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A numerical solulion of the Kirchhotf equation for the propagalion constanl of longitudinal sound waves in
infinitely long cxlindrical tubes has heen obtained. The solution. which avoids the wide-lube approxima-
tions, shows that the percentage errors in the von Helmholtz-Kirchhoft 1tube velocity correction and tube
absorption are both roughly equal to the percentage the velocily correction is of the free-space velocity. The
error in the von Helmholtz-Kirchhoil equations can he plotied as a function of fD/a, pD/ya, and 5. (fis
the sound frequency, D the tube diameter. a the free-space velocity, p the gas pressure, n the viscosity, and
~ the ratio of specific heats.) Recent alisorption measurements in Ar are in agrcement with values calculated
numerically, hul measured velocities indicate the need for considering molecular slip at the tube wall.
Thermal relaxation is introduced mto Kirchhoff's basic equation by using the Eucken relation k/c,n
— (97 3)/4 and considering 4 Lo be the ratio of complex relaxing specific heats. Viscothermal and relaxa-
tion effects are found to be additive only if the frequency is near the cutofl frequency for the first unsym-
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metric mode and the f/p values do not extend to the megacycle/second atmospheres range.

INTRODUCTION

HE classical equations for sound absorption and
velocity developed by Kirchhoif! in 1868 have
often been used without regard for either the boundary
conditions or the mathematical approximations that
limit their applicability and accuracy. For this reason,
many hours have been necdlessly spent looking for
explanations of discrepancies between experimental re-
sults and the equations. This paper presents the results
of a numerical solution of the exact equation for the
propagation constant. Accurate values of the absorption
and velocity of sound have been calculated for radially
svmimetric waves propagated through gases enclosed in
rigid-walled cylindrical tubes. The results cover wide
ranges of frequency, pressure, and tube radius. The
effect of thermal relaxation is incorporated directly into
the solution for the first time. Results of the numerical
solution are then compared with the approximate
solutions of Kirchhoti' and with some recent experi-
mental measurements.

1. KIRCHHOFF EQUATION

Beginning with the conservalion equations for mass,
energy, and momentum (the lust two containing the

1 (i. Kirchholf, Ann. Thys. Leipzig 134, 177-193 (1368).

effects of thermal conductivity and viscosity), Kirchhotf
obtained an algebraic equation for the propagation
constant m for radially symmetric waves. He did this
by assuming the boundary conditions of zero particle
velocity and sound-temperature at the tube wall. This
important equation is reproduced by both Rayleigh?
and Weston.? For the calculation presented here, it can
be put in the form
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where A; and A: are the small and large roots of the
equation

BP—[a*+h(utp'+0)
F O/ I h(p+4') ]N2=0, (2)

2 Tord Rayleigh, Theory of Sound (Dover Publications, Inc.,
New York, 1943), 2nd ed., Vols. 1 and 2, Topic 330, p. 324.
4 D. E. Weston, Proc. Phys. Soc. (London) B66, 695-709 (1953).
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VELOCITY AND
and the Js and Jy's are Bessel functions with areu
ments of r(m*—h/u)i, r(m*—2\)}, and r(m>—X\.)’ for the
unprimed, primed, and doubled-primed ratios, respec-
tively. r is the tube radius; ¢ is the adiabatic sound
velocity, which is (RTy/M)% for an ideal gas; b,
the isothermal sound velocity, —afy?;, h=iw; p is
viscosityv/densitv; v=4~k/c,po=u(9y—3)/4 (according Lo
the Eucken cquation); & is thermal conductivity; ¢, is
the specifie heat at constant volume; p is the density;
and g’ =p/3 (according lo the Stokes hypothesis).

The only approximation involved in Eq. (1) is that
of small amplitude waves. An accurate numerical solu-
tion of Eq. (1), therefore, should give values of absorp-
tion and velocity that are accurate even at extreme
conditions of pressure, frequency, and tube radius where
earlier approximale solutions fail. VFurthermore, a
comparison of the numerical solution with experimental
values should indicate where such physical phenomena
as slip at the tube wall become important.

II. NUMERICAL SOLUTION FOR GASES WITHOUT
RELAXATION

Kirchholi’s approximate solution of L. (1) (the
wide-tube case) was obtained by including only the
first term in the ratio of the Bessel functions and by
approximating Xy, as /2/a® and N, as ha*/vb* Thus, A is
real and N, is imaginary in this approximation. His
familiar cxpression for the amplitude absorption coelh-
cient (tube absorption) and sound velocity inside the
tube (tube velocity) are given by

o~y (wf)i ar (3)
ve=a{l—~"/[Hxf)ir]}, )]

where ¥ =+/u+(a b—5/a)\/v and fis the frequency.
Because we will need to usc it later, we define Ar as the
fractional decrease in velocity predicted by this equa-
tion. Thus,

and

Av,=(a—w)/a ' /[(Hxf)ir] (3)

FFor want of a better expression, the total sound-
absorption coefficient is generally taken Lo be the sum
of a and the classical free-space absorption e

given by
2 frd I
Cetan = *—I:u-l-(l-i—*)u:l. (6)
aﬂ 3 a".!

In Ar at 300°K, for example, with f in kilocyeles !
sccond, p in millimeters of Hg, and 7 in centimeters,
these equations become

= (0.2842/7) (/)"
Ar,= (0.1680/7) (/p) %, (7
a1 s = (0.00128) f2/ .

In what follows, we take the first approximation of the
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I16. 1. Iractional error in the Kirchholf tube velocity correction
for an ideal gas with ¢, =1.3R. The abscissa is the tube correction
Lo the velocily divided by the free-space velocity [Eqy. (5)]. The
ordinate is the velocity calculated numerically minus the tube
velocity divided by the tube correction to the velocity [Eq. (8)]-

Constant frequency times tube diameter divided by free
space velocily, — - Constanl pressure times tube diameter divided
by viscosity times [ree-space velocity.

absorplion as celas—ar e, and Lthe first approxima-
tion of the velocity to be 7.

Weston® has obtained more accurate expressions for
the absorption and velocity by including motre terms in
the expansion of the Bessel fuactions. He obtained
several equations for the velocity and absorption, each
of which is applicable over a limited range of frequencies
and tube radii. However, his approximations also are
inaccurate at low pressure.

[n the numerical solution that we have performed,
both the real and imaginary parts of A and \, obtained
from the solution of Eq. (2) are used. In this way, it is
possible to include relaxation eflects (see below).
Ecquation (1) is then solved for m* by an iteration
process. In the first approximation, the real part of m
is set equal 1o ayeras and the imaginary part to w/v. The
value of »? thus obtained is substituted into the argu-
ment of the Bessel function and in the radicals of Eq.
(1). The equation s then solved for a new value of .
In this process, the Bessel functions are evaluated to a
minimum accuracy of 1 part in 10 by the computer
program. It should be noted in evaluating the Bessel
functions that the desired square root is in the second
quadrant of the complex plane for J and J but in the
lirst quadrant for J*. The new value of m thus obtained
is subslituted back into the equation and the iteration
continued until the error in the absorption is less than
0.5%, and in the velocity is less than 0.019. Tteration
is not continued beyond this accuracy since this is about
the best that can be expected from experimental
measurements at the present time. The velocity and
absorption coeiticients thus obtained are labeled v and
a in what follows. [t is also useful to define dimensionless
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¥ic6. 2. The fractional error in the Kirchhoff absorption coctfi-
cient ayelas for a gas with Cy=1.5R. The ordinate is the absorption

calculated numerically minus wgel. divided by atera. [Eq. (9)]. The
other symbols are the same as in Fig. 1.

2nd-order velocity and absorption corrections by the
following equations:

A= (v—w)/(a—1) (8)
Aa’ = (d_d;clﬂs)/a telas (9)

Thus, Av" is the fractional error in the Kirchhoff
velocity correction and A« is the fractional ercor in the
absorption a1agtoy.

As is expected from a dimensional analysis of Eq. (1),
Ao’ and Ay’ are found to be functions of the quantities
fD/a, pD/na, and v (D is the tube diameter and 5 is the
gas viscosity). This is shown in Figs. 1 and 2. These
Figures are for any gas with a specific heat at constant
volume equal to 1.3R. Note that, in evaluating Eq. (1),
k/c.n has been set equal to (9y—3)/4. Thefamily of
solid curves in Figs. 1 and 2 is for values of constant
fD/a, and the family of dotted curves is for values of
constant pD/na. The highest value of fD/a considered
was 0.55 since the value corresponding to the cutolf
frequency of the first unsymmetric mode is 0.586. The
curves are not extended to values of frequency or
pressure where the unsymmetric modes might be
present. Most experimental measurements at present
are for pressures and tube diameters such that pD/qa is
greater than 200. Equation (1) should hold to much
lower pressures and tube diameters, however, and the
correction factors have therefore been calculated and
recorded for the extreme cases. The calculations were
made using an IBM-1620 computer.

In cases where pD/na is greater than 200, the Kirch-
hoff velocity correction is seen to be in error by about
the same percentage that this correction is of the total
velocity. That is, Av'=Az. In this same region, the
error in the absorption when figured as o+ aeras 1s from
3 to 2 times Az, Note that Kirchhoti’s velocity correc-
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tion is always too large (giving velocities too small) but
the absorption calculated as oy +aers is always too small.

Values of the absorption and velocity have also been
calculated for gases with C,/R=2.5, 3.5, and 3.5. The
results are given in Table I, along with those for
C,=1.5R. To use this Table, one first calculates the
absorption and velocity corrections using the Kirchhott
approximate equations [Eqs. (3), (6), and (3)7]. The
error in these values can then be interpolated from the
Table for the particular gas, frequency, and tube
diameter desired. For example, for Ar at 300°K the
ideal gas velocity is 32 260 cm/sec. Therefore, for a
l-cm-diam tube with a sound frequency of 10 kc/sec
and a gas pressure of 10 mm, fD/e=0.310 and
7.=3.63% [Eq. (7)1 From Table I or Fig. 1, the
velocity calculated by the Kirchhoff approximation
would be too small by approximaltely 0.19 or 32 em/sec.
The absorption figured as aytacias would be too low by
approximately 3.497,.

III. COMPARISON WITH EXPERIMENTAL RESULTS

Equation (1} assumes that the particle-velocity
profile across the tube is independent of axial distance
down the tube. Therefore, neither the Kirchhofl tube
absorption and velocity equations nor the numerical
analysis that is reported here would be expected to
apply to standing waves in short tubes or resonant
cavities. It has been common practice, however, to try
to apply Kirchhoff’s equations to such situations by
multiplying the right-hand side of Eqs. (3) and (3) by
an empirical correction factor. On the other hand,
experiments that avoid the end effects and relaxation
effects now find general agreement with the Kirchhoff
tube velocity and absorption equations over the range
of frequencies, pressures, and tube radii where they
should apply.*~? Chandler!'® accounts for about % of the
19, discrepancy in absorption values reported by
Angona® by using more accurate values of physical
constants in evaluating the Kirchhoff equations. This
produces substantial agreement between the results of
Angona and Shields and Lagemann,? both of whom used
a method that avoids standing waves. The remaining
small excess absorption reported in these two papers
would be expected from the more accurate numerical
analvsis reported here.

In the past, the effect of departures from the
Kirchhoff wide-tube approximations have been tested
by making measurements at high frequencies in capil-
lary tubes. The results generally are of the proper
magnitude and sign to confirm Weston’s? more accurate

*F. D. Shields and R. T. Lagemann, J. Acoust. Soc. Am. 29,
470475 (1957).

5 F..A. Angona, J. Acoust. Soc. Am. 25, 336(L) (1953).

¢ R. D. Fay, J. Acoust. Soc. Am. 12, 62-67 (1940).

7 G. A. Norton, J. Acoust. Soc. Am. 7, 16-26 (1935).

W, P. Mason, Phys. Rev. 31, 283-295 (1928).

®I. A. Angona, J. Acoust. Soc. Am. 25. 1111-1116 (1953).

1 D. E. Chandler, Univ. Calif., Los Angeles, Phys. Dept. Tech.
Rept. 11 ONR contract Nonr 233 (48) (1938).
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Tavee [ Fractional crror in the Kirchhofi expression for the tube velocity and absorption of sound.

=(v—o)/(a—10)

,
A’ = (=t} ettelas

/D
No— 005 0.15 0.25 0.35 0.45 0.55 0.05 0.15 0.25 0.35 0.45 0.35
a
ATy \‘
I C,=1.5R
0.05 0.0487  0.0490  0.0497  0.0308  0.0529  0.0562 (0.0316  0.0365 0.0462  0.0604  0.0787  0.1005
0.10 0.0949  0.0961  0.0990 0.1047  0.1147 0.065+  0.0753 0094 0.1214+  0.1349
.15 0138 0.14114 01485 0.1630  0.189 0.1017 01164 0142 01821 0.2258
0.20 0.180+  0.1856  0.1993  0.2280  0.2798 01402 0.1595  0.1950  0.2406  0.2869
0.25 0.2214  0.2298  0.2522  0.3000 0.1843  0.2079  0.2492  0.2967
(.30 0.238%  0.2709 03049 03787 02376 0.2646  0.3086  0.3493
0.35 0.2884+ 03039 03547 04600 (.2974 03267 03691 0.3915
0.40 03118 03353 04024 0.5476 (.3592  (.3900  0.4262  0.4181
IL ¢,=2.5R
0.05 0.0493  0.0498 0.0510  0.0330  0.0563 (.06014 (L0328 0.0578  0.0675 (L0815 0.0993  0.1204
0.10 0.0970  0.0992 01043 0.1137  0.12097 0.1091  0.1189  0.1377  0.1639  0.1953
0.15 0.1433  0.1483  0.1605  0.184F  0.2263 (0L.1687 01833 0.2102 0.2454  0.2830
.20 0.1904  0.1995  0.2227 (.2691  0.3534 (0.2328  0.2517  0.2848 03233 03345
0.25 0.2366 0.2512  0.2894  (.3684 0.3128 03348 03701 (.4010
0.30 02716 0.2933 03516 04748 04086 04319 04633 0.4719
0.35 0.2935 03239 04077 0.5847 0.5095  0.5327 0.553+  0.5231
0.140 03061 03464 0.4604+  0.6998 0.6056  0.6282  (0.6314  0.5460
IIL. ¢, =3.5R
0.05 0.0497  0.05014 0.0519 00545  0.0586  0.0647 0.0649  0.0698  0.0795  0.0933  0.1109 0.1314
0.10 0.0988  0.1016  0.1080  0.1199  0.1398 0.1342 01439 0.1624  0.1878  0.2176
0.15 0.1472  0.1537  0.1692  0.1993  0.2514 0.2076  0.2218  0.2477  0.2806  0.3137
0.20 0.1993 02110 0.2404  0.2991 04045 (0.2803  0.3073  0.3380  0.3707  0.3907
0.25 0.2468  0.2656 0314 0.4149 0.3953 0.4152 0446  0.4629
0.30 02770 0.3049  0.3796  0.5360 0.5187  0.5381  0.5585  (1.53432
0.35 0.2909  0.3296 0.4365  0.6605 0.6113  0.6591  0.6624  0.5945
040 0.2953  0.3460  0.4900  0.7891 0.7333  0.7688  0.7465  0.6100
IV. ¢,=5.5k
0.05 0.0503  0.0512  0.0530  0.0562  0.0612 (L0686 00778 0.0827  0.0922  0.1058  0.1229  0.1427
0.10 01011 0.1046 01126 0.1272  0.1515 01613 0.1708  0.1887  0.2129  0.2407
0.15 0.1529  0.1610 0.1802 0.2175 0.2815 0.2497  (.2633 (L2876 03173 0.3H6
0.20 02110 0.2257  0.2625 0.3335 040648 03315 03710 (0.3977  0.4223  0.4281
0.25 0.2570  0.2807 03419 0.10678 0.4923  0.5086  0.5293  0.3301
0.30 0.2786 03136 0.4074  0.6024 0.6438  0.6573  0.6624  0.6168
0.35 0.2822 03302 04633 0.7403 0.7865 0.7961  0.7762  0.663%
0.40 02777 0.3397 05168 0.8834 0.9105 09160  0.8617  0.6653

equations, which include terms so as to apply to this
case. Very few measurements have been made at
low pressures where the corrections given in Table 1
become appreciable. We therefore have performed some
measurements for this purpose. The method was
essentially the same as that previously described* but
employs « tube about one-half us big (0.785 cm diam).
As before, reflections within the sound tube are kept to
a minimuin so as to avoid standing waves. The results
of the absorption and velocity measurements in Ar are
shown in Iigs. 3 and 4, respectively. For these measure-
ments, the frequency was maintained at 10.9 ke/sec
and the pressure varied from 603 to 3.5 mm Hg. The
circles in the Figures arc the experimental points.

Il D. E. Weston and I. I). Campbell, Proc. Phys. Soc. (London)
B66, 769-774 (1933).

53 o) Lawley, Proc. Phys. Soc. (London) B6S5, 181-188 (1952).

BGT. Kemp and AL W, Nolle, J. Acoust. Soc. Am. 25, 1083 -
1086 (1953).

Shown also in Iig. 3 are the values of ay, acrus, and a.
It is seen that the numerical caleulation does account
for the departure of the measured points from the
atac.s line. The measured velocities are seen in Fig. 4
to be considerably larger than the tube velocity curve
at low pressures. The numerical analysis gives values
that are somewhat better but still too low. The remain-
ing discrepancy can be accounted for by assuming a
molecular slip at the tube wall. Henry' has considered
the etiects of molecular slip on Kirchhoft’s equation and
inds that it produces a negligible effect on the absorp-
tion but adds a small term to the velocity. The velocity-
slip correction that he develops is given by

Az, =mig? n< >/(27) r|:p+< >(77r pin)e } 4)

(London) 43, 340-363

)—lr

b p.S. H. Henry, Proc. Phys. Soc. (1931).
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Fi6. 3. Sound absorption in Ar(23.6°C). The measurements
shown by the open circles were made at 16.9 kc/sec inside a tube
0.785 cm in diameter. ——— Tube absorption o, [Eq. (3)]. --—
Tube absorption plus the classical absorption [Eq. (6)]). —-——
Results of the numerical calculation.

where g is the fraction of molecules diffusely reflected
from the surface and will be taken to be unity. When
this term is added to the velocity, », calculated by the
numerical analysis, an acceptable fit to the experimental
points is obtained as seen in Fig. 4.

1IV. INTRODUCTION OF THERMAL RELAXATION

Experimentalists have generally assumed, without
proof, that the viscothermal and relaxation effects on
the absorption and velocity are additive. Thus, it is
common practice to obtain the relaxation absorption
ar by subtracting aue1as from the measured absorption,
and to obtain the free-space relaxation velocity by
adding the tube correction to the measured velociiy.!
It is possible to check this assumption with the numeri-
cal solution discussed above if we can incorporate the
relaxation phenomena into Eq. (1). This we have done
by first replacing k/c,n with the Eucken expression
(9y—35)/4 and then using the complex, relaxing specific
heat to obtain +. This complex specific heat is obtained
from the usual equation,

C,=C_+Ci/ (1+iwr). (11)

C, and C; are, respectively, the nonlagging and lagging
parts of the specific heat.

In Eq. (1), » now becomes a complex quantity with
an appreciable imaginary part. This augments the
imaginary part of A\;, and A\, and results in an increased
absorption and dispersion.

The results of such numerical calculations using CO,
as an example illustrate the magnitude of the error to
be expected when the absorption is calculated as
Gelasta. For a 1-cm-diam tube, a frequency of 8 kc/sec
(fDfa=0.3), and assuming the maximum relaxation
absorption to fall at 30 kc/sec/atm, the numerical
solution gives values that are less than ateiwstar by
only 0.5%,, 0.99,, and 0.69, for f/p values of 10, 30, and
100 kc/sec/atm, respectively. If the absorption peak is

16 F. D, Shields, J. Acoust. Soc. Am. 29, 450-154 (1957).
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shifted to 300 ke/sec/atm, the corresponding errors at
100, 300, and 1000 kc/sec/atm are 0.69, 1.29,, and
1.19,. If the peak were at 3 Mc/sec/atm, it would be
necessary to make the measurements at pressures of
6.2 and 0.6 mun Hg to span the absorption peak as
before, and would therefore push the tube method to its
present limit. In this case, at.as+ar would again he too
big by 1.19, 1.9%, and 9.9%,.

If we look at the corresponding differences between
the velocity obtained from the numerical solution and
that obtained by adding the tube and reluxation dis-
persion, we find the numerical values of the velocity
larger by 0.029, 0.059%,, and 0.01%, for the case where
(f/p) max is 30 ke/sec/atm, 0.0297, 0.04%, and 0.069
for (f/p) max=300 kc/sec/atm, and 0.06%, 0.199,
0.91Y%, for (f/p) max=23 Mc/sec/atm.

Thus, for a value of (fD/a)=0.3, the numerical
values differ only slightly from values obtained in the
usual way by adding viscothermal and relaxation effects.
Only at low pressures is the difference much greater than
the usual experimental error. Since the addition method
also has been found to give values in agreement with
experiment, we can conclude that the method used to
incorporate relaxation effects into Eq. (1) is legitimate
and that k/¢,n can be set equal to (9y—3)/4, even in the
case of a relaxing gas if the complex 7 is used.

The error in the absorption when calculated as
areliata 1s highly frequency-dependent. As far as the
relaxation etfects are concerned, the absorption and
velocity should be the same at low frequencies and low
pressures as at high frequencies and high pressures,
since the relaxalion phenomena is a function of f/p.
However, the numerical calculation shows significant
departures of « from cretear as the frequency and

320} \:\

318~
316
314}

312

(m/sec )

310

v

309

02 10 12

04 06 08
(F-PY"*  (KC/sec )2 (mmHg)"?

I'16. 4. Velocity ol sound in Ar(25.6°C). The measurements, as
in Tig. 3, are shown by open circles. - — — Kirchhoff tube velocity
(Eq. (4)]. —-—~ Result of the numerical calculation. —  Nu-
merical solution plus the slip correction [Eq. (10)].
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pressure are lowered keeping f/p constant. Starling
near the cutoff frequency for the unsymmetric mode, &
is only slightly smaller than werster but it gets
significantly larger than eq.q.tor as the frequency is
lowered. For a 1-cm-diam tube and a gas like COq, for
example, with an absorption peak at 300 kg, ‘sec/atm,
the percentage differences between o and aqer+oe are
—0.8, —1.2, —0.7, +1.7, +8.3, and +26 as the ire-
quency takes the values 16, 8, 4, 2, 1, and 0.5 ke¢/sec
while maintaining f/p at the peak value of 300
ke/sec atm.

A similar frequency dependence s found dor the
velocity error. At the same frequencies as in the above
example, ¢ is greater than o by 0,039, 0.059, 0.0897,
0.03¢7, 1.5, and 7497,

70y

V. CONCLUSIONS

Kirchholi’s tube absorption and velocity equations
have been found to be in crror by a percentage roughly
equal to the percentage the tube correction is of the
velocity. A numerical solution to Kirchhotl’s basic
cquation for the propagation constant shows the corree-
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Lions Lo his approximate cquations to be functions of
fD/a, pD/na, and v. Recent absorption measurements
in Ar, using a tube 0.785 em in diameter are in agree-
ment with the values obtained by the numerical
analysis. Measured velocities are greater than those
predicted by either the numerical analysis or the Kirch-
hoff equation. The results can be explained by assuming
a molecular slip at the tube walls,

The eflects of thermal relaxation can be incorporated
mto the numerical solution by replacing %/c.n by
(9y—3)/4, where v is the ratio of complex, relaxing
specific heats. Viscothermal and relaxation effects are
additive only il the frequency is close to the cutoff
frequency of the first unsymmetric mode and f/p values
do nol extend into the megacycle/second/atmospheres
range.
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