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Abstract-This paper reviews methods for mapping from the 
acoustical properties of a speech signal to the geometry of the 
vocal tract that generated the signal. Such mapping techniques 
are studied for their potential application in speech synthesis, cod- 
ing, and recognition. Mathematically, the estimation of the vocal 
tract shape from its output speech is a so-called inverse problem, 
where the direct problem is the synthesis of speech from a given 
time-varying geometry of the vocal tract and glottis. Different 
mappings are discussed: mapping via articulatory codebooks, 
mapping by nonlinear regression, mapping by basis functions, 
and mapping by neural networks. Besides being nonlinear, the 
acoustic-to-geometry mapping is also nonunique, i.e., more than 
one tract geometry might produce the same speech spectrum. We 
will show how this nonuniqueness can be alleviated by imposing 
continuity constraints. 

I. INTRODUCTION 
NE attractive approach for improving the naturalness 0 of speech synthesizers is to employ models of the 

glottis (vocal cords) and the vocal tract which incorporate the 
physiological and physical constraints of the human speech 
production mechanism. Such models should also benefit low- 
bit-rate coders and speech recognizers. Unfortunately, so far 
no one has been able to demonstrate this potential advantage 
in a practical system. However, several steps have been taken 
towards achieving this elusive goal. One such step is the 
development of mapping techniques for estimating the shape 
of a talker’s vocal tract from his or her speech signal. Two 
distinct groups of researchers are intererested in such map- 
ping techniques. One group would like to estimate geometric 
properties of the tract, such as the shape of the tongue, lip 
rounding, etc., for the purpose of displaying these features, or 
for training aids for the deaf, etc. The main goal of the other 
group, by contrast, is to synthesize the best quality speech from 
the recovered shapes, for coding, text-to-speech synthesis, etc. 
The criteria of these two groups are not identical. In this paper 
we will summarize the various mapping methods-including 
neural networks-that have been proposed for such mappings. 
Our review will show that so far it has not been demonstrated 
that neural networks perform better than other methods for 
either application. 

A model of human speech production synthesizes speech 
from slowly-varying physiological parameters such as lung 
pressure, glottal widths, shape of the tongue, coupling to the 
nasal cavity, and lip opening. Such a system is called an 

Manuscript received April 7, 1993; revised September 15, 1993. 
The authors are with the Acoustics Research Department, AT&T Bell 

IEEE Log Number 9214435. 
Laboratories, Murray Hill, NJ 07974. 

articulatory synthesizer. When an articulatory synthesizer is 
combined with methods for estimating its control parameters, 
we call the combined system an articulatory speech mimic. 
However, while the direct problem of synthesizing speech 
from a given set of time-varying articulatory parameters is 
well understood, the inverse problem of estimating these 
parameters from natural input speech is difficult because of 
the nonuniqueness of the acoustic-to-articulatory mapping. 

The first attempt at creating an articulatory speech mimic 
was reported by Flanagan, Ishizaka, and Shipley in [l]. The 
authors closed an optimization loop around their articulatory 
speech synthesizer developed earlier [2] by comparing the 
spectra of the synthesized speech with given spectra of con- 
secutive target speech frames of 19.2 ms duration. For each 
frame, an optimization procedure tried to minimize an acoustic 
distance between the two speech signals, thus, in effect, 
estimating articulatory parameters by an analysis-by-synthesis 
procedure. The authors of the current paper continued along 
these lines by creating a new articulatory synthesizer [3], 
and an articulatory speech mimic [4]. Elsewhere, similar 
approaches were taken (e.g., [51, [6]) .  

A major stumbling block in articulatory analysis-by-synthe- 
sis is the initialization of the optimization loop. Since most 
optimization algorithms will only find the local minimum of a 
given cost function that is near the initial parameters, one needs 
to choose good startup parameters. This can be achieved by 
employing an acoustic-to-articulatory mapping. One possible 
realization of such a map is a so-called articulatory codebook, 
that is a table of corresponding acoustic and geometric vectors 
[7]. The idea is to use a given acoustic representation as a key 
to look up (retrieve) the associated vocal-tract shape. Since 
articulatory codebooks can be pre-computed and searched 
exhaustively without computationally expensive speech syn- 
thesis, one can start off a follow-up optimization close to the 
global optimum. In fact, if the codebook-lookup were good 
enough, one might avoid the iterative optimization altogether. 
This last step would be essential for speech coding purposes. 
In this paper, we will review articulatory codebooks, as well 
as alternative mapping techniques. 

This paper is structured as follows. Section I1 will discuss 
relevant portions of the physics of the vocal tract. In Section I11 
we will review articulatory speech synthesis before focusing 
in Section IV on acoustic-to-articulatory mappings. In that 
section, we will discuss procedures for accessing articulatory 
codebooks, including dynamic programming methods of find- 
ing optimal parameter sequences to match sequences of speech 
spectra. Finally, we will discuss other mapping techniques, 
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such as regression techniques, basis functions, and neural 
networks. Section V concludes this paper. 

II. SOUND PROPAGATION IN THE VOCAL TRACT 

A. Wave Motion 

Due to its complexity, it is not feasible to exactly model 
sound waves in the vocal tract. In order to make the problem 
at all tractable several simplifying assumptions are necessary. 
Almost all analyses make the following three assumptions: (a) 
the vocal tract can be straightened out and hence approximated 
as a variable-area tube; (b) the wave motion in the tract is 
planar, that is, pressure and velocity are constant in a plane 
perpendicular to the (straightened out) axis of the tract: and 
(c) the linear wave equation is valid. 

None of these assumptions is strictly true. However, there 
is evidence that indicates that they are all reasonable. It can 
be shown, for instance, that the resonances of a straight tube 
of uniform cross-section remain almost unchanged if the tube 
is bent to a curvature approximating that of a vocal tract [8]. 
Also, the cross-dimension of the tract (i.e., perpendicular to the 
direction of wave propagation) is rarely larger than about 5 cm, 
which is a half wavelength at 3.5 kHz. The cross modes of 
sound waves in the tract are therefore negligible at frequencies 
lower than 3.5 kHz. Since most of the acoustic energy in 
a speech wave is concentrated in this range of frequencies, 
assumption (b) is reasonable. As for the linearity of the wave 
equation, calculation of Mach numbers shows that except at 
the vocal cords and at extremely narrow constrictions in the 
tract, this assumption is accurate as well [9]. 

In view of assumptions (a) and (b), as far as acoustical prop- 
erties are concemed, the shape of a vocal tract is completely 
specified by the area function, A(x ) ,  which specifies the cross- 
sectional area as a function of position along the tract. We will 
take x = 0 to be the glottis (i.e., the vocal cords) end of the 
tract. 

Let us assume that the walls of the vocal tract are rigid, and 
A ( x )  is a slowly varying function of x. Assuming that there 
are no viscous or thermal losses, then the pressure, P(x , s ) ,  
and the volume velocity, U ( x , s )  in the tube satisfy the pair 
of first order differential equations 

P. dU As 
dx pc2 
- = -- 

In these equations, s is the complex frequency variable, p is 
the density of air, and c is the velocity of sound. The volume 
velocity can be eliminated from (1) to yield the second-order 
equation in pressure 

d dP s2 

dx dx c2 
-A- - -AP = 0 

which is known as Webster's Hom equation [9]. Similarly, 
an equation in U ( x ,  s) alone can be derived by eliminating 
P(X, 3). 

The effects of viscous friction, thermal conduction and 
yielding walls can all be approximately accounted for by ap- 
propriately modifying (1) or (2). In certain special cases, when 
the functions specifying the losses and wall impedance have a 
special form, the modification consists of just a transformation 
of the variable s. Such simple functional forms are adequate 
for many applications. In the general case, with arbitrarily 
distributed, frequency dependent losses and wall impedance, 
(2) gets modified to 

d dP 
dx dx 
-M(x ,  s)-  - N ( x ,  s)P = 0. (3) 

Here the functions M , N  can be computed in terms of A ( z ) ,  
the viscous and thermal losses, and the wall impedance[ 101. 

B.  The Direct Problem 

If the area function A ( x ) ,  the wall impedance, and the loss 
parameters of the vocal tract are specified, then (1) or (2) can 
be solved for any given boundary conditions at the lips and 
glottis. With a proper choice of boundary conditions, we can 
compute the speech signal for a variety of sounds. By way of 
illustration, consider the computation of nonnasalized vowel 
sounds. 

For such sounds the boundary condition at the lips is that 
the tract is terminated in the radiation impedance, Z L ( S ) .  Let 
Hp(x , s )  be the solution for the pressure in the tract, which 
satisfies this boundary condition at the lips, and for which the 
volume velocity at the glottis is unity. Let Hu(x , s )  be the 
corresponding volume velocity. Then the volume velocity in 
the vocal tract due to any other input U, (s) at the glottis is just 

In particular, the volume velocity at the lips is obtained by 
setting x = L, the length of the vocal tract. The function 
Hu(L ,  s) is called the transfer function of the tract. Then 
S(L , s )  = U(L,s)z~(s) is just the speech signal in the 
frequency domain. The inverse Laplace transform of S(L,  s) 
(or the inverse Fourier transform of the function obtained by 
setting s = j w ; j  = a) gives the time domain speech 
signal. 

A slight modification of this procedure allows one to 
generate fricative and nasal sounds, too. For fricative sounds, 
the excitation of the vocal tract is by a noise-like signal 
generated by turbulence at a narrow constriction somewhere 
inside the vocal tract. And for nasal sounds the nasal cavity 
gets coupled to the vocal tract. Finally, note that in natural 
speech, the function A ( x )  changes continuously in time. 
However, these changes are, in general, slow, so that the 
motion of the tract can be approximated by a succession of 
stationary shapes. 

It can be shown (see, e.g., [9]) that the transfer function 
Hu(L,  s), for vowel sounds, has no zeros (other than zeros of 
the radiation impedance'). On the other hand, it has an infinite 

'Note that the acoustic impedance Z(s) in a plane perpendicular to the 
direction of (1-D) wave propagation in a tube is the ratio of pressure P(s)  
and volume velocity U ( s )  in that plane. In the time domain, z ( t )  is the 
pressure impulse response observed in that plane when we excite the tube 
with a volume velocity impulse in the same plane. 
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number of poles. In the speech literature, these poles are called 
formants. (Only the lowest 3-5 are of practical importance.) 
The imaginary part of a formant is called its frequency and 
twice the real part is called its bandwidth. 

Although Hu(L, s) has no zeros, the speech spectrum can 
have zeros even for vowel sounds. These zeros may arise 
for the following reasons: (a) the input volume velocity at 
the glottis has zeros, (b) the point of acoustic excitation is 
somewhere inside the vocal tract, or (c) the nasal cavity is 
coupled to the vocal tract. 

C .  The inverse Problem 
What we have described in the preceding paragraphs is the 

problem of computing the speech signal from a specification 
of articulatory information (i.e., A ( z ) ,  etc.). The problem of 
interest in the present paper is the inverse of this problem, 
that is, the problem of computing articulatory information 
(in particular, A(z) )  from acoustic information that can be 
obtained from the speech signal. It tums out that this inverse 
problem does not have a unique solution. In order to show 
this nonuniqueness, let us first discuss the types of acoustic 
information that are sufficient to recover the tract shape. 

I )  Frequency-Domain Methods: Over 40 years ago Borg 
[ 1 11 considered an idealized form of our problem, and proved 
a remarkable result that allows computation of A(z) from a 
knowledge of certain sets of eigenvalues of boundary value 
problems associated with (2). Stated in terms of the vocal 
tract problem, his result may be summarized as follows: 

Consider an ideal, lossless, rigid-walled vocal tract, and 
impose some homogeneous lossless boundary condition at one 
end. For concreteness, assume the condition U ( 0 , s )  = 0, 
that is, complete closure at the glottis. Suppose further that 
XI, XZ, . . . and PI, pa, . . . are the infinite sequences of eigen- 
values for two independent homogeneous lossless boundary 
conditions at the other end. Again for concreteness, sup- 
pose these boundary conditions are (1) U ( L , s )  = 0 and 
(2) P(L , s )  = z~(s)U(L,s). The first of these conditions 
corresponds to a complete closure of the lips. f i e  second 
corresponds to terminating the lips in the impedance ZL(S) ,  
which may be taken to be the radiation impedance discussed in 
the preceding section, provided its resistive part is negligible. 

Then what Borg showed is that a knowledge of this doubly- 
infinite sequence of eigenvalues is sufficient to uniquely de- 
termine A($) .  This information is also necessary, in that if 
any one of these eigenvalues is changed, the corresponding 
area function changes. The two sets of eigenvalues may also 
be looked upon as defining the input impedance of the vocal 
tract looking in at the glottis. This function is given by 

( 5 )  

Thus Borg’s theorem may be summarized by saying that A ( z )  
is uniquely determined by Zin(s) and vice versa. Clearly, 
the input impedance can be specified at either end of the 
tract. We used the impedance at the glottis as an illustration. 
Measurement of the input impedance is, of course, much easier 
at the lips. 

For a lossy vocal tract we know of no frequency domain 
method. However, as pointed out by Atal [ 121 there is one very 
special configuration with loss, for which the inverse problem 
has a solution. That happens if the tract and the termination 
at one end are lossless, and the other end is terminated in an 
impedance which is lossy at all frequencies, with known loss. 
Clearly, this is not a useful method from a practical point of 
view. (See [13] for a discussion.) 

There is a variant of Borg’s result in which A ( z )  is derived 
from the poles and residues of the input impedance [14]. 
Specification of the infinite set of poles and zeros is, of course, 
equivalent to specifying the infinite set of poles and residues. 
However, the reconstruction procedure and the approximations 
involved are quite different for the two approaches. 

We close this section by mentioning the work of Schroeder 
and that of Mermelstein. Schroeder [15] showed that, to first 
order perturbation theory, the frequencies of the poles and 
zeros of the input impedance give an estimate of the odd and 
even coefficients, respectively, of the Fourier expansion of 
logA(z). Thus, if logA(z) is assumed to be antisymmetric 
around the midpoint of the vocal tract, then A(z)  can be 
approximately determined from just the formant frequencies. 
Of course, the assumption of antisymmetry is a drastic as- 
sumption which cannot be justified for a real vocal tract. 
Mermelstein [16] showed that measured values of the first 
few poles and zeros give a good approximation of the “band- 
limited” A ( z )  that is, the A(z) obtained by retaining only 
low-order Fourier coefficients of log A(z). Obviously, this 
method is not applicable to the problem of deriving A(z)  
from the speech signal, because the input impedance must 
be measured. 

2) Time-Domain Method: The methods of estimating A(x) 
from the frequency domain data discussed in the preceding 
section have several disadvantages in practice. First of all, 
the length of the vocal tract and the boundary conditions at 
the two ends must be known. Each of these strongly affects 
the computed A ( z ) ,  and none of them is accurately known. 
Second, there is no known theory that can deal with distributed 
losses and yielding walls. 

A very different type of method was proposed by Sondhi and 
Gopinath [ 171 which is based on the time domain specification 
of the input impedance, zin(t). This method alleviates both 
problems mentioned above. Sondhi and Gopinath showed that 
there is a unique one-to-one correspondence between z;, ( t )  
for 0 < t < T and A ( z )  for 0 < z < cT/2. Further, the 
method can be generalized to include the effect of losses and 
yielding walls [18], [19], provided that these losses are known. 
However, like the method of Mermelstein, this method is not 
useful for deriving A ( z )  from the speech signal, because one 
needs to make a measurement of the input impedance. 

The poles of the input impedance 
at the glottis, are precisely the poles of the transfer func- 
tion Hu(L ,  s). The nonuniqueness that we mentioned earlier 
follows directly from this observation. For under the best 
of circumstances, the speech signal can at most give us the 
transfer function, and hence the poles of Zin(s). Without 
changing this transfer function, the zeros of the impedance can 
be specified arbitrarily, except for the constraint that they must 

3 )  The nonuniqueness: 
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interlace with the poles, that is, XI < p1 < XI < pz < . . -. 
Each specification of zeros compatible with this constraint 
yields a new A(s ) .  Thus there is a nondenumerable infinity 
of area functions consistent with a given set of formant 
frequencies. 

As we will see in Section IV-C, the only way to deal with 
this nonuniqueness is to use constraints of temporal continuity 
of the area function. 

III. ARTICULATORY SYNTHESIS 

Dennis Klatt wrote in [20] (p. 747): “An alternative solution 
to the problem of producing a natural female voice quality by a 
formant synthesizer might be to employ articulatory models of 
the trachea, vocal folds, and vocal tract, as well as their interac- 
tions, in a sophisticated articulatory synthesizer. Thus we now 
tum to efforts to produce speech by direct simulation of the 
mechanisms involved in speech generation.” He continues (p. 
749): “. . .an articulatory model” (i.e., synthesizer) “is likely to 
be the ultimate solution to the objective of natural intelligible 
speech synthesis by machine, but computational costs and lack 
of data upon which to base rules prevent immediate application 
of this approach.” In the following we will discuss these issues. 

Several approaches have been tried. Flanagan et al. [2], 
Portnoff [21], Maeda [5], and Bocchieri [22] solved discretized 
partial differential equations (PDE’s). The advantage is that the 
implementation is simple, but the method is computationally 
costly. Kelly and Lochbaum [23], Kabasawa et al. [24], and 
Meyer et al. [6] used so-called wave digital filters (WDF’s). 
Compared to the PDE-method, WDF’s are faster, but lack 
flexibility in that they do not allow frequency-dependent 
losses and also warp the frequency axis due to the bilinear 
transform used to map the continuous to the discrete problem. 
They can accommodate time-varying area functions [25], but 
have problems with a variable tract length. Finally, our own 
synthesizer [3] uses the chain-matrix approach that analyses 
the tract in the frequency domain (thus allowing for realistic 
frequency-dependent losses) but assumes a static tract for each 
speech frame. Let us focus on this approach as an example for 
what issues need to be addressed in an articulatory synthesizer. 
Before we do this, however, let us define what we mean by 
“articulatory model.” 

A. Articulatory Models 
Articulatory models are first in the chain of models used 

to transform articulatory parameters (coordinates) such as 
tongue center position, tongue tip position, jaw angle, velum 
opening, etc., to a vector of tract areas, and from there, to 
acoustic characteristics of the vocal tract. Based primarily 
on X-ray studies, articulatory models are aimed at capturing 
the inherent constraints of the vocal tract (“tongue cannot 
go through the roof of the mouth”). Hence, in creating such 
models, researchers are usually more concemed about geo- 
metric accuracy and less concemed about an optimal acoustic 
match between target and re-synthesized speech. Despite this 
potential drawback, such models are useful in articulatory 
speech mimicking since articulatory parameters usually have a 
lower dimensionality compared to area parameters. The lower 

dimensionality might reduce ambiguity in the acoustic-to- 
geometric mapping. On the other hand, articulatory parameters 
generally show a nonuniform parameter sensitivity in speech 
mimicking experiments and might be unable to provide good 
tract areas for certain sounds [26]. In this paper we will use 
the term “articulatory parameters” to include tract areas, since 
most of the techniques discussed, in principle, can be applied 
for articulatory model parameters, as well as (linear or log) 
tract areas. 

Articulatory models can be static or dynamic, descriptive or 
functional. An example of a dynamic functional articulatory 
model is that of Henke [27]. It is controlled by gestures, 
or articulatory targets (Henke calls this “goal-driven”), that 
is, the model is govemed by equations of motion for the 
articulators. It also contains a “look-ahead” text input that 
accounts for anticipatory coarticulation, that is, pre-adjustment 
of the articulators in preparation for an upcoming sound to be 
produced. In doing so, the speech production system takes 
advantage of the freedom it has in producing a target speech 
spectrum: for any given speech sound, there are “critical” and 
“noncritical” articulators [28], and different articulators can 
compensate for each other (e.g.. [29]). For example, in the 
case of rounded vowels (e.g. /U/), the jaw position can be 
compensated for by the lip aperture (rounded lips lower all 
formant frequencies by lengthening the tract; raising the jaw 
has a similar effect [30]). Noncritical articulators are free to 
assume convenient positions which could mean that the motor 
control can anticipate future sounds where these articulators 
become critical. What is advantageous for speech production, 
of course, means ambiguities in parameter estimation. We will 
come back to this issue in the next section. Other examples 
of dynamic functional models are the one by Perkell [31] 
and the one developed at Haskins Laboratories (e.g., [32]). 
Muscular structures are simplified and modeled by springs and 
dampers. In these models, coproduction of speech sounds can 
be described in terms of the dynamics of the system. 

Linear component articulatory models are based on data 
from X-ray studies and measurements of lip opening. Exam- 
ples are the one by Kiritani et al. [33] and the one by Maeda 
[34], both of which are static, that is, do not incorporate task 
dynamics. Measured tongue and palate (roof of the mouth) 
mid-sagittal profiles are parametrized through curve fitting 
techniques. Curve parameters are then related to measured or 
inferred tract areas by a linear factor analysis. The result is a 
set of orthogonal articulatory parameters which are sometimes 
hard to interpret. It is interesting to note that, to the best of 
our knowledge, nobody has tried using neural networks for a 
nonlinear mapping between curve parameters and area data. 

By far the easiest to understand are descriptive static ar- 
ticulatory models, such as the ones developed by Coker and 
Fujimura [35], by Mermelstein [36], and by Coker [37]. These 
models are based on X-ray mid-sagittal projections and on 
intuition. For example, they describe the tongue body as a 
“circle in a circle.” Because these models are 2-D, they can 
compute tract areas only by incorporating certain assumptions 
to substitute for the missing information about the depth 
dimension. In our own work we primarily used Mermelstein’s 
and Coker’s articulatory models. 
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B .  Vocal Tract Representation in an Articulatory Synthesizer 

Since we assume planar and linear wave propagation, we 
can evaluate the vocal tract in either the time domain or 
in the frequency domain. We choose the frequency domain 
description because for frequencies above a few Hertz, we can 
easily incorporate effects of yielding walls (affecting frequen- 
cies and bandwidths of the lower formants), and viscous losses 
and radiation (affecting mainly high frequencies). For voiced 
speech, our frequency-domain model of the vocal tract is 
excited by a nonlinear model of the vocal cords. The tract and 
the glottal model are interfaced via Discrete Fourier Transform 
(DFT) and convolution. For the synthesis of aspirated or 
fricative sounds, the synthesizer generates noise at the glottis 
and at the narrowest constriction. 

For a given vector of vocal tract areas that specify the tract 
shape from glottis to lips and the coupling to the nasal tract, 
we need an acoustic model to calculate the transfer function 
from glottal flow to pressure at lips, the transfer function from 
a noise source at some point in the tract to the pressure at the 
lips, and the input impedance of the tract as seen from the 
glottis. The latter is important for specifying the load to the 
glottal model. Acoustic characteristics of the vocal tract are 
computed using the chain-matrix approach. 

A chain matrix relates the pressure and volume velocity at 
the output of a tube [P2 , U21 to those at the input [PI ,  U11 

Note that capital letters denote variables in the frequency 
domain. Computing the matrix for an arbitrary tube is compli- 
cated. However, for a tube of uniform area it can be computed 
quite easily. Therefore, we represent an arbitrary tube as a 
concatenation of elementary uniform sections. The overall 
vocal-tract chain matrix for nonnasal sounds is obtained as 
the product of the sequence of elementary 2 x 2 matrices. 

Consider nonnasal sounds for simplicity, and let A, B,  C, D 
denote the chain matrix elements of the overall tract from 
glottis to lips. Then the transfer function from glottal flow U, 
to flow at the lips UL is 

(7) 

where ZL is the radiation impedance at the lips. Note that the 
transfer function of the glottal flow U, to sound pressure at 
the lips is H p  = H ~ Z L .  In contrast to simpler source-filter 
synthesizers, articulatory synthesizers model source-tract inter- 
actions. These manifest themselves, for example, by formant 
ripples in the glottal flow waveform. The tract input impedance 
as seen from the glottis is given by: 

DZL - B 
I n -  A - C Z L  2- - 

Since (7) and (8) have the same denominator, the tract transfer 
function H v  and the tract input impedance Zi, have identical 
poles. 

Nasal sounds can be handled similarly, with some minor 
modifications. Details of the synthesizer, including the glottal 
model and noise excitation, can be found in [3]. 

IV. ACOUSTIC-TO-ARTICULATORY MAPPINGS 

A .  The Nonuniqueness of Such Mappings 
In Section I1 we pointed out that acoustic-to-articulatory 

mappings generally are nonunique, that is, there is more than 
one tract shape that can produce a given tract transfer func- 
tion. (Ventriloquists use this feature to their advantage.) This 
problem is compounded by another kind of nonuniqueness: 
changes in the source (glottis) can compensate for changes in 
certain features of the tract transfer function, such as spectral 
tilt, and/or bandwidth of the first (lowest) formant. Ignoring 
this second kind of nonuniqueness for the time being, one 
can explore conditions and characteristics of the first kind 
separately. Atal et al. [38] did fundamental work on this issue. 

Atal et al. [38] established tables of vocal tract shapes and 
related acoustic representations. These tables can be used to 
look up pairs of vectors (xi, yl), I = 1, . . . , M of the mapping 

Y = P(X) (9) 

where y is the articulatory/geometric representation that is 
related to the acoustic representation x. In one experiment 
the authors used the frequencies of the lowest three formants 
as components of x and four variables of a simple articulatory 
model as components of y. In another experiment, they used 
the lowest three (log) formant frequencies and amplitudes of 
the vocal-tract transfer function at these formant frequencies 
for x and log-areas at twenty points along the tract for y. 
Atal et al. explored the nonlinear mappings by linearization in 
small regions. For such a small region where a linear map was 
assumed valid, the authors used singular-value decomposition 
(SVD) [39] to determine the effective dimensionality of the 
geometric representation. Whenever this is larger than the 
effective dimensionality of the acoustic representation, the 
dimensionality of the “null space” of the mapping from 
acoustics to geometry, is simply the difference of the two 
dimensionalities. This null space is the ambiguous geometric 
subspace that relates to the same acoustics (the authors call it 
a “fiber”). In practice, the effective dimensionality of a fiber 
has to be determined by thresholding the eigenvalues of the 
system matrix and by discarding the lowest eigenvalues. 

B.  Articulatory Codebooks 

Based on the ideas put forth in [38], we have used linked 
lists of vocal tract shape vectors y and related acoustic 
vectors x in our speech mimic [4], [40]. As mentioned in 
the introduction, searching such a codebook provides a set 
of good articulatory startup-vectors for further optimization. 
Generation of such a codebook consists of selecting a method 
of obtaining training vectors that adequately span both, the 
acoustic signal space, and the articulatory parameter space. 
We also need a method for clustering the training vectors and 
a definition of distance between acoustic vectors and between 
articulatory vectors. 

There are several options for obtaining geometrical data. 
For example, one can employ direct geometric measurements 
via (microbeam) X-ray tracings or ultrasound imaging (e.g., 
[41]), electromagnetic “articulographs” [42], [43], or magnetic 
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resonance imaging (MFU) [U]. Also, vocal tract areas can be 
obtained by the acoustic impulse method mentioned in Section 
I1 [45]. All these methods are very cumbersome; some of 
them do not allow simultaneous acquisition of speech which is 
required for the training data. Therefore, for our purposes, we 
chose to use Mermelstein’s and Coker’s articulatory models 
(see Section 111-A) coupled to our synthesizer (Section 111-B). 
As will be pointed out in subsection D below, other authors 
actually chose to acquire, for example, X-ray microbeam data 
and, simultaneously, speech data for training their mappings. 

Two procedures were used for obtaining geometric and 
acoustic training vectors from articulatory models: the root- 
shape interpolation method [7], and the random sampling 
method [46]. The reader is referred to these references for de- 
tails. Suffice it to say that the root-shape interpolation method 
starts from predefined (in an articulatory sense) “extreme” root 
shapes and then fills the multidimensional articulatory space 
between these roots by interpolation and clustering. In contrast 
to this, the random sampling method explores the whole 
articulatory space as it is manifested in the articulatory model. 
Of course, while the root-shape method has the advantage of 
only generating “reasonable” (i.e., realistic) tract shapes, it has 
the disadvantage over the random sampling method that the 
roots are difficult to define. Choosing the wrong root shapes 
will create “holes” in the covered articulatory space with the 
consequence of bad matches for certain speech sounds. The 
random sampling method, on the other hand, creates lots of 
“unreasonable” tract shapes that have to be filtered out. 

In [46], [47] we evaluated different acoustic distance mea- 
sures for looking-up tract shapes in an articulatory codebook 
(i.e., accessing it), given a single (static) speech frame. A 
difficult problem with accessing such a vocal-tract codebook 
is the codebook’s ignorance about glottal excitation. This 
problem is illustrated in Fig. 1. The speech spectrum (left) 
and the log-magnitude of the tract’s transfer function (right) 
are very different. Note, for example, that the comb filter-like 
structure of the speech spectrum on the left was created by the 
(quasi-) periodicity of the glottal excitation. The peaks seen in 
the spectrum are the harmonics of the fundamental frequency 
(pitch) of glottal vibration. Another characteristic introduced 
by the glottis is spectral tilt (higher energy at low frequencies, 
lower energy at high frequencies) that can vary depending on 
speaking style (e.g., high tilt for a mellow voice and low tilt for 
loud shouting). Unfortunately, due to the changing radiation 
impedance at the lips, spectral tilt is also affected by small 
changes in a small lip aperture (e.g., in /U/ or /WO, without 
a significant effect on formant frequencies. Thus, a change 
in spectral tilt can be due to a certain glottal gesture or can 
be due to a specific tract gesture. This constitutes the second 
kind of nonuniqueness mentioned in Section IV-A. Another 
glottal effect is the apparent broadening of the first (and 
maybe second) formant which is due to shifting resonances 
and changing losses in the tract when the glottis opens and 
closes [48]. 

FFT-derived cepstral measures (see, e.g., Ch. 10 of [49]) us- 
ing certain weights in the cepstral domain (so-called “lifters”) 
combined with other weights in the frequency domain (filters) 
tumed out to be optimal in dealing with glottal variability. 

Fig. 1 .  Speech signal (left) and articulatory codebook (right), time (top) and 
frequency domain representation (bottom). Articulatory codebook entries also 
contain the vocal-tract shape. 

* A *  M ’  

I/ . . .  
1 . .  . .  

1 t 
Fig. 2. Codebook access via dynamic programming. Trellis showing a 
possible path through a decision grid of M times T nodes. Here M is the 
size of the codebook, and T is the number of time steps. 

T 

Cepstral liftering discriminates between acoustic vectors based 
primarily on formant frequencies while largely ignoring dif- 
ferences in formant bandwidths and in spectral tilt. This gives 
the advantage of a reduced sensitivity to glottal effects. It is 
accompanied, however, by the disadvantage that a larger list 
of candidate tract shapes must be considered (with different 
spectral tilts, and possibly different wall-vibration losses; see 
Section 111-B) for any given spectral vector. This means 
that cepstral liftering increases ambiguities of the first kind 
mentioned in Section IV-A. Therefore, it is important to use 
additional measures for ranking a list of candidate tract shapes. 
This is the topic of the following subsection which will also 
give details of the cepstral distance measures mentioned above. 

C .  A Dynamic Programming Method for 
Estimating Vocal-Tract Dynamics 

Strube and colleagues [6], [50], [51] use linear and nonlinear 
Kalman filtering to model vocal-tract dynamics in an articu- 
latory speech mimic. Saltzman and Munhall [32] devised a 
“task-dynamic’’ model of articulation that could be used for 
mimicking speech. The problem with both approaches is that 
one needs to have accurate information on the dynamics of 
the system in order to incorporate this knowledge in a speech 
mimic. So far, this information is largely lacking. A competing 
approach is to penalize large “articulatory efforts,” that is, fast 
changes in the vocal tract, and look for smoothly evolving 
articulatory trajectories under the constraint of matching a 
given sequence of speech spectra. This is conveniently done 
with dynamic programming. 

Consider Fig. 2 [52]. Given a codebook of M entries, 
and a sequence of spectral vectors xt, t = 1 ,2 ,  . . . , T for 
T successive frames of a speech signal, we wish to find 
the best sequence of shapes y j ( t ) , t  = 1 , 2 , . - . , T ,  where 
j (t) E [ 1, MI is the index of the codebook entry chosen for the 
t-th frame. Instead of exhaustively searching over all possible 
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(b) 

Fig. 3. (a) Sequence of tract shapes retrieved using spectral match only 
(independently for each frame). (b) Sequence of tract shapes retrieved using 
dynamic programming. (/wa/; i.e., the first 60 ms of the word “why”). 

MT tract shape sequences, dynamic programming can be used 
to retrieve the best sequence of shapes with an effort of only 
T x M 2  distance computations. Since M can be on the order 
of 100OOO or more, and (as we found experimentally) T can 
be 20 (the equivalent of 200 ms of speech assuming a frame 
shift of 10 ms) or larger, the problem is only tractable through 
dynamic programming. The decision space is a grid of M x T 
points. Let D ( Y ~ ( ~ - ~ ) ,  y j ( t ) )  be the geometric cost of making 
the transition from shape y j ( t - l )  at time t - 1 to shape y j ( t )  
at time t ,  and d(xt ,  xjct)) be the acoustic distance between the 
given acoustic vector xt and the acoustic vector xj ( t )  related to 
the candidate tract shape (both at time t). A practical definition 
of the “best” sequence of indices j ( t )  is the sequence which 
minimizes the accumulated composite cost 

T 

CT = d(xO,xj(O)) + x[d(xt,xj(t)) + D ( Y j ( t - l ) , Y j ( t ) ) ] -  
t=l 

(10) 
Suppose that we have determined the optimal path to every 
node ( j ,  T - l), j = 1,2 , .  . . , M for time T - 1, and have 
computed CT-1 for every node in the column, let’s say 
C ( j , T  - 1). Then, it can be seen from (10) that the optimal 
path that ends at node (k(T) ,  T )  is the one coming from the 
node ( j* (k (T) ) ,T  - 1) , where j *  is given by 

j * (k (T) )  = arg m i n j , [ i , ~ ] [ C ( j , ~  - l) + D ( Y j , Y k ( T ) ) ] .  
(1 1) 

Applying (1 1) for all k at time T ,  we see that the given optimal 
paths up to T - 1 can be extended to T with M 2  computations. 
Note that at each value of T and k(T), the previous node 
from which the optimal path arrives at node (k (T) ,  T )  is 
known. Therefore, the complete path can be recovered by 
backtracking. 

- 
139 

Fig. 4. Speech and retrieved tract shapes for (/ibi/). The shape at the bottom 
is for the burst release of the /b/. Numbers denote 10 ms frames. “Faces” are 
time-aligned with the speech signal. 

As an example, consider Fig. 3. This figure shows tract 
shapes retrieved for the first 60 ms of the word “why.” Here 
the codebook size was M = 2523. Each frame of speech was 
modeled by a vector of linear prediction coefficients (LPC’s) 
which characterize the smoothed power spectrum [53]. In 
this example, the acoustic distance used was the symmetrized 
likelihood ratio distance [54] 

where the a = (1, a l ,  u2, . . . , up)  are LPC vectors of order 
p = 10, the primes denote matrix/vector transposition, and 
the V’s are the corresponding autocorrelation matrices. The 
geometric distance used was 

where ny = 11 is the number of components of tract-shape 
vectors y of the Mermelstein articulatory model (see Section 

Tract shapes retrieved every 10 ms using a spectral match 
only (12) are shown in Fig. 3(a). Tract shapes retrieved for the 
same instants of time using the DP-procedure outlined above 
are shown in Fig. 3(b). While a highly irregular sequence of 
tract shapes is evident in the startup of the utterance when 
only the spectral distance is used (Fig. 3(a)), a much. smoother 
sequence of shapes is realized by the DP-procedure (Fig. 
3(b)). Note the smooth opening gesture of the lips. Results 
of “anticipatory articulation” (see Section 111-A) can be seen 
in the fact that the tongue center (which is a “noncritical 
articulator” for the /w/) moves smoothly to the back before 
the actual start of the vowel /a/. 

Other, more difficult, examples are depicted in Figs. 4 and 
5. Fig. 4 shows the speech signal and retrieved tract shapes 
for the utterance /ibi/. A codebook of 30000 nonnasal tract 
shapes, generated with the random sampling method (Section 
IV-B), was used. The problem here is with the silence gap in 

111-A). 
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the middle of the waveform and with the “explosion” (noise AE L EH N EY CH 

burst) at the /b/-release. Experiments indicated that the simple 
scheme used for obtaining the results shown in Fig. 3 fails 
in this case for two reasons. First, the DP-algorithm has no 
spectral information in the silence gap, and very inaccurate 
information in the noise burst (since we don’t have a good r’lllllfl’’ 
frication model at the present time). Also, we conjecture that 
estimating tract shapes in a static manner for fricatives is more 
ambiguous than estimating them for voiced speech. Second, it 
was found that spectral information for the place of articulation 
for the /b/ (e.g., closure at the lips vs. closure at the tongue 
tip) is contained in just a few frames before and after the 
silence gap and the burst. Hence, the acoustic, as well as the 
geometric distance measures of (12) and (13), respectively, 
had to be modified. We did this in two ways. First, we ran 
two independent dynamic programs: one DP up to the onset 
Of (defined as 25 dB &low the maximum level Of the 
overall energy in a frame for this utterance), and another DP 
that started when voicing set in after the burst. The tract shapes 
for the intermediate frames were obtained by extrapolation of 
the articulatory parameters of the Coker articulatory model 
from the left and right contexts. Note that the tongue center is 
unrealistically low for frame 22 (mid of silence gap). However, 
the closure at the lips is correctly extrapolated (forward) from 
speech frames 11 and 14, as well as extrapolated (backward) 
from frames 24 and 26. Second, to boost the importance of the 
transitionary frames before and after the silence, we introduced 
a time-varying weighting factor on the geometric distance that, 
in effect, normalized the geometric changes by corresponding 

Fig. 5. Same as Fig. 4 for utterance “I-n-h” (spoken letters). The enlarged 
“face” for frame 49 shows the complete closure of the tract at the tongue tip 
(for /M. Similarly, frame 69 stresses the correct closure at the tongue tip just 
before the /t/-release. Note also that the vocal tract is not closed at frame 71. 

distance A(xtPl, xt) is based on unmodified FFT-cepstra, 
equivalent to the first part of (16) with 
2uk = 1/9 trk = 1, . . . 9. 

Fig. shows results for a medial nasal and an utterance- 
final unvoiced dental stop /t/ in the affricate / t ~ /  (as in 
in the spelling of the letters c61”, 66n99, and ‘Gh” (see, e.g., [551, 
for comprehensive on the sounds of the American 
English language). To obtain the correct a crude 
nasal detector (using just the lowest nine cepstral coefficients) 
was used for 6‘declaring,, the nasal limits,, to the DP, in 

= 

That is, we large geometric changes fact, treating it the Same way as the silence gap in Fig. 4.2 
For the utterance-final affricate, only forward extrapolation whenever were accompanied by large acoustic 

could be used, correctly introducing a dental closure during 
the silence period. A simple ad hoc rule (“release the closure 
when nonsilent”) is responsible for the open tract shape in 
frame 71 (which is open although the figure doesn’t show it 

Then the modified version of (10) 
T 

t=l 
CT = aOd(xO,xj(O)) + x [ a T d ( x t , x j ( t ) )  

+ D(Yj(t-l),Yj(t))/A(xt-l,xt)l (14) clearly). 

where the at ,S  down-weighted the acoustic distance with 
decreasing log energy: 

In a more extensive “recognition” test using 204 spelled 
letters that were recorded from 4 male talkers over a local tele- 
phone line (using a carbon-button microphone), the resulting - 
articulatory gestures were evaluated by visual inspection. The 
“error rate” of this crude “articulatory recognizer” was 34.8%, ’ (15) 

max[Lt - (L,,, - 25 dB), 01 
at=( 25 dB 

Here the variable Lt is the log energy in dB of frame t ,  and 
L,, is the maximum log energy of the utterance in dB. 
Consequently, 0 5 at 5 1. The acoustic distance chosen was 
the liftered cepstral distance (mentioned in Section IV-B) 

kmax 

d(c,e) = w& - q2 
k = l  

wk = { (k/20)O.4, O < l c < 2 0  
0.5 + 0.5 C O S [ T ( ~  - 21)/20], 20 < k < IC,, 

(16) 

where the c-vectors were FFT-derived, frequency-domain 
weighted cepstral vectors of 20 ms speech frames (Hamming- 
windowed, 10 ms frame shift) and w is the Meyer lifter 
[47]. The highest cepstral order was k,,, = 40. Note that 

that is, 71 of the 204 letters contained at least one wrong 
gesture (e.g., closure at the wrong position). No (obvious) 
errors were made in the vowel portions. 

D. Other Mapping Techniques 
While the codebook idea is a simple way to obtain reason- 

able startup tract shapes for further optimization, it is clearly 
not the most efficient. Since the articulatory and the acoustic 
domain needs to be covered by points, articulatory codebooks 
can get very large (the largest we ever used contained 250 OOO 
tract shapes). Exhaustively searching such a large codebook 
for every speech frame is very time consuming. Although sub- 

20ur experience shows that although our synthesizer produces preceptually 
acceptable nasals, the spectral details of a specific nasal are very different 
between the synthesizer and any natural nasal. In fact, due to the large 
variabilitv of the nasal cavitv between talkers. different talkers also show 

, 

the log energy, CO, is not used. The frame-to-frame acoustic highly dikerent nasal spectra.’ 
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optimal techniques can be employed to make the DP-search 
more efficient (such as using just the top N acoustic choices; 
N is usually less than lOOO), it still takes up to 10 minutes 
of CPU time on a 40 MFLOP (sustained, not peak) machine 
to generate startup shapes for a 2 second utterance from a 
100000 entry codebook. Clearly, a more efficient method is 
necessary. In the following, we will look at other methods that 
parametrize whole regions (instead of storing point-to-point 
information) of the acoustic-to-articulatory mapping. 

In all the methods described below, the aim is to split 
the acoustic space into regions such that each region maps 
to a corresponding region in the articulatory domain, with 
a mapping that is unique in both directions. For each such 
region a map is defined in terms of a set of parameters, and 
the parameters optimized to best fit a set of examples. When a 
map is linear in the parameters, the optimal set of parameters is 
obtained by a simple matrix inversion. If the parameters enter 
the mapping nonlinearly, then optimization is accomplished 
by some iterative procedure. 

1) Nonlinear Regression: Moller et al. [56] and Moller 
[57] derived vocal tract shapes from speech spectra by rep- 
resenting articulatory parameters as polynomials in a large 
number of spectral variables. This work was based on earlier 
work by Atal [58] who derived the map in the opposite 
direction and then found the inverse transformation. (It was 
later continued in Gottingen [59], also see Section IV-D-3.) 

Suppose that y = g(x ) .  Here g is a vector function, each 
component of which is, in general, a function of all the 
components of x .  The idea is to assume that over a small 
region around a point xo each component of the articulatory 
vector y can be approximated as a polynomial function of 
the components of the acoustic vector x. Then the coefficients 
of the polynomial may be estimated by minimizing the mean 
squared error over a training set of simultaneous measurements 

gi, i = 1, . + . ny be the components of x, y ,  and g ,  respectively. 
Using a Taylor series to second order as the approximation, 
we may write 

nx nx nx 

of x and y .  Let ~ i , i  = l , . . . , n ,  and yi,i = l,...,ny and 

y i  = yo + & k x k  + Y i j k x j x k  (17) 
k=l k=l j=1 

where yo is the (unknown) value of gi at xo. By redefining 
parameters, (17) can be rewritten as 

where b ik  are just the coefficients &k and Y i j k  in a rearranged 
order, and 2k are linear or quadratic expressions in the 
components of x. If all the linear and quadratic terms are 
included, then N, = n, + Nb, where Nb = (n, + l)n,/2. 
(The process may, of course be trivially extended to cubic and 
higher order terms). 

In matrix notation, (18) becomes 

y = y o + B k  (19) 

references -4 

Fig. 6. Pellet positions used by Moller [57]. 
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Fig. 7. Power spectrum of the horizontal coordinate of pellet 3 [57, p. 311. 
The dashed line represents the low-pass filter used to suppress measurement 
noise. 

of x and y ,  then yo  and B may be derived by minimizing 

M 

i=l 

The solution is obtained by a matrix inversion as will be shown 
in Section IV-D-2 below (see (26)). 

As a first trial, Moller, Atal, and Schroeder [56] focused on 
the 1-D degree of coupling of the nasal cavity to the vocal 
tract ( “velum height ”). Later, Moller [57] also included 
2-D (horizontal and vertical) coordinates of five additional 
(moving) pellets traced in 1976 by X-ray microbeam (see 
Section IV-B) at the Institute of Logopedics and Phoniatrics at 
the University of Tokyo, Japan [60]. Fig. 6 shows the location 
of all moving and reference pellets. Speech and pellet informa- 
tion was recorded simultaneously. Fig. 7 shows the measured 
power spectrum of the horizontal component measured for 
pellet 3 (tongue tip) together with the low-pass filter used. To 
describe the acoustic properties of speech, different spectral 
representations x were tried, including log and linear power- 
spectrum samples, arcsin-transformed reflection coefficients 
and log-area coefficients derived from LPC (for all three, see, 
e.g., [53]), and cepstral coefficients [49]. From the ‘5 pellet 
horizontal and vertical coordinates and the velum height, and 
linear combinations of these, orthogonal components were 
obtained by factor analy~is.~ The original pellet coordinates, 
as well as the orthogonal factor components were used as 
articulatory parameters y .  

Fig. 8 compares velum positions computed from 
single-word utterances containing nasals to the original X-ray 
measurements. Seventy-six generalized spectral components 
2i generated from 21 samples (250 Hz apart) of the smoothed 
log power spectrum were used. It is noteworthy that good 
results were obtained only after incorporating low-pass 
filtering into the regression (18) for estimating velum height. 

, 

and the problem is to estimate y o  and the matrix If 
(xi ,  y i ) ,  i = 1 I . . . , M is a set Of simultaneous measurements 

31t can be shown that factor analysis is identical to singular-value decom- 
position (SVD) of the autocorrelation matrix of the given problem. 
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Fig. 8. Velum positions computed from speech [56]. Bold line: X-ray 
measurements, broken line: regression estimates. 

(This finding did not carry over to other articulators in [57].) 
Also, it was found that about 40-50 generalized acoustic 
variables contributed very little to the regression, suggesting 
that these could be eliminated if an algorithm could be 
developed for their automatic identification. A sub-optimal 
method for eliminating inefficient generalized acoustic 
variables Zi was introduced in [57]. 

The correlation of measured and estimated velum heights 
in [56] was between 0.93 and 0.98; corresponding mean- 
square errors were 21-37% of the measured variance of velum 
height. In [57], for each pellet coordinate, the minimum error 
varied between 40% and 87% of the measured variance. 
The worst pellet coordinates were the horizontal components 
of pellets 2 and 3 (tongue tip and middle); the best was 
pellet 5 (velum height). It was found that different acoustic 
representations x did not lead to significant differences in error 
(also found by Atal [58]). For the principal components, it 
was found that 80% of the pellet-coordinate variance could 
be explained by just two components. Errors (normalized by 
respective variance) for the first (most important) component 
were between 44% (velum height) and 59% (mid-tongue 
pellet). In summary, Moller found that components of tongue 
movement that are perpendicular to the tongue’s surface (thus 
having a most direct influence on the tract area function) 
are the easiest to estimate. The most difficult problems were 
found with incomplete closures of the lips for /m/, too “open” 
constrictions/incomplete closures near and at velar consonants4 
(/n/ as in “lupg”, /k/, /a, and tongue center positions that 
came out too high for the central vowel /A/ (as in “above”) 
and too low for the front vowel / E /  (as in “ggt”). In respect to 
timing, it was found that while estimation was generally good 
at the center of vowels and liquids (incl. N and /r/), word 
ends could constitute problems. 

2) Basis Functions: Basis function networks can be 
viewed as a special class of neural networks [61] (p. 23). 
However, we note that what Hush and Home call the “weights” 
in a (radial) basis function network are actually “centroids,” 
that is, centers of gravity of the basis functions. As will 
be pointed out below, these centroids can be obtained by 
techniques of vector quantization or they can be set randomly. 

4Note that only voiced speech frames were considered. 

Presentation of input vectors to basis-function networks 
involves computing distances to these centroids (see Hush and 
Home’s (30) and (33) while multilayer perceptrons (MLP’s), 
for example, use multiplicative “weighting” of the components 
of each input vector. 

Due to the nonuniqueness of the mapping, a single global 
mapping for all speech is not well behaved. Locally, however, 
the mapping is continuous and unique almost everywhere. This 
observation was exploited by Parthasarathy and Sondhi [62]. 
In their work, mappings were learned from a large number 
of example pairs (xl, yl), I = 1,2, . . , M, of acoustic vectors 
x1 and geometric vectors y ~ .  which we will call the training 
data T. The first step towards deriving the maps is to cluster 
T into a selected number N, of acoustic clusters (i.e.. on 
the basis of the similarity of the acoustic vectors). Using the 
iterative procedure of Linde, Buzo, and Gray [63], an optimal 
set of N, centroids, C [cl, 122,. . . ,  cl^,], may be identified. 
The set of centroids C is optimal in the sense that the average 
distance of a vector x from the nearest centroid is a minimum. 
Each centroid, Ck, is associated with a cluster-the subset of 
training vectors x which are closer to ck than to any other 
member of C. 

The above clustering procedure partitions the training data 
into N, clusters of pairs of vectors (x,y) which have the 
property that the x vectors within each cluster are close to each 
other. If the mapping of x to y were unique and continuous, 
then within each cluster the y vectors would also be close to 
each other. However, as mentioned earlier, the mapping from 
acoustic to articulatory data is not unique. Assume that each x 
maps to at most Ny , y’s. Therefore, each cluster is partitioned 
into Ny subclusters, this time using the articulatory similarity 
(e.g., geometric distance) as the criterion for clustering. 

At this stage, T is partitioned into a total of N, x Ny 
subclusters, with the property that within each subcluster the x 
vectors are close to each other and the y vectors are also close 
to each other. For each of these subclusters we may define a 
map of the type 

Nb 

g(x) = yo + Ax + aik(x). (21) 
i=l 

Here yo is a constant vector, A is a constant matrix, and the 
&’s are a set of Nb basis functions that span the region of 
the x domain occupied by the training data in that subcluster. 
A convenient choice for the q&’s is a set of multidimensional 
gaussian functions. Thus 

&(x) = exp[-(x - pi)’D;(x - pi)] (22) 

where Di is a positive diagonal matrix. Since di has ellipsoidal 
symmetry about pi, these functions may be termed “general- 
ized radial basis functions.” (The term radial basis function is 
used for a basis function with spherical, or radial symmetry.) 

The parameters yo,A, and ( D i , ~ , a i ) , i  = 1,2,...,Nb 
were determined for each subcluster so as to minimize the 
mean squared value of the mapping emor for the training data. 
Thus if (xi, yi), I = 1,2,. . . , m is the training data comprising 
a given subcluster, the parameters for that subcluster are 

, 
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chosen to minimize the error e given by TABLE I 
ESTIMATION OF MERMELSTEIN ARTICULATORY PARAMETERS FROM LINE 

SPECTRAL FREQUENCIES USING RANDOM BASIS FUNCTIONS [66] m 

e = II g(xd  - Yz 1 1 2  . (23) 
i=l Parameter Range MaxError 

The error e may be minimized by means of a standard 
optimization procedure due to Hook and Jeeves [64]. In this 
manner, one map was derived for each of the N,  x Ny 
sub cluster^.^ 

The way in which we would use these maps for the dynamic 
programming (DP) search problem would be to search the 
centroids of the N, acoustic clusters for the one closest to 
a given acoustic vector. Then the Ny maps for the selected 
acoustic cluster are used to compute Ny mapped articulatory 
vectors, which are declared as possible candidates. 

To check on the feasibility of this method, Parthasarathy and 
Sondhi derived maps from training data T consisting of M = 
125000 pairs taken from one of our articulatory codebooks. 
They chose N, = 64, Ny = 4, N, x Ny = 256, Nb = 16. 
Euclidean distances were used, between acoustic vectors x 
of line spectral frequencies (LSF’s, also called line spectral 
pairs, LSP’s, derived from a tenth order LPC obtained from the 
tract’s impulse response associated with (7); for a definition 
of LSF’s see, e.g., [65]), and between (geometric) log area 
vectors y (20 areas from glottis to lips). To test the accuracy 
of their procedure, they generated 5000 test LSF vectors 
xl, 1 = 1, . . . ,5000 outside the training set. These vectors were 
chosen to reasonably cover the space of LSF vectors. Each 
test vector xl was mapped to NzI = 4 articulatory vectors 
ykl = g k ( X l ) , k  = l , . . . ,  Ny, by the procedure outlined 
above. For each mapped articulatory vector ykz, the LSF vector 
xkz was computed and compared to xl. For the closest of the 
Ny = 4 maps, the average spectral distortion was 0.33 dB.6. 
The average distance for the second best choice was 1.06 dB. 
Thus if the correct map is selected by the DP-algorithm then 
the mapping procedure outlined above can provide an accurate 
transformation from the spectral to the articulatory domain. 

A modification of the basis-function approach was intro- 
duced by Atal and Rioul [66]. Instead of adapting the basis 
functions to the training set, those authors used a large number 
of random basis functions. This approach has the benefit of 
being very robust against changes in the training set. As will 
be detailed below, it also has the advantage of requiring only 
the solution of a linear system of equations for the weights 
in this network of basis functions. In the following, we will 
summarize Atal and Rioul’s work. 

Atal and Rioul redefined 2k in (18) to be 

xk > l < k < n ,  
2k = { 4i T i j x j  + e;>, i = k - n,, 72, < k N, * 

(24) 
Here, N ,  = n, + Nb, where Nb is the number of nonlinear 
functions 4i. The coefficients ~ i j ,  1 < i 5 Nb, 1 5 j 5 n, 
and B i ,  are random numbers distributed uniformly between 

5Note that if the shapes of the basis functions are fixed, that is, if (Dt,p;) 
are specified U priori, then A and the vector a; can be obtained by just a 
matrix inversion analogous to the one in (26) below. 

6The stated average distortion was computed from LPC-spectra (order 
p = 10). Note that a spectral distortion of less than about 1 dB is considered 
inaudible. 

Jaw angle 
Tongue center z 
Tongue center y 
Tongue tip z 
Tongue tip y 
Lip position z 
Lip position y 
Hyoid position z 
Hyoid position y 

0.29-0.36 rad 
6.0-8.5 cm 
3.7-6.3 cm 

7.5-13.0 cm 
2.0-5.5 cm 
0.2-1.2 cm 

-0.05-0.4 cm 
6.1-6.4 cm 
8.45-9.0 cm 

0.035 rad (2 deg) 
2.0 mm 
3.0 mm 
10.0 mm 
15.0 mm 
3.0 mm 
1.6 mm 
1.4 mm 
2.1 mm 

-1 and +l. For simplicity, Atal and Rioul chose the nonlinear 
functions 4i to be identical for all i 

1 - exp(-z) 
1 + exp(-z) 

- I =  2 
1 + exp( - z )  4 i ( Z )  = 4(z) = 

= tan h(z/2). (25) 

Note that (25) is a scaled and shifted version of the so-called 
sigmoid function $ ( z )  = [l + exp(-z)]-’ used in neural 
 network^.^ Note also that (19) can be rewritten as y = Wu 
with U = (l,xl,...,x~=,~~=+~,...,~~~)’ an ( N ,  + 1)- 
dimensional known input vector and W an ny x ( N ,  + 1) 
matrix of unknown coefficients. Given a large number of 
pairs of training vectors (x l , y l ) ,  1 = 1, ... , M ,  an error 
analogous to that of (23) may be defined. Minimization of 
this error leads to a system of linear equations which always 
has a unique solution obtained directly by inverting a positive 
definite symmetric matrix UU’ in 

w = yu’(uu’)-l (26) 

where the columns of the (nY x M )  matrix Y and those of 
the ( N ,  + 1) x M matrix U are, respectively, the y and 
U vectors of the training set T containing pairs of vectors 

For training and testing, Atal and Rioul used one of our 
articulatory codebooks (derived using the root-shape interpo- 
lation method and the Mermelstein articulatory model; see 
Section 111-A) containing 10 182 nonnasal shapes. Half of the 
codebook was used for training, the other half was used for 
testing. As in [62], LSF’s were used as acoustic vectors x. 
LSF’s and articulatory parameters were scaled to lie between 
-1 and +l. The number of random basis functions was 
chosen 500 5 Nb 5 1000. In this “synthetic” test (no 
real speech used), different articulatory parameters showed 
different degrees of accuracy. The results are listed in Table I. 
Note that the vertical (y) coordinate of the tongue tip showed 
a maximum error of 15 mm. In the acoustic space, comparing 
the test set’s acoustic results with the original, 83% of the 
estimated tract shapes had less than 4 dB spectral error. Note 
that this spectral distortion is much worse than the result 
reported above for Parthasarathy ’s and Sondhi’s experiment. 

In another experiment using LSF’s obtained from 5000 
speech frames for training and another loo0 for testing, results 

7Digital signal processing experts realize the similarity of this equation to 
the bilinear transform (e.g., [49], p. 207). 

( W , Y z ) , ~  = l , . . . , M .  

, 
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Fig. 9. Relative error E versus the number of nonlinear nodes Nb. Dotted: 
back propagation with linear part; solid: random basis functions including 
linear terms; dashed random basis functions excluding linear terms. 

from the random basis function method were compared to 
those of the “more traditional” back-propagation algorithm 
(started from a random set of weights; see next section of 
this paper) on networks of identical topology. In Fig. 9, the 
relative error E ( d m )  (E being the expectation operator; 
e from (23) with m = M) is plotted against the number of 
nonlinear nodes Nb (in the “hidden”, intermediate layer). Not 
surprisingly, it was found that the back-propagation algorithm 
is slower by 2 to 3 orders of magnitude. Therefore, no 
comparison was done for Nb > 20. As can be seen from Fig. 9, 
the back-propagation performed worse than the random basis 
function approach. Finally, note that for Nb large enough, the 
linear part of the mapping can be approximated quite well 
even without including the linear term in (24). 

Neural Networks Employing Multilayer Perceptrons (MLP’s) 
Multilayer perceptrons (MLP’s) have become the workhorse 
of the neural network community. This is also true of the appli- 
cation of neural networks to the vocal-tract inference problem. 
Therefore, this subsection will focus-with one exception (i.e., 
the work done at the 3rd Physical Institute in Gottingen, 
FRG)-on MLP’s. Instead of rehashing the basic principles 
of this kind of network, we refer the reader to the excellent 
tutorials by Lippmann [67] and by Hush and Home [61]. 

As an introduction, let us mention the work of Soquet et 
al. [68]. These authors used a 1-hidden-layer MLP (with ten 
units in the hidden layer) to estimate 30 tract areas given target 
values for the lowest three formant frequencies of 11 French 
vowels. Note that, for reasons stated in Sections II-C and IV-A, 
three formant frequencies are not enough to uniquely identify 
the tract area function. Hence, the vocal-tract was constrained 
to have a constant volume of 85 cm3 and also to have specific 
geometrical symmetries. In addition, the objective function 
contained a term that penalized tract shapes that were spatially 
rough. Note that we, too, found this necessary when optimizing 
tract areas directly [26]. 

Shirai and Kobayashi [69] reported on using a 2-hidden- 
layer MLP to estimate articulatory parameters from voiced 
speech. Their MLP consisted of a 12-node input layer (for 12 
LPC-derived cepstral coefficients), two 24-node hidden layers, 
and a four-node output layer providing parameters for their 
articulatory model (tongue center, tongue height, jaw opening, 
and lip rounding). The total number of weights in the network 
was 960. The network was trained on 250 speech segments 
from one male talker (50 segments for each of the five 
Japanese vowels /a/,  /U, /U/, /e/, and /o/ spoken without pauses 
in between; a total of 2778 speech frames). Then, using their 

existing speech mimic, they estimated articulatory parameter 
tracks including all inter-vocalic glides. These parameter tracks 
were finally used in training the network. The test data 
consisted of 5094 speech frames outside the training set. The 
normalized error8 was 0.059 on the training set (averaged over 
the 5 vowels), and 0.051 on the testing set for /a/, /e/, and lo/. 
For the other two vowels, the averaged error was 0.163. Shirai 
and Kobayashi attributed this finding to a problem in their 
existing speech mimic rather than to the neural network. More 
interesting, however, is the finding that the neural network took 
less than 10% of the computer time for estimating articulatory 
parameters than did their (nonneural net) speech mimic. 

Papcun et al. [28] avoided the use of a mimic by em- 
ploying geometric data acquired by X-ray microbeam. Three 
male students provided this data together with their speech. 
Articulator positions were acquired from pellets at the middle 
of the lower lip, at the midline of each subject’s tongue 
at distances of 10 and 60 mm from the tongue tip. Only 
the vertical movements of these pellets were reported in the 
paper. (Note Moller’s conjecture about the higher difficulty 
of estimating horizontal pellet movements at the end of 
Section IV-D- 1 .) Utterances consisted of identical consonant- 
vowel utterances CoCoCaCoCo where a is the first vowel in 
“above”. Each utterance contained one consonant drawn from 
either /t,l,p/, /d,v,j/ , /g,b,W (/W as in “ ~ ” ) ,  or / k m /  (131 as 
in “measure”). Frames of 15.98 ms and a frame shift of 50% 
were used. Sixteen Bark-scale (i.e., auditory-filter) spectral 
components between 200 Hz and about 4 kJ3z represented 
the acoustics. Inputs were scaled to lie in the range 0 to 1. 
Pellet data were scaled to lie between 0.1 and 0.9. A separate 
network was trained for each of the three pellets. All three 
networks had the same structure. Different from Shirai and 
Kobayashi (and from Moller [57]), Papcun et al. combined 
data from 25 frames consecutive in time (covering a total time 
span of 207.74 ms) to form one input vector (the authors called 
this a “context frame”). Each network consisted of 400 input 
nodes (25 frames times 16 spectral values), two hidden layers 
of 8 units each, and one output unit. The standard sigmoid 
nonlinearity was used. In addition, output vectors in the testing 
phase were smoothed over a 10-frame window (20 frames in 
training). Only every fourth input/output vector pair was used 
for training which was done by standard backpropagation (see, 
e.g., [61], p. 13) with a momentum term weighted by 0.3. 

For evaluation, Papcun et al. [28] used two traditional 
measures: rms-error and Pearson product-moment correlation. 
The rms-error reflects the overall distance between estimated 
trajectories and measured ones. Correlation compares the 
similarity of the shapes of these trajectories (i.e., whether both 
rise or fall in synchrony), discarding magnitude altogether. 
The highest correlations (>0.88) were found for the “critical” 
articulators (i.e., lower lip for the bilabials /p/ and /b/, the 
tongue tip for the alveolars /t/ and Id/, and the tongue dorsum 
for the velars /k/ and /&, while the “noncritical” articulators 
showed correlations as low as 0.19. Surprisingly, the authors 
found that the rms-error was usually higher for the critical 
articulator than for the two others (with the exception of the 

estimation error of the articulatory parameters. 
8Note that this error is not a recognition error for vowels but the average 

, 
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/do. After renormalizing the pellet coordinates individually 
for each dimension instead of normalizing across all pellets, 
this anomaly vanished. This means that the greater range 
of the critical articulator was the reason for this effect. In 
addition to rms-error and correlation, Papcun et al. used the 
“gesture recognition error rate” of a template-based recognizer 
as a more global measure of performance. Articulatory tem- 
plates were extracted from the release of the /C3/ syllables. 
Five repetitions and speech of three talkers each using two 
voicing conditions (thus producing a total of 30 syllables) 
were averaged for obtaining the nine templates (3 consonant 
categories times 3 pellets). In testing, the template that resulted 
in the lowest rms-error was selected as the best match. All 
but one out of 90 gestures in the test set were correctly 
recognized. Worse results were obtained using more stringent 
testing schemes. 

In Gottingen [70]-[72], researchers devised competitive 
networks using the “counter-propagation’’ (CP) method of 
Hecht-Nielsen [73]. According to the authors, this method 
has the advantage of allowing tradeoffs between errors made 
in the geometric vs. errors made in the acoustic domain. 
In CP-networks, an intermediate layer of cells represents 
classes of input and output variables in the sense of (self- 
organized) vector quantization (VQ) of the one- or even 
bi-directional mapping. The network topology is symmetric, 
leading to two combined input/output (i/o) layers (one for 
each domain, acoustic and articulatory). The intermediate layer 
forms clusters of training pairs (x, y) using a winner-take-all 
strategy. 

Let LX be the i/o-layer for the acoustic domain and let L y  
be the i/o-layer for the geometric domain. Furthermore, let 
us denote the intermediate layer as LVQ. Different from [73] 
where scalar products were maximized (requiring normalized 
training pattems), and similar to our basis function networks 
(Section IV-D-2), Strube and colleagues minimized Euclidean 
distances during training of their network as follows: 

Step 1: Let v; = (vi,..., wf,) be the weight vector 
connecting the i/o-layer L with LVQ. Similarly, let w; = 
(wf , . . . , wk, )be the weight vector connecting the i/o-layer 
L y  with LVQ. For every vector pair (xl,yl) in the training 
set, select a winner node i = i* using 

i* = arg minig[l,n”q] [T II Xl - vi 1 1 2  
+ (1 - T )  1 1  YI - wi 1 1 2 ]  , O  I T I 1. (27) 

Here T is a parameter determining the relative influence of both 
domains, acoustic and articulatory, respectively, and nvQ is 
the number of nodes in LVQ 

Step 2: Adapt the weights Avp = a(t)(x; - vp),  Awp = 
a(t)(y;  - wp). Learning parameter a(t)  decreases with iter- 
ation number t ,  as is done in the classic stochastic approxima- 
tion algorithm of Robbins and Monro [74]. 

Step 3: To generate articulatory output vectors, optional, 
so-called “outstar”, weights U between LVQ and Ly  can 
be adapted using Aur = P(t)(yl - U:). (Alternatively, the 
w’s could be used.) Again, p(t) is a learning parameter that 
decreases with time. The advantage of using outstar weights is 
to “decouple” the selection of the winner node (27) from the 

generation of output vectors. Note that to estimate articulatory 
parameters from input speech, no outstar weights are needed 
between LVQ and L x .  

For training, steps 1-3 are repeated many times over the 
total set of acoustic/articulatory vector pairs. For testing, 
one presents only the acoustic “key” x to the network. The 
winner node i* minimizing IIx - viJI2 is identified and the 
corresponding “centroid” up is returned as the output. It is 
obvious that for estimating articulatory from given acoustic 
vectors in training step 1, T should be close to unity. For T = 1 
we minimize the quantization error in the acoustic domain. 
The following idea, however, justifies T < 1. In cases where 
multiple y’s exist for any given x, a network trained with T = 1 
would cluster all corresponding y’s into one cluster producing, 
in testing, an estimate U;. that is close to the average y of 
all y’s seen in training. However, if T < 1 during training, a 
vector pair (XI, yl) will update only the centroid v:., in effect, 
creating a bias towards the one that is closest to yl. 

In their work, Strube and colleagues used an 11-parameter 
articulatory model [71] which is similar to the ones created 
by Mermelstein or by Coker (see Section 111-A). The acoustic 
vectors were composed of 12 LPC-PARCOR coefficients [53] 
that were obtained from 30 ms long synthetic speech frames 
(Hamming windowed) with a frame shift of 2.5 ms. Networks 
with up to 800 nodes in LVQ were tried. The parameter T was 
chosen to be 0.85. Output vector components were median- 
filtered with a window of 13 samples (corresponding to a time 
frame of 13 times 2.5 ms = 32.5 ms). Due to the VQ-nature 
of the network, output errors tend to manifest themselves by 
discontinuities (going from one cluster to another) instead of 
the more “noise-like’’ errors seen in the work of, for example, 
Moller [5619. Most recently [75], the group in Gottingen 
adapted our work on DP-based mappings [52,77] which led 
to much smoother results (in terms of articulatory parameter 
trajectories and also in terms of quality of the re-synthesized 
speech). Also, they replaced the PARCOR coefficients by 
Bark-scale power spectra raised to an exponent smaller than 
one. 

Several altematives were tried for training the network. The 
instantaneous adaptation described above leads, for large a, to 
what the authors call “dynamic” adaptation. This means that 
the same node in LVQ gets adapted all the time because, for 
speech, the current input pair of vectors is likely to be close to 
the previous one. For small a, the convergence is very slow. 
The problem can be solved by the following procedure [75]. 
For each speech frame, sort the nodes in LVQ with respect 
to how well they match the acoustics of the current speech 
frame. Then adapt all nodes in LVQ according to their rank, 
that is, make a(t)  and P ( t )  (see step 2 above) for each node 
depend on a linear combination of acoustic and articulatory 
distances. This way, for each frame the best node is updated 
the most, followed by the second best node, etc. In addition, as 
time t (i.e., the number of iterations) increases, the algorithm 
is made to focus more on the best nodes. This leads to the 
advantage that, in the beginning, all nodes learn, but as time 
progresses the tendency is for only the best node to be adapted. 

as described in [73]. 
9This could be alleviated by using the interpolation mode of the CP-network 
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Consequently, all nodes of the network move quickly in the 
beginning to cover the relevant sub-space. Over time, however, 
more and more specialization of each node occurs. This idea 
is based on the “Neural-Gas” algorithm [76]. 

The end result of training a CP-network is a codebook of 
(x,y) pairs much like the ones described in Section IV-B. 
It remains to be seen what advantages result from using this 
particular training procedure. 

Rahim er al. [77] used a wave-digital filter articulatory syn- 
thesizer (see introduction 111) to explore the use of MLP’s for 
speech mimicking. To overcome the fundamental nonunique- 
ness of the acoustic-to-articulatory mapping, the authors ap- 
plied the concept of dynamic programming (Section IV-C) 
to training and accessing an assembly of competing map- 
pings (an idea that came out of Parthasarathy’s and Sondhi’s 
work; see Section IV-D-2). This method has the advantage 
of maintaining the inherent nonuniqueness of the mapping 
while allowing for smooth transitions from one MLP to the 
next. Mermelstein’s articulatory model was used with the tract 
length fixed at 17.5 cm.’O The networks, initially trained on 
one of our Mermelstein codebooks of 75,238 tract shapes, 
were further trained (“bootstrapped”) on 20 minutes of voiced 
speech from male talkers.” The acoustic vector x consisted 
of 18 FFT-derived cepstral coefficients, liftered by the Juang 
lifter [78]. Ten log areas represented the tract shapes y. 

Slightly different from Parthasarathy and Sondhi in Section 
IV-D-2, Rahim er al. used N, = 32, (and again), resulting in 
a total number of clusters N, NzI = 128. For comparison, a 
single MLP was trained with two hidden layers of 140 and 60 
nodes, respectively. The 128 competing MLP’s all had only a 
single hidden layer of 26 nodes. 

Fig. 10 shows the concept of using dynamic programming 
for deciding which network to employ for any given speech 
frame. (This figure is analogous to Fig. 2.) DP-access to the 
assembly of MLP’s can easily be done after the networks are 
trained. During training, however, the problem is more diffi- 
cult. How do we select which network should be adjusted for 
a given speech frame? Rahim er al. tried several approaches, 
among them adjusting networks along the optimal DP-path, 
and adjusting the top N acoustic matches only. The latter 
algorithm tumed out to be better, possibly due to the “dynamic 
allocation” problem noted by Strube and colleagues (the same 
mapping used for the previous speech frame tends to be chosen 
also for the current frame; see above) ; N was chosen to be 
6. Consequently, it is noteworthy that re-training the networks 
on 20 minutes of natural speech improved the quality of the 
synthetic speech most dramatically for the single MLP (by 
about 1 dB in spectral distortion), and to a much lesser extent 
(about 0.4 dB) for the assembly of MLP’s. The final result 
was a spectral distortion of 1.9 dB (averaged over three voiced 
test sentences). Note that this number cannot be compared, for 
example, to Parthasarathy’s and Sondhi’s results because those 
numbers were not obtained on real speech data. 

Figs. 11-14 show, respectively, the original speech, syn- 
thetic speech from DP-codebook access, synthetic speech from 

“Note that the fixed tract length is required by the WDF-synthesizer. 
“Silent and unvoiced portions had been excluded from the training 

database. 
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Fig. 10. Extension of the dynamic programming concept introduced in Fig. 2. 
Here we use multilayer percept” instead of articulatory codebook entries. 
Shown is a trellis outlining a possible path (large white armws). N is the 
number of h4LP’s competing with each other. 

the single MLP, and synthetic speech from the assembly 
of neural networks. The WDF-synthesizer was used for all 
synthetic speech. Single MLP and assembly of MLP’s had 
been trained on (other) natural speech before seeing this 
sentence for the first time. Note that energy of synthetic and 
original speech was not matched, resulting in some obvious 
errors in amplitudes. Synthesis was done pitch-synchronously 
using a preset glottal excitation waveform. Output vectors y 
were median-filtered over five pitch epochs. 

Although the assembly of MLP’s clearly outperformed the 
single MLP, and also showed a lower distortion compared 
to the codebook-lookup, the figures clearly show some weak- 
nesses. First, the traces of the third and fourth formants are less 
smooth for the networks compared to the codebook, implying 
tract areas that were rougher in a spatial sense (glottis to lips). 
This could be due to the fact that log areas were adapted 
instead of parameters of the articulatory model and/or due to 
the fact that no spatial smoothness measure was applied (for 
such a measure see, e.g., [79]). Second, the WDF-synthesizer 
is lacking the capability of lengthening the vocal tract when 
necessary. This is the case for the /r/ (all formant frequencies 
low at about 1.4 s into the utterance). Also, the representation 
of losses in the vocal tract was inadequate. Finally, note the 
fact that the networks went through a phase of training on 
natural speech while the codebook did not. However, the 
assembly of networks is computationally more efficient than 
the codebook-lookup: it used only about 4% of the memory 
and 5% of computation time. It also could be bootstrapped 
from speech, while doing the same for a large articulatory 
codebook is much more laborious. 

v. SUMMARY AND CONCLUSION 

In this paper we have reviewed techniques available for 
inferring the shape of the vocal tract from the speech signal. 
The paper is aimed at readers interested in applying neural 
network methods to problems in the analysis and synthesis of 
speech. 

After a discussion of the fundamentals of sound propagation 
in the vocal tract, we briefly mentioned the direct and inverse 
problems for the vocal tract, and indicated how to implement 
an articulatory synthesizer. The discussion led to the important 
topic of the nonuniqueness of the acoustic-to-articulatory 

, 
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Fig. 11 

Fig. 12. Wavef 

Tim: 1.m Frq: 0.00 V.lU0: 12 D: 1.79200 1: 0.Wma R: 1.79200 (F: 0 . 5 6 )  

I. Waveform and wideband spectrogram of the original sentence "Why were you away a year, Roy?" spoken by a male talker. 

o m  and wideband spectrogram of same sentence synthesized from tract shapes retrieved from articulatory codebook using dynamic 
programming. Avg. distortion=2.03 dB. 

domain mapping. We saw that the acoustic input impedance of 
the tract uniquely specifies the area function while the transfer 
function does not. We defined two kinds of nonuniqueness. The 
first kind is due to the fact that different tract shapes may have 
(almost) the same transfer function. The second kind arises 
from the fact that the same speech spectrum may be produced 
by two different tract shapes with appropriately selected inputs 
at the glottis (vocal cords). Both types of nonuniqueness have 
to be dealt with in an articulatory analysis/synthesis system. 

The discussion of vocal tract fundamentals was followed 
by a review of work done over the past 20 years on acoustic- 
to-articulatory mappings. This includes work on articulatory 
codebooks, which are point-to-point mappings, as well as work 
on sets of parametric mappings, each covering a region of the 

acoustic space. The latter category includes mappings derived 
by nonlinear regression, expansions in terms of trained and 
randomly selected basis functions, multilayer perceptrons and 
counter propagation neural networks. In all these methods, 
the nonuniqueness is resolved by demanding temporal conti- 
nuity. Optimal paths satisfying continuity constraints may be 
efficiently found by dynamic programming. 

An important idea for alleviating the ambiguities in 
acoustic-to-articulatory mappings is the use of local (one 
for a subset of speech sounds), as opposed to global (one 
for all speech sounds) mappings. The acoustic-to-articulatory 
mapping is well-behaved only locally. Note, however, that the 
neighborhoods for the local mappings have to be determined 
carefully. 
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Fig. 13. Same for single MLP trained on natural speech. Avg. distortion=2.82 dB. 

, 

Fig. 14. Same for DP-accessed assembly of neural networks trained on natural speech. Avg. distortion=1.98 dB. 

For the mapping problem the following challenges remain. 
So far, no one has successfully derived acoustic-to-articulatory 
mappings for all classes of speech sounds. Adequate mappings 
exist for small subsets, for example, for voiced speech only, or 
for "simple" consonant-vowel transitions. No good mappings 
exist at the present time for fricatives, stops, and nasals. For 
use of the articulatory approach in speech synthesis, recogni- 
tion and coding, the mapping procedure must accommodate a 
variety of speaking styles, talkers and recording environments. 
It also has to include the effects of articulatory gestures related 
to the excitation (e.g., voiced, unvoiced, and transitions from 
one to the other). It seems to be highly desirable to develop 
approaches for estimating the parameters of a glottal model 

from the speech signal, in ways similar to the ones outlined in 
this paper for the vocal tract. For estimating the vocal tract and 
the control parameters of a nontrivial glottal model, we will 
encounter even more severe ambiguities than for estimating 
the vocal tract alone. 

Concerning the applicability of neural networks to the 
mapping problem, it should be apparent from our discussion 
in Section IV-D that no clear advantage has so far been shown 
for them compared to other approaches. Vector quantization or 
optimization of expansions in terms of basis functions usually 
give better mappings than those derived by neural networks. 
However, neural networks and expansions in terms of basis 
functions might have an advantage in computational speed. 
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It remains to be seen if novel and improved applications of 
provide significantly better mappings 

than the other approaches. 

[26] J. Schroeter, J. N. Larar, and S. Parthasarathy, “Vocal-Tract Areas versus 
Articulatory Parameters in Speech Production Modeling,” J. Acoust. Soc. 
Am., vol. 84, suppl. 1, S127. 
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