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The complementary operators method~COM! has recently been introduced as a mesh-truncation
technique for open-domain radiation problems in electromagnetics. The COM entails the
construction of two solutions that employ absorbing boundary conditions~ABCs! with
complementary behavior, i.e., the reflection coefficients associated with the two ABCs are exactly
opposite each other. The average of these solutions then yields a new solution in which the errors
caused by artificial reflections from the termination of grid are nearly eliminated. In this work, COM
is introduced for the finite-difference time-domain~FDTD! solution of acoustics problems. The
development of COM is presented in terms of Higdon’s absorbing boundary operators, but
generalization to non-Higdon operators is straightforward. The effectiveness of COM in comparison
to other absorbing boundary conditions is demonstrated with numerical experiments in two and
three dimensions. ©1998 Acoustical Society of America.@S0001-4966~98!01808-6#

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20.Px@JEG#
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INTRODUCTION

The finite-difference time-domain~FDTD! method was
first introduced by Yee in 19661 for the study of electromag
netic scattering problems. A similar method has been de
oped for simulation of acoustic and elastic wave propaga
~e.g., Refs. 2 and 3!. The method is simple, both concept
ally and in terms of implementation. It is robust and can
used to study accurately a wide range of complex phen
ena. Since the FDTD method can be computationally exp
sive, a great deal of research has been, and continues t
concerned with finding ways to decrease computational c
both in memory and run time, while preserving or increas
accuracy. Arguably the most active area of this researc
concerned with grid termination techniques for open-dom
problem. The way in which the grid is terminated, i.e., t
absorbing boundary condition~ABC!, often dictates the size
of the grid needed to obtain an accurate solution and hen
intimately tied to computational cost. This a consequence
the fact that a simulation employing an ABC of lower acc
racy generally requires a larger grid than one employing
ABC of higher accuracy to obtain results of compara
quality.

Most open-domain problems require that the FDTD g
be terminated with an ABC. Open-domain problems ne
not be terminated with an ABC if a grid can be construc
that is so large that the boundaries of the computational
main are causally isolated from all regions of interest. U
fortunately, this approach is infeasible for nearly all realis
simulations. Global ABCs do exist which are nominally e
act ~e.g., Ref. 4!. However, these ABCs require, for eac

a!Electronic mail: schneidj@eecs.wsu.edu
b!Electronic mail: Omar.Ramahi@digital.com
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terminal point of the grid, an integration over a surfa
which bounds the interior of the computational doma
Therefore, global ABCs are exceeding costly for tim
domain simulations and have not proven to be useful in pr
tical applications. Alternatively, local ABCs merely depen
upon the field in the immediate vicinity of each termin
node and are far less costly than global ABCs. Howev
local ABCs are inherently imperfect and always reflect so
spurious energy back into the computational domain. Ty
cally the closer a local ABC is brought to the source
outgoing fields, whether an active element or a scatterer,
greater is the reflected energy~moving the ABC closer to the
source of fields implies decreasing the size of the grid!. This
a consequence of the inability of traditional local ABCs
absorb evanescent energy and the fact that local ABCs t
cally perform poorly at grazing incidence. Nevertheless,
computational savings afforded by local ABCs outwei
their disadvantages and thus local ABCs are the ones m
commonly used today.~In the remainder of the paper onl
local ABCs are discussed so that the ‘‘local’’ adjective w
be dropped.!

There is another distinct approach to the termination
the FDTD grid that relies upon the use of an absorbing m
terial. In such an approach, the absorbing material is pla
adjacent to the terminal boundaries. The material is desig
to absorb the energy from outgoing waves so that the amo
of energy that reenters the interior of the grid via reflecti
from the grid termination is small. Straightforward materia
based termination techniques have been available for sev
years~see, for example, Refs. 5, 6!. An improved technique,
employing a nonphysical split-field formulation, was r
cently presented by Be´renger.7 This technique, known as th
perfectly matched layer~PML! method, was presented in th
context of electromagnetic problems, but it has been ada
686/104(2)/686/8/$15.00 © 1998 Acoustical Society of America
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for acoustic and elastic modeling.8–12 The performance of
the PML method is such that it has attracted the attention
several researchers. Unfortunately, the quest to improve
PML method has led many researchers to put aside
search for further improvements in differential equatio
based ABCs. Nevertheless, as shown here, there are stil
mendous improvements that can be made in the applica
of such ABCs. Thus it is nearly certain that the full potent
of both differential equation-based and material-based
truncation schemes has not yet been realized.

In this paper we provide the theoretical foundation fo
new grid truncation technique known as the complemen
operators method~COM! and show its application to prob
lems in acoustics. The superiority of the technique over ot
differential equation-based ABCs is demonstrated via tw
and three-dimensional examples. The COM requires that
simulations be performed. In one simulation an ABC is us
that reflects energy in a known manner. In the other simu
tion, the complement of the ABC is used so that the ene
reflected by the ABC has the same magnitude but oppo
phase. Then, the results of the two simulations are avera
to obtain a solution that is free of most of the energy int
duced by ABC reflections. The COM was first presented
the electromagnetics literature where it was shown to y
excellent results even when using a much smaller grid t
required by other traditional ABCs.13–15Because of the eas
with which the COM can be implemented and the signific
impact it can have on accuracy and computational cost,
method has the potential to increase greatly the class
acoustics problems to which FDTD can successfully be
plied.

The complementary ABCs~or boundary operators! re-
quired by the COM can be formulated from a general cl
of boundary operators;15 however, in this paper we prese
the method specifically in terms of the Higdon ABC.16,17

Section I provides a review of Higdon’s boundary operat
in their differential form and demonstrates the construct
of complementary operators of arbitrary order. Section II
tails the implementation of the COM in the FDTD schem
Section III provides results from two- and three-dimensio
simulations that demonstrate the efficacy of the COM.

Our primary goals here are to present the theory beh
the COM and to show the significant advantages it has o
other differential equation-based grid truncation metho
Comparison of the COM with other grid termination tec
niques, such as the PML method, has been investigated
where. The results presented in Refs. 18 and 19 show tha
COM can yield results that are superior to the PML meth
while at the same time being less computationally costly
should be noted that there is no ‘‘best’’ test with which
compare material-based and differential equation-based
termination techniques. Instead, many different tests are
quired to isolate specific aspects of the techniques~e.g., per-
formance at grazing angles, absorption of evanescent en
and broadband behavior!.

Finally, we note that there is an alternative implemen
tion of the COM method to the one presented here.20 The
scheme presented in Ref. 20, named the concurrent com
mentary operators method or C-COM, does not require
687 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998
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separate simulations, i.e., the complementary boundary
erators are realized using a single simulation. The cost a
ciated with this implementation is an increase in memo
usage~but that cost ‘‘buys’’ a decrease in total run time!.
The implementation of a C-COM solution is a straightfo
ward extension to a COM solution and thus this paper c
centrates on the basic formulation of COM for acous
simulations. The reader interested in a concurrent formu
tion is referred to Ref. 20. We further note that programs t
currently employ a Higdon~or Higdon-like! ABC can be
modified to use the COM by making changes that are triv
~a simple change of coefficients is all that is required of
existing code and then results must be averaged!. To realize
a C-COM solution, additional changes must be made to
existing code.

I. DIFFERENTIAL FORM OF BOUNDARY OPERATOR

The first-order, coupled, differential equations governi
linear acoustics are

]v

]t
52

1

r
“p, ~1!

]p

]t
52c2r“–v, ~2!

wherev is velocity, p is pressure,r is density, andc is the
speed of sound. The standard FDTD algorithm is obtained
approximating the derivatives in Eqs.~1! and~2! by second-
order accurate central differences. The evaluation points
pressure and velocity are spatially and temporally off
from each other so that leapfrog scheme can be constru
to express future fields in terms of past fields~see, for ex-
ample, Ref. 2 or 8 for details!. The usual leapfrog updat
equations cannot be applied to pressure nodes on the te
nal boundary of the computational domain since not all
the needed adjacent fields are available there~i.e., a velocity
node is needed that is outside of the grid!. Instead, to update
these pressure nodes, an auxiliary equation must be used
expresses the boundary value in terms of current or past
ues of the field in the interior of the grid and past values
the field on the boundary itself. Perhaps the most popu
such auxiliary equation is provided by the Higdon bounda
operator. The remainder of this section provides the the
behind the differential form of this operator and shows h
it can be implemented in a manner suitable for use in
COM. The next section details the discrete form of this o
erator which, although similar to the continuous operator
many respects, is fundamentally different.

The generalM th-order Higdon boundary operatorBM

operates on the pressurep at the termination of a computa
tion domain as follows:

BMp5 )
m51

M

Bmp50, ~3!

where

Bm5
]

]x
1

jm

c

]

]t
1am ~4!
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andjm andam are parameters. For arbitrary boundaries,
first partial derivative in Eq.~4! should be taken with respec
to the outward normal to the boundary, but thex direction is
used here to be consistent with subsequent analysis. Su
scripts will be used for the overall order of a boundary o
erator while a subscript will be used to indicate the const
ent components. Thus an individual termBm is a first-order
operator whereas the operatorBM is theM th-order operator
obtained from the productB1B2¯BM . Whenam is zero,Bm

will yield perfect absorption of plane waves incident at
angleum such thatjm5cos(um). The parameteram was pro-
posed by Higdon as a means of controlling stability of t
operator.17 Additionally, as discussed in Ref. 21, theam pa-
rameters can be used to absorb evanescent energy~which
would otherwise experience unimodular reflection!.

Assume that a plane is incident, perhaps obliquely, o
boundary corresponding to a constantx plane. Further as-
sume, without loss of generality, that this boundary cor
sponds tox50 and over this boundary the Higdon AB
operates on the pressure as given in Eq.~3!. The plane wave
has unit magnitude and itsx component of propagation is i
the positive direction. The total pressure in the computatio
domain will be the superposition of the incident wave a
the wave reflected from the boundary

p~x,y,z,t !5e~ j vt2 jkxx2 jkyy2 jkzz!

1RMe~ j vt1 jkxx2 jkyy2 jkzz!, ~5!

wherekx , ky , andkz ~which may be complex! are thex, y,
andz components of the wave vector, respectively,v is fre-
quency, andRM is the reflection coefficient of theM th-order
boundary operator.

The reflection coefficient is obtained by applying Eq
~3!–~5! and solving forRM. The result is

RM5~21!M21 )
m51

M

Rm~jm ,am!, ~6!

where

Rm~jm ,am!52
2 jkx1 j jmk1am

jkx1 j jmk1am
. ~7!

As before, the superscript indicates the overall order of
ABC and the subscript indicates constituent components
the first-order operatorBm were to operate by itself,Rm

would be the resulting reflection coefficient. The total refle
tion coefficientRM can be obtained from the product of th
individual Rm’s @with a sign correction as shown in Eq.~6!#.

Consider the reflection coefficientRM associated with
the first-order operatorBM when aM is zero and whenjM

either is zero or approaching infinity:

RM~jM50,aM50!51, ~8!

lim
jM→`

RM~jM ,aM50!521. ~9!

The operatorBM corresponding to Eq.~8! is functionally
equivalent to differentiation with respect tox as is evident
from inspection of Eq.~4! with j anda set to zero. Similarly,
the operator corresponding to Eq.~9! is equivalent to differ-
entiation with respect tot. This is clearly seen in the contex
688 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998
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of Eq. ~3! if both sides are divided byjM prior to taking the
limit.

We defineM th-order complementary boundary oper
tors as operators whose corresponding reflection coeffici
are given by

R0
M5RM~jM50,aM50!RM2152RM21, ~10!

R`
M5 lim

jM→`

RM~jM ,aM50!RM215RM21. ~11!

These operators are labeledB0
M andB`

M , and corresponds to
the operators that haveaM50 andjM equal to zero or ap-
proaching infinity, respectively. The reflection coefficients
these twoM th-order operators are the same in magnitude
the reflection coefficient of an operator of orderM21, but,
significantly, these reflection coefficients have oppos
signs. By performing two simulations, one usingB0

M and
once usingB`

M , and averaging the results, the spurious
flections associated with one ABC will be canceled by t
reflections associated with the other ABC. However, as w
be discussed below, not all ABC-related errors are elim
nated by averaging the two solutions.

One must consider the operators in their finite-differen
form, as is done in the next section, rather than their conti
ous form to understand fully their behavior. For examp
since R`

M is equal to RM21, it appears that one of the
complementary solutions can be obtained using the redu
order boundary operatorBM21 ~i.e., since the reflection co
efficients associate withBM21 is RM21, there is no need to
use the higher-order operatorB`

M!. However, when imple-
mented in discrete form, the phase shift associated w
RM(jM50,aM50) is not exactly 180 degrees. The actu
phase shift is a function of the coarseness of the grid,
incident angle, and the frequency. The amount that this ph
shift differs from the desired value must be accounted for
obtain the most accurate solution possible. As will be sho
in the next section, a similar phase shift is produced by
finite-difference equivalent of limjM→`RM(jM ,aM50) and
this additional term in the operator ensures complete com
mentarity of the discrete forms ofR0

M andR`
M .13,15

Although operators can be used that are exactly com
mentary in both their continuous and discrete forms, the
lution obtained by averaging the two complementary so
tions is not completely free of ABC errors. To illustrate th
fact, imagine a plane wave obliquely incident on a bound
that is near the corner of the computational domain~it suf-
fices to think of a corner in a two-dimensional problem!. In
the simulation employingB0

M the field reflected from the
boundary will be scaled by2RM21. If this energy subse-
quently strikes the other boundary associated with the co
~i.e., the one orthogonal to the first boundary!, it will be
scaled by (RM21)2. For the simulation employing theB`

M

boundary operator, the field reflected from the first bound
will be scaled byRM21. After striking the other boundary, i
also will be scaled by (RM21)2. Therefore, when the result
are averaged, all the errors associated with a single re
tions from the ABCs will cancel while the errors associat
with double reflections will add. More generally, errors a
sociated with an odd number of reflections will cancel wh
688J. B. Schneider and O. M. Ramahi: Time-domain simulations
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those associated with an even number of reflections will a
This also holds for reflections between the ABC and a
scatterer within the computational domain. It should be e
phasized thatRM21 is typically small so that reducing th
error by the square of this amount is substantial.

II. FINITE-DIFFERENCE IMPLEMENTATION

Here we consider the discrete form of the boundary
erators described in the previous section. The pressur
assumed to be available at discrete points in space–time
we adopt the standard FDTD notation for those points:

pi , j ,k
n 5p~ iDx, j Dy,kDz,nDt !, ~12!

whereDx, Dy, andDz, are the spatial step sizes andDt is
the temporal step size. The operatorsI , S, andT are defined
to be the identity, spatial shift, and temporal shift operato
respectively. Functionally, they perform as follows:

Ipi , j ,k
n 5pi , j ,k

n , ~13!

Spi , j ,k
n 5pi 11,j ,k

n , ~14!

Tpi , j ,k
n 5pi , j ,k

n11. ~15!

Assuming the last grid point in thex direction is i max, the
discrete form of Eq.~3! that would be applied to the bound
ary node is

)
m51

M F I2S21

Dx

I1T21

2
1

jm

c

I1S21

2

I2T21

Dt

1am

I1S21

2

I1T21

2 Gpi max, j ,k
n11 50. ~16!

This equation is used to obtainpi max,j,k
n11 in terms of pressures

interior to the grid and previous values of the pressure on
boundary. In order to employ central differences, the disc
form of the boundary operator incorporates spatial and t
poral averaging. The reader is referred to Refs. 16 and 17
further details concerning the implementation of the discr
form of the boundary operator. Carrying out the multiplic
tions and regrouping in terms of theI , S, andT operators,
Eq. ~16! can be written

)
m51

M

@ I1amS211bmT211cmS21T21#pi max, j ,k
n11 50,

~17!

where

am5
211jmDx/cDt1amDx/2

11jmDx/cDt1amDx/2
, ~18!

bm5
12jmDx/cDt1amDx/2

11jmDx/cDt1amDx/2
, ~19!

cm5
212jmDx/cDt1amDx/2

11jmDx/cDt1amDx/2
. ~20!

The finite-difference equivalent of Eqs.~3! and ~4! are thus

B̃Mpi max, j ,k
n11 5 )

m51

M

B̃mpi max, j ,k
n11 50, ~21!
689 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998
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where

B̃m5I1amS211bmT211cmS21T21. ~22!

The tildes distinguish the discrete operators from the c
tinuous ones. Now consider the discrete from of Eq.~5!

pi , j 8,k
n

5e~ j vnDt2 j k̃xiDx2 j k̃y j 8Dy2 j k̃zkDz!

1R̃Me~ j vnDt1 j k̃xiDx2 j k̃y j 8Dy2 j k̃zkDz!. ~23!

A prime has been added to the spatial index in they direction
to distinguish it from the symbolj used to representA21.
The tilde on wave vector components emphasizes that
numeric wave vector differs from the continuous one sin
the dispersion relation in an FDTD grid differs slightly from
the true one.

Using Eq.~23! in ~21! and, without loss of generality
letting i max equal zero, one can solve for the numeric refle
tion coefficientR̃M

R̃M5~21!M21 )
m50

M

R̃m~jm ,am!, ~24!

where

R̃m~jm ,am!

52
11amejk̃xDx1bme2 j vDt1cmejk̃xDx2 j vDt

11ame2 j k̃xDx1bme2 j vDt1cme2 j k̃xDx2 j vDt
. ~25!

As with the continuous operators,R̃m is the reflection coef-
ficient obtained when using the first-order operatorB̃m by
itself and R̃M is the product of theR̃m’s with a correction
made for the sign.

Motivated by the analysis of the previous section, w
considerR̃M when aM is zero andjM is either zero or ap-
proaching infinity. However, since Eq.~25! gives R̃M in
terms ofaM , bM , andcM , it is helpful first to obtain these
coefficients directly from Eqs.~18! to ~20!. For the two cases
of interest here, the sets of coefficients are

R̃M~jM50,aM50!⇒aM521; bM51; cM521,
~26!

lim
jM→`

R̃M~jM ,aM50!⇒aM51; bM521;

~27!

cM521.

Using these in Eq.~25! yields

R̃M~jM50,aM50!5exp~ j k̃xDx!, ~28!

lim
jM→`

R̃M~jM ,aM50!52exp~ j k̃xDx!. ~29!

As was the case for the continuous operators~Refs. 8 and 9!,
these two reflection coefficients are exactly complementa
The discrete form of Eqs.~10! and ~11! is thus

R̃0
M5R̃M~jM50,aM50!R̃M2152exp~ j k̃xDx!R̃M21,

~30!
689J. B. Schneider and O. M. Ramahi: Time-domain simulations



th

th
a
u

ob
o
to
D

tio
n
se
o

o

io
he
on
ich

-
t to

uta-
ur-
ent
ty
e-
ve-

e
In

r a

in
ere
ra-
ree

re-
ned
-
ig-

re
een
i.e.,
ror
ate

ime

ar-
the

M
he
nu-

Th
e
ov
th
a

as in
R̃`
M5 lim

jM→`

R̃M~jM ,aM50!R̃M215exp~ j k̃xDx!R̃M21,

~31!

which have the corresponding boundary operatorsB̃0
M and

B̃`
M given by

B̃0
M5@ I2S211T212S21T21# )

m51

M21

@ I1amS21

1bmT211cmS21T21#, ~32!

B̃`
M5@ I1S212T212S21T21# )

m51

M21

@ I1amS21

1bmT211cmS21T21#. ~33!

It is important to note, as is clear from Eqs.~30! and ~31!,
that these two discrete boundary operators are, as were
continuous operators, exactly complementary. The fact
complementarity is also preserved numerically~i.e., when
implemented using finite-precision arithmetic! will be shown
in the next section.

III. NUMERICAL RESULTS

In this section two problems are considered to study
behavior of the ABCs. The first is simply propagation in
homogeneous region while the second is propagation abo
pressure-release~Dirichlet boundary condition! sphere. Al-
though analytic solutions are available for both these pr
lems, comparisons are made to reference solutions also
tained from FDTD simulations. If results were compared
analytic solutions, numerical artifacts inherent in the FDT
technique other than those caused by the grid termina
~e.g., grid dispersion! could make meaningful interpretatio
difficult. Hence, the FDTD reference solutions, which u
large grids to eliminate boundary errors over the duration
the simulations, permit the ABC errors to be separated fr
any other numeric artifacts.

First we demonstrate that the numerical implementat
of B̃0

M and B̃`
M yields complementary results even when t

error associated with the individual operators is large. C
sider the two-dimensional problem depicted in Fig. 1 wh

FIG. 1. Sketch of geometry used to test numerical complementarity.
boundary is terminated using eitherB̃0

2 or B̃`
2 . Boundaries other than the on

shown are sufficiently far away so that no energy is reflected by them
the duration of the simulation. The reference solution is obtained with
same spacing between the source and observation point, but all bound
are causally isolated from the observation point.
690 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998
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is, ideally, the equivalent of a point source~three-
dimensional line source! radiating in a homogeneous me
dium. The source is realized by adding a Ricker wavele
the update equations for the source node.~This yields a
transparent source that introduces fields into the comp
tional domain without scattering them. See Ref. 22 for f
ther discussion of the implementation of transpar
sources.! The maximum value of the source function is uni
~arbitrary units!. The discretization is such that the peak fr
quency of the wavelet is sampled at 32 points per wa
length. The Courant number (cDt/Dx) is 0.95 times the two-
dimensional limit of 1/& and the spatial step size is the sam
throughout the grid. Three simulations were performed.
the first, the boundary operator wasB̃0

2 with j151 anda1

50 ~these parameters will provide perfect absorption fo
plane wave normally incident on the boundary!; in the sec-
ond, the boundary operator wasB̃`

2 with, again,j151 and
a150; the third simulation was a reference solution
which all the boundaries of the computational domain w
causally isolated from the observation point over the du
tion of the simulation. We label the results from these th
simulations COM0

2, COM`
2, and REF.

Figure 2 shows the results of the three simulations
corded over 300 time steps. Note that the solutions obtai
using B̃0

2 and B̃`
2 differ substantially from the reference so

lution. The errors are comparable to that of a first-order H
don ABC by itself~the errors differ only in phase!. To show
that the error in the two ABC-terminated solutions a
complementary, Fig. 3 shows plots of the difference betw
the reference solution and the complementary solutions,
plots of the error in the two solutions. Note that these er
plots appear to be exactly opposite each other. The ultim
COM solution for this problem, which we label COM2, is the
average of the two complementary run; thus at each t
step COM25~COM0

21COM`
2!/2. A plot of COM2 is indis-

tinguishable from the reference solution and does not w
rant a separate figure. Instead, it is instructive to plot
error in COM2. Figure 4 shows the logarithm~base 10! of
the absolute value of the difference between REF and CO2

as a function of time. The significance of this plot is that t
difference between the two solutions hovers around the
meric noise floor for double precision numbers.~Double pre-

e

er
e
ries
FIG. 2. Pressure at the observation point. The units of pressure here,
all other plots, can be chosen arbitrarily.
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. The

the
cision arithmetic yields between 14 and 15 digits of pre
sion. Given that the peak value of the observed pressure
a magnitude of approximately 1022, the numeric noise floor
should be in the range of 10216 to 10217. This is precisely
the range of errors seen in Fig. 4.! We must add, however
that this problem was constructed so that there are no m
tiple reflections. As was mentioned at the end of Sec. I,
ABC-induced errors associated with an even numbers
multiple reflections add rather then cancel.

To demonstrate the performance of the COM in th
dimensions, we consider the pressure about a press
release sphere~i.e., the Dirichlet boundary condition is en
forced over the surface of the sphere! that is insonified by an
isotropic point source. This problem is designed to provid
stringent environment for testing the performance of AB
and is not, per se, designed to provide a realistic mode
any particular physical system. Thus this study was p
formed all in terms of nondimensional units, e.g., the num
of points per wavelength and the Courant number.

The computational domain is 39 cells339 cells
339 cells; the sphere has a radius of ten cells and is cent
in the computation space. The spatial step sizes are the s
in all directions, i.e.,Dx5Dy5Dz5d. The Courant num-
ber, cDt/d is 1/A3.1 which is approximately 98% of th
three-dimensional limit. Figure 5 shows a slice through
middle of the computational domain.~Although drawn as a

FIG. 3. Difference between the reference solution and the two solutions
used complementary boundary operators.

FIG. 4. Log base 10 of the error in the COM solution.
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continuous circle, the actual boundary of the spherical s
terer follows the staircased boundary inherent in Cartes
cell FDTD simulations.! The source node is a pressure no
where the pressure is given by a Ricker wavelet. Howev
unlike before, the usual update equation does not appl
this one node. In that sense the source node itself is ‘‘har
i.e., it will scatter any field incident upon it. The discretiz
tion is such that there are 20 points per wavelength at
peak spectral content of the wavelet. Hence, the diamete
the sphere corresponds to one wavelength of the most e
getic portion of the insonification. The locations of th
source and observation points are as shown in Fig. 5. S
the observation point is on the opposite side of the sph
from the source and the boundary of the computational
main is, at its closest point, only nine cells away from t
sphere, the quality of the ABC significantly influences t
observed field. Since the fields at the observation point
small relative to the peak amplitude of the source pulse,
source function was scaled by a factor of 5000. This w
done solely to facility plotting and, since the units of pre
sure can be chosen arbitrarily, has no effect on the inter
tation of the results.

The boundary is terminated either usingB̃0
4, B̃`

4 , or B̃4.
We label the associated solutions COM0

4, COM`
4, and HIG4,

respectively.~The HIG4 solution is that which is obtained
using the standard fourth-order Higdon ABC.! The solution
obtained by the average of COM0

4 and COM̀4 is labeled
COM4. The parameteram was zero for all the first-orde
constituent components of these boundary operators, w
jm was unity~except, of course, wherej was used to estab
lish complementary behavior inB̃0

4 andB̃`
4 !. Thus no attempt

was made to ‘‘tune’’ the ABC parameters to the particu
problem at hand or optimize the coefficient for a gene
problem. However, it should be noted that if a set of para
eters can be found that improves the performance of the H
don ABC, the benefit realized by using the same set of
rameters in a COM formulation should be even greater~i.e.,

at

FIG. 5. Cross section of three-dimensional problem showing the source
observation points. Coordinates are relative to the center of the sphere
boundary is terminated using eitherB̃0

4 or B̃`
4 . The reference solution is

obtained using a large grid that causally isolated the boundaries from
observation point over the duration of the simulation.
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the square of that realized using an uncomplemented for
lation!.

Note that the reflection coefficients, and hence the AB
induced errors, for the COM0

4 and COM̀4 solutions are com-
parable to that of a third-order Higdon ABC. The reflecti
coefficient for the HIG4 solution, on the other hand, is th
smaller reflection coefficient of the fourth-order Higdo
ABC. But, all these solutions require the same computatio
resources in terms of backstorage of fields and numbe
operations—they only differ in the coefficients used in t
boundary-node update equations. Given the size of the
flection coefficient in each simulation, the HIG4 should give
better results than either COM0

4 or COM`
4 individually. How-

ever, the import question is: How does HIG4 compare to
COM4?

Figure 6 shows the reference solution~obtained using a
large grid which is free of all ABC errors! together with
COM`

4 and COM0
4. There are obvious and significant erro

but, given the design of this ‘‘test bed,’’ the errors are n
surprising. Figure 7 shows the reference solution toge
with HIG4 and COM4. As anticipated, HIG4 is more accurate
than either COM0

4 or COM`
4. However, COM4 is obviously

FIG. 6. Pressure at observation point obtained using either the boun
operatorB̃0

4 (COM0
4) or B̃`

4 (COM`
4). The reference solution is free of a

ABC errors.

FIG. 7. Pressure at observation point obtained using the average of the
complementary results (COM4) and obtained using a Higdon fourth-orde
operator (HIG4). The inset box shows the pressure from time step 120
220 with the vertical scale magnified by a factor of 10.
692 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998
u-

-

al
of

e-

,
t
er

more accurate than HIG4. Since it is difficult to tell the dif-
ference between the reference solution and COM4 when plot-
ting the entire pulse, an inset shows a plot of the traili
portion of the pulse with the vertical scale magnified by a
proximately ten. On this scale the slight errors in COM4 can
be seen.

IV. CONCLUSIONS

By averaging the results obtained from two simulatio
in which complementary boundary operators are used, AB
related errors can be significantly reduced. The final resu
superior to that which can be obtained using a higher-or
ABC by itself. The construction of complementary operato
is relatively simple. In fact, any acoustic code which cu
rently employs a Higdon ABC can be modified with littl
effort to use complementary operators. One merely has
employ different sets of coefficients for the boundary upd
equations~i.e., other than a change of constants, no ot
modifications are needed!. The cost of using the COM is tha
two simulations must be performed. However, given t
quality of the results obtained, this cost can be more th
offset by the use of a smaller computational domain~see Ref.
15 for a discussion of this point!. Additionally, in situations
where one is willing to trade an increase in memory for
reduction in total computation time, a concurrent-CO
scheme has been presented elsewhere.20

As demonstrated here, the COM applies equally well
two- and three-dimensional acoustics problems. It is furt
anticipated that the complementary operators method ca
applied to problems in elastic propagation and this will
the subject of future investigations.
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