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The present paper deals with the classical problem of linear sound propagation in tubes with
isothermal walls. The perturbation technique of the method of multiple scales in combination with
matched asymptotic expansions is applied to derive the first-order solutions and, in addition, the
second-order solutions representing the correction due to boundary layer attenuation. The
propagation length is assumed to be so large that in order to obtain asymptotic solutions which
extend over the whole spatial range the first-order corrections to the classical attenuation rates of the
different modes come into play as well. Starting with the case of the characteristic wavelength being
large compared to the characteristic dimension of the duct, the analysis is then extended to the case
where both of these quantities are of the same order of magnitude. Furthermore, the transmission
line parameters and the transfer functions relating the sound pressures at the ends of the duct to the
axial velocities are calculated. @004 Acoustical Society of AmericaDOI: 10.1121/1.1639323

PACS numbers: 43.20.Mv, 43.20.Bi, 43.20.H4O] Pages: 534-555

I. INTRODUCTION a third scaling parameter and thus two different ordering re-
lationships for the two other parameters. In the following,
The subject of linear sound propagation in rigid tubesthese cases will be called thegh and thelow frequency
with isothermal walls has been attracting considerable intertimit, respectively. If, however, such additional constraints
est over the years. The “exact” solution for tubes of circular are imposech posteriorion the solutions given by Zwikker
cross-sectional shapes derived by KirchhofSee also and Kosten in order to derive approximate series expansions
Rayleigh? pp. 319-328 accounts for the effects of shear of the transmission line parameters with respect to that third
viscosity and heat conduction on the attenuation of soundatio (see, e.g., Keefe's resulfsfor the cylindrical tubg, it
waves. Later Zwikker and Kost&(pp. 25—40 and indepen-  will remain unclear whether the resulting expressions are the
dently also Iberalf, Daniels’ and KraaR introduced an ap- correct asymptotic solutions one would obtain if the two dif-
proximate theory based on the so-callesv reduced fre-  ferent ordering relationships were applied to the basic equa-
guency assumptionthat enabled the simplification of the tjons themselves.
basic equations such that the transmission line parameters Moreover, the length of the duct might become so large
could be given in closed form. A thorough discussion of thethat the exponentially growing effects arising from viscosity
applicability of this approach including a comparison with and heat conduction in the boundary layer do not only affect
numerical solutions of Kirchhoff's general dispersion equa-the second-order terms of the sound pressure but also the
tions is presented in the 1975 paper by Tijderhaviore  |eading order terms. The present study is motivated by the
recently, Stinsohconsidered an alternative treatment of the gpservation that sound propagation in tubes of this type has
problem applying simplifying approximations to the equa-not yet been systematically studied. Thus, one of its primary
tions that make up the Kirchhoff solution, rather than reduc-ajms is to derive the asymptotically correct solutions for the
ing the governing equations, and showed the equivalence @hyolved field quantities including the second-order terms
both approaches. These investigations then provided the bghat extend over a considerably large spatial range, suggest-
sis for developing a general procedure applicable to tubes Gfg the application of thenethod of multiple scalesss pre-
arbitrary cross-sectional shape. Similar calculations wergented, e.g., in Nayféhor Crightonet al? (pp. 209-232
also carried out by Kergormard. By the removal of secular terms, the extra freedom such an
From the point of view of a perturbation analysis the gpproach introduces can be exploited to increase the range of
low reduced frequency assumptions can be interpreted as dgajidity of the asymptotic expansions. Since the following
fining two scaling parameters that relate the most relevangs|cylations proceed from the assumption that the boundary
geometrical scales, i.e., the wavelength, the characteristic diayer is small compared to the tube diametggh frequency
ameter of the duct, and the thickness of the acoustic boungiy;t), the changes in lateral direction will be analyzed using
ary layer, to each other: The spatial range consumed by thg,s perturbation technique of thenethod of matched
boundary layer as well as the diameter are presupposed to bgympiotic expansiong further goal to be pursued is the
small compared to the wavelength. Further simplificationsyerivation of the asymptotically correct expressions for the
are then possible assuming the boundary layer to be eithgrysmission line parameters and the transfer functions of a
small or large relative to the tube diameter, which mtroduce%ng tube up to the second-order terms. The investigations

are structured as follows.
dElectronic mail: stefan.scheichi@oeaw.ac.at As far as the diameter to wavelength ratio is concerned,
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© 7z A are the characteristic impedance and the propagation param-

i r,y{ 2 \D a, eter of the duct. The values of the sound pressure and the
- m e i -— volume flow at the entrance of the tube, in the following
- ] P denoted byp,_ and U_, respectively, can then simply be

- - calculated from the valugs,, andu, at the end of the tube

- L - by employing the relationship

FIG. 1. Sketch and notation of an acoustical four pole. E,Si R E)er
a_ :A( a+ ) (4)

the first part of the analysis deals with long wavelengths, in
accordance wi_th the low reduced frequency assumptions. ReB-. Low reduced frequency and low Mach number

sults for the first-order and the second-order terms of th%ssumptions

sound pressure, the velocity components, and the transfer

matrix in the case of long circular tubes will be presented.  In order to be able to calculate the transmission line

Similar solutions derived for the case of long rectangular andParameters entering the transfer matrix from the basic equa-
slit-shaped tubes are found in the appendices; these are, hofi2ns, i.e., the two- or three-dimensional Navier—Stokes

ever, valid only to leading order. In the second part, beginquations, the energy equation, the continuity equation, and
ning with Sec. V, the long wavelength assumption is therthe equation of state for a perfect gas, the following so-called
replaced with the condition that the characteristic wavelengt#ow reduced frequency assumptidsee, e.g., Tijdemdnare

and the diameter of the tube are of the same order of magidopted:
nitude. To demonstrate the utility of the procedure, the trans-

fer functions up to the second order of a long circular tube Re=
will again be derived. Since in this case the occurrence of Mo

higher o_rder m_ode; has to be taken into_account as well, thgere the quantitiesy, \, po, 4o, D, and the parameters Re
study will confine itself to the case of axisymmetric flow. It 54| denote the speed of sound, the characteristic wave-
should be mentioned that in a similar investigation concerniength, the density of the fluid, the dynamic shear viscosity,
ing the sound propagation in a slit-shaped waveguide carrieghe characteristic dimension of the cross section, the acoustic
out by Anderson and Vaidyathe authors pointed out that Reynolds number, and the reduced frequency, which is of the

the application of the method of multiple scales to the lineaiy qer of the Helmholtz number HewD/(2¢,). By the sub-
problem requires several observations suggested by resuligint 0, quantities evaluated at the equilibrium reference
obtained from the so-called classical analysis that poses th§ate are indicated.

boundary value problem as an eigenvalue problem, and  gjnce the Prandtl number
would fail otherwise. However, as it will turn out in the

Colpo

D
>1, 1= <l (5)

following investigation, here such difficulties are not en- b #oCp o) ®
r= =
countered. Ko (1),
Il. PROBLEM FORMULATION whereC, and x, represent the specific heat at constant pres-

sure and the thermal conductivity, is of ord@(1) for a

wide class of fluid(e.g., P=0.7 in case of aj; the thermal

as well as the viscous boundary layer thicknesses are given
For the time being, assume that the driving frequency idy (see, e.g., Morse and Ingattip. 286

sufficiently low that only the fundamental mode is able to

propagate in a tube of length regarded as a transmission S /@: L

line (see Fig. 1 Furthermore, leZ and Y be the series Coro  +Re

impedance and shunt admittance per unit length along the

axis. The sound pressupg(z,t) =R(p<(2)e“!) and the vol- ~ Consequently, from the first restriction in E@) it follows

A. Transmission line parameters for acoustical four
poles

)

ume flowu(z,t) =R(0(z)el“") are then given by that 6 is small compared to the characteristic wavelength,
. . ensuring that the flow is not dominated by viscous effects; it
% — d_“ _ —\A(E) (1) is easily verified that Re1 holds for the complete range of
dz ' odz S audible and even a wide range of ultrasonic frequencies, pro-

vided that the fluid is air. This, together with the long wave-

Hence, the four-pole transfer matul can be formulated as ) ,
length assumptioh< 1 stated in Eq(5), then guarantees that

coshiI'L)  Z.sinh(T'L) only a single mode propagates over large distances relative
A=| 1 R R , (2 the tube diameter and a simplified, one-dimensional for-
=sinh(I'L)  cosKT'L) mulation of the problem as in E¢l) can be derived.
Ze In the following, it will furthermore be assumed that the
where Mach number
Z.= \/é F=\zy¥ 3) M=Z—Z<1, ®)
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with W as a characteristic particle velocity in longitudinal
direction, is small as well, so that a linear analysis of the

problem is possible.

C. Ducts with circular cross sections and isothermal
walls

By imposing the low reduced frequency assumptions
(D=2R), evaluation of the linearized basic equations yields
(see Zwikker and Kostehpp. 25—40, but also Refs. 4—7,

10
~ jopo
Z= , ,
é(R [~ 1wpg
Mo Mo
S| 1-2\/—
—Jwpg R
)
é(R [_jwpocp)
0S| 1+2(y—1) \/ ——2 o
Q:Jw _ijOCp R
YPo ’
where
L~ W(d
G(é)=—+ 10
() 3 (10

and the cross-sectional ar8a R?#. The quantitie, and

=~ 8uo .wPoR2 )
LFL: Z=—|1+ +0(Sth |,
R2S : 6o (St
13
-~ S —1 wpgR? u,C (
Y=—<j+7 Pt Ho p+o<sf‘)),
Po Y 8ug Ko

which corresponds to Rayleighrgarrow tube solution(Ref.
2, p. 327, if terms of O(St) are neglected as well, and

2 WPo| . 20 _
HFL: Z=—|j+(1+ +0(St7?) |,
g [1+( ])\/wPORZ (St™)

< . (14)
~ w . . Mo Ko
Y=—|j+(1+ -1/

v JH(1+)(y—1) wpoR? 12Cy

+0(St?) |,

which is in accordance with Kirchhoffwide tube solutiort:
Simplified expressions for the limiting values Bfcan also

be found in the book by Beran€k(pp. 135—-138 Equiva-

lent results for the HFL of the series impedance as well as
the shunt admittance in case of rectangular or slit-shaped
cross sections are given in Appendices A and B.

A completely different method of finding the LFL and
HFL would be an asymptotic analysis of the basic equations
themselves, withv, Re'%, |, and either St or St used as
(smal) perturbation parameters. In the case of the HFL such
an approach then necessitates separate investigations of the
acoustic motion in the core region and in the boundary layer,
since the scaling of the terms in the basic equations changes

y=C,/C, are the equilibrium pressure and the ratio of thecompletely, depending on which region is under consider-

specific heats. Worth mentioning is the fact that E3).can

ation. Such a so-called matched asymptotic analysis, which

also be derived by averaging the expressions for the velocitygain reproduces the solutiori&4), is presented, e.g., in
in the direction of the tube axis and the sound pressure givefiakarov and Vatrushirtd as well as in Qiet al” However,

in Morse and Ingartf (pp. 519-522 over the cross section.

if the evolution of waves over distances of the or@gISt\)

These solutions were obtained from an axisymmetric twois taken into consideration, evaluation of the transfer matrix
dimensiqnal analysis by_using assumptions very simil'ar tn as defined in Eq(2) usingi andY from Eq. (14) will
those Stinson’s generalized theory for tubes of arbitrary,roquce results which are valid only to leading order. This is
cross-sectional shape is based(eee Ref. 8 and Appendix 3 girect consequence of the fact that the exponential terms of

A).
High and low frequency limits can now be defined as
R\2  wpoR?
LFL: I2Re~(—) - OPOT s,
o o

(11
HFL: S>1.

the ordero(e(St ™ ') contained in the transfer matrix will
then become orded(1) quantities. In other words, in order

to calculate asymptotically correct expressions for the lead-
ing order terms and the correction terfio$ orderO(St™1)]

of the quantitieg(z,t) andu(z,t), the above-presented re-
sults for the HFL have to be based on the assumption that the
propagation length. of the acoustic waves is comparable to

Here, the quantity St denotes the so-called Stokes number, it§€ wWavelength. o S
inverse is sometimes referred to as shear wave number Sh, 1he aim of the following investigations is thus twofold:

As mentioned earlier, RrO(1) and therefore the LFL and
HFL can easily be deduced from E@®) by applying a power
series expansion with respect to St and'Srespectively. In

First, to show that the application of the method of multiple
scales (MMS) in the HFL together with a matched
asymptotic analysis leads to analytical solutions for the

connection with the HFL, it should be noted that in the limit Sound pressure and the volume flaneluding the second-

as Stooxo,
G(H——1j,

as% is proportional to S{—j.
Consequently, the expressiof® reduce to

12
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order terms that are uniformly valid over a considerably
larger spatial range than that constituted by the wavelengths
and, second, to derive the asymptotically correct expressions
for the coefficients of the transfer matix As will further-
more be shown in Sec. V, the MMS can even be applied if
the conditionl <1 is relaxed such that the reduced frequency
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is assumed to be of ord€¥(1) and, consequently, the exci-
tation of higher order modes can no longer be disregardedpa—,[r+pvz—+ P

I1l. BASIC EQUATIONS

A natural nondimensionalization of the governing equa-

tions involves the wavelengtk, the radiusRk, as well as the
equilibrium quantitieg, po, Co, andug introduced above.
Nondimensional variables are then constructed from

L, Z L*—L LT t*_tco L O
z _)\1 _)\1 r _R, - 1 W = CO 1
x_Vz x _Ur * u * P x_P
v, = Uy =, - o = -
£ Co " Co CoS P YPo P Po
(15
gro Y g ZCAS YRk L o
Yo YPo CoS Mo

du, a v, €a?dv, a’(4
Jz a’d® 922 d?\3
19 Jv v ea? (1 %0 ad
R O S . X
ror\ or r2| ad?\3 dzor € ar
(18
ap dp a dp dv, a 194
— 4y, —+—v—Fp—+—p— — =
ot TVigy T ety TPy TPy gr (v =0, (19
af}+ aﬁ+a v 1 ap+ ap+a ap
Pgp TPVt gpurgm (Y D Grtvuag v
ea® Y o 1 a( a0
a’d?Pr 072 d2Prr dr o
- ——(y—=1)d=0, (20)
a?d? 7
dp=yp. (21

Herev,, v,, p, 9, and 7 denote, respectively, the velocities Here, the superscripts introduced to indicate nondimen-
in axial and radial direction, the fluid pressure, the temperasional quantities have already been omitted. The quasity

ture, and the bulk viscosity. Furthermore, the scaling param-

eters

(16)

_ R A
E—ax

, =d
" R{Re

dv, 2 a2

ﬂvZZH(9vr2
0z ar |’ dz |’

2a dv, dv, a du, ﬁvr)

O~ e?a’X ma>< —
2
€
aZ

v,
€2

ar

‘e dz Ir ‘e Ir 9z

(22

are introduced whera andd are arbitrary constants of order is the so-called dissipation function, which will turn out to be

O(1), which, together with Eqs(5) and (11), leads to the
relationshipse~|~He anda~ St 1.

negligibly small as well.
Equationg17)—(21) will be solved subject to the bound-

In the following analysis it will be assumed that the ary conditions at the tube wall

variations of the thermal conductivity and the dynamic vis-
cosities are so small that these quantities can be regarded as

constant, i.e.,.k=kg, m=pug, and n=7ze. However, it

r=1: v,=v,=0, 9=1, (23

and the symmetry conditions at the center of the tube

should be emphasized that due to the assumption of a very

small Mach numbefsee Eq.(8) as well as Eq.(26)] the

results derived in the following would remain unchanged

even if the commonly used approximative power laws
= k(0 90)? and w= uo( 9/ 9)?, where the coefficiens
=0(1), were adopted.

Since the fluid is presupposed to be a perfect gas, the

equilibrium sound speeda, equals (py/po)*? and 9,

=cg/((y—l)Cp). The two-dimensional Navier—Stokes
equations in cylindrical coordinates for axisymmetric flow,

v, ap IV

=0: era—r—é]r—a—r—O. (24)

IV. APPLICATION OF THE MMS

Utilizing the parameters introduced in Ed.6), the HFL
can now simply be defined as

e<1l, a<l1 (25

the continuity equation, the energy equation, and the equasnce then Rel~e2a2<1. | ~e<1. and St~ s/R~a<1

tion of state then read

Jdu, Jv, a Jdu, e?a’ 4+ (?sz

Pt TP TPV o T 22 | 3 972
a?1 9| dv,| ea? 1+ 19/ dv,
g2roar\ oar ad?\3 71 ar r&z
p
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as required by conditiong5) and (11). In order to avoid
nonlinear effects entering the first- and second-order terms,
the Mach number is assumed to be of any or@¢e' o)
such that

M<eMa", m+n=2 (26)
holds, suggesting the use 8, «, and e as perturbation
parameters for an asymptotic analysis. Hence, the velocity
components and the relevant thermodynamic quantities are
expressed in the form:
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U,=M(Vy1+ €Uyt av,,+ €20, 02+ €au e+ a?v 4,2 asymptotic matching principlésee, e.g., Ref. 12, pp. 173—-
179 will be applied.

Fe ) EMEC ) Since the resulting equations, more precisely, those that
are relevant to solving the problem, will turn out to be linear,
a Fourier transform with respect to the time could be used.
o) M)t Equivalently, each unsteady perturbatieror W is decom-
posed into a steady modal amplitude and a time-harmonic
function such that

U, =M(v,1+ €Ut Qv+ €20, 2+ €Vt AP0, 42

1
p=—+M(p;it+ep.tap,t 62p62+ €aP.,t azpaz _
Y W(Z,21,25,1, 1) =R(W(z,2,,2,,r)el“Y),

Fo )+ M2 ) e (27) (31

W(Z,Z]_ 2o ,S,t) = %(W(Z,Zl \Z5 'S)ejwt)'

p=1+M(p1+ep.+ap,+e’pateap.,+a’p,e Evaluation of the confinuity equaliqd) together with con-
b M) e ditions (23 and (24) then yields

Ny N Ny N

I=14+M(9+ e +ad, + 024 ead, +a’I,2
gs  ds  ds s

+...)+M2(...)+..._ .
=V, =0, (32
The sound pressure is then given fy=p—1/y. - .
The investigation of the most significant features of o~ Ny Vi,
acoustic waves emerging over spatial ranges in longitudinal 9z
direction of the order®(1) andO(a 1) requires at least - -
the introduction of the length scalesand, additionallyz, o Ve aﬂVrEZa 0 (34)
=awz. However, in order to resolve the changes of the Jo

second-order terms, e.@.,, anduv,., over long distances as - ~ N
= (9VZa aVZl 0Vrea2 -
+ -a

=0, (33

well, a third scalez,= a“z according to oW, + +aVv,.=0, (35)
gz 9z, Js

J J 17 J

———ta—+a’—

iR P a P (28)  and, furthermore,

Jd . J . - A
has to be used, because otherwise the generation of secular —(rv,,)= ﬁ—r(rvra)=0:>vr1=vra=0, (36)
terms could not be avoided. Here it should be noted that the
application of additional length scales proportional to powers 45, 19 .
of € is not necessary since the solutions will retain their ~ jwpi+ — ~+a —-(rv.)=0, (37
validity even forz as large ase™ ! or ¢ 2. Results of a
simplified study in the case of linear waves in tubes witha . .  dv, 19 .
rectangularcross section that is restricted to the leading or-  1®@Pet - tap - (rvr2)=0, (38)
der terms and thus involves only the two length scalaad . . L
: ; . dv dv Jd .

z, are presented in the Appendices A and B. jwpt+ 2228 4, .= Z (F5r.)=0, (39

Substitution of the expression®7) into the system 0z 9z, ror
(17—(21) leads to a set of equations which is valid in the o a5 14

; : : . v v “
entire width of the tube except the boundary region and, j 0P oot zea —Ze+a——(rv,€za)=0, (40)
therefore, is called theuter expansion. Close to the tube 0z JzZ; ror
wall, where the stretched lateral coordinate . Iy 9D, ddp N 149 .

1-r VOPa™ =07 T Tz, T oz, T2 ar (rorea2) =0.
§= — (29) (41)

o
As a consequence of Eq&82) and (36), the inner and

is of O(1), viscosity and heat conduction play an important . o ter expansion of the Navier—Stokes equatid gov-
role; these effects have to be accounted for by a separa&qning the radial motion give

investigation of the boundary layer. Consequently, for the

inner expansion, the coordinate then has to be replaced P4 afDE aﬁa aﬁm &ﬁ’az

with 1—as and, furthermore, s - as - s s s O (42)
d 19 1 IP. IPn Pew IPa2
— - 30 _1: €_ @ _ €@ o
ar a Js 30 ar g or ar ar 0. 43

Please note that in the inner expansion, the density terms willhis agrees with the expectation that the pressure in the
be denoted by, whereas all other inner quantities will be boundary layer is set by the pressure fluctuations in the core
written in capital letters, e.gV,.. In order to match the region, which, due to the long wavelength assumption, are
guantities arising from the two expansions, Van Dyke’sindependent of the lateral coordinate
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The set of equations following from the inner expansion
of Eq. (21) reads

\’I\,a: ’yﬁ)a_ @a ’
(44)

\i’l:'}/l’:\)l_@la \i}e: ’yﬁ)e_@ev

\i'ea: 7'560(_ éfll '
which holds for the outer expansion as well.

Substituting the expansiori27) into the Navier—Stokes
equation for the axial directiofl7) and using Eqs(32) and
(36), one obtains for the inner quantities

Vo= yP 20— 0,2,

L Va 9Py

joVa- o — o+ 5, =0 (45
oL ANy 9P, "
joVeem =5 v 57 =0 (46)
o A azflza+ 1 af/zl+al5a 9Py .
JC!) Za d2 aSZ d2 as (92 (921 — Y ( 7)
and for the outer quantities

. . 9Py
jovy+ ——-=0, (48)
.. 9P
Jovzet —=0, (49)
. Pa 9P

—+ _—
Jovzat 92, 0, (50
. OPea  IPe
JwUzeat 9z +&_Zl_0' (51)
L. 0Dz 9D, 9Py

+—+—+—=
JoVza2™ 5, dz, 9z, 0. ®2

where in the last Eq52) the relationshipiv ,; /dr =0 result-
ing from Egs.(43) and (48) has already been applied; the
other expansion terms of, appearing in Eq¥49)—(52) also
turn out to be independent of the radial coordinate

Hence, the dissipation functich defined in Eq(22) is
of the orderO(M?e%a?) in the core region an®(M?) in
the boundary layer, and the expansions of the energy equ
tion (21) take the form

00, —jo(y—1)P 76; _ (53)
JoPaimlely Yod2pr gs?
w0, —jw(y—1)P A (54)
JoBelety ¢ d?Pr 4s?
06 oy 1P 1 ‘92@”‘+ 1 96,
JoBamloly “ d?pr 9s®>  d?Pr 9s
(59
;91:(7_1)611 &e:(‘y_l)f)ev ;901:(7_1)@0”
(56)

r;f}ea:('y_ 1)ﬁea! 'Bazz('y_ 1)ﬁa2'
Upon comparison with the expressiof@&}) this shows that
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;Jl:bl! ﬁe:ﬁe! E)a:ﬁa! Z)ea:ﬁea!

Pa2=Pez. (57)

Solving system$37)—(41) and (48)—(52) for the veloc-
ity components in radial direction subject to conditi)
gives

Ue=112,21,2,), v,2=rf2(2,2,,2,),

vreazrfea(zyzlaZZ)v (58)

i}reza:rffza(zrzl!ZZ)! 8r6a2:rf6a2(2121122)'

Equation (32) in combination with Van Dyke’s matching
principle then implies that,=f ,2=0. Thus, the wave equa-
tions resulting from Eqs(37), (38), (48), and (49), which
determine the evolution of the pressure fluctuatiqns
=P,, p.=P. over distances of the ordeéd(1) (i.e., dis-
tances comparable to the wavelengtlase

2

- 9P,

<=0.

(59
Jz
Additionally, by applying the matching rules to the ex-

pressions folV,; and ©, derived from Eqs(45), (53), and
the boundary conditiofi23), one obtains

Vay = (11— (13Ddsr),

(60)
@1= Py (y—1)(1—e A+Dds{wPi2)
Precisely the same functional dependence on the boundary

layer coordinates is valid for V,, and ®, as well. As a
consequence, Eg&33) and(34) can be solved to give

. L1+ \F y—1 o
= — _ o (1+))ds\(@ PID
Vrea P1 ad 2 /—Pr (1 € )

+ (1_ e(l+j)ds\(w/2))‘| ,

(6)
. 1+ \ﬁ y—1 o
- hd _ - (1+))ds\(w P72
a- Vie2o=Pe ad 2 Pr (1-e )

+ (1_ e—(1+j)dSv‘(w/2))

Carrying out the matching procedure with the expansion
terms ofv, given by Eq.(58) leads to

- Cjo. - o
fea(z121122):p1?|:1 feza(zvzl!ZZ):pe?F!
(62
where
~ 1 v—1
F= 1+ —], 63
drzw( \/Er) 3

and it then follows from Eq9(39), (40), (50), and(51) that
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#p P R When the matching procedure is again applied to the inner
0P+ —2“: — —2w?p,F, and outer radial velocity components, one then finds that
9z (92(921
A jo .~ . A
2 2 i 0 teezaz)= (B F+O), (69
0 Pegt —o=—2-—"—20°pF.
Inspection of the relat_ionship(564) shows that in order to R i y—1\ 1-j [2.
rule out secular solutions of the form,*z, p.,<z, the G=_———|1+ S + d —F
resonant forcing terms on the right-hand sides must be anni- 2d°w ' @
hilated, generating the wave equations .
S y_1+47_1> (69)
9P L PP - 2d? Pr '
wzf)a+ p2 :01 w2p5a+ p2 :0, 2d @ R \/ﬁ
Jz Jz After substitutingo,.,2 from Egs.(58) and (68) into Eq.
2n 2n (65  (41), Eq. (52 can be recast into
1 2a L _ € 2a C _
&z&zl+w P:F=0, azazl+“’ PLF=0, . PP, PPy PPa . m
WPt B =-2 2 +w(p1F
which govern the propagation of the pressure perturbations 9z 020z, 0207
p, andp., over distances of orded(1) and, respectively, —2[31(3—2[?)“!3), (70)

the propagation of the pressure perturbatiﬁpsandf)epver
distances of orde®(«~1). The imaginary parfi(—wF) is  where the right-hand side is identified as resonant forcing,
thus identified as the leading order decay rate of the sounsince it would involve secular terms py,2. This implies that
pressure due to boundary layer attenuatit¥orth mention-  the quantityp,, has to satisfy the solvability condition

ing is the fact that the equation fpy represents the multiple o 28 £
scales equivalent to the model equation that was derived by Pa +w?p F=— P1 —wzﬁl( G- _) (71)
Piercé® (pp. 531-53 from a variational principle. 920z, 9297, 2

Proceeding in very much the same way as before, Eqsn turn, unless this right-hand side is annihilated, it would
(47) and (59) are solved for the axial velocity and the tem- jnevitably lead top, being proportional taz;. Thus, the

perature in the boundary layer: resulting equations read
A 0 asiany 5 > jds\(w/2) 20 on
Vo =0z0(1—e (111802 5 —em(1rDdsilwf2), 25 L4 I Paz _ Py WD F=
2 " 0 P2 7 0, 2oz, T p,F=0,
éa: E’a('}’— 1)(l—e_(1+1)d5v‘m) azf)l A .
T B + wzf)lH =0
f > j)dsy 929z
- pl( Y 1) —ef(lJrl)dS\“(o) Pr/2).
) Here
Substituting these expressions together with the relationships g2 j . ,
for ¥,, V,, andV,, given in Egs.(44), (60), and (6), A== 1|1+ (1_ ) o
respectively, into Eq(35), the following result for the inner d?w JPr > Jpr JPr
quantity V, .2 can be derived: with J(—»H) being the correction term to the attenuation
1+] -1 rate 3(— wF).
Vec™ ﬁa_l \/E Y_(l_ei(lﬂ)dsv‘m) The solutions of the wave equatiofB9), (65), and(72)
* i \/Er can then be written as
y—1 ﬁlzelle—jw<z+ﬁzl+ﬁz2>+621e;w<z+;zl+;,22),

+ (1_ e(1+j)d3\(w/2))‘| _ ﬁl
2ad? Pr i - R Lo
P=Ci(zp)e 12 Fa) 1 C, (7)€@ F2),

N — ) fw Pr R R ) - R ) -
1_e—(1+1)ds\e(a) Pr/2)+(1+])ds T pa:Cla(zz)efjw(erle)_i_CZQ(Zz)er(erle), (74)

ﬁea: 615&(21 vZZ)e_sz_l— 625a(zl !ZZ)eJ wZ,

X

. 1 R
—(1+j)dsV(w Pri2) | _ A _ a—(1+)j)dsy(w/2 ~ -~ : ~ ;
e e r )} plZadZ 1-e e paz:claz(zlizZ)e_sz+ C2a2(21!22)ejwz'
> i A. Results
; —(1+))dsV(w2) | 4 p - . . .

+(1+])d5\/;e (rhdsdel2l] 4 b, aq VewF The goal pursued in the study presented here is to derive
. the asymptotically correct expressions for the series imped-

X (1— e~ (1+Dds(Tam) _ J—wIA:s 67) anceZ and the shunt admittancé, which were introduced

ta ™ in Eq. (1), or, equivalently, the expressions for tube param-
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etersiC andT" defined in Eq.(3). In order to calculate the
volume flow U, the axial Navier—Stokes equatiqi7) is

averaged over the cross-sectional area and expanded wit [~ X

respect to the perturbation parametersnd «, giving

ja)l?zl-l- %=0,

jwl?ze-i- %=0,

j 00,0+ dzz &;/;1 + (952“ + %zo, (75)
— RS Rl

T
Multiple scales approximation for long tubes

L ..~ Zwikker and Kosten solution

‘R(fco /a)) Sael

o1 Ki ' fon—"""> 2N i

FIG. 2. Graphs oﬁi(fcolw) as functions of St in double logarithmic scale;
Pr=0.707,y=1.402(air at 300 K; St>1: %i(I'cy/w)=O(St™1).

second term as well, since the investigation is confined to the

Furthermore, as shown in E(28), the multiple scales tech- fist- and second-order terms of the sound pressure and the
nique applied here requires the derivatives with respeet to yolume flow. However, as far as the propagation parameter is

appearing in the definitions & andY to be replaced with
derivatives with respect to the three length scales , and
Z,. Using the wave equation59), (65), and(72) governing

concerned, all three expansion terms have to be included,
because the length of the tube might be much larger than the
wavelengths, i.e., even of the ord®(a ).

the sound pressure and the expansion terms of the volume The corresponding results for the dimensional transmis-

flow U= v that can be deduced from E5), the following

sion line parameters are presented in Appendix C. Interest-

expressions for the series impedance and the shunt admikgly, Eq. (C2) completely conforms to the results given by

tance are obtained:

oo lfd d o ,d).

T hldz Ydg Y dz)Ps
=jw+a—\/_+a—+0(ea o),

. 1(d d d (76)
S _ A

Y= |?Js<dz “dz, " “dz)"

~ =] y—1 j y—1
Z.=1+« 1—- —a? 2—2——
¢ d\/2w< JPr 2d2w< Pr
5y—3y%2—2
_L%...,
Pr
(77)
f‘=jw+ajwle+a2jw|:|+“'
1+j \ﬁ y— 21 y—1
=jota—— +a’— |1+ —
TlereTg ( rr) =

1__

2vpr] |

Keefel® which were derived by high order series expansions
of the Zwikker and Kosten solution®) with respect to the
(smal) inverse of the Stokes number. Comparison with the
expressiong14) clearly shows that the terms of the order
O(St ?) appearing in Eq(C2) must not be neglected if the
effects emerging over distancks>\ are to be incorporated
into the HFL of the series impedance and the shunt admit-
tance. In addition to providing precise solutions for the
sound pressure, the velocity components, and the other ther-
modynamic quantities, the study presented here thus extends
the validity of the Zwikker and Kosten approach to the case
of sound propagation in long tubes in the limit of large
Stokes numbergHFL), provided that the low reduced fre-
quency assumptiong) hold. In order to demonstrate this
equivalence graphically, the different solutions for the real
part of the propagation parameter resulting from E&s,

(14), and(C2) are depicted in Fig. 2.

B. Example

The results summarized so far are sufficient to evaluate
the transmission line parameters entering the four-pole trans-
fer matrix A defined in Eq(2) for a long circular duct with
isothermal walls. Exemplarily, the total load impedarie
=ps_ /U_ of a tube radiating into open space will be calcu-
lated. The parameters and e are required to be small, in
order to comply with the requirements the multiple scales
analysis elaborated in Sec. IV is based on. Furthermore, the
tube lengthL shall be so large that the nondimensional quan-

It should be emphasized that the expression for the charag—ty

teristic impedanceZ. could have been truncated after the

J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004
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is of orderO(1). These conditions can be satisfied if, e.g., a
thin tube of dimensional length 10 cm and radius 0.5 mm is
considered, the fluid is assumed to be(air300 K) and the
characteristic dimensional wavelengtiequals 7 mm, which
corresponds to a driving frequentpf approximately 50 000
Hz and leads te/a=0.071<1, /d=0.036<1, L=14.286
>1. Then one may choose=a=0.071, a=1, and d
=2.008, resulting irL;=1.020=0(1).

Since the conditiore<1 holds, the radiation impedance
can be expanded into

Z.= eieE-F 622652+ e (79

In the case of radiation of sound frqm a circular duct with an
infinite flange, the leading order terfy, is a pure imaginary
and given by

) FIG. 3. Sketch and notation of a duct radiating into half-space.
Zee=Lejo, (80)
viscothermal effects accumulating over the considerably
large length of the tube. It should be emphasized that the
arguments of the functions 1/cashand tank-) always con-
tain a real part of orde®(1), sincel is assumed to be of
order O(1). Thus, the moduli of these terms will remain
O(1) quantities as well, even if the dimensional tube length
assumes a value close ta+1/2)c,/(2f), wheren is an
2e5 integer ofO(a 1), i.e.,L;~a(n+1/2)w/ . This is in con-
5 trast to the well-known resonance phenomenon occurring in
cos)‘(ijl(EHA:) shorter tubes, where thermal and viscous effects contribute
o much less to the total load impedance.
—)J y—1 . -
Pl = A (R
The radiation impedance at the flanged opening will ex-
ijlI:l cite higher-order modes in the backward propagating wave.
2|t However, due to the long wavelength assumptiene<1
these modes have cut-off frequencies well above the driving

frequencyw/(27) and, consequently, die out rapidly within a
) spatial range comparable to the radius of the cross section,

wherelL.=0.82174 is the so-called quasistatic end correc-
tion. The validity of this result will be proved in Sec. IV C.
Substituting the solutions from E(Z7) and the relation-
ship ps; /U, =Z, into Eq. (4), a series expansion of the re-
sulting total impedance with respect ¢éoand « then yields
(see Appendix C for the dimensional form of this repult

+e€

-~ Ps- ) 1 .
Zt=ai=tam(1wL1(;+F

=

C. End correction for circular tubes with an infinite
flange

+

Z4F

cos)‘(ijl
V( []w 1+j \/>< y—l) .
=tanh L4 —+ —— leaving only the lowest mode to propagate over any longer
@ d VPr distance along the tubesee Ref. 14, p. 499 In order to
resolve the details of the flow close to the exit of the duct, a
separate perturbation analysis is therefore necessary: For

1—j ( y— 1) convenience, the origin of the axial coordinate is set to the

ta d\2w JPr position of the opening as shown in Fig. 3. Similarly to the
inner expansion for the boundary layer, a stretched inner co-
ordinate for the end region
e l+]\/> y—1 z 9 19 o
Xtan 1;4- d \/_r é’_;, E_)Z(Tg (82)

. can then be introduced. The quantities arising from this sec-

—Ze. 1+ E( __r ond inner expansion will be denoted by the subsaegipt
« \Pr 2.\Pr Substitution of the expressiorig7) into the basic equa-
+ ja) 1+] y—1 e tions (17)—(21) in the same manner as was done in Sec. IV
cosh Ly| —+ —— \[ leads to
o« d T A
Vv -
(81) (;Sel = 0=V, 0, =0, (83)

which reveals the fact that in the case ot«, the effects R
resulting from the radiation at the end of the tube enter the  9Vzel 1
expansion of the total impedance at the same order as the  d¢ r ar

—(rv rel) 0, (84
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IPe _ P _ IPeq Ve1=(y— 1)E)e1’ Dee=(y— 1)be5!

Js Js Js =0, (85 . R
" " ~ 19eafz (7_ 1)pea ’ (92)
apel &pea oA 0-'pee ) .
a  ar =0, Jwvre1+37=0, (86) showing that the Ieadlpg order term of the sound pressure
and the correction term,, do not change at all in the end
‘i’elz Yﬁ’el—el, ‘i'ef yﬁ’ee—@)ee, region /<0. Obviously, the second-order teqm, satisfies
~ - - the Laplace equation
Veu=YPer— e, (87 ”n .
R . A R . A %Dec 19 IPec
Pe1= YPe1~ Ve1s  Pec™ YPee™ Vee {<0: 5_226+a27(7_r(r 5: ):0, (93
pfa ypef Dea: i A - subject to the boundary condition
IPe1  IPeq - 1 0V,q Pe. )
24 4 0. JoVza d? 9s? B 4 0 r=1: %zo. (94)
(89) ar
Me1 Mo o IPec _ In the regi(_)n out_side the_tube Wh_ere the dimensional
g = oy =0, jowv,gqt (9—§=0, (90 axial and the dimensional radial coordinate are comparable
to the wavelength, i.ez=0(1) andr=0(1/e), the expan-
R R 1 9204 sion terms of the pressure fluctuations are determined by a
jwBOg—jo(y—1)Pg— > > =0, set of Helmholtz equations. However, close to the mouth
d“Pr s where {=0(1) andr=0(1), the Helmholtz equation for
A . 20 Pe. reduces to the Laplace equation so that @8) turns out
joOe—jw(y—1)Pee— —— 2'*:0, (91)  to hold equally well for{>0. Moreover, the quantitiepe;
d°Pr ds and p,, are found to fulfill Eqs.(86) and (90) outside the
1 526 tube too. Since the acoystic waves spread hemispherically,
jw(:)ea—jw(y— 1)|5ea_ = e 0, the pressure perturbatign.. in the region{>0 thus is re-
d?Pr 9s® lated to the axial velocity in the opening by

1 1 2m 1
>0:Ae,r='w—Jr{; rf dgdr
¢ Pee({,1) =] 2am ) zea(r+) o \/§2+r2+ri—2rr+cos{ﬂ) Bdr
N R ”
=Jw5for+vzel(r+)Jo e () J(7r)drdr,, (95
|
with v,(r ;) given by the relationship in Eq90), whereas C1.(0)+ ¢, (0)
one obtains for the other expansion terms LeZW- (99
(>0 Per({,r)=0, Pey(¢,r)=0. (96)

_ _ A summary of this investigation can also be found in the
Evaluation of Eqs(86) and (90) renders Eq(96) valid for  paper by Howé?” Using a variational approach based on trial
{<0 as well. As a consequence, Van Dyke’s matching rulesunctions, Rayleigh obtained an approximate value of the

applied to the outer solutior(§4) give end correction as .=0.82424. In addition, Danieft* pro-
Ao - . vided a solution bounded by the narrow range 0.82141
C11=~Ca1,  €1a(0)=—C24(0) (97 <al,<0.82168. More recently, other authors, e.g., Norris

and Shend? calculated the quasistatic as well as the dy-
namic reflection of sound from the end of a flanged pipe by
{—=% Pee—C1(0)+Co(0) —2j wCyyl. (98)  implementing a rational function approximation with the
Bessel functions used as basis functions. In these studies,
Interestingly, Egs.(93), (94), (98), together with the more accurate numerical results for the end correction in the
boundary condition that can be deduced from Ep) by limit of zero frequency are presented which are all very close
taking the limit ast—0+, turn out to constitute precisely the to the valueL .=0.82174 also presented in Sec. IV B.

and, furthermore,

same system of equations that was solved by Rayldigh Finally, introducing the relationshif®9) in combination
487-491, see also Ref. 1 order to calculate the so-called with condition (97) into the expressions for the sound pres-
quasistatic end correction sure(74) and the volume flow(75) and performing a series
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expansion ofie= Ps+ /U, with respect to the perturbation . 1 ,92{/21 (;f:l

parameters and « yields the result given by Ed80). joVy— P a2 0, (112
V. EXTENSION: THE CASE /=0(1) . 18V, 1V, P, P,
j oV — —— + — — =0, (113

The following part will deal with the propagation of Sz d2 gs*> d2 ds dz  Iny
sound waves in cylindrical ducts, proceeding from the as- .
sumption that the characteristic wavelength is comparable towa Ip1 -0 (114
the diameter of the tube. In this case the HFL is defined as] AT oz '

e=1, a<l, (100 — % @—o 115
leading to Rel~a?<1, |~He=0(1), and Stl~8/R~a V2™ 5 9z,
<1

As a consequence, the inner and outer expansions of the _ 1 /4 vy 119 dvp
basic equation&l7)—(21) subject to conditiong23) and(24) Jwvze2— _a2d2 3 +n 972 - @ oo\ or

are carried out with respect to the remaining perturbation

?arr?\metera only. One then obtains for the continuity equa- 1 E+ 14 r v,y ) P,z ) P, @:
lon: A ad?\3 T ar Jz dz  dzy  dz,
oV -
as” =0=V,,=0, (101) (116
. . and, finally, for the energy equation:
= ‘?Vzl z?Vra ~
J(,O\I’]_‘*' 9z —a Js :01 (102) . R . R 1 (?21
A A A joO—jo(y=1)Py— 2pr 92 (117)
~ (?VZLY é,VZl &Vraz ~
joV, +aV,,=0, (103 - -~
gz gzy ° ds B iy 1y #0, 1 00 119
" o, —Jo(y— o + — =0,
. +avzl+ 10 . o 10 : Jely d?Pr gs?>  d?Pr 9s
jopyt —=+as oo (10,y)=0, (104 o )
~ N ﬁl:(’y_l)pl! 19cr:(’y_:l')pai (119)
P IV 24 avzl+ 10 ~ -0 10 ~
Jwp, 9z (921 ar ar (rvra)_ ’ ( 5) . . R 1 (92191
jode—jo(y=1)Pe2— 55— —>
. ~ ~ a%d?Pr 922
s z?vm2+ &UM+ &v21+ 19 . 0
Jopart 5t g oz, TRy or (MUred) =0, 114/ b,
1 _— —_— =
(106 ot m(r ar) 0 (120
for the radial Navier—Stokes equation:
- - Substitution of Eq(111) into Eq. (119 yields
Py P, 0 (107
Jas a Js I ;Jl:ﬁl1 ;)a:ﬁa (121)
A (9|5a2 Inspection of Eqs(101), (104), (109, and(114) shows
Jera—aK:Q (108 that the leading order pressure perturbations in the core re-
A A gion p, satisfy the Helmholtz equation
jwd a1y jwd 1alPe_g (109 22 .
ri T ra e T YU R p 19 ap
or or 2 TP el )
w P+ o +a o ar) 0, (122
R 1 v, 1[4 149/( dvq\ vy
JOVre?™ 52 02 o2 3 v\ "] T2 together with the boundary condition
. ap
1 (1 \Pva 9P r=1:. —-=0. (123
Cad?\3 ) 9zar a0 (110 o
for the equation of state: The solution is given by the modal decomposition
Y= yP,—0,, WV, =yP,—0,, < [ B(var)
R ! (111) pl:nzo Cim(21.2) Jo(yn) e
V2= yP 22— 0 2, N "
- : - ry .-
which _holds fgr the outer expansion as well, furthermore, for +Cony(21,25) Jo(¥al) elknz | (124)
the axial Navier—Stokes equation: Jo(vn)
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where the parameterg,, n=0,1,2,... are the zeros of the is made, which is required to fulfill the conditioi24) and
first-order Bessel function, (€), with y,=0 and the quan- (129. Furthermore, the functional dependence on the coor-

tities dinater of the terms that are generated by the left-hand side
——— of Eq. (126 for each moden=0,1,2,... on substituting Eq.
~ Vo~ —a“y,, w>ay, . . . .
_ n (1300 must be given by the radial eigenfunctionsg v.r).
k=1 _ mzzm 2 (125 T her, th i imply th
—jVa?yi—w?, w<ay, ogether, these requirements imply that
are, respectively, the axial wave numbers for the propagating A wz,”:o X Qﬁf:n r 3 (yor)
and evanescent modes. Joa="7 5 na="_5 —) n=12,...,
Combining Eqs(105), (109), (114), and(115) yields the 2a a® (7
inhomogeneous Helmholtz equation for the second-order (13D
termp,, with the parameter§ , defined as
. %P, 14/ dp, 3P _
0?p,+ 7 Pa + 2——(r1):—2 P . (126 - 1-] w? y—1
972 r or ar 920z, Fo=—=—|1+-=-—F7=], n=012,.. (132
d\2w k2 \Pr

With Van Dyke’s matching rules applied to the expressions
for V,1, 0,1, ©;, and 9, resulting from Eqs(112), (114),  Substitution of expressiof130) into Eq.(126) then results in
(117, (119, and(23), the solutions

R R Ptine o~ M 1na . JC
Vzlzazllrzl(l_e_(lﬂ)ds\f(wlz)), &12n —2jky, ﬁlzn :—ZFnkﬁC1n1+2jkn%'
z 1
. o 12
B1= Pl —a(y—1)(1— e (31950 PTE) (127 A ) @33
2
are derived. It then follows from Eg$102) and (111) that J fzzfm +2j|2n ‘”2“&: _Zﬁnkﬁém_zjﬁn 3C2n1.
07 Jz (921
Vi =Pafr-af jos+ d 2 Jpr The forcing terms on the right-hand sides are resonant and
would produce secular terms in in the functiohs,, and
x(l—e‘<1+i>ds\’m) +(92f)1 fone - Therefore, they must be annihilated, yielding
9z° r=1 ~ ~ —jknFpz
C1n1(21,22) = Capa(zp)e™ nnf,
1. 1+] |w PP — R . P
X—jos= =~ \@u—e “*“"S‘(“”a)}- Cani(21,2) = Con(zz) &0 rs, (134

(128  Whereupon the function%lna and?‘Zna can simply be set to
zero, since any other solution would lead to expressions for

%’C’, that could be incorporated into the homogeneous solution
p., . Please note that E¢L34) could also have been derived

Consequently, the matching principle gives the bounda
condition for the outer expansion tem, in the form

P, 1—j \/5( . y—1 p; 1 by using a different concept: As a result of the homogeneous
r=1: =——o\/5|Pr—/—"">5 |-
ar a2d 2 pl \/Er 322 wz problem
LA (129 2_ 12\ 21 J ad — -1 (91//_
The solutionp/, to the homogeneous part of E{.26) (0—kpyta-—-|r—-/=0 r=1: —-=0
subject to the homogeneous boundary conditions=at as- (135

sumes the same form as the expression fprfrom Eq.
(124). However, the function<;,,; and C,,; have to be having a nontrivial solution and the operator being self-
replaced Withélna and éZna, respectively. In order to de- adjoint, the inhomogeneous problem has a solution only if

termine a particular solutiop’, such thatp,=p.+p!, the the forcing terms are orth_og_onal to the homogeneous solu-
tion, see, e.g., Ref. 11. This is known as #redholm alter-

ansatz
. native and introduces two solvability conditions for Eg.
- A Jo(val) (126), which are identical to the right-hand sides of Eq.
pa:nEO f1na(2,21,25) ) (133).
= n

The quantitiesI(— wFg)=3(— wF) andJ3(—k,F,), n

=1,2,..., turn out to be, respectively, the leading order decay
rate of the fundamental mode and the leading order decay
rates of the higher order modes due to boundary layer attenu-

+ gna(r)élnl(zl 122)> e Jkn?

+ ]22 (2.21,25) Jo(nl) ation, which is in accordance with Beatt{?gesults for the
T Jo(vn) axisymmetric case obtained by using the concept of bound-
ary layer admittance.

(130 In order to calculate the corresponding expressions for

+gna(r)C2nl(21122)> elkn? _ I
the third-order terms, a procedure very similar to that used
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before is performed: Combination of Eq$§106), (110, core region associated with the propagation of the leading
(114—(116), (119, and(120 and multiple application of Eq. order pressure fluctuations,. This is in contrast to the

(122 shows that analysis in Sec. IV where, due to the long wavelength as-
N A A sumptionl <1, these effects do not affect the wave equations
P 1 o"p1< n 77) . J_(@Jr IPa  IPa2 [see Eq(70)]. Moreover, Eqs(113 and(118) are solved for
“ 2d2 9z \3 w\dz; dz;  JZ the axial velocity and the temperature in the boundary layer,
(136  leading to
and thatp 2 has to satify the inhomogeneous equation V=0l 1(1_87(1+;>ds¢m)
PPz ,1 0 9P
25 a « ~ S _ i (wl2)
WPt 072 + T ar (r ar ) _Uzl|r:1§e (1+j)ds\( /2)’
#py Py 4 1 4 y—1 0,=P.1(y—1)(1—e A+hdsTaPi2) (138
— + jo pl 77+ a alr=1
929z, 325 d? 3 Pr S
2., —Palr=1(y— 1)59_(“”(’5\"(“’ P12
929z, (137 A0 9 9
1 After substitution forv,, V,, V,,, andV,, from Egs.

where the third term on the right-hand side obviously incor-(111), (127), (128), and(138), respectively, integration of Eq.
porates the effects of heat conduction and viscosity in th€103 with respect to the inner coordinasegives

J“’Sz Y (1 e (1+j)ds\—(wpr/2))+l+1\/;7 1 s(2—e (1+D) ds\(wPrIZ)]

2=Pqlr—1

2d%Pr 2 Jpr
PPy e, 1 AR \F -
— | A —_— _a(1+j)dsV(w/2)y . 7 _ _ a—(1+))dsV(w/2)
972 . 2| 2 S +2d2(l ¢ 2d 25(2 e )
r=
+Polr=1| jost+ —— 1+J wy\/—l(l e (ItidsV(e Pf/Z))l
Pr

1+j
]a)S J \[(1 e (l+J)dS\(w/2)):| (139)

(92’\ (?2A 1
Pa 2 P1
(?22 dZo Zl =1 (U
r=1

Furthermore, upon applying the matching rules to the inner * J(var)
and outer expansions of the radial velocity, the boundary p';z= Z [(flnaz(z Z1,25) ()
condition n=0

+ gnaz(r)élnl(zz)e_“:nknzl

+ ﬁrlaz(r)élnoz(zl 122)) e_jlznz

N
f2na2(z 2,,2;) J;()((‘y n))

+ @naZ(r)éznl(Zz)ejF”knzl

(140 (143

+ﬁnaz(r)ém(zl,zz))emnz ,

is obtained. It should be mentioned that the particular solu-
tion p, vanishes at the boundary for all higher order modessuch that condition§24) and (140 are satisfied and the op-

n=12,.. erators on the left-hand side of Ed.37) produce terms that
A particular solutionp” to Eq. (137) can be found by have the same functional dependence as the terms on the
employing the ansatz right-hand side. As a consequence, one obtains
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r4,

4a? 16a*

22 4r-2
“ wFo>r2 w"Fg

&2[&2 I’Jl(ynl’)
a? ’yn 7n‘]0(')’n)
kAR 123 yar)

2a* y2h(vn)

K2F, 13(yar)
Yado(¥n)’

n=1,2,...,

ﬁ w2F0 ~
0a:2= ——5 %, na2=
“ 2a? o a?

wz( 1 1 4

k2P P
n=0,1,2,....

Substitution of Eq(130 into Eq.(137) then yields

(143

Pinaz _ ~ a2 A aon « 3Cyp
972 —<JKp 9z =| —2Hk;C1n1 +2jky 0z,

Ko PR 2F Gy
(144

&Z%QHQZ

972

e &f2na

n

0 é2 1
—2H,K2C 10— 2K, (922“)

X & = 2F 2 g

.0 0’)62 @
—2jk, azln ,

where

G Fo, o jo
OO 2 482 2922

4 y—1
377 T

y—1 Y
1+ =1 —=

Jp‘r( 2@)
11 y— 1( 1+

& e T e

IA:ﬁ ij 4 y-1 1
2 2a%0%K2\3 Tt

N_( “go- ”)H

) n=12,....

(145

w'yl
kz\/—r

jw 4 y—1
T oazam2 |37

As before, the right-hand sides of Ed.44) have to be an-
nihilated in order to rule out secular terms in the functions
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%maz and ?Znaz. The resulting solvability conditions thus
read

A on ~ 9Cing A A .~ dCqny
2F pkiCana— 2ikn—g - =| ~2HakiCana t 21k =

Xe_ji:nk]zll
aC o
O 2na N L2 O 2nl
oz, =\~ 2HnkiCam— 2jkn— -

x @~ iFnkhza ,

2Fnkﬁ02na

’

and, furthermoreflnaz and onaz can be set to zero. The
right-hand sides of Eq146) are again identified as resonant
forcing terms, finally leading to

élnl(zz)efj':nknzlﬁé 1€ Jk( nzl+Hn22)

C iF ok N R(Fzak (147
Coni(2o)€/FnknZ C, elkn(Fnzat HaZo)
and, additionally,
élna(zl,Zz)ﬂélna(zz)e_jkn':nzly
(148

Cona(Z1,22) — Conal(Zp) €KnFra,

Results One interesting property of the parametég
for the fundamental mode is that it cannot be derived from
the quantitiesd,,, n=1,2,..., for the higher order modes sim-
ply by settingk,= . However, it reduces to the parameter
H defined in Sec. IV, when the limit e—c is taken and
thus, formally, the long wavelength assumptieal is rein-
troduced. In accordance with this, the axial wave numbers
k,, n=1,2,..., then approach-joo and all higher order
modes die away immediately.

The definition of the propagation parameter from £j.
can easily be extended, such that each mode is treated sepa-
rately: To this end, the quantities

f [ L 9Pns i [ 1 3%Pns
" Pnsvnz 9z 9z Pns 922
wherep,s andov,,, denote the sound pressures and the axial
velocities associated with the modes-0,1,2,..., are intro-
duced. Upon replacing the partial derivatives with respect to
z with derivatives with respect to the three length scales used
here according to Eq28), application of Eqs(134), (147),

and (148 implicates that the parametdrs are given by the
relationship

(149

[o=v-K[1+2aF,+a?(2H,+F2)]+- -,

n=0,1,2,..., (150

where IA:n and I:|n are the quantities already introduced in

Egs. (132 and(145), respectively. Iflk,|=0(1) this result

simplifies to

T=jk,+ ajk,Frt+ a?jkHy+ ..., n=0,12,....
(151
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Inspection of the definition&l32) and (145 shows that and the boundary conditiofi29. By introducing the ansatz
in the limiting case of a mode=m having a cut-off fre- (130, with Ome redefined as
quency so close to the driving frequency thkt|<1 the 2 )
orders of magnitude of the different terms appearing in Eq. 9 :E Fd(Ym") 2 :ws/zl_J 7’;1 (157
(150 may change completely. Before turning to a detailed ™ a2 ymdb(ym) " M d2 JPr’
analysis of that problem, please note that one aspect of t
first- and second-order solutions derived by Anderson an
Vaidya™ in their study of linear sound propagation in slit- Ao, « 9Cyny  ~ 9Cqinan
shaped waveguides carries over unchanged to the case of —Cuini(Fnkit @nw,)+ ik, 7 +jkn FrA

e following modified solvability conditions are obtained:

circular cross sections considered here: The solvability con- R R (159
ditions resulting from Eqq133) and(144) are singular at the - s e o~ dCon1 .~ ICopatr
cut-off frequenciesos=ay,, n=1,2,..., predicting that in the Con(Fokht 0mwa) +jkn——=+jky———=0,
~ 1 1
limit as w—ay,, knw—0, the attenuation of the mode
=m takes place over a much shorter spatial range than that n#m,

defined byz; =O(1). Acloser examination of the solvability \\harew in k. andE. has to be replaced with,,, and
conditions then indicates that in order to investigate the " " m

modulation of a modean featuring a cut-off frequency in

proximity to the driving frequency such that 2(Cim1+ Comy) (Fnt+ omw,) + E(Clmﬁ Com)=0
1

0=0,taw,, op=ay, m=1 (152 (159
for the mth mode. Equation§l58 and (159 thus yield

2

holds, for thismth mode, the length scalesz,, andz, have

to be replaced with the length scales Cini(21,20)— Cinp(2p)e KnFat omoa )z,
> _ 12 > _ 32 ~ ~ . - 160
LH=aZ, = avZ (153 Coni(2Z1,25)— Cony(2y)elkn(Fnt wmwa/kﬁ)zl’ n+ m(’ )
Moreover, this necessitates expressing the pressure and, - — = — _iof i
L ) . ’ 1 (2F yt20me ) Y2
similarly, the velocity components and the other thermody- ~ Cimi(Z1,22)—Cam(z)e orm™=em Y
namic quantities in the form: (2F 200 ,) Y22, (161)

éZml(?l Ez)—’éZml(?z)ej

(d) Furthermore, the solvability conditions fq,s2 imply
that

3/2,

1 12, 2
p=;—|—M(p1-|—a/l Pyt ap,+ a® Pyt ap,e

F M) (159 CamatdZ1.25)— ComudZ)e 1 Z - 20m00) 2,

Application of the MMS then leads to the following re- (162

sults: (a) The leading order solutions given by Eq409),
(114, and(124) remain unchanged. However, the functions Substitution ofw from Eq. (152 into Eq. (134 multi-
Cim(z1,2,) and Cymi(21,2,) have to be replaced with plied by expéjk,2), series expansion with respectdpand
Cimi(z1,2,) and C,1(z1,2,), respectively, and, addition- comparison with Eq(160 immediately shows the equiva-
ally, @ must be replaced withw,,, resulting ink,,=0. (b) lence of both formulations provided that m. As expected,
The perturbation$ 412, 0,12, andp,u2 satisfy Eq.(109), relationships(150 and (151) for the propagation parameter
are left unchanged for all modes having cut-off frequencies
not close to the driving frequency. However, if there is a
modem=1 such that Eq(152) is fulfilled, Egs.(161) and
(162 lead to the interesting result that the propagation pa-
rameterl’,, is then given by

C TR AN, =\ j(2F i
Comati2(Z1,23) — Comatid( Z5) € ?Fm* 20meq) 23

&f)auz 6’}51
97 +(9—Z—O, (155

J OmU g2t

and the homogeneous Helmholz equati@22 subject to
the boundary conditioi123). (c) The sound propagation at

the orderO(«) is now governed by the set I =Y (2F 1+ 2000 ,) Y2+ ¥ 00+, (163

o o Py which is valid for all frequencies arbitrarily near the cut-

JomUrat oo ta— =0, off frequency ay,,, i.e., even forw,=0. This solution
agrees perfectly with the approximation derived by Hutfde,

o o P, Parz Py using the concept of boundary layer admittance; the experi-

JomUzat w0t —— —=0, ments reported in this paper are also in good accordance with

9z dz; 9z ) : . -
! ! the theoretically predicted attenuation rate. In principle, the

higher order correction terr,,32 could be calculated by
evaluating the resonant forcing terms appearing in the equa-
tions governing the pressure perturbatipge. Here, how-
ever, a differenf{more intuitive approach shall be used: In

- R (156
. Ip 19/ dp
2 LI S
WyPeT 7 +a ; &r(r ar )

20 20
=—2wnw,P1— &_6_1021, contrast to the limits of the original solvabilty conditions
929Zy  gz3 (133 and(144) ask,—0,n=1,2,..., the corresponding limits
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of the propagation parameters given by E#§50) can be 0.1
calculated without any difficulties. As it turns out, the lead-

ing order term of,,, which is of the orde©(«*?), can also

be derived by substituting fab from Eq.(152) in Eq. (150),
settingn=m, and performing a series expansion with re- s(f,c /o)
spect to the perturbation parameter Consequently, it is

very reasonable to assume that for each mode, the expressic 0.01
for T, from Eq. (150 including the O(a?) terms retains its

validity even for those driving frequencies that are very close

to the cut-off frequency of this mode, which enables the
computation of the higher order correction term Bf,.

Hence, one obtains

j 0.001 " " L L L r n i L
- 2 30 100 1000
Inase= §(2Fm+ 20mw,)Y? st

FIG. 4. Graphs om(focolw) as functions of St with He as parameter in

Wy 2 2 double logarithmic scale; P10.707, y=1.402, 57/ uo= 0.6 (air at 300 K);
° w_ Fot \/Zwmwa—d +Km the curve for He1<1 corresponds to the long wavelength solution from
% « LM . , Sec. IV; SB1: R(Tyco/w) =O(StY).
20, Fmt onow

(164) rameters St, He, Pry, and 7y/ug. The real part of this
function evaluated for the fundamental mode is displayed in
where Fig. 4, which clearly shows that the attenuation rate is sig-
- nificantly affected by the viscothermal damping mechanisms

2
Iém_ lim K2 Hp+ —- in the core region as soon as the Helmholtz number becomes
o— oy 2 anO(1) quantity. In addition, Fig. 5 displays the graphs of
.3 R(IMwlcy) forn=0, 1, 2, 3 andR=0.001 m as functions of
—jw y—1 i_ i) | ®m f E) the Helmholtz number HeO(1). Here, the(large Stokes
™ og2 \ Pr \/Fr 2a%d2\3 Pr ) number has been eliminated using the relationship St

(165 = JHe Reg, where Rg=cyRpy/uy~Re>1 denotes the radial
Reynolds number. The results plotted in this figure well il-
The corresponding result obtained when the general eXustrate the behavior of the modal damping rates when the
pression for the propagation parameters from B0 is  frequency is increased such that a new mode becomes propa-
rewritten in terms of dimensional quantities can be found ingational: In conformity with Egs.(151) and (163,
Appendix C. As far as the fundamental mode is concerned #3(I' w/co)=0O(1) if He<y, and y,—He=0(1),
agrees perfectly with the solution given by Kergom&@td. 9i(T,w/c,)=0(St ¥ if |He— v,/<1, and %(I,w/cy)
This applies even for the terms appearingHp that result  =Q(St™?) if He> vy,, and He- y,=0(1).
from heat conduction and viscosity in the core region. Un- A further point of interest is the calculation of the trans-
fortunately, in that paper, no derivations were presentedter functions that relate the pressure fluctuations at both ends
Later Bruneatet al?® calculated the propagation parameters
for the higher order modes, starting from a generalized dis- 10 : : : T
persion equation. However, in the intermediate steps that
then followed only boundary layer effects were taken into
account(the mentioned dispersion relation was corrected in a v L
subsequent paper, see Ref. 27; if, though, only the axisym-
metric modes are considered, as is the case here, it remairg., /,) :
unchangefl The expressions for the propagation parameters
» presented in Eqg150 and(C4) are in complete accor-
dance with the results in Ref. 26, if the terms proportional to
1/a? appearing in the definitiond45 are formally omitted,
so that the quantitiesd, reduce toH,=G,—F%2, n 001 E
=0,1,2,.... However, it should be kept in mind that within i
the framework of a correct asymptotic analysis sacpos-
teriori simplifications are not appropriate, since in the case 0001 . : —
of I=0(1) the terms inH, resulting from boundary layer He
attenuation and those due to the viscous and thermal effects

FIG. 5. Graphs OER(F Co/w) as functions of He in double logarithmic
in the core region are of the same order of magnitude. °
9 9 scale, R=0.001m, i.e.,, St\HeRg with Re;=cyRpg/uq; Pr=0.707,

As can be seen from Eq$C4) and (C5), the quantity 1 405 ;1 /40=0.6, copo/o=221.373% 1 m~* (air at 300 K; 7,
r awl/Cqy can be conveniently expressed in terms of the pa=3.8317,y,=7.0156,y;=10.1735.
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of a tube to the axial velocitien the case of <1 these R R R R R R wF,
relations can easily be derived by solving the system of Cy,,+Csno=(Cina—Cong)cothT'\L)+| Cpy ——
equations given by the transfer matéxfor the sound pres- ( * ki

suresps_ andpg. ). Again, the tube is regarded as a trans-

mission line whose length is large compared to the charac- n i & 2wkﬁqu 1
teristic vyavelength such thatlelc_y with L1=.O(1). Due s mvz+a2%n(yﬁ— y2) | sinh(T,L)’
to the viscothermal processes taking place in the boundary m#n

layer, each transfer function associated with a distinct mode n=1,2,..,
will turn out to be affected by all the other modes as well. _ )

For convenience, the axial velocities in the core regionVhere the relationship
at both ends of the duct_a_lre assumed to involye oqu terms ofr1  3o(y,r) rdy(ymr)
order O(1). Decomposition through the radial eigenfunc- | 2r r
tions J(y,r) then results in 0 h(yn) Ymh(¥m)

. m 2
Vo o 5 g JolnD) s, N=012., m=12., m#n

M THT 8 7™ o) =\ ™ ¥m (169
. . (166) 0, m=n=1.2...

v R ~ J r

= 2 ol has been used.

V:Uzl+: no,+ Jo(yn)
n=0 ol ¥n Equations(124), (130), (167), and (168 together with

Setting the origin of the axial coordinateto the left end of ~ Eds. (134), (147), and (148 are sufficient to determine the
the tube, evaluation of Eq§114) and (124) in combination ~ solutions

with the solutiong(134), (147), and (148 of the solvability A o 3
conditions leads to pi:f)17+af)a,+---= Se o()’nr),
M i=o """ Jo(¥n)
- R - ® R " 170
Clnl_CanzcnvZ—"k_’ Ps+ . " - Jo(¥nl) (79
n V=P1++apa++"'=z CnpS+J—
R (167 n=0 ovn)
Cnv + w

z

ad atz=0 andz=L, respectively, in terms of the radial eigen-
sinh(I",L)/ k, functions. The thus obtained expressions for the coefficients
ﬁf the eigenfunction expansions can be written in the form

Cin1+Con1=| Cp, - cothT'yL) —

where, for an evanescent mode or a mode having a cut-o
frequency close to the driving frequency, the terms A
coth(",L) and 1/sinh[(,L) can simply be replaced with 1 Cnps;=
and 0, respectively, since in such cases the resulting correc-

~ ~ _ Cnvzt
* Cm}z; cothI',L) +m
n

tions become exponentially small. Furthermore, annihilating o > 2K2E
the second- order solutions,,_ andv,,, given by Egs. x(l—aFn)’k—IaE Cmvzi%
(115 and (130 yields n  m-0 a“(¥n— Ym)
- - - A wZIAZO - ) A 1)
Ci0e— C20a=—Coy | Fot+ X | coth(I',L) =~—coth(T',,L) ~—
z 4a? Kn K
“ . 2KF o - 2k2F
+2 CmU* mzm! iaz Cmvzt 2 2m 2
m=1 z azfym mig a (7n ym
C10a+ C200=(Ci0a— Caoa) cOth ToL) % 1 © 1 il B
E sinhT,L) k, sinh(TL) Ky, ’
- - 0
+| Cop,+| Fot 1ol ) n=0,1,2,.... (171
" ) As pointed out earlier, the terms c6thand 1/sink-) appear-
B E & 2KyF m 1 ing in EQ.(171) can simply be replaced with 1 and 0, respec-
Mzt 52,02 | sinTal) tively, if nor mcorrespond to an evanescent mode or a mode
Y hToL)
A (169 having a cut-off frequency close to the driving frequency,
- - - wF, which reveals the well-known fact that the pressure pertur-
Cina=Cona= —Cnuz—*_k bations at one end can only be affected by velocity fluctua-
" tions at the other end that are associated with the propagating
c 2 wk2F modesn, m=0,1,2,...q, whereq denotes the highest mode
m' m ~

such thatk, is a positive real of orde©(1). Therefore, as

20 ™ (i
monom far as the propagating modes are concerned, the pressure

m#n

550 J. Acoust. Soc. Am., Vol. 115, No. 2, February 2004 Stefan Scheichl: Transmission line parameters for long tubes



fluctuations at one end can also be expressed in terms of tloarried out to provide insight into the linear evolution of
components of the axial velocity and the sound pressure aound pressure waves in long hard-walled ducts. The calcu-
the other side by rearranging the systeh8&l), substituting lations primarily proceed from the assumptions that the fluid
the resulting equations mutually, and truncating after thds a perfect gas and, additionally, that the acoustic boundary
second-order terms. It then follows that layer is thin compared to the characteristic dimension of the
~ ~ A cross-sectional area. Furthermore, two different assumptions
Chp,s = Cnp,= cosTnL) concerning the diameter to wavelength ratio have been
adopted in order to derive the transfer characteristics of a

ténvzi sinf‘(f‘nL)(l— aIA:n)xkai long tube up to the second-order terms.
n In the first case, where the wavelengths are assumed to
a SR2F A be large pompared to t_he diameter, it is four_1d that the small
+a 2 Crnp, i% (coshT,L) pertu_rbauon parametermtrqduced by that ratio playg only a
m-0 7 a(yaT vm) passive role, that is to say, its smallness prevents higher order
modes from being excited. As a consequence, the series ex-

- B a . Zﬁﬁqum pansion of the characteristic impedance up to second order
—coshl'yl))* amEO Cmuzr—az( 22 and the series expansion of the propagation parameter, which
n m

m#n

has to be calculated up to the third order, depend only on the
R w R © (smal) scaling parametew determining the thickness of the
X[ sinh(I'yL) ==—sinh(I" L) = | +---, boundary layer in terms of the diameter. However, as shown
Kn Km in Secs. IVB and IV C, the parametemwill become impor-
n=0,1,2,..q. (172 tant if the effects resulting from radiation at the tube end are
) _ o to be incorporated into the analysis.
T_he expressions from Eq(él_?l) and(17_2) written in dimen- In Sec. V the reduced frequendyr, equivalently, the
sional form are presented in Appendix C. Helmholtz numberis presupposed to be of ordéx(1), i.e.,

In order to derive the asymptotically correct expressions.=1. As a consequence, the analysis has to account for the
for the volume flows at both ends, the axial Navier—Stokesycitation of higher order modes and the interaction of the
equation(17) is averaged over the cross section and exyifferent modes in the acoustic boundary layer. To demon-
panded with respect to the perturbation parametstielding  strate this, the transfer functions relating the sound pressures

2 Y 2 2 at both ends of the duct to the axial velocities have been
. 2 ﬁpl . a 2 r7\/Zl ﬁpa (?pl : . . :
jovat——=0, jov,t+—-—= —=0. calculated. The series expansions derived for the propagation
9z d? IS | 92 07 parameters extend the results given in the literature with ad-

173 ditional terms resulting from shear and bulk viscosity and

Since the expansion terms of the pressure fluctuations in thieeat conduction in the core region. In addition, special em-
boundary layeP; and P, are independent of the inner co- Phasis has been placed on the asymptotically correct treat-
ordinates, the quantitie; andp,, can be conveniently cal- ment of modes having cut-off frequencies close to the driv-
culated by integrating the inner solutions from E¢s24)  ing frequency.

A

and (130 over the core region. Hence, using Eq$27), Obviously, some of the simplifying assumptions made
(167), and (168 results in here can be relaxed in order to account for the physical
N 4 mechanisms neglected so far. Examples include nonlinear
l;Ai= U,\Z/r =g+ Qg+ effects and the consideration of the asymmetric modes.
~ 1-] \F ” ~
=Coz—a—g~ ano Chp =t (174 APPENDIX A: DUCTS WITH RECTANGULAR CROSS
SECTIONS
In the limit asa—«, i.e.,| <1, the solutions for the funda- . .
mental mode from Eq¢(171) then reduce to The derivations o andY for the case of a rectangular
N tube, which were elaborated by Stinfofsee also Roh
5s:=l\/|éops;=( +{i= COtf’(f‘OL)I_—uT—> etal?®), result from his general procedure developed for
sinh(T'oL) ducts having arbitrary cross-sectional shape. As explicated in
_ Ref. 8, this theory is primarily based on the hypotheses that
| 1+ 1-] (1_ r p. (175 both the characteristic wavelengthas well as the inverse of
d\2w Pr the propagation parametEr= \/’ZF? are very large compared

to the boundary layer thicknes% the density perturbations
and the sound pressure are of comparable magnitude when
scaled by their equilibrium values, and, furthermore, the
sound pressure does not vary significantly through the cross
section. This set of assumptions then enables the simplifica-
In the work presented here the method of multiple scalesion of the basic equations such that, in addition to the case
in combination with a matched asymptotic analysis has beenf circular tubes, even in the case of tubes with rectangular

and the matrix systentd), with the parameteréC and T
given by Eq.(77), is recovered.

VI. CONCLUSIONS
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cross section, the expressions for the shunt admittance and . jop
S . . — 2| p2 0
the series impedance can be given in closed form: §&=h (bn+ M— ,
Let 2h and 2o be the height and the width of the tube 0
with D=2h as the characteristic dimension of the cross sec-

tion andb/h=0(1). Additionally, the following parameters - of 2
52: h bn+

(A5)

ijOCp
Ko )
(k+1/2) 7
A= h ' Due to the infinite sums in Eq$A2) and (A4) the ex-
(A1) pansions in the limits as St0 (LFL) or St—~ (HFL), with

the Stokes number defined as
(n+1/2)7

n b
wpoh
St=1/ , (AB)
Mo

are introduced. Then the quantitiésand\? are constructed

from turn out to be very tedious. However, one could try to derive
at least the asymptotically correct expressions for(Bg) in
R wob2h? the HFL by means of a multiple scales analysis based on the
Z= = , low reduced frequency assumpticstated in Eq(5) in com-
452 E 1 _ bination with a matched asympto_tic expansion, as outI_ined in
K=00=0 oo 2 o Jopg Sec. IV. Such an approach involving separate calculations for
kHnl kT Fn the acoustic flow in the core region, the main boundary re-
(A2) gions, and, in principle, also in the corner regions of the
boundary layer has the advantage that the series expansions
~ jwS 4(y—1)jwpeCp of infinite sums can then be avoided. In contrast to the study
Y= Po 1- W in Sec. 1V, the following analysis confines itself to investi-
gating theleadingorder terms of the volume flow and the
sound pressur@, generated by waves propagating over a
cZ 1 distanceL ~St\ or, equivalently, theleading order terms
XKZO ZO j0poCol |’ and thesecondorder terms of the quantities and ps gener-
" alo?| al+ b2+ ﬁ) ated by waves propagating over a spatial rahgex only.
Ko To this end, the nondimensional coordinates
whereS=4bh. . X y
Since for every arbitrarg the relationship X* = b’ y* = n (A7)
i 1 _ _1, 1- tanh( \/E) (A3) for the vertical and the horizontal direction, respectively, and
=0 hzaﬁ(hzaﬁ+%) 2¢ \/E the small scaling parameters
holds, expressiofA2) can be recast into e=an~l, a=d A gl (A8)
N hyRe
- ,LLob2
Z= - \/r ' are introduced. Omitting the superscriptglenoting nondi-
28RS 1 _ tanh(vé,) mensional quantities, the boundary layer coordinates are
=0 bﬁ%l \/Z given by
(A4)
| | ) Syt g X (A9)
Q:E 1— 2(y—1)]wp0Cph +y a | +X a
Po yKob?
" \/r As mentioned earlier, in this simplified analysis either
y 2 1 B tanh(V¢2) the crjangesAof the first- and second-order terms of the quan-
=0 bﬁ%g \/g ' tities p; andu are to be resolved over a spatial range of the
orderO(1) or just the leading order effects emerging over
R R distances of the ordéd(« ) are to be investigated. In both
Here, &, and &, are abbreviations for cases two length scales are sufficient, resulting in
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0 J J

—_—— — - jpr
0z 2 Yoz (A10) 5_ : ,
Jwpg
tan?‘( h\/
; : Mo Mo
In order to guarantee the linearity of the problem, the Mach S| 1-1\/: h
number now has to be assumed to satisfy J@po
(B1)
< < jwpoC
M<e, M<a. (A11) . tam( /) io p)
. 0 0
oS 1+(y—1 .
] (y—1) JopeC, h

Furthermore, it should be noted that the effects resulting Y=
from the viscothermal processes taking place in the very YPo

small corner regions of the boundary layer where othas  wjth S=4bh. The result forZ is in accordance with the
well ass.., are of orderO(1) will not enter the correction  gg|ytion already given in the 1975 paper by Backubpw-
terms at second order im, since their contribution to theé ever, please note that in the expression for the shunt admit-

volume flow is an order smaller than that of the main part ofi; e stated there. a factor ¢f is missing. Derivations o
the boundary layer. Hence, deriving an exact solution of theand\? can also be’found in Ingatdi(pp. 2/19—2/29

boundary layer equations for the corner regions is not neces- The LFL can be calculated by means of a power series

sary. . .
. . . expansion with respect to the Stokes number from (B,
A perturbation analysis for the HFL very similar to that anz reads P B4)

carried out in Sec. IV then shows that the series impedance

and the shunt admittance in dimensional form assume the . 3’“0( 2wpoh? . )
imiti LFL: Z=——|1+]j +0(St) |,
limiting values 7S 520 (St)
(B2)
~ oS y—1 wpoh? u,C
-~ wpgl . . h Mo B Y=—(]+ 30 0 p-I-O(S1.4) .
Z=— ]+ 1+ 1+ +0(St 2|, Po Y 3uo Ko
S : proh2 Furth . for St
(A12) urthermore, since for Stoo
tanh(€)— 1, (B3)
~ S h o Ko expressior{B1) can be evaluated to give the HFL in the form
Y=— j+(1+j)(1+—)(y—1)
YPo b 2(1)p0h2 MOCp ~ wpo o
HFL: Z=—|j+(1+])) +0O(St ?)|,
S 2wpoh?
+0(St?)|. B4)
Y . . Mo Ko
Y=—/j+(1+]))(y—1
ST AT

The low reduced frequency assumptions from Eg). to-
gether with St-h/5>1 yield the ordering relationship
>h>§ and Eq.(A12) implies that in the HFL, the inverse of
the dimensional propagation parameter is of the o@igx). ] .
Furthermore, as in the case of tubes with circular cross- AS expected, the relationshig#\12) as well as Egs.
sectional shape, the sound pressure does not change sign{f®4) arld (14) confirm the assumption stated in Morse and
cantly over the cross section. As a consequence, the basiegard” (p. 475 and elsewhere that for St= terms result-
assumptions adopted by Stins¢see aboveare satisfied, ing from viscous dissipationZ) and heat conductiony() in
which leads to the conclusion that E@12) represents the the boundary layer are always proportionalR6S, with P
asymptotically correct approximations to EEA2) in the  being the perimeter of the cross-sectional ateawvever, in
limit of large Stokes numbers. contrast to the results fat andY presented here, in Ref. 14
the effects of heat conduction are contained within the resis-
tive part of the series impedanceror an arbitrary cross
section the HFL can thus be written as

. P Ho
J+(l+])§ \lzwp0+-~-},

+0(St?)

APPENDIX B: DUCTS WITH SLIT-SHAPED AND ~  @pg
ARBITRARY CROSS SECTIONS HFL: Z= <

In the case of a rectangular slit-shaped tube with (B5)

=2h as the characteristic dimension such théb<1, the S_ eS| P Mo Ko .
: ~ o Y= j+A+Dg(r=D V3 c ol
expressions foZ andY derived forb/h=0(1) reduce t& YPo wpo Holp
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Further(semianalytical results for the LFL and HFL in R (y—1) 2 (y-1)
the case of rectangular and other cross sections, which were Y=——|j+(1+]j) S Pr ar 7o
derived by using variational methods, are presented in YPo () Pr Stw)?Pr
Cummings®!
+0O(St 3|,
APPENDIX C: RESULTS IN DIMENSIONAL FORM
Expressions used in the following: . Copo 1—j ( y 1) i (C2
Z.= + 1- -
R? ¢ 2
S=R2m, Sw)= w’;" 51, V2 Sto) VPr/ 2Stw)
0
y—1 5y—3y —2)
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pr= 200 _0(1), (&) ( PP
- 1-j 1 J
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Helw) =2 V2stw) |~ JPr] Stw)?
Equation(76): y—1 4
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Stw ) St(w)? Equation(81):
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0.8217 He(w) + ( )
Co St(w Pr 2\Pr
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"2 stw) JPr
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wherewL/cy=0(St) and He=O(St™1). A y-1 y
Equation(150): Hoy=—jl 1+ —|1- —
! o ﬁr( zﬁ)
1:_\/ {1 £ 2H = I _JHe;w) 1w, - 1(2+1+7
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X”‘“H kR 13 e P
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. 1 He(w)? y—1
F,= J + Aeiwz) Y ) =0,1,2,..., (CH) and, furthermore, He O(1).
V2 kiR?  \/Pr Equations(171) and (172):
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wherefn, ﬁn, andIA:n are defined as in Eq$C4) and(C5),

respectively, He O(1) andwlL/cy=O(St). Then the sound
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