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A numerical solution of the Kirchhoff equation for the propagation constant of longitudinal sound waves in 
infinitely long cylindrical tubes has been ol)laiued. The solution. which avokls the wide-tube approxima- 
tions, shuws that the percentage errors in the xmn Helmholtz Kirchhoff tube velocity correction and tube 
absorption are buth roughly equal to the percentage the velocity correction is of the free-space velocity. The 
error in the yon Helmhohz-KirchholI equations can he plotted as a function of fD/a, pD/•a, and •. (f is 
the sound frequency, D the tuhe diameter. a the free-space velocity, p the gas pressure, • the viscosity, and 
• the ratio of specific heats.) Recent ahsorption meaqurements in Ar are in agreement with values calculated 
numerically, lint measured velocities indicate the need for considering molecular slip at the tuhe wall. 
Thermal relaxation is introduced into Kirchhoff's basic equation by using the Eucken relation k/c• 
- (% 5)/4 and considering • to be the ratio of complex relaxing specific heats. Viscnthermal and relaxa- 
tion effects are found to be additive only if the frequency is near the cutoff frequency for the first unsym- 
metric mode and the f/p values do not extend to the megacycle/second atmospheres range. 

INTRODUCTION 

HE classical equations for sound absorption and 
velocity developed by Kirchhoff x in 1868 have 

often been used without regard for either the boundary 
conditions or the mathenmtical approximations that 
limit their applicability and accuracy. For this reason, 
many hours have been needlessly spent looking for 
explanations of discrepancies between experilnental re- 
sults and the equations. This paper presents the results 
of a numerical solution of the exact equation for the 
propagation constant. Accurate values of the absorption 
•tnd velocity of sound have been calculated for radially 

symmetric waves propagated through gases enclosed in 
rigid-walled cylindrical tubes. The results cover wide 
ranges of frequency, pressure, and tube radius. The 
effect of therlnal relaxation is incorporated directly into 
the solution for the first time. Results of the numerical 

solution are then compared with the approximate 
solutions of Kirchhoff t and with some recent experi- 
mental measurements. 

I. KIRCHHOFF EQUATION 

Beginning with the conservatkm equations for mass, 
energy', and montentum (the last two containing the 

• (;. Kirchhoff, Ann. Phys. Leipzig 13-i, 177-193 (1868). 

effects of thermal conductivity and viscosity), Kirchhoff 
obtained an algebraic equation for the propagation 
constant m for radially swnmetric waves. He did this 

bv assunfing the boundary- conditions of zero particle 
velocity and sound-temperature at the tube wall. This 
important equation is reproduced by both Rayleigh • 
and \Veston? For the calculation presented here, it can 
be put in the form 

L k •i kX• XeiJoJ 

F/ h X 
+ (,,?-- X,) / / "----1 ('"-- X,)-•/ 

Lk X•/ J0•J 

where Xx and M are the small and large roots of the 
equation 

•,•-- [a•+/•(u+•'+ •)JX 
+ (•,q,) •+ •, G+/)•X • = 0, 

• I.ord Rayleigh, Theory •f Sound (Dover Publications, Inc., 
New York. 1945), 2nd ed., Vols. 1 and 2• Topic 350, p. 324. 

a D. E. XVe•ttm, Proc. Phys. Soc. (London) B66, 695-709 (1953). 
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and Ihc ß/l'S and ./o's :ire liessol fLIIl•'lions wilh 
ments of r(m•--h/#)I, r(m=_X0 i, and r(m'-'-a•)i for the 
unprimed, primed, and doubled-primed ratios, respec- 
tively. r is the tube radius; a is lhe adiabatic sound 
velocity, which is (RT•/M)I for an ideal gas; 
the i•lhermal sound velocity, -a/•l; h=io; • is 
v•scosity/densily; v=k/c,.p=•(9•--5)/4 (according to 
the Eucken equalion); k is Ihermal conduclivily; 
the specific heal at conslant volume; p is lhe dcnsily; 
and •=•/3 (according Io Ihe Slokes hypolhesis). 

The only approximation involved in Eq. (1} is Ihat 
of small amplitude waves. An acctmlle numerical solu- 
tion of Eq. (1), therefore, should give vahles of al)sorp- 
lion and velocity that are accurate even at extreme 
conditions of pressure, frequency, and lube radius where 
earlier approximate solulions fail. Furthermore, a 
comparison of lhc numerical solulion wilh experimenhd 
wtlues should indicale where such physical phenomena 
as slip at the tube wall become important. 

II. NUMERICA• SOLUTION FOR GASES WITHOUT 
RELAXATION 

Kirchhog's approximate solution of Eq. (1) (the 
wide-lube case) was obtained by including only the 
first term in the ratio of the Bessel functions and by 

approximating Xl, as h=/a • and X• as ha•/vb •. Thus, a• is 
real and X= is imaginary in this approximalion. His 
familiar expression for the amplitude absorplion coelli- 
cient (tube absorption) and sound vclocilv inside Ihe 
tube (mhe velocity) are given by 

and 

vt= a{ l--•'/[ (4v f ) Ir•}, (4) 

where T'=•+ (a b--b./a)%/v and f is the frequency. 
Because we will need to use it later, we define •vt as the 
fractional decrease in velocity predicted by this equa- 
lion. Thus, 

l:or want of a betlet expression, the total sound- 
absorption coetficicnt is generally taken lo be lhc sum 
of at and lhe classical free-space absorplion 
given by 

2•J'•F4 / I/• q 
(6) 

a :• L3 k aUi 

In Ar at 300øK, for example, with .f in kilocycles' 
second, p in millimeters of HE, and r in centimelers, 
lhese equations become 

a•- (0.2842/r) (J/p)I, 

- (o. 68O,/r) 
a,.• ,• = (0.OO128)f•,/p. 

in whal follows, we take the first approximalion of the 
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1:,;. 1. l"ractional error in lhe Kirchhoff tube velocit.v correctloft 
for an ideal gas with C•= 1 .SR. The ahscissa is the tube correction 
to lhc velocity divided by the free space velocit.v [Eq. (5)]. The 
ordinate is the vch,city calculated numerically minus the tube 
velocikv divided hv the tube correction to the velocit.v 

Constan! •requency times tube diameter divided by free 
space velocily. - - Constant pressure tinres tube diameter divided 
by viscerally timts free-space vcloCil.v. 

absorplion as tn,.l.•-a•+a,.l:,• and the first approxima- 
lion of the velocity to be i',. 

WesIon:' hasobtained more accuntte expressions for 
the absorption and velocity by including mote terms in 
the expansion of the Bessel functions. He obtained 
several equations for Ihe velocity and absorption, each 
of which is applicable over a limi{ed range of frequencies 
and lube radii. However, his approximatim•s also are 
inaccurate at low pressure. 

In the numerical solution that we have performed, 
both the real and imaginary parts of M and X• obtained 
from the solution of Eq. (2) are used. In this way, it is 
possihlc to include relaxation effects (see below)ß 
Equation (l) is then solved for m = by an iteration 
process. In the first approximation, the real part of m 
is set equal to a,.n,, and the ilnaginary part to •/z't. The 
value of m • Ihus obtained is substituted into the argu- 
ment of the Bessel function and in the radicals of Eq. 
(I). The equation •s then solved for a new value of m. 
In this process, the Bessel functions are evaluated to a 
minimum accunwy of 1 part in 10 • by the computer 
program. It should be noted in evaluating the Bessel 
functions that the desired square root is in the second 
quadrant of the complex plane for J and J" but in the 
first quadranl for J'. The new value of m thus obtained 
is substituted back into the equation and the iteration 
continued until the error in the absorption is less than 
0.5% and in the velocity is less than 0.01•. Iteration 
is not conlim•cd beyond this accuracy since Ihis is about 
the bcst that can be expecled from experimenlal 
measurements at the present ti•ne. The velocity and 
absorption coclhcicnls thus obtained arc labeled v and 
a in what follows. It is also ttseful to define dimensionless 
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l"m. 2. The fractional error in the Kirchhoff absorption coeffi- 
cient a•l, for a gas with C, = 1.SR. The ordinate is the absorption 
mlculated numerically minus att-la• divided by at•.,. [Eq. (91]. The 
other symbols are the same as in Fig. 1. 

2nd-order velocity anti absorption corrections I)v the 
following eqnations: 

= ½- vd / ,,) (8) 

(9) 

Thus, '&/ is the fractional error in the Kirchhoff 
velocity correction and -•a' is the fractional error in the 
absorption aaa,+a•. 

As is expected from a dilnensional amdysis of Eq. (1), 
&cd and Av' are found to be functions of the quautities 
fD/a, pD/rla, and 3` (D is the tube diameter and •/is the 
gas viscosity). This is shown in Figs. 1 and 2. These 
Figures are for an 3- gas with a specific heat at constant 
volume equal to 1.SR. Note that, in evaluating Eq. (1), 
k/eel has been set equal to (93,-5)/4. Thefamih' of 
solid curves in Figs. 1 and 2 is for values of constant 
fD/a, and the family of dotted curves is for values of 
constant pD/•a. The highest value of fD/a considered 
was 0.55 since the value corresponding to the cutoff 
frequency of the first unsymmetric mode is 0.586. The 
curves are not extended to values of frequency or 
pressure where the unsvmmetric modes might be 
present. Most experimental measurements at present 
are for pressures and tube diameters such that pD/rla is 
greater than 200. Equation (1) should hold to much 
lower pressures and tube diameters, however, and the 
correction factors have therefore been calculated and 

recorded for the extreme cases. The calculations were 

made using an IBM-1620 computer. 
In cases where pD/rla is greater than 200, the Kirch- 

hoff velocity correction is seen to be in error by about 
the same percentage that this correction is of the total 
velocity. That is, Av'=Av•. In this same region, the 
error in the absorption when figured as c•t-ka•n,, is from 
« to 2 times zlvt. Xote that Kirchhoff's velocity correc- 

lion is always loo large (giving velocities too small) but 
t he absorption calculated as a•+a,•.•, is always too small. 

Values of the absorption and velocity have also been 
calculated for gases with C,/R= 2.5, 3.5, and 5.5. The 
results are given in Table I, along with those for 
C,= 1.5R. To use this Table, one first calculates the 
absorption and velocity corrections using the Kirchhoff 
approximate equations [-Eqs. (3), (6), and (5)]. The 
error in these wdues can then be interpolated from the 
Table for the particular gas, frequency, and tube 
diameter desired. For example, for Ar at 300øK the 
ideal gas velocity is 32 260 cm/sec. Therefore, for a 
1-cm-diam tube with a sound frequency of 10 kc/sec 
and a gas pressure of 10 mm, fD/a=0.310 and 
vt=3.63/ø7 o [Eq. (7)3. From Table I or Fig. 1, the 
velocity calculated by the Kirchhoff approximation 
would •)e too small by approximately 0.1% or 32 era/sec. 
The absorption figured as a•+a•h• would be too low bv 
approximately 3.4/%. 

IlL COMPARISON WITH EXPERIMENTAL RESULTS 

Equation (1) assuntes that the particle-velocity 
profile across the tube is independent of axial distance 
down the tube. Therefore, neither the Kirchhoff tube 
absorption and velocity equations nor the numerical 
amdvsis that is reported here would be expected to 
apply to standing waves in short tubes or resommt 
cavities. It has been common practice, however, to try 
to apply Kirchhoff's equations to such situations by 
multiplying the right-hand side of Eqs. (3) and (5) by 
an empirical correction factor. ()n the other ham], 
experiments that avoid the end effects and relaxatio,t 
elYeels now find general agreement with the Kirchhoff 
tube velocity and absorption equations over the range 
of frequencies, pressures, and tube radii where they 
should apply. 4-• Chandler 'ø accounts for about « of the 
4% discrepancy in absorption values reported by 
Angona • by using more accurate values of physical 
constants in evaluating the Kirchhoff equations. This 
produces substantial agreement between the results of 
Angona and Shields and Lagemann, a both of whom used 
a method that avoids standing waves. The remaining 
small excess absorption reported in these two papers 
would be expected from the more accurate numerical 
anah'sis reported here. 

In the past, the effect of departures from the 
Kirchhoff wide-tube approximations have been tested 
bv making measurements at high frequencies in capil- 
lary tubes. The results generally are of the proper 
magnitude and sign to conlirm Westoh's a more accurate 

• F. D. Shields and R. T. Lagemann, J. Acoust. Soc. Am. 29, 
470-475 (1957). 

• F. A. Angona, J. Acoust. Soc. Am. 2S, 336(L) (1953). 
• R. D. Fay, J. Acoust. Soc. Am. 12, 62-67 (1940). 
; G. A. Norton, J. Acoust. Soc. lm. 7, 16-26 (1935). 
s W. P. Mason, Phys. Rev. 31, 283-295 (1928). 
a F. A. Angona, J. Acoust. Soc. Am. 25. 1111-1116 (1953). 
•a D. E. Chandler, Univ. Calif., Los Angeles, Phys. Dept. Tech. 

Rept. 11 ONR contract Nonr 233(48) 0958). 
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I. C• = 1.5R 

0.05 0.0487 0.0490 0.0497 0.0508 11.0529 0.0562 
0.10 0.0949 0.0961 0.0990 0.1047 0.1147 
0.15 0.1386 0.1414 0.1485 1/.1630 0.1891 
0.20 0.1804 0.1856 0.1993 0.2280 0.2798 
0.25 0.2214 0.2298 0.2522 0.3000 
0.30 0.2584 0.2709 0.3049 0.3787 
0.35 0.2884 0.3059 0.3547 0.4609 
0.40 0.3118 0.3353 0.44124 0.5476 

0.0316 0.0365 0.0462 0.0604 0.0787 0.1005 
0.0654 0.0753 11.0944 0.1214 0.1549 
0.1017 0.1164 0.1442 0.1821 0.2258 
0.1402 0.1595 0.1950 0.244)6 0.2869 
0.1843 0.2079 0.2492 0.2967 
0.2376 0.2646 0.3086 0.3493 
(}.2974 0.3267 0.3691 0.3915 
0.3592 0.3900 0.4262 0.418l 

11. C•- 2.5R 

0.05 0.0493 0.0498 0.0510 0.0530 0.0563 0.0614 
0.10 0.0970 0.0992 0.1043 0.1137 0.1297 
0.15 0.1433 0.1483 0.1605 0.1844 0.2263 
0.20 0.1904 0.1995 0.2227 0.2691 I}.3534 
0.25 0.2366 0.2512 0.2894 0.3684 
0.30 0.2716 0.2933 0.3516 0.4748 
0.35 0.2935 0.3239 0.41/77 0.5847 
0.40 0.3061 0.3464 0.4604 0.6998 

0.0528 0.0578 0.0675 l}.0815 0.0993 0.1204 
0.1091 0.1189 0.1377 0.1639 0.1953 
0.1687 0.1833 0.2102 0.2454 0.2830 
0.2328 0.2517 0.2848 0.3233 0.3545 
0.3128 0.3348 0.3701 0.4010 
0.4086 0.4319 0.4633 0.4719 
0.5095 0.5327 0.5534 0.5231 
0.6056 0.6282 11.6314 0.5460 

II1. C•- 3,5R 

0.05 0.0497 0.0504 0.0519 0.0545 0.0586 0.0647 
0.10 0.0988 0.1016 0.1080 0.1199 0.1398 
0.15 0,1472 0.1537 0.1692 0.1993 0.2514 
0.20 0.1993 0.2110 0.244)4 0.2991 0.4045 
0.25 0.2468 0.2656 0.3144 0.4149 
0.30 0.2770 0.3049 0.3796 0.5360 
0,35 0.2909 0.3296 0.4365 0.6605 
0.40 0.2953 0.3460 0.4900 0.7891 

0.0649 0.0698 0.0795 0.0933 0.1109 0.1314 
I).1342 0.1439 0.1624 0.1878 0.2176 
0.2076 0.2218 0.2477 0.2806 0.3137 
0.2893 0.3073 0.3380 0.3707 0.3907 
0.3953 0.4152 0.4446 0.4629 
0.5187 0.5381 0.5585 (}.5432 
0.6415 0.6591 0.6624 0.5945 
0.7533 0.7688 0.7465 0.6100 

IV. (;•, = 5.5R 

0.05 0.0503 0.0512 0.0530 0.0562 0.0612 0.0686 
0.10 0.1011 0.1046 0.1126 0.1272 I).1515 
0.15 0.1529 0.1610 0.1802 0.2175 0.2815 
0.20 0.2110 0.2257 0.2625 0.3355 0.4648 
0.25 02570 0.2807 0.3419 0.4678 
0,30 0.2786 0.3136 0.4074 0.(X124 
0.35 0.2822 0.3302 0.4633 0.7405 
0.44) 0.2777 0.3397 0.5168 0.8834 

0.0778 0.0827 11,0922 0.1058 0.1229 0,1427 
0,1613 0.1708 0.1887 0.2129 0.2407 
0.2497 0.2633 0.2876 0.3173 0.3446 
0.3545 0.3710 0.3977 0,4223 0,4281 
0.4923 0.5086 0,5293 0,5301 
0.6438 0.6573 0.6624 0.6168 
I).7865 0.7961 0.7762 0.6634 
0.9105 0.9160 0.8617 0.6653 

equations, which include terms so as to apply to this Shown also in Fig. 3 are the wdues of 
case.• •a Very few meastlrcments have been made at [L is seen that the numerical calculation does account 
low pressures where the corrections given in Table I for the departure of •he measured points from the 
become appreciable. We therefore have performed some at+atlas line. The measured velocities are seen in Fig. 4 
measurements for this purpose. The method was to be considerably larger than the robe velocity cu•e 
essentially the same as that previously described 4 but at low pressures. The numerical analysis gives values 
employs a tube about one-half as big (0.785 cm diam). that are somewhat better but still too lmv. The remain- 
As before, reflections within the sound tube are kept to ing discrepancy can be accounted for by assuming a 
a minimum so as to avoid standing waves. The results molecular slip at the tube wall. Henry u has considered 
of the absorption and velocity measurements in Ar are the elYcots of molecular slip on Kirchhoff's equation and 
shown in Figs. 3 and 4, respectively. For these measure- finds that it produces a negligible efi'ect on the absorp- 
men(s, the frequency was maintained at 16.9 kc/sec (ion but adds a small term to the velocity. The velocity- 
and the pressure varied from 603 to 3.5 mm Hg. The slip correction that he develops is given bv 
circles in the t"igures are the experimental points. 

,t D. E. Weston and I.D. Campl,ell, Proc. Phys. S,)c. (London) •?•= wIa•,[ )/(2•)•r p+ (2wzp_/,) , , 11111 
B66, 769-774 119531. 

• l,. E. Lawlev, Proc. l'hys. Soc. (I,ondon) B65, 181 188 119521. 
la G. T. Keml• and A. W. Nolle, J. Acoust. Soc. Am. 25, 1083 

1086 119531. t• l'. S. H. Henry, Proc. Phys. Soc. (l,ondon) 43,340-363 (,19311. 
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Fie.. 3. Sound absorption in Ar(25.6øC). The measurements 
shown by the open circles were made at 16.9 kc/sec inside a tube 
0.785 cm in diameter. --- Tube absorption ce• [Eq. (3)]. --- 
Tube absorption plus the classical absorption [Eq. (6)]. 
Results oi the numerical calculation. 

where g is the fraction of molecules diffuseIx- reflected 
from the surface and will be taken to be unity. When 

this term is added to the velocity, v, calculated by the 
numerical amtlysis, an acceptable fit to the experimental 
points is obtained as seen in Fig. 4. 

IV. INTRODUCTION OF THERMAL RELAXATION 

Experimentalists have generally assumed, without 
proof, that the viscothermal and relaxation effects on 
the absorption and velocity are additive. Thus, it is 
common practice to obtain the relaxation absorption 
oe• by subtracting oetd• from the measured absorption, 
and to obtain the free-space relaxation velocity by 
adding the tube correction to the measured velocity2 a 
It is possible to check this assumption with the numeri- 
cal solution discussed above if we can incorpontte the 
relaxation phenomena into Eq. (1). This we have done 
by first replacing k/con with the Eucken expression 
(9•--5)/4 and then using the complex, relaxing specific 
heat to obtain •,. This complex specific heat is obtained 
from the ustml equation, 

C•=C•+C•/ (l + icor). (11) 

C•o and C• are, respectively, the nonlagging and lagging 
parts of the specific heat. 

In Eq. (1), v now becomes a complex quantity with 
an appreciable imaginary part. This augments the 
imaginary part of X•, and Xz and results in an increased 
absorption and dispersion. 

The results of such numerical calculations using CO• 
as an example illustrate the magnitude of the error to 
be expected when the absorption is calculated as 
a•l,,•q-a•. For a 1-cm-diam tube, a frequency of 8 kc/sec 
(fD/a=0.3), and assuming the maximum relaxation 
absorption to fall at 30 kc/sec/atm, the numerical 
solution gives values that are less than atda•q-a•. by 
only 0.5%, 0.9%, and 0.6% for f/p values of 10, 30, and 
100 kc/sec/atm, respectively. If the absorption peak is 

• F. D. Shields, J. Acoust. Soc. Am. 29, 450-454 (1957). 

shifted to 3(1(I kc/sec/atm, the correspunding errors at 
100, 300, and lll0(I kc/scc/atm are 0.6%, 1.2%, and 
1.1•. If the peak were at 3 Mc/sec/atm, it would be 
necessary to make the measurements at pressures of 
6.2 and 0.6 mm Hg to span the absorption peak as 
before, and would therefore push the tube method to its 
present limit. In this case, c•t•.•4-c• would again be too 
big by 1.1•o , 1.9•o , and 9.9•o. 

If we look at the corresponding differences between 
the velocity obtained from the numerical solution and 
that obtained by adding the tube and relaxation dis- 
persion, we find the numerical values of the velocity 
larger by ().02c•o, 0.05%, and 0.01•o for the case where 
(f/p) max is 30 kc/sec/atm, 0.02%, 0.04%, and 0.06% 
for (f/p)max=300 kc/sec/atm, and 0.06%, (I.19%, 
0.91(37o for (f/p) max= 3 Mc/sec/atm. 

Thus, for a value of (fD/a)=0.3, me numerical 
values differ only slightly froin vaines obtained in the 
usual way by adding viscothermal and relaxation effects. 
()nlv at low presstires is the difference much greater than 
the usual experimental error. Since the addition method 
also has been fi)und to give values in agreement with 
experiment, we can conclude that the method used to 
incorporate relaxation effects into Eq. (1) is legitimate 
and that/e/col can be set equal to (93,--5)/4, even in the 
case of a relaxing gas if the complex ? is used. 

The error in the absorption when calculated as 
ott½l.•-{-otr is highly frequency-dependent. As far as the 
rdaxation effects are concerned, the absorption and 
velocity should be the same at low frequencies and low 
presstires as at high frequencies and high presstires, 
since the relaxation phenomena is a function of f/p. 
However, the numerical calculation shows significant 
departtires of a from atd,•sq-a• as the frequency and 

320 - 

318 -- 

314 

.02 .04 .(36 .OO .10 .12 

( KC/sec )-v•. (mm Hq• i/• 

Fit;. 4. Velocity o[ sound in Ar(25.6øC). The measurements, as 
in Fig. 3, are shown by open circles. - - - Kirchhoff tube velocity 
[Eq. (4)-].---Result of the numerical calculation. ---- 
merical solution plus the slip correction [Eq. (10)]. 
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pressure arc lowered keeping .[/p constant. Starting 
near the cutoff frequency for the unsvmmetric mode, 
is only slightly smaller than ata:,•+a• bul it gels 
significantly larger than a,.•:•+• as the frequency is 
lowered. For a 1-cm-diam tube and a gas like CO•, for 
example, with an absorption peak at 300 kc,'sec/atm, 
the percentage differences between t• and a,,4.,•+a• are 
-0.8, --1.2, --0.7, +1.7, +8.3, and +26 as lhc fre- 
quency takes the values 16, 8, 4, 2, 1, and 0.5 kc/sec 
while maintaining f/p al Ihc peak value of 300 
kr/sec ,tlm. 

A similar freqoency dependence is foond for the 
vclocily error. At the same frequencies as in the above 
example, v is greater than v, by 0.05%, 0.05c•., 0.O8%, 
0.03•[., 1.55{. , and 

V. CONCLUSIONS 

Kirchhoff's tube absorption and velocity equations 
have been found to be in error b 3 a percentage roughly 
eqmd to the percentage the tube correction is of thc 
veloci W. A numerical solution to Kirchhoff's basic 
equation for the propagatitm constant shows the correc- 

lions to his approximate equations to be functions of 
fD/a, pD/•la, and % Recent absorption measurements 
in At, using a tube 0.785 cm in diameter are in agree- 
ment with the values obtained by the numerical 
analysis. Measured velocities are greater than those 
predicted by either the numerical analysis or the Kirch- 
hog equation. The results can be explained by assuming 
a molecular slip at the tube walls. 

The effects of lhermal relaxation can be incorporated 
into the numerical solution by replacing k/½•l by 
(%,--5)/4, where •, is the ratio of complex, relaxing 
specilic heats. Viscothermal and relaxation effects are 
additive only if the frequency is close to the cutoff 
frequency of the tirst unsymlnetric mode and f/p values 
do not extend into the megacycle/second/atmospheres 
range. 
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