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The complementary operators meth@OM) has recently been introduced as a mesh-truncation
technique for open-domain radiation problems in electromagnetics. The COM entails the
construction of two solutions that employ absorbing boundary conditiGhBCs) with
complementary behavior, i.e., the reflection coefficients associated with the two ABCs are exactly
opposite each other. The average of these solutions then yields a new solution in which the errors
caused by atrtificial reflections from the termination of grid are nearly eliminated. In this work, COM
is introduced for the finite-difference time-domaiRDTD) solution of acoustics problems. The
development of COM is presented in terms of Higdon's absorbing boundary operators, but
generalization to non-Higdon operators is straightforward. The effectiveness of COM in comparison
to other absorbing boundary conditions is demonstrated with numerical experiments in two and
three dimensions. €1998 Acoustical Society of Amerid&60001-4968)01808-9

PACS numbers: 43.20.Fn, 43.20.Gp, 43.20.5xG]|

INTRODUCTION terminal point of the grid, an integration over a surface
which bounds the interior of the computational domain.
The finite-difference time-domai(FDTD) method was Therefore, global ABCs are exceeding costly for time-
first introduced by Yee in 1966or the study of electromag- domain simulations and have not proven to be useful in prac-
netic scattering problems. A similar method has been develkical applications. Alternatively, local ABCs merely depend
oped for simulation of acoustic and elastic wave propagatiompon the field in the immediate vicinity of each terminal
(e.g., Refs. 2 and)3The method is simple, both conceptu- node and are far less costly than global ABCs. However,
ally and in terms of implementation. It is robust and can bejocal ABCs are inherently imperfect and always reflect some
used to study accurately a wide range of complex phenomspurious energy back into the computational domain. Typi-
ena. Since the FDTD method can be computationally expereally the closer a local ABC is brought to the source of
sive, a great deal of research has been, and continues to kfitgoing fields, whether an active element or a scatterer, the
concerned with finding ways to decrease computational cosgreater is the reflected energiyoving the ABC closer to the
both in memory and run time, while preserving or increasingsource of fields implies decreasing the size of the)gfithis
accuracy. Arguably the most active area of this research ig consequence of the inability of traditional local ABCs to
concerned with grid termination techniques for open-domairabsorb evanescent energy and the fact that local ABCs typi-
problem. The way in which the grid is terminated, i.e., thecally perform poorly at grazing incidence. Nevertheless, the
absorbing boundary conditigABC), often dictates the size computational savings afforded by local ABCs outweigh
of the grid needed to obtain an accurate solution and hence teir disadvantages and thus local ABCs are the ones most
intimately tied to computational cost. This a consequence ogommonly used today(In the remainder of the paper only
the fact that a simulation employing an ABC of lower accu-local ABCs are discussed so that the “local” adjective will
racy generally requires a larger grid than one employing ame dropped.
ABC of higher accuracy to obtain results of comparable  There is another distinct approach to the termination of
quality. the FDTD grid that relies upon the use of an absorbing ma-
Most open-domain problems require that the FDTD gridterial. In such an approach, the absorbing material is placed
be terminated with an ABC. Open-domain problems needdjacent to the terminal boundaries. The material is designed
not be terminated with an ABC if a grid can be constructedo absorb the energy from outgoing waves so that the amount
that is so large that the boundaries of the computational dasf energy that reenters the interior of the grid via reflection
main are causally isolated from all regions of interest. Un-from the grid termination is small. Straightforward material-
fortunately, this approach is infeasible for nearly all realistichased termination techniques have been available for several
simulations. Global ABCs do exist which are nominally ex- years(see, for example, Refs. 5).6An improved technique,
act (e.g., Ref. 4. However, these ABCs require, for each employing a nonphysical split-field formulation, was re-
cently presented by Benger’ This technique, known as the
3Electronic mail: schneidj@eecs.wsu.edu perfectly matched layeiPML) method, was presented in the
DElectronic mail: Omar.Ramahi@digital.com context of electromagnetic problems, but it has been adapted
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for acoustic and elastic modelifg!? The performance of separate simulations, i.e., the complementary boundary op-
the PML method is such that it has attracted the attention oérators are realized using a single simulation. The cost asso-
several researchers. Unfortunately, the quest to improve theated with this implementation is an increase in memory
PML method has led many researchers to put aside thesage(but that cost “buys” a decrease in total run timne
search for further improvements in differential equation-The implementation of a C-COM solution is a straightfor-
based ABCs. Nevertheless, as shown here, there are still travard extension to a COM solution and thus this paper con-
mendous improvements that can be made in the applicatiopentrates on the basic formulation of COM for acoustic
of such ABCs. Thus it is nearly certain that the full potential simulations. The reader interested in a concurrent formula-
of both differential equation-based and material-based gridion is referred to Ref. 20. We further note that programs that
truncation schemes has not yet been realized. currently employ a Higdor(or Higdon-like ABC can be

In this paper we provide the theoretical foundation for amodified to use the COM by making changes that are trivial
new grid truncation technique known as the complementarya simple change of coefficients is all that is required of the
operators methodCOM) and show its application to prob- existing code and then results must be averagkal realize
lems in acoustics. The superiority of the technique over othed C-COM solution, additional changes must be made to the
differential equation-based ABCs is demonstrated via twoexisting code.
and three-dimensional examples. The COM requires that two

simulations be performed. In one simulation an ABC is used

that reflects energy in a known manner. In the other simulal- DIFFERENTIAL FORM OF BOUNDARY OPERATOR

tion, the complement of the ABC is used so that the energy  The first-order, coupled, differential equations governing
reflected by the ABC has the same magnitude but oppositghear acoustics are

phase. Then, the results of the two simulations are averaged
to obtain a solution that is free of most of the energy intro- ﬂ 1 )

=—2Vp,
duced by ABC reflections. The COM was first presented in ~ Jt P P

the electromagnetics literature where it was shown to yield J

excellent results even when using a much smaller grid than (9_’:: —c?pV-y, 2)

required by other traditional ABCS °Because of the ease
with which the COM can be implemented and the significantwherev is velocity, p is pressurep is density, anc is the
impact it can have on accuracy and computational cost, thispeed of sound. The standard FDTD algorithm is obtained by
method has the potential to increase greatly the class efpproximating the derivatives in Eq4) and(2) by second-
acoustics problems to which FDTD can successfully be aperder accurate central differences. The evaluation points for
plied. pressure and velocity are spatially and temporally offset
The complementary ABCéor boundary operatoyse-  from each other so that leapfrog scheme can be constructed
quired by the COM can be formulated from a general classo express future fields in terms of past fieldge, for ex-
of boundary operators: however, in this paper we present ample, Ref. 2 or 8 for details The usual leapfrog update
the method specifically in terms of the Higdon ABELY"  equations cannot be applied to pressure nodes on the termi-
Section | provides a review of Higdon’s boundary operatorsnal boundary of the computational domain since not all of
in their differential form and demonstrates the constructiornthe needed adjacent fields are available tiieee, a velocity
of complementary operators of arbitrary order. Section Il denode is needed that is outside of the gridistead, to update
tails the implementation of the COM in the FDTD scheme.these pressure nodes, an auxiliary equation must be used that
Section Il provides results from two- and three-dimensionalexpresses the boundary value in terms of current or past val-
simulations that demonstrate the efficacy of the COM. ues of the field in the interior of the grid and past values of
Our primary goals here are to present the theory behinthe field on the boundary itself. Perhaps the most popular
the COM and to show the significant advantages it has ovesuch auxiliary equation is provided by the Higdon boundary
other differential equation-based grid truncation methodsoperator. The remainder of this section provides the theory
Comparison of the COM with other grid termination tech- behind the differential form of this operator and shows how
niques, such as the PML method, has been investigated elsé-can be implemented in a manner suitable for use in the
where. The results presented in Refs. 18 and 19 show that tligOM. The next section details the discrete form of this op-
COM can yield results that are superior to the PML methoderator which, although similar to the continuous operator in
while at the same time being less computationally costly. [tnany respects, is fundamentally different.
should be noted that there is no “best” test with which to ~ The generaMth-order Higdon boundary operat&"
compare material-based and differential equation-based gridperates on the pressupeat the termination of a computa-
termination techniques. Instead, many different tests are rdion domain as follows:

quired to isolate specific aspects of the techniqeeg., per- M
formance at grazing angles, absorption of evanescent energy, BMp= H B,p=0, 3)
and broadband behavior m=1

Finally, we note that there is an alternative implementa,here
tion of the COM method to the one presented H8r&he
scheme presented in Ref. 20, named the concurrent comple- J &m0

. =4+ = — 4
mentary operators method or C-COM, does not require two Brm ax ¢ gt om @
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and ¢, and a,, are parameters. For arbitrary boundaries, theof Eq. (3) if both sides are divided by, prior to taking the

first partial derivative in Eq4) should be taken with respect limit.

to the outward normal to the boundary, but thdirection is We defineMth-order complementary boundary opera-
used here to be consistent with subsequent analysis. Supdors as operators whose corresponding reflection coefficients
scripts will be used for the overall order of a boundary op-are given by

erator while a subscript will be used to indicate the constitu-

ent components. Thus an individual teBy, is a first-order Ry'=Ru(éu=0,ay=0)R" 1= —-RM"1, (10
operator whereas the opera®!' is the Mth-order operator Mo Mol oM_1
obtained from the produ®;B, - -By . Whena, is zero,B, Ro= lm Ry(ém,am=0)R""=R""" (1D

will yield perfect absorption of plane waves incident at an b=

angle fr, such that{,=cos@y). The parameteiy, was pro-  These operators are labelB§ andB" , and corresponds to
posed by Higdon as a means of controlling stability of thethe operators that hawe,=0 and&, equal to zero or ap-
operator:” Additionally, as discussed in Ref. 21, thg, pa-  proaching infinity, respectively. The reflection coefficients of
rameters can be used to absorb evanescent erfeygh  these twoMth-order operators are the same in magnitude as
would otherwise experience unimodular reflecjion the reflection coefficient of an operator of orddr—1, but,

Assume that a plane is incident, perhaps obliquely, on &jgnificantly, these reflection coefficients have opposite
boundary corresponding to a constanplane. Further as- signs. By performing two simulations, one usiig' and
sume, without loss of generality, that this bOUndary COIrépnce usingBo'\él, and averaging the resu|t5, the Spurious re-
sponds tox=0 and over this boundary the Higdon ABC flections associated with one ABC will be canceled by the
operates on the pressure as given in @g. The plane wave reflections associated with the other ABC. However, as will
has unit magnitude and itscomponent of propagation is in pe discussed below, not all ABC-related errors are elimi-
the positive direction. The total pressure in the computationahated by averaging the two solutions.

domain will be the superposition of the incident wave and  One must consider the operators in their finite-difference

the wave reflected from the boundary form, as is done in the next section, rather than their continu-
p(x,y,z’t):e(jwt—jkxx—jkyy—jkzz) ous forr’\? Fo understand fuIIy_their behavior. For example,
o _ _ since RY is equal toRM™1, it appears that one of the
+RMelottlkoxikyy=jkz2), (50 complementary solutions can be obtained using the reduced-

M-1 g ; ;
wherek, , k,, andk, (which may be complexare thex, y, order boundary operat@ (i.e., since the reflection co-

andz components of the wave vector, respectivelyis fre- efficients associate witBM % is RM 1, there is no need to
quency, anRM is the reflection coefficient of thifth-order ~ US€ the higher-order operat8i!). However, when imple-

boundary operator. mented in discrete form, the phase shift associated with
The reflection coefficient is obtained by applying Egs. "m(ém=0.am=0) is not exactly 180 degrees. The actual
(3)(5) and solving forR™. The result is phase shift is a function of the coarseness of the grid, the

incident angle, and the frequency. The amount that this phase

RM = (= 1)M-1 ﬂ R..(¢ " shift differs from the desired value must be accounted for to
B ey m m»@m), 6 obtain the most accurate solution possible. As will be shown
in the next section, a similar phase shift is produced by the
where finite-difference equivalent of Ii%ﬂxRM(éM ,ay=0) and
—jkytjémk+ an this additional term in the operator ensures complete comple-
Rin(€m . m) = — Kot ekt anm (7)) mentarity of the discrete forms & andRM 1315

S Although operators can be used that are exactly comple-
As before, the superscript indicates the overall order of th‘?nentary in both their continuous and discrete forms, the so-

ABC.and the subscript indicates constituent components. lfution obtained by averaging the two complementary solu-
the first-order operatoBy, were to operate by itselfRm  tions is not completely free of ABC errors. To illustrate this

would be the resulting reflection coefficient. The total reflec-f,q¢ imagine a plane wave obliquely incident on a boundary
tion coefficientRM can be obtained from the product of the that is near the corner of the computational donféfirsuf-

individual Ry’s [with a sign correction as shown in E@)].  fices to think of a corer in a two-dimensional problerm

Consider the reflection coefficiey associated with e simulation employingBl the field reflected from the
the first-order operatoB,, when a), is zero and whergy boundary will be scaled by-RM~1. If this energy subse-

either is zero or approaching infinity: quently strikes the other boundary associated with the corner

Ru(éu=0,ay=0)=1, (8  (i.e., the one orthogonal to the first boundarit will be

_ scaled by RM~1)2. For the simulation employing thB
g"m Ru(ém,an=0)=-1. 9 boundary operator, the field reflected from the first boundary
M—®

will be scaled byRM 2. After striking the other boundary, it
The operatorB,, corresponding to Eq(8) is functionally  also will be scaled byR™ ~1)2. Therefore, when the results
equivalent to differentiation with respect toas is evident are averaged, all the errors associated with a single reflec-
from inspection of Eq(4) with ¢ anda set to zero. Similarly, tions from the ABCs will cancel while the errors associated
the operator corresponding to E®) is equivalent to differ-  with double reflections will add. More generally, errors as-
entiation with respect to. This is clearly seen in the context sociated with an odd number of reflections will cancel while
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those associated with an even number of reflections will addvhere
This also holds for reflections between the ABC and any . . e
scatterer within the computational domain. It should be em- Bm=I+anS "+by T "+cnS 7T " (22

. M71 . - -
phaS|Eed hthaR |sftyr$|cally sma!l S0 tt)hat r(_adlucmg the The tildes distinguish the discrete operators from the con-
error by the square of this amount is substantial. tinuous ones. Now consider the discrete from of .

II. FINITE-DIFFERENCE IMPLEMENTATION pinj' k:e(anAt*JExiAX*iEyj'AyfiizkAZ)

Here we consider the discrete form of the boundary op- M A onALE KyiAx—jKyj’ Ay~ KKAZ)
X . . . . +RVe X y 2432), (23

erators described in the previous section. The pressure is
assumed to be available at discretg points in space.—time andprime has been added to the spatial index inythirection
we adopt the standard FDTD notation for those points: to distinguish it from the symbagl used to represenf—1.

pinj =p(iAx,jAy,kAz,nAt), (12) The ti[de on wave vecFor components emphasizes thqt the

i _ _ _ numeric wave vector differs from the continuous one since

whereAx, Ay, andAz, are the spatial step sizes afdlis  the dispersion relation in an FDTD grid differs slightly from
the temporal step size. The operatbrs, andT are defined  the true one.

to be the identity, spatial shift, and temporal shift operators,  Using Eq.(23) in (21) and, without loss of generality,

respectively. Functionally, they perform as follows: letting i max €qual zero, one can solve for the numeric reflec-
1pY =PP (13 tion coefficientR"
M
n n
o= D: ks (14) = — =
Pk Pk RM=(=D" I Ru(ém,am), (24
TP k= planrI% (15

Assuming the last grid point in the direction isi g, the  Where
discrete form of Eq(3) that would be applied to the bound- =

. R
ary node is m( &m @m)
A b M S o o 1+aye %+ e wAt+ cpelodx et 25
m = — .
r!l AX 2 ¢ 2 At 1+age Mdxpp eTlofty e lkdxiolt
[+St1+T771 nil As with the continuous operatorhém is the reflection coef-
T am 2 2 Pl k= 0- (16 ficient obtained when using the first-order operayy by

. o YR itself andRM is the product of theR,,’s with a correction
This equation is used to obtapfmawj,k in terms of pressures . 4o 01 the sign.

interior to the grid and previous values of the pressure on the  \jotivated by the analysis of the previous section, we
boundary. In order to employ central differences, the discret%onsiderr?,\,l when a,, is zero andé,, is either zero or ap-
form of the boundary operator incorporates spatial and tem'roaching infinity. However, since Eq25) gives Re in

. . . L M
poral averaging. The reader is referred to Refs. 16 and 17 f Erms ofay , by, andcy , it is helpful first to obtain these

Toefficients directly from Eqg18) to (20). For the two cases

form of the boundary operator. Carrying out the multiplica- of interest here, the sets of coefficients are

tions and regrouping in terms of the S, and T operators,

Eq. (16) can be written Ru(éy=0ay=0)=ay=—1: by=1; cy=-1,
M (26)
l+anS 1+ by T *+c,S T p L. =0, ~
11, D1 anS o baT e ey TPt im Ru(éw,au=0)=ay=1; by=-1;
17 Em— (27)
where cy=—1.
a _ T 1+ EnAxIcAtt anAX/2 (18  Using these in Eq(25) yields
M 14 ELAXICAtF a AXI2 _ _
R =0,apy=0)=exp(jkyAX), 28
. _ 1 EnAx/cAtt apdxi2 . (& =0.am=0) = exptjkuAx) @8
M1+ & AXICAL+ aAX/2’ (19 lim Ry(&y,am=0)=—exp(jk,AX). (29)
§M—)m

—1- & AXICAt+ o AX/2
Cm=—77 £ AXICALT apAX2 (200 As was the case for the continuous operatésfs. 8 and 9
S _ these two reflection coefficients are exactly complementary.
The finite-difference equivalent of Eq&) and(4) are thus  The discrete form of Eq€10) and(11) is thus

M ~ ~ ~ ~ ~
BYp L =TT Bupl (=0, (21) Ro'=Ru(éu=0.an=0)R" = —exp(ikxMRM‘éo)
max’!’ m=1 max’!?
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FIG. 1. Sketch of geometry used to test numerical complementarity. The N —— Y ———
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boundary is terminated using eithéﬁ or B2. Boundaries other than the one
shown are sufficiently far away so that no energy is reflected by them over
the duration of the simulation. The reference solution is obtained with therjg. 2. pressure at the observation point. The units of pressure here, as in
same spacing between the source and observation point, but all boundarigg giher plots, can be chosen arbitrarily.

are causally isolated from the observation point.

Time Step

-~ = ~v1 ~ ~ o1 is, ideally, the equivalent of a point sourcéhree-
RZ= lim Ry(ém,am=0)R" "=exp(jk,AX)R"""  dimensional line sourgeradiating in a homogeneous me-
fm— dium. The source is realized by adding a Ricker wavelet to
(31 . S
~ the update equations for the source no@Ehis yields a
which have the corresponding boundary opera®§s and transparent source that introduces fields into the computa-

EZ’ given by tional domain without scattering them. See Ref. 22 for fur-
M—1 ther discussion of the implementation of transparent

Eg/le —S 4T log T Y H [l1+a,S sour_ces).The_ maximum vaIL_Je o_f th_e source function is unity
m=1 (arbitrary unitg. The discretization is such that the peak fre-

quency of the wavelet is sampled at 32 points per wave-

bl epSTIT T, (32 length. The Courant numbec4t/Ax) is 0.95 times the two-
_ M-1 dimensional limit of 1¥2 and the spatial step size is the same
BY=[1+S -7 1-s T ][ [I+a,S! throughout the grid. Three simulations were performed. In
m=1 the first, the boundary operator wB% with £;,=1 anda;
+by T *+c,,SIT L. (33 =0 (these parameters will provide perfect absorption for a

plane wave normally incident on the bounday the sec-

It is important to note, as is clear from Eq80) and (31), . . B
that these two discrete boundary operators are, as were tk?gd’ the boundary operator wa, with, again,& =1 and

. 1=0; the third simulation was a reference solution in
continuous operators, exactly complementary. The fact that . . . .
- . which all the boundaries of the computational domain were
complementarity is also preserved numericdilg., when

) A g : o causally isolated from the observation point over the dura-
implemented using finite-precision arithmetwill be shown : . :
in the next section. t|pn of Fhe simulation. We label the results from these three
simulations CONj, COM?2, and REF.
Figure 2 shows the results of the three simulations re-
corded over 300 time steps. Note that the solutions obtained
In this section two problems are considered to study thaising B3 and B2 differ substantially from the reference so-

behavior of the ABCs. The first is simply propagation in alution. The errors are comparable to that of a first-order Hig-
homogeneous region while the second is propagation aboutdon ABC by itself(the errors differ only in phageTo show
pressure-releas@irichlet boundary conditionsphere. Al-  that the error in the two ABC-terminated solutions are
though analytic solutions are available for both these probeomplementary, Fig. 3 shows plots of the difference between
lems, comparisons are made to reference solutions also othe reference solution and the complementary solutions, i.e.,
tained from FDTD simulations. If results were compared toplots of the error in the two solutions. Note that these error
analytic solutions, numerical artifacts inherent in the FDTDplots appear to be exactly opposite each other. The ultimate
technique other than those caused by the grid terminatio@OM solution for this problem, which we label CGMs the
(e.g., grid dispersioncould make meaningful interpretation average of the two complementary run; thus at each time
difficult. Hence, the FDTD reference solutions, which usestep COM=(COM3+COM?2)/2. A plot of COM is indis-
large grids to eliminate boundary errors over the duration ofinguishable from the reference solution and does not war-
the simulations, permit the ABC errors to be separated fromant a separate figure. Instead, it is instructive to plot the
any other numeric artifacts. error in COM. Figure 4 shows the logarithitbase 10 of

__First we demonstrate that the numerical implementatiorthe absolute value of the difference between REF and EOM
of BB" andBY yields complementary results even when theas a function of time. The significance of this plot is that the
error associated with the individual operators is large. Condifference between the two solutions hovers around the nu-
sider the two-dimensional problem depicted in Fig. 1 whichmeric noise floor for double precision numbe(i8ouble pre-

IIl. NUMERICAL RESULTS
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0.001 | . 0 (10,10,0)
° [ "~ P Observation
2 Node
& 0
i
o i
| X
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FIG. 3. Difference between the reference solution and the two solutions that

used complementary boundary operators.

.. ith . ields b 14 d 15 diai f . FIG. 5. Cross section of three-dimensional problem showing the source and
cision arithmetic yields between an Igits o Precl-ghservation points. Coordinates are relative to the center of the sphere. The

sion. Given that the peak value of the observed pressure h@gundary is terminated using eithB¢ or BZ. The reference solution is
a magnitude of approximately 16, the numeric noise floor obtained using a large grid that causally isolated the boundaries from the
should be in the range of 18% to 107", This is precisely observation point over the duration of the simulation.
the range of errors seen in Fig,)4Ve must add, however,
that this problem was constructed so that there are no mukontinuous circle, the actual boundary of the spherical scat-
tiple reflections. As was mentioned at the end of Sec. |, thgerer follows the staircased boundary inherent in Cartesian-
ABC-induced errors associated with an even numbers Ofe|l FDTD simulations. The source node is a pressure node
multiple reflections add rather then cancel. where the pressure is given by a Ricker wavelet. However,
To demonstrate the performance of the COM in threqynjike before, the usual update equation does not apply at
dimensions, we consider the pressure about a pressurgs one node. In that sense the source node itself is “hard,”
release spherd.e., the Dirichlet boundary condition is en- je_ it will scatter any field incident upon it. The discretiza-
forced over the surface of the sphketieat is insonified by an  tjon is such that there are 20 points per wavelength at the
isotropic point source. This problem is designed to provide geak spectral content of the wavelet. Hence, the diameter of
stringent environment for testing the performance of ABCsthe sphere corresponds to one wavelength of the most ener-
and is not, per se, designed to provide a realistic model ofetic portion of the insonification. The locations of the
any particular physical system. Thus this study was persource and observation points are as shown in Fig. 5. Since
formed all in terms of nondimensional units, e.g., the numbeghe gbservation point is on the opposite side of the sphere
of points per wavelength and the Courant number. from the source and the boundary of the computational do-
The computational domain is 39cel89cells main is, at its closest point, only nine cells away from the
X 39 cells; the sphere has a radius of ten cells and is centereghhere, the quality of the ABC significantly influences the
in the computation space. The spatial step sizes are the samggserved field. Since the fields at the observation point are
in all directions, i.e. Ax=Ay=Az=4. The Courant num- small relative to the peak amplitude of the source pulse, the
ber, cAt/& is 1A/3.1 which is approximately 98% of the source function was scaled by a factor of 5000. This was
three-dimensional limit. Figure 5 shows a slice thrOUgh tthone So|e|y to fac|||ty p|0tt|ng and’ since the units of pres-
middle of the computational domaif@lthough drawn as a sure can be chosen arbitrarily, has no effect on the interpre-
tation of the results.

W ) The boundary is terminated either usiB§, B4, or B*.

[ ] We label the associated solutions COMCOM?, and HIG',
er 1 respectively.(The HIG' solution is that which is obtained
» _ using the standard fourth-order Higdon ABThe solution

i LogrolREF - (COMB+COM2)2] ] obtained by the average of C@Mand COM is labeled

COM*. The parameterr,,, was zero for all the first-order
constituent components of these boundary operators, while
ém Was unity (except, of course, whergwas used to estab-
lish complementary behavior B andB%). Thus no attempt
was made to “tune” the ABC parameters to the particular

] problem at hand or optimize the coefficient for a general
TR || PR T S I problem. However, it should be noted that if a set of param-

-16 b

Logqg of Error

-18 -

-20 -

-22

° 50 10 150 200 250 800 eters can be found that improves the performance of the Hig-
Time Step . . .
don ABC, the benefit realized by using the same set of pa-
FIG. 4. Log base 10 of the error in the COM solution. rameters in a COM formulation should be even greéter,
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R more accurate than HG Since it is difficult to tell the dif-

] ference between the reference solution and C@fkien plot-
ting the entire pulse, an inset shows a plot of the trailing
portion of the pulse with the vertical scale magnified by ap-
proximately ten. On this scale the slight errors in Cddn
be seen.

Pressure

IV. CONCLUSIONS

By averaging the results obtained from two simulations
] in which complementary boundary operators are used, ABC-
S S /A T S S related errors can be significantly reduced. The final result is
0 50 ‘°T°ime e 150 200 superior to that which can be obtained using a higher-order
P ABC by itself. The construction of complementary operators
FIG. 6. Pressure at observation point obtained using either the boundarg relatively simple. In fact, any acoustic code which cur-
operatorB} (COM) or B4 (COMY). The reference solution is free of all rently employs a Higdon ABC can be modified with little
ABC errors. effort to use complementary operators. One merely has to
employ different sets of coefficients for the boundary update
the square of that realized using an uncomplemented formi@quations(i.e., other than a change of constants, no other
lation). modifications are needgdlhe cost of using the COM is that
Note that the reflection coefficients, and hence the ABCIWO simulations must be performed. However, given the
induced errors, for the COf/and COM, solutions are com- quality of the results obtained, this cost can be more than
parable to that of a third-order Higdon ABC. The reflection Offset by the use of a smaller computational donaize Ref.
coefficient for the HIG solution, on the other hand, is the 15 for a discussion of this pointAdditionally, in situations
smaller reflection coefficient of the fourth-order Higdon Where one is willing to trade an increase in memory for a
ABC. But, all these solutions require the same computationaléduction in total computation time, a concurrent-COM
resources in terms of backstorage of fields and number gicheme has been presented elsewffere.
operations—they only differ in the coefficients used in the ~ AS demonstrated here, the COM applies equally well to
boundary-node upda‘[e equations_ Given the size of the réWO' and three-dimensional acoustics prObIemS. It is further
flection coefficient in each simulation, the HiGhould give ~ anticipated that the complementary operators method can be
better results than either Ccﬁw com individually. How- applied to problems in elastic propagation and this will be
ever, the import question is: How does Hi@ompare to the subject of future investigations.
Ccom*?
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