degree of freedom. In anticipation
of the rest of the paper, we can announce, however, that the meaning of this property
as well as the proof of it are much simpler when reinterpreted in the Hamiltonian
framework (see § 7).

PROPOSITION 2.2. The Noether-invariant (11) is also an invariant of the generator
Y® of the Noether-symmetry itself, i.e.,

(16) YO @F)=0.
Proof. We have from (11), in view of the independence of f, £' and 7 on g,
Y(l)(F) = Y(O)(f) - Y(l)(L)T — LY(O)(T)

(17) _%Y‘“(g"—q‘r) (Y<1>( )€ -dn.

Using the fact that F is a constant of the motion of system (4), we get

(18) Y®W)=Ff-L+
In addition, we have the identity
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Using (18) and (19), (17) becomes,
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and it is straightforward to verify that the three expressions between square brackets
in (20) vanish identically.

Operators of the form (13) also play the role of generators of symmetries in the
so-called Lie-method of extended groups, which is applicable to general ordinary or
partial differential equations (see Ovsjannikov [44] and Bluman and Cole [6]). Only
recently, attempts have been made to introduce also in that context the notion of
constants of the motion implied by a symmetry group, precisely by requiring it to
have the invariance property (16) (see, e.g., Lutzky [38], Prince and Eliezer [47] and
Leach [32]). A similar idea, in the context of Lagrangian systems with one degree of
freedom, was expressed by Sarlet [52], also for certain simple cases of discrete
symmetries (such as time-inversion). The above proposition therefore is important,
because it illustrates how this idea is consistent with the classical Noether theory.
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3. Preliminaries on Lagrangian systems and calculus on manifolds. It is of course
impossible to give a complete introduction to the most fundamental notions of the
calculus on manifolds. We will, however, try to list here some basic operations and
properties which will be frequently used. For general background reading one can refer,
e.g., to Hermann [22], and to the appendix on tensors and forms in Lovelock and Rund
[36]. Assaid before, our analysis will be purely local in character. We will closely follow,
in this section, the exposé given by Crampin [11].

Let M be a differentiable manifold of dimension n, and TM its tangent bundle.
Adding the time-axis R, we get the bundle R X TM, on which we choose a set of natural
coordinates denoted by (4,9, ¢’), i=1,- -, n. As is well known, vectorfields on a
general manifold N can be regarded as differential operators on #(N), the set of
C*-functions on the manifold. One-forms are %(N)-linear functionals on the set of
vectorfields. More generally, p-forms are alternating %(N)-multilinear functionals
acting on vectorfields. In terms of the above local coordinates, a vectorfield X, and a
1-form @ on R X TM have the representation,

d ; d ] . .
X=h—+ l"—?+ l'——-, = dt+A,d l+ ,'d",

a3 PIAAPYL a=v q +pidg
where the components h, f', g, », A;, u; are real-valued C-functions on R x TM.
Pairing between the dual elements X and « yields the function

21) a(X)=(X,a)=hv+\f +ung’

The components of a vectorfield determine locally a system of first-order differen-
tial equations, whose solution curves are called integral curves of the given vectorfield.
They define locally a 1-parameter family of mappings on the manifold, which is called
the “flow” of the given vectorfield. In order to represent second-order equations in g
by vectorfields on R X TM, we have to pass to the equivalent first-order system in g,
4. A system like (4), e.g., is governed by the vectorfield

] ; a ]
22 =—+4'—+A' —.
Integral curves of a vectorfield of type (22) are liftings of curves on the base manifold
M. In general, if for ¢ in some open interval I = R, the mapping ¢ - q'(¢) is the local
representation of a curve on M, then its lifting to R X TM is defined by the mapping
. ‘ . dq’

£ (6,40, 4'(), with¢'="L.
dt
After a change of parametrization, the 8/t component of a vectorfield tangent to a
lifted curve need not be 1. In order that integral curves of a vectorfield X on R X TM
be lifted curves, it is necessary and sufficient that

(23) (X,dq'—¢'dt)=0, i=1,---,n.

Apart from the exterior derivative of differential forms, we will also make use of the
Lie-derivative, and the inner product of a vectorfield with a differential form. The
Lie-derivative of a general tensorfield with respect to a vectorfield Y is the appropriate
operator for characterizing the evolution of the tensorfield under the flow of Y. For
functions f and vectorfields X, we have

Lyf=Y(f), LyX=[Y,X]=YX-XY.
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The inner product of a vectorfield Y with a p-form w yields a (p —1)-form, denoted
by iyw and defined by
iyo(X1, X)) =o(Y, X1, +, Xp-1)-
A vectorfield Y satisfying
(24) iyw =0, iydw =0

is called a characteristic vectorfield of the p-form w. Further properties which will be
frequently used are (f being a function and a a p-form)

(25) Lyda =dLya,

(26) ixa = fixa,

27 Lya =iyda+diya,
(28) iix,yia = ixLya — Lyixa.

We also recall that every exact form is closed, i.e., d 2=, and that every closed form
is locally exact (Poincaré’s lemma), i.e.,

(29) da=0>a=dp

(possibly in a smaller neighborhood).

As an illustration of the conciseness with which certain evolution or conservation
properties can be expressed in terms of the Lie-derivative, let us mention that the flow
of a vectorfield Y on R X TM maps every lifted curve into a lifted curve if and only if

(30) LY(dq' _qidt) =A;(dql_q-] dt), i= 1, -

where the A} are functions on R X TM.

Now, let us develop a definition of Lagrangian systems on the manifold R X TM.
Let L be a function on R X TM, which satisfies the regularity condition on the Hessian,
as in § 2, and consider the 1-form

(31 o=Ldt+§§(dq"—q"dt).

6 is called the Cartan-form; it is the pullback, under the Legendre transform, of the
fundamental 1-form p; dq' — H dt in Hamiltonian mechanics. We have

2

L
46 =—2"(dq' — 4’ dr) n(dg' 4’ dr)
aqa

a 2L
i dt
aq P ———(dg '~ A d)n (dq' - ¢’ db),

(32)

where the functions A’ are defined by (5). In view of the regularity of L, it is easy to
verify that d@ has rank 2n, i.e., the closed two-form df defines a so-called contact
structure on the (2n + 1)-dimensional manifold R X TM. The space of characteristic
vectorfields of dé is one-dimensional, and the unique characteristic vectorfield with
time-component one, defines the Lagrangian system corresponding to L; i.e., we define
the vectorfield I' by

(33) irdg=0,
(34) (I, dry=1.
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Using the explicit expression (32) of d6, one easily verifies that condition (33) is
equivalent to

35) (T,dq' —4¢'dt)=0,
and
(36) (T, dg' — A dty=0.

The relations (34), (35), (36) then show that I is indeed the vectorfield (22), with A’
determined by (5). For later use, it is worthwhile writing down explicitly the formula
by which the above stated equivalence, e.g., can be checked. Let Y be an arbitrary
vectorfield on R X TM, with local representation

0 ) . F)
37 =7(t,q,4) —+¢&(t,q,4) —+n'(t,9,4) —
(37 Y T(tqq)at £(tqq)aq n(tqq)aq

Then we have

o’L o°L . o
0 = (—-————i ) i 57 ( L
iyd 53 0q 37 o (&' —q'r)(dq’ — 4" dt)
(38) ; 2L
— Iy i AR

aq 2 ,(17 —A'7)(dq’ - ¢’ dt) 5d' o4 (&' —q'T)(dq" — A’ dt).
Note that the set of 1-forms
(39) {dt,dq' —q4'dt,d¢' — A’ dt},

forms a local basis for all 1-forms on R X TM. Of course, for the purposes of introducing
such a basis, the given second-order system need not be of Lagrangian type; i.e., the
A’ need not satisfy (5). Let us introduce the mapping p, which assigns a 1-form to each
vectorfield Y on R X TM, according to the rule

(40) (4 ( Y) = iy de.

Since the kernel of this mapping, i.e., the set of characteristic vectorfields of d@, is
one-dimensional, we see from (38) that the i image of p, (Im (p)), is precisely the set
of 1-forms generated by the 2»n forms dq'—4'dt and dq' —A'dt. In view of (35),
(36), it is then clear that for an arbitrary 1-form a we have,

(41) (T,a)=0& aclm(p).

In terms of the basis (39), we can write, for an arbitrary function F e #(R x TM),
(42) dF =T(F) dt+§§(dq‘ -4’ dt)+:§(dq" —A'dy),

while for a vectorfield Y, as in (37), we have

(43) Y(F)=1T(F)+(¢' —4'r) g§+ (n'=A'r) :—qli

Furthermore, F is a constant of the motion of the dynamical system generated by I if
and only if I'(F) = 0. Hence, from (42),
(44) [(F)=0¢ dF eIm (p).

To end this section, we need some notions about the concept of symmetry. In general,
one can say that a vectorfield Y is a symmetry of a certain tensorfield, if that tensorfield
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is invariant under the flow of Y. In this sense, Y is a symmetry of another vectorfield
X if and only if

(45) LyX =[Y,X]=0,
and Y is a symmetry e.g., of the 2-form d6 if and only if
(46) Lydo=0.

However, when dealing with a system of differential equations, say, governed by a
vectorfield T, the strict notion of symmetry incorporated in (45) is too restrictive.
Indeed, all one is really interested in is that the flow of Y maps integral curves of I'
into integral curves. For that to be the case, the system of differential equations need
not be strictly invariant, since one can allow the additional freedom of changing the
parametrization along integral curves. This is reflected in the requirement that

47) LyI'=[Y,I']=¢gT

for some function g. A vectorfield Y satisfying (47) will be called a dynamical symmetry
of I If Y and I are respectively given by (37) and (22), we have for their Lie-bracket

(48) [Y,T]=(n'-T() 5??+(Y(Ai)—f'(ni)) %—m) =

From this we can easily deduce the following result.
LeEMMA 3.1. Y is a dynamical symmetry of T if and only if

(49) n'=T()—4'T(7),
(50) T'(n)=A'T(r)- Y(A)=0.

Proof. The proof follows immediately from the identification of (48) with gI". We
obtain, in addition, that

(51) =-T'(7).

Remark. For this result, the system governed by I need not be of Lagrangian type,
in other words conditions (49), (50) are valid for a dynamical symmetry of an arbitrary
second-order system (4), with A’ not necessarily satisfying (5). A term like ['(7) is, of
course, nothing but the total time-derivative of 7(¢, g, ) along solutions of the system
(4). In this way we recover, with (49), (50), the conditions which, in the context of the
generalization of the “Lie-method of extended groups” to velocity-dependent transfor-
mations, were derived, e.g., by Anderson and Davison [2] and Lutzky [38].

A special class of dynamical symmetries for Lagrangian systems is provided by the
symmetries of the contact-form dé.

LEMMA 3.2. A dé-symmetry is a dynamical symmetry of the Lagrangian vector-
field T'.

Proof. Using (28) we get

l‘[r,y] d0 = irLy d0 —Lyir d0
=0, inview of (46) and (33).
Since the set of characteristic vectorfields of d6 is one-dimensional, it follows that
[T, Y] must be proportional to T'.

As a final remark, it is worthwhile giving a precise characterization of (49). The
flow of a vectorfield Y satisfying (49) transforms integral curves of I' into lifted curves,
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as can be seen from the following argument. In view of (23), the transformed integral
curves of I' will be lifted curves, if and only if

(LyT, dq’ —4'dty=0.
Taking the Lie-derivative with respect to Y of (35), we see that this is equivalent to
<F, LY(dql 'q'i dt)) = 09
or in view of (41), with
(52) Ly(dq' -4’ dt)eIm (p).
Now,
Ly(dq'—¢'dt)y=d¢' —¢' dr—n'dt.
Using (42) it is then clear that the dt-component (in the basis (39)) will vanish if and
only if (49) holds.

The reason why we pay some attention to this characterization of (49) is that it
originates from a very natural relaxation of the restrictions which arise if Noether’s
theorem is placed in its original context, that of the study of invariances of the action
functional, and if, moreover, we want to generate the Noether-transformation by a
vectorfield on R x TM. Indeed, a functional like | L dt in the variational principle (1)
clearly acts on a class of neighboring lifted curves. Hence, a particular one-parameter
group of invariance transformations in that context will have to be sorted out from a
class of mappings which allow the association of a new curve { - §(f) with each curve
t - q(¢). If such a mapping were generated by a vectorfield on R X TM, we would end

up with the requirement (30), and this would lead to severe restrictions on the velocity
dependence of the functions 7 and £', namely

o _ o _
aqi q aql

b

which can most easily be seen from (7) (see also Crampin [11]). Actually, since this
relation must hold for all i and j, one can easily deduce from it that ¢  and 7 must be
independent of ¢, except in the case of one degree of freedom. A similar result for
the more general case of several independent variables was proved by Ovsjannikov,
and reported in work by Ibragimov and Anderson [3], [24]. If the g-dependence is
not to be compromised from the beginning, and since our primary interest lies in the
way integral curves of I transform, a natural relaxation is obtained when the admissible
mappings at least transform integral curves of I' (but not necessarily all lifted curves)
into lifted curves.

4. Nonsymmetries and the Noether-invariant. As indicated in the introduction,
we want to center our analysis around the explicit formula for the Noether-invariant,
which in all treatments is the same. This explicit formula, for velocity-dependent
transformations, has exactly the same structure as (11), but, of course, with f, = and ¢’
functions of ¢, q and 4. In the terminology of the previous section we have

(53) F=f—(Y, 6).

So we can simply ask under what conditions for Y will F be an invariant for the system
governed by I

If F is a constant of the motion, we have

I(F)=(T',dF)=0.
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On the other hand, since T’ is characteristic for dé,
0=iyirdé =—(T, iy de).
Combining these two results, we get
(T, iyd6—d(f—(Y, 6)))=0,
from which, by (41), it follows that
iydd=d(f—(Y,0)+a withaeclm(p),
or, using property (27),
(54) Ly6=df+a withaelm/(p).

In fact, in this context, no other requirements have to be imposed on Y. For a simple
comparison with classical treatments, however, where the variation of L dt is computed
(or better the variation of its pullback y*(L df) under a lifted curve y) and not the
variation of 6, it is sufficient to add the mild restriction discussed in the previous section,
namely, that Y should map integral curves of T into lifted curves. Indeed, in view of
(52), (54) is then equivalent to,

(55) Ly(Ldt)=df+pB with Belm (p).

We reach, in this way, a framework in which, for velocity-dependent transformations,
a Noether-type theorem with inverse can be formulated in the broadest possible way.
PROPOSITION 4.1. Let Y be a vectorfield with property (49), and such that

Ly(Ldt)=df+pB

for some function f and some B € Im (p). Then F = f—(Y, 0) is a constant of the motion.

Proof. The proof consists in walking in the opposite order through the previous
considerations, from (55) back to (53).

Conversely, we can state Proposition 4.2.

PrOPOSITION 4.2. To each constant of the motion F of T corresponds a vectorfield
Y with property (49), such that (55) holds for some B and for

(56) f=F+(Y, 0).

Proof. F a constant of I' implies, according to (44), that dF € Im (p). Hence there
exists a vectorfield Y such that

(57) iyd = dF.
This implies
0=d*F =diydf =Ly deé.

Hence Y is a df-symmetry and has property (49) in view of Lemma 3.2. Moreover,
(57), with the identity (27), yields (54), with a = 0, and f given by (56), from which (55)
follows.

The above propositions constitute, essentially, the type of general Noether
theorem which (in classical field theory) was discussed, e.g., by Candotti et al. [7], and
further generalized by Rosen [49], [50]. It looks attractive, and can certainly be useful
in the search for constants of the motion. However, as a theoretical result, establishing
a link between ‘“Noether-transformations’ and constants of the motion, it is a bit
misleading, because there is too much freedom in the relationship, as illustrated by the
following result.
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PROPOSITION 4.3. Every vectorfield Y with property (49) corresponds to every
constant of the motion F via the rule (55), with f determined by (56).

Proof. Let Y be an arbitrary vectorfield with property (49). Since (49) is the
translation of (52), we have

Ly(Ldt)=Lyb+a
=d(Y, 0)+iydo+a
=d(F+(Y, )+

with @ € Im (p) and with 8 = —dF +iy df + a € Im (p), in view of the definition (40) of
p and (44).

Note that Y here need not constitute any type of “symmetry”’. In our opinion, an
elegant theoretical result must establish a sort of uniqueness in the relationship between
Noether-transformations and constants of the motion, and, therefore, in the present
framework must arise from some kind of supplementary restriction. For that reason
we wish to test, in the next section, various versions of the Noether theorem in the
literature, for the type of restrictions by which they are characterized when placed
within the present general scheme. But first we derive Killing-type equations, i.e.,
partial differential equations for the components of a vectorfield Y, in this broadest
possible framework. The following lemma will be useful for that; it is merely a
paraphrase of the reasoning at the beginning of this section.

LEMMA 4.4. F is a constant of the motion of T'; i.e., T(F)=0 if and only if there
exist functions u;(t, q, 4) such that the relation
(58) & -,
holds as an identity in t, q, 4, §.

Proof. 1f (58) holds for all §, we can take §' = A’, which yields I'(F) = 0. In general
we have the identity
dF
—=I(F + —-A"),
” (F) (q )
from which the converse follows with u; = aF/ aq".
We now explicitly compute the identity (58) with F replaced by its expression (53).
Since (58) is a linear relation in the §', requiring it to hold for all ¢, q, 4, § will give
rise to n + 1 equations, which after straightforward calculations take the form

a7 L (¢ 87) f B L
(59) st o (sr=d' ) = g~ €~ o
aL+§i—E’-I—',~+L(‘?—T+a—Tiéi)+a—.L—i[§'§—+a—£7 i~ 'i(gI o 4’)]
at q at adq aq Lot dq at dq’
©0 _of, f o’L
oi . ]+ ; i.
= a +(¢' qT)aq'a" mil

How can we interpret the relations (59), (60)? We see that the u; in fact, are
additional parameters, which we have at our disposal for finding solutions for = and
&' In all generality, the problem consists in finding functions = and £’ such that (59),
(60) hold identically for some functions f and u,. Note that the components n' do not
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occur in these equations, but once a solution for  and ¢' is found, we can again define
the n'-components by (49), following the same argument as for (54).

As a final remark, notice that the Killing-type equation (9), obtained for the
classical Noether theorem, indeed constitutes a particular case of (59), (60). It is
obtained when 7, ¢’ and f are required to be independent of the ¢, and w; is chosen
such that

o’L
aq’ ag'"

(61) wi=—(—4'r)

5. Restricting the excessive freedom for Noether-transformations. We will distin-
guish among four possibilities for imposing supplementary restrictions on the too
general Noether-type theorem, Proposition 4.1 of the previous section.

5.1. A strict interpretation of the Killing-type identity. Let us return here to the
classical Noether theorem as treated in § 2. It is obvious that this treatment offers the
possibility for a direct generalization to velocity-dependent transformations,

(62) i=t+er(tq,q), q =q +e£'(tq,q).

Expressing invariance of the action integral as in (8), we end up with an equation of
type (9), where f, of course, is allowed to depend on ¢ and where £ and + are
computed along arbitrary curves ¢ - q(¢). Equation (9) in this case is an identity in ¢,
g, 4 and g, which means that the coefficients of §' have to vanish separately, yielding
the equations

ar AL (o' 3
(63 L (- ) - T,
99" 94 \9q oq oq

(64) 7£+£ia_l;+L(§_Z+qi_¢9_7'i) 3_%[%_‘_9%4;_ .z(ﬁz+ -iﬁlj)]__,g_'_qoi_aé.
at aq at aq aqg Lot dq at aq at aq

The Killing-type equations (63), (64) were derived and studied in more detail by
Djukic [13]. This version of Noether’s theorem can also be found in work by Kobussen
[30], [31]. In the first place, however, we should stress that Noether’s original version
[42] allowed for this §-dependence in the transformations (62), and even for a
dependence on higher-order derivatives. But Noether did not investigate to what extent
such a dependence was needed, or important, or essential. We do not believe, e.g., that
a g-dependence could substantially enlarge the picture here.

One might be tempted to introduce a dependence on higher-order derivatives,
and then require that such transformations preserve the higher order tangency of
curves. Just as with the preservation of lifted curves explained in § 3, however, such a
requirement eventually would force the functions £ " and 7 to depend on ¢ and q only,
unless one includes the derivatives of all orders up to infinity. Such questions, related
to Lie tangent transformations and Lie-Béicklund tangent transformations, are exten-
sively discussed in references [3] and [24].

Let us now return to (62) and the resulting Killing-type equations (63), (64). Since
this is really part of the original Noether theorem, one might wonder what the
“restriction” is in this approach. That we indeed have a restriction, here, of the general
setting in the previous section, is seen from the fact that (63), (64) follow from (59),
(60) by fixing the w; according to (61). We can still better characterize the nature of
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the present restriction as follows: (9) must express the constancy of a function F of the
structure (11) (or (53)). For that purpose it is sufficient merely to compute derivatives
like 7, £ and f along integral curves of I'. From this point of view therefore, the
restriction under consideration arises from a strict interpretation of the Killing equation
(9), where the G’ are kept arbitrary, instead of being replaced by A'(4, g, ¢). Let us now
translate (63), (64) into the terminology of vectorfields and differential forms. First, it
should be noted that such a translation is not immediate. Indeed, (62), when completed
by the transformation of the velocities

d—l
(65) d——q “+e(f'-q'),
as in (7), cannot represent the flow of a vectorfield on R X TM, because of the
g-dependence in (65). A posteriori, however, we can associate a vectorfield Y with
a transformation like (62) by adding a prescription for the 3/d4‘-components 1’ of
Y, since after all the ultimate equations to be solved (63), (64) only involve = and &',
To be precise, to each (n + 1)-tuple of functions (r, &), satisfying (63), (64) for some
f, we can unequivocally associate a vectorfield Y as in (37), with ' defined by (49)
(see also the discussion at the end of § 3). It is then straightforward to verify that the
system (63), (64) can be rewritten in the form

(66) (2 o Lt - af) =0,

(67) (F, d(f—<Y9 0))) =0.

In other words, by this translation an infinitesimal transformation is said to be a
Noether-transformation if it is generated by a vectorfield Y satisfying (66), (67) and
(49), for some ‘‘gauge-function” f. The corresponding constant of the motion is as usual
related to Y by the formula

F=f-(Y,0).

Concerning the freedom in this relationship, we can make the following observa-
tion. Let F be a constant of the motion corresponding to Y, then the same F also
corresponds to the Noether-transformations Y'=Y +hI’, where h is an arbitrary
function of ¢, g, 4. Indeed, defining f' to be f+ hL, we have

=Y, 6)=f+hL—(Y, 0)—h(, 6)
(68)
=f—(Y,6)=F,
and, using (33), (27) and (26),

Ly6 —df' = Ly0 +di,r6 —df—d(hL)
= Lyo —'df,

(69)

from which the result follows.
We will later see indirectly that there is an inverse Noether theorem in this
framework, and that the above described freedom in the Y is the only freedom.

5.2. Restriction on the gauge-function f. As said before (disregarding the
approach which led to (9)), we can consider that equation as expressing the constancy
of a function F of the structure (11), in which case the total time-derivatives would be
computed along integral curves of I'. It is not so unreasonable, however, to compute
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the left-hand side first, with £ =T'(¢), + = I'(r), and to require the resulting expression
to be the total time-derivative of some function f. This was done e.g., in a paper by
Lévy-Leblond [33]. Clearly, this procedure inevitably requires the gauge-function f to
be independent of the velocities, which is also the restriction recently advocated by
Lutzky [38]. The explicit form of the Killing-type equation in this approach is now clear,

oL oL

i —
(70) at | aq’

i aL i vi d
+— - + =—f(t,q).
3 YL ([(€)=g'T(r) +LT(r)=—-f(t, 9)
We can again consider this, although rather artificially, as a special case of (59), (60),
corresponding to the choice

P oL ., .1 &
(71) uf=——[Lf+a—q—,~(£—qT)]— (Y, ).

aq’ g’

The questions of the possible existence of a converse to Noether’s theorem, and of the
freedom in the relationship between F and Y, were not treated by the above-quoted
authors. It does not seem to be possible to give an elegant answer to these questions,
but we can give the following description. In the present case, the relationship between
Noether-transformations Y and constants of the motion F is completely determined
by the conditions,

FF)=T(f—(Y, 6) =0,

with f independent of 4. '
So, for a given F, the problem consists in finding functions (7, ¢'), satisfying the
system of partial differential equations

(72) —5=——5(Y, 6).
q q

This gives rise to n partial differential equations for n + 1 unknowns, so that solutions
are likely to exist. Even this aspect, however, is not so clear, because even under the
additional assumption that all coefficients would be real analytic, it does not seem to
be possible to bring system (72) into the normal form for application of the Cauchy-
Kovalevski existence theorem. Anyhow, if (7, £&F) is a particular solution of (72), it is
certainly not unique, and all solutions are of the form (7g + 7o, £+ £6), Where (70, £5)
is a solution of the system

]
b?(YO’ 0) =0.

5.3. Restricting Y to be a dynamical symmetry. Recall that we started our
analysis from the one common factor in all known treatments of Noether’s theorem,
namely, the structure of the formula (53) for a constant of the motion, so that, primarily,
we wish to have

IF(F)=(T,d(f=(Y, 6)))=0.

In some sense one could say that the cases treated in §§5.1 and 5.2 arise from a
“misreading” of that equation. Let us this time not change this equation, but instead
discuss the quite natural additional restriction that Y be a dynamical symmetry of T',
i.e., an invariance transformation of the first-order system in q and 4, equivalent to
(4). Unfortunately, with this requirement we end up with a complicated system of
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partial differential equations. Indeed, in view of (49), (50), we have to find solutions 7,
£, n' to the equations

f‘;—f+§' oL aL,(F(E’) §'T(r)+LT(r) =T(p),
(73) At At Ai
n'=TE)=4'T),  Tln)=AT@) =17+ rn* .

This approach certainly yields a converse to Noether’s theorem, as can be seen from
the proof of Proposition 4.2. Moreover, in view of (51), we have

(74) [Y+hT, T]=[Y,I'1-T(h) =~ (r+h))T,

so that the freedom discussed in § 5.1 also occurs here. But it is not the only freedom. An
interesting additional freedom in the relationship between F and Y can be obtained as
follows. Let F be a constant of the motion corresponding to the dynamical symmetry Y.
Consider

(75) Y'=9¢Y,
where ¢ is itself any first integral of I'. Putting

(76) f'=f+(@-1XY, 6),
we have

f=(Y',8)=f—(Y, 0)=F.
Moreover,
(77) [Y,.T]=¢YI-T(¢Y)=9¢[Y,T]-T'(¢)Y =—¢T'()T,

since I'(¢) = 0. Hence, F also corresponds to any Y' of type (75).

There is one aspect of the classical Noether theorem which we have not yet
discussed in the various generalizations so far considered, namely Proposition 2.2,
which asserted that the constant of the motion F was also an invariant of the generator
Y, itself. (Note that for 7 and ¢’ independent of 4, the n' of (15) coincide with the '
of (49), so that Y in (14) coincides with the vectorfield Y in the present context.) We
could simply add this as a supplementary requirement, to the definition of the generator
of a Noether-transformation. In the present context, e.g., the components of Y then
should not only solve all equations (73) for some f, but should also satisfy the equation,

(78) (Y, d(f—(Y, 6)))=0.

Unfortunately, this new restriction does not seem to simplify the problem of finding
solutions for = and ¢'. Quite remarkably, however, the complexity of the equations
significantly decreases if one restricts one’s attention to a special class of dynamical
symmetries, namely the d§-symmetries. But note, first, that the two simple degrees of
freedom (74), (75), in the relation between F and Y still persist when the new
restriction (78) is imposed.

5.4. Restricting Y to be a d@-symmetry. The study of the relation between
df-symmetries and constants of the motion stems from the work of Cartan [10]. It was
recently discussed in full detail by Crampin [11], who, however, did not regard it as a
generalization of the classical Noether theorem, but rather as a completely different
approach, superior to Noether’s theorem and showing its deficiencies.
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Let Y be a df-symmetry, i.e., satisfy the relation Ly df =0. From (25) and the
Poincaré lemma, this implies

(79) Ly0=df forsomef.
From property (27) of the Lie-derivative, (79) is seen to be equivalent with
(80) iydd=d(f—(Y, 6)).

If we take the inner product with I', (33) immediately implies
({T,d(f—(Y, 6)))=0,

so that we get a constant of the motion of the by now familiar structure.
Conversely, in proving Proposition 4.2, we have already shown that to each
constant of the motion F corresponds a df-symmetry Y, via the relation

(81) iy d@ = dF.

Now, if two d#-symmetries Y; and Y, correspond to the same constant of the motion
F, we have

iy, do = iy,d0 or iy,_vy, de =0,

which, again from the fact that the set of characteristic vectorfields of d@ is one-
dimensional, implies that

(82) Y,—Y,=hI' for some function h.

On the other hand, if F; and F, are two constants of the motion corresponding to the
same d@-symmetry Y, we see from (81) that they can only differ by a trivial constant.
Finally, taking the inner product of (80) or (81) with Y, we get

(83) 0=iyiydd=Y(F);

hence F automatically has the invariance property with respect to the generator Y.

Summarizing, we have the following results.

THEOREM 5.1. Let I" define a Lagrangian system according to (33), (34). Then:

(i) To each dO-symmetry Y corresponds a constant of the motion F of the form
F =f—(Y, 6), which is unique up to a trivial constant. v

(ii) To each first integral F corresponds a d6-symmetry Y, which is unique up to a
trivial dynamical symmetry hT.

(iii) Fis in addition an invariant of the symmetry Y.

A final question which is in order here is: What are the Killing-type equations
within this framework? The function f playing the role of ‘‘gauge-function” appears in
the relation (79), which is therefore the analogue of the Killing equation. Explicitly,
(79) yields the partial differential equations

ar oL (3¢ . or\ of

j 2
ﬁ%"'i%(gg‘i—q'ja—t)*'gi aiL-i
09" 99 \dq aq dq° 99
2 2
) PL . OL o

i

+ - - == ——
T oq6q’  Tataq’ aq

(85)
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) dL oL (3¢’ ;9
L, 51_7 _(i_ @)

ot at aq’ at

2

. L . .

_ql( i’ ¢+ iL.j"?]'*’ aL.iT):af'
dq dq aq 9q at dq at

(86)

Note that by Lemma 3.2 we are guaranteed that any solution (, £, ') of (84), (85),
(86), will constitute the components of a dynamical symmetry, so that (by Lemma 3.1)
use can be made of (49) in order to reduce the above relations to partial differential
equations in 7 and £’ only.

It is clear from the properties stated in Theorem 5.1 that the present approach
offers a perfectly plausible candidate for being called Noether’s theorem for velocity-
dependent transformations; and we would certainly not be the first to do so. The
predicate ‘“Noether theorem” was assigned to df-symmetries, e.g., by Gallissot [17],
Marmo and Saletan [39] and in the context of Hamiltonian mechanics by Hermann
[22] and Arnold [4]. A similar statement in the context of continuum mechanics was
made, e.g., by Nono and Mimura [43]. One of the principal purposes of this paper is
to give more weight to this point of view, by establishing a rather unexpected
equivalence between the approaches of §§5.1 and 5.4.

6. Equivalence between d@-symmetries and the Noether theorem of § 5.1. The
four approaches presented in the previous section all have, in our opinion, a different
origin, as reflected in the titles of the subsections.

Of course, § 5.4 is a particular case of § 5.3. Now, it is also easy to see that § 5.4
is at the same time a particular case of §5.1. First of all, (84) is identical to (63).
Second, multiplying (85) by ¢, and adding (86) yields (64) exactly. Hence, for every
solution (7, &', n') of (84), (85), (86), the functions (r, &) will satisfy (63), (64), while
the n' will be related to (r, £') by (49). The converse, now, is not at all obvious, but
is true. Recalling the equivalence between (63), (64) and (66), (67), under the additional
prescription (49), we will indeed prove the following theorem.

THEOREM 6.1.

<a 7> Lv6 = df>

D ra—(v, =0
n' =T(¢")—4'T(7)

& (1D Ly6 = df.

Proof. That (II) implies (I) is trivial and was explained above. Conversely, assume
the three conditions (I). (I,) implies (using property (27)),

d
(87) (——, iy d— dF> =
oq
where F =f—(Y, ) is a first integral in view of (I). Making use of the explicit formula
(38), (87) immediately yields,

o . oF
[ S | _
(88) §-qr=-g"7 L
On the other hand, we already know that to each constant of the motion corresponds
a d@-symmetry. Suppose that F here corresponds to Y, with components (7, £, 7 H,
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i.e., we have iy df = dF, which obviously implies
d
2 i-d0—dF>=0;
<aq’ Y

hence, as for (87),
i vim ij aF
§-df=—g" .
We therefore have

(89) E—g'r=§-4'%

If we define h by the relation h=7—7, we have 7=7—h, and then from (89),
¢ =¢' - hg', and finally, from (1),

n' =T(¢)-4'T(r)
=T(§)-¢'T(H~-T(hg")+4'T(h)
=7 —hA'

These three relations imply that Y =Y —hl, so that Y is itself a df-symmetry
corresponding to F. In other words we have iy df = dF, from which (II) follows.

The equivalence established in the preceding theorem is after all quite remarkable.
It asserts that once af/ aq’ is determined by the left-hand side of (63), and the sum of
the n +1 terms 8f/0t + 4’ 9f/9q’ is determined by (64), the individual terms 8f/dq" and
af/at are given by (85), (86), with n’ defined by (49). More important, for practical
purposes, is the observation that in order to find df-symmetries for a given Lagrangian
system, it suffices to look for ‘‘solution-triplets” (7, &', f) of (63), (64) (the n' afterwards,
being immediately determined), and this problem indeed looks simpler than trying to
solve the (2n + 1) equations (84), (85), (86). On the other hand, the treatment in § 5.4
was preferable on theoretical grounds, because it made it so easy to establish an inverse
Noether theorem, and to describe the freedom in the relationship between Y and F.
Through the above equivalence, these results are now also valid for the case treated in
§5.1.

As a further remark, note that for the classical Noether theorem 2.1, (63) or (I)
is trivially satisfied because 7, £ and f are all independent of §. Nevertheless, (I;)
remains equivalent to (87), which provides us with the relation (88), which was crucial
in proving the equivalence with a df-symmetry. Hence, in the classical Noether
theorem we are also dealing in some sense with a dg-symmetry, so that the invariance
property (16), which needed a rather tedious proof in § 2, now merely appears as an
immediate consequence of (83), which was trivial to prove.

The relations (88), obtained in the course of the proof of Theorem 6.1, deserve
some special attention, because they allow an immediate computation of the d6-
symmetries (which from now on are synonymous with Noether-symmetries for us),
corresponding to a given constant of the motion. Because of their importance, we
restate them separately as follows.

LEMMA 6.2. Let F be an arbitrary constant of the motion of I'. Then all do-
symmetries corresponding to F are determined by the relations

. . . oF
LI SR, i]__'
&-qr=-g Y

and . . . s s
n' =T(¢)—4'T(r) =T -¢'r)+A'r.
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Since a Y corresponding to an F is only determined up to multiples of I', the choice
of the time-component 7 is completely free. Once such a choice is made, the other
components &', n° unequivocally follow from the above relations. These very simple
relations do not seem to be widely known in the literature. We are not aware of any
textbook mentioning them. As far as we know, similar relations were used for the first
time by Palmieri and Vitale [45] and Candotti et al. [8]; they have also proven to be
useful in generalizations of Noether’s theorem to nonconservative systems, described
by Lagrange-equations of the first type (Djukic and Vujanovic [14]).

There does not seem to exist a best device for fixing the Noether-transformation
corresponding to a given constant in a unique way (i.e., fixing 7). A couple of more or
less ‘““natural” possibilities are presented below.

COROLLARY 6.3 (Possible restrictions for fixing 7).

(i) The first possibility one can think of is, of course, that of taking T =0, which
means that one does not need to consider variations of the independent variable. This has
been mentioned by Steudel [55], and can provide significant simplifications in construc-
tive procedures for finding first integrals (see Kobussen [31]). The formulae for the
determination of Y from F in this case simplify to

_ i 9F

i_
(90) g - 3qi ’

n' =T(¢).
(ii) The explicit formula for the first integral,
al . .
F=f-[Lre i@ =),
can in view of (88) be written in the form

oL ,; oF
91 —Lr=F-—g"=.
1) foLr=F-ig" 5

Hence, fixing 7 is equivalent to fixing the gauge-function f. In certain circumstances it
might e.g., be interesting to take f =0, which by (91), then immediately yields .

Recently, Noether-symmetries have often been discussed as particular cases within
applications of the Lie-method of extended groups (see e.g., Lutzky [38], Eliezer [15]
and Leach [32]). From this point of view, one is merely interested in velocity-
independent transformations, i.e., in applications of the classical Noether theorem of
§ 2. On the one hand, one, of course, loses universality by this restriction; i.e., not all
constants of the motion can be related to a velocity-independent Noether-transforma-
tion. On the other hand, if such a velocity-independent transformation exists, it can
certainly be advantageous to give it preference over other equivalent Noether-transfor-
mations, which illustrates that choosing 7 = 0 is not always the best choice. The above
lemma enables us to give a simple characterization of this situation.

COROLLARY 6.4. A constant of the motion F can be related to a classical (velocity-
independent) Noether-transformation, if and only if forall i=1,---,n, g" 0F/84’ is a
linear function of 4', does not depend on the other components of ¢, and is such that
the coefficient of 4' is the same for all i. Under these circumstances, the corresponding
classical Noether-transformation is unique.

Even if velocity-dependent transformations are allowed, it can still be advan-
tageous, if only for the elegance of the end results, to take 7 # 0. Consider, e.g., the
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Kepler problem, which reduced to its plane motion is described by
1 ., .

L =—2-(q? +q§)+%, r=vai+aq;

(components are here labeled by subscripts for convenience). As a constant of the
motion, let us take, e.g., the first component of the Runge-Lenz vector, namely

F,= 6114% —Q24142—Mgrl-
Then, from Lemma 6.2, all corresponding df-symmetries must satisfy

& — 417 =q242, &2— 427 =—2q142+q24:1.
Making the choice 7 = q;, we thus get

&1=q141+ 9242, &2=q241— 414>,

while the n;-components easily follow from (49).
Similarly, to the second component of the Runge-Lenz vector,

. s q
F,= thq% —q14142— V«Tz,
corresponds the df-symmetry

T=(s2, &1=q192— 9291, &2=q191+q2G2,

completed, of course, by the n; from (49).

In the Appendix we discuss the Poisson theorem, because, first of all, it is rarely
mentioned in Lagrangian mechanics; secondly it is typically related to d@-symmetries;
thirdly its expression in local coordinates gives us again an opportunity to make use of
the interesting formula (88).

7. Discussion. Summarizing the basic guidelines underlying our study, we can say
that from a theoretical point of view it is inappropriate to define Noether-transforma-
tions in the broadest possible way, because of the excessive freedom which results in
the correlation with first integrals (see Proposition 4.3). A similar criticism has been
formulated recently by Martinez—Alonso [41]. The most attractive framework for a
generalization of the classical Noether theorem to velocity-dependent transformations
is offered by Theorem 5.1 which is about df-symmetries, or the ‘“‘equivalent” prescrip-
tions of § 5.1.

A number of arguments in favor of this point of view are pointed out below.

(i) The equivalence result of Theorem 6.1.

(ii) The one-to-one correspondence between equivalence classes of symmetries
and first integrals (of course, with respect to a given fixed Lagrangian).

(iii) The invariance property Y (F) =0, which fits in with a similar property for
the classical Noether theorem.

(iv) The direct correspondence with the usual phase-space formulation of sym-
metries and conservation laws. Indeed, the classical theory of symmetries generated
by infinitesimal canonical transformations and related constants of the motion in
Hamiltonian mechanics is also a theory about df-symmetries, with 6 = p; dq’ — H dt. In
fact, the d@-symmetry version of Noether’s theorem is simply the translation of the
canonical theory to Lagrangian coordinates, as is underscored by the Poisson theorem
we prove in the Appendix. Note, by the way, that the invariance property Y (F)=0,
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which was rather hard to prove in § 2, becomes quite obvious once this link with the
phase-space formulation is made. Indeed, it simply follows from the fact that the
Poisson bracket of a function with itself is identically zero. d8-symmetries for general-
ized Hamiltonian systems have been studied by Cantrijn and Sarlet [9].

(v) In the (too) general Noether-type theorems mentioned, e.g., by Candotti et
al. [7] and Rosen [49], [50], and which have similar consequences as the case discussed
in our § 4, the idea of invariance of some variational principle is completely lost, and
this after all was the spirit of the original Noether theorem. With the formulation in
the sense of df-symmetries, one preserves the idea of invariance of a variational
principle in the following sense. For a general vectorfield I', a relation like (33)
expresses the fact that integral curves of I' are extremals of the functional | 6, defined
over a set of arbitrary curves on the tangent bundle (not necessarily “lifted”’) with fixed
endpoints (see, e.g., Sternberg [54]). In view of Ly8 =df, it is then clear that dé-
symmetries (to first order) preserve this functional up to a constant. This is not the
invariance of the classical functional | Ld?, but it reduces to it in case where Y projects
onto a vectorfield on the base manifold, and the variational principle is restricted to a
class of lifted curves.

(vi) The theory of df-symmetries and corresponding first integrals sets the stage
for various interesting generalizations. Here we are not thinking of the type of
generalizations in § 4, which merely discuss how to define Noether-transformations.
Instead, we have intrinsic generalizations in mind, which significantly broaden the
whole picture of symmetries and conservation laws.

It is in fact, more adequate to say that Noether’s theorem can be deduced from
more general theories under specific restrictions, and is then precisely recovered in the
df-symmetry version. A very simple generalization consists in introducing a “‘higher-
order Noether theorem”, in which ‘higher-order dé-symmetries” are linked to con-
stants of the motion (see Sarlet and Cantrijn [53]). Another slight generalization was
discussed by Losco [35] and Karaballi [25]. It essentially consists in relating a constant
of the motion to general dynamical symmetries as in our § 5.3. Of course, when a
dynamical symmetry is not a d9-symmetry, the computation of a first integral is not so
straightforward and involves an integration procedure. As a result, it can happen that
one has to leave the constant of the motion in an integral form (the so-called eleventh
integral of the n-body problem is an example). A very general abstract framework,
finally, is offered by the theory of ‘“momentum mappings” (see e.g., Abraham and
Marsden [1]), in which, roughly speaking, invariances are studied under the symplectic
action of a Lie group.

In the above list of arguments, the emphasis lay on the d9-symmetries as they were
discussed in § 5.4, because with this version of the Noether theorem we get the best
insight into the relationship between generators and constants of the motion, while the
various results are also most easily proven there. It was, however, not our intention to
rule out, in this way, the (somehow) equivalent conceptions related to Noether’s
original version in §5.1. As a matter of fact, for the practical determination of
Noether-transformations, i.e., for finding solutions 7, £, n' of Killing-type equations,
the system (63), (64) has a marked advantage upon the system (84), (85), (86).

As a further remark, we want to stress that even the criticism we have formulated
of a too general version of Noether’s theorem is not meant to rule out that approach.
That criticism is based on purely theoretical grounds, because a theoretician only talks
about a link between symmetries and conservation laws if there is some kind of
one-to-one correspondence between these concepts. In the practical search for con-
stants of the motion, however, all attempts are worth trying. To be precise, let us go
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back for a moment to the general equations (59), (60) of §4. Although we do not
know of any example, it should not be excluded that for a specific Lagrangian system,
a clever choice of the functions w; might help to find a solution for 7 and ¢'.

To end this discussion, we would like to reply to recently formulated criticisms
of the very idea of allowing velocity dependence in Noether’s theorem, by some authors
promoting the use of the Lie-method of extended groups [32], [47]. Let us first give
a brief exposé of that method.

Consider an arbitrary second-order system (4) (A’ not necessarily satisfying (5)).
Let the differential operator Y©, asin (13), generate an infinitesimal transformation.
The Y™ of (14) is called its first extension, and Y'© is said to generate a symmetry if
the second-order system (4) is invariant under the ‘‘second extension” Y(Z), which in
the terminology of § 3 simply means that one is looking for dynamical symmetries of
(4). In other words, the problem consists in finding vectorfields Y satisfying (49), (50),
but where 7 and ¢’ are independent of the velocities. Such symmetries constitute a finite
subalgebra of the Lie-algebra of all dynamical symmetries. Hence it will often be
possible to find explicit expressions for all elements of this subalgebra, by determining
all solutions of the partial differential equations (49), (50). When applied to the special
case of Lagrangian systems (i.e., for Al satisfying (5)), it turns out that not all of these
velocity-independent symmetries are classical Noether-transformations. In fact these
Noether-transformations again form a subalgebra. Consequently, not all symmetries
obtained will directly yield a first integral. In recent papers [38], [47], [32] a constant
of the motion was said to correspond to a dynamical symmetry Y, if it has the invariance
property Y (F)=0. This is certainly an attractive definition, because it covers the case
in which the symmetry is of Noether type. Moreover, such an invariance property has
an elegant geometrical interpretation (see, e.g., Gonzéles-Gascon et al. [21]), and can
be helpful in the reduction of the given system to a lower-dimensional one (see
Gonziles-Gascon and Moreno-Insertis [20], Marmo et al. [40]). It seems to us,
however, that there is, as yet, no simple method available for the determination of such
a constant in the case of non-Noether symmetries. Moreover, such an implied constant
is not necessarily unique [19].

Now the criticism of Noether’s theorem in that context stems from the following
two arguments (see, e.g., Prince and Leach [48]). On the one hand, Noether’s theorem
(always keeping the symmetries velocity-independent) fails to produce certain interest-
ing first integrals, which do correspond to non-Noether symmetries according to the
above rule. On the other hand, a generalization of the classical Noether theorem to
velocity-dependent transformations is rejected, because the algebra of symmetries
obtained in this way becomes infinite, and consequently no systematic method exists
for the determination of the complete algebra.

In our opinion, these arguments are not very relevant, at least if attention is
focused on the determination of first integrals. First of all, not all constants of the
motion of a given system can be related to a velocity-independent dynamical symmetry
by the rule Y(F)=0 (there even exist systems which simply do not have such
symmetries [18]). Hence, if one wants to have, at least the theoretical possibility of
finding all constants by the Lie-method, one has to allow velocity dependence too
(this was done e.g., by Anderson and Davison [2] and Lutzky [38]). And once this
step is taken, what can be more elegant than that the complete algebra of symmetries
(as for df-symmetries) is precisely homomorphic to the Lie-algebra of all constants
of the motion under Poisson brackets (see the Poisson theorem)? By the way, this
shows that in some sense there does exist a systematic method for the determination
of the complete algebra of symmetries, namely it consists in solving the given system
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of differential equations. Of course, this is not a very satisfactory counter-argument.
However, also in the more realistic situation where the equations cannot be completely
solved, it is possible to start searching, within the context of the Noether theorem, in
a very systematic way for symmetries leading to all known first integrals. One example
will illustrate this.

The Runge-Lenz vector in the Kepler problem cannot be obtained by the classical
(i.e., velocity-independent) Noether theorem, whereas it can be related to one of the
non-Noether dynamical symmetries [47], namely

a 2 a 2 9 1, o 1, 9

©2) Yt 3 T30 3 3%

As we have seen in § 6, however, these constants correspond to Noether-symmetries
in which the quantities £’ —§'r are linear in the velocity components. It is thus very
natural to say that a systematic search for Noether-symmetries can consist of first
determining all velocity-independent ones, then the ones which are linear in the
velocities, followed by all kinds of special assumptions, depending on the problem at
hand. Such a systematic application of Noether’s theorem was very nicely presented
by Kobussen [31].

In conclusion, we claim that all known integrals of Lagrangian systems can indeed
be found by a systematic exploration via Noether’s theorem. This should not be
interpreted, however, as a complete rejection of the velocity-independent Lie-method.
Indeed, because of certain theoretical considerations (we think, e.g., about quantization
problems) the determination of first integrals can be subordinate to the determination
of some finite algebra of symmetries, and the related structure constants.

As a final remark, it is interesting to note that exactly the same velocity-indepen-
dent symmetry (92) (at least for a “rectilinear Kepler problem”) was related, not to a
Runge-Lenz-type constant, but to an ‘“‘eleventh-integral-type constant”, by Karaballi
[25].

Appendix. The Poisson theorem in Lagrangian mechanics.
THEOREM. If Fy and F, are two constants of the motion for the system T, then

F;,=ly,iy, d6,

is a new constant, where Y1 and Y, are d6-symmetries corresponding respectively to Fy
and Fz.

Proof. Let Y, be arbitrary d6-symmetries correspondingto F;,i = 1, 2;i.e., we have
iyl d0=dF1, iy2 d0=dF2.
Then, using (28), (27) and (46) we get

i[yl,yz] d0 = —Lyz,l'y1 d0,

(A.1) =—diy,ly, d

=d(iy,iy, d9),
which shows that [ Yy, Y5]is a d9-symmetry corresponding to the constant of the motion
(A.2) Fi,=ly,iy, dé.

In view of (33) it is clear that F; > does not depend on the particular df-symmetries
Y1 and Y> we have chosen. For an explicit formula in local coordinates, we can go
back to (38), with Y replaced by Ya,(r,, £2, 12), and again take the inner product with
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Yi(71, £1, n1). In this way we get

o °L 2L i gl s
iy,iy, d0 = (6(1‘ o0 od oq )(§2 q'r2)(é1—q4'm1)
o’L i .
aq 2 ——5(nz2 —A'r) (€l —¢'m)

2

FL .
—W(f’z —4'r)(n1 —A'my).

From Lemma 6.2 we then obtain

o°L L \ x 10F; oF,

F"2=(a"a YO ") 3G~ aq"

(A3) 4 dq" o4’ aq 4" 94
+ 2" 2) - Lo g2,

aq a4/ 94 aq

Using the identities
oF\ @ aF oA* oF
[(F))————

M(551) =3 TN 5= 5er e

( azL) ' L a2L VL

aG' 3q’) " aq' a¢' a¢’ o4’ oq" ¢’ oq"

the expression (A.3) can be simplified to

( L L ) it OF1 OF,
od"oq’ oq’aq")" © ad" oq’

P 1Fy_0F, 4 0F,
3q'° a4’ oq'° 8q'

1,2~

(A.4)

i i

oq
We repeat that, if F; and F; are constants of the motion of the given Lagrangian system,
then F;, computed via (A.3) or (A.4) yields a new (not necessarily independent)
constant of the motion. The simpler expression (A.4) coincides, as expected, with the
formula for the Poisson bracket of F; and F, in Lagrangian coordinates given by
Sudarshan and Mukunda [57].

Remark. Obviously, we have

l.yll.y2 d0 = iyl sz = '—iY2 dFl = Yl(Fz) = —Yz(Fl).

Hence, the dé-symmetry Y;, acting on the constant of the motion F,, yields a new
constant of the motion. This property remains true if Y; is a general dynamical
symmetry. Indeed, from

I'(F)=0, and [Y,T]=gl
one immediately obtains
0=[Y,Tl(F)=-T(Y(F)),
so that Y (F) is another constant of the motion. This is a simple way to recognize that

the Poisson theorem is a special case of what was called the ‘‘related integral theorem™
by Katzin and Levine [26], [27].
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