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Sound Transmission through Thin Cylindrical Shells* 
P. W. Stoa% 

Acoustics Researdt Laboratory, Haroard University, Cambridge, Massachusetts 
(Received February 4, 1957) 

An analysis is presented of the impedance presented by a thin cylindrical elastic shell to a pressure or 
normal stress as a function of the axial wavelength and the angular dependence of the forces. Results of 
computation are presented graphically. This information is then used to compute a measure of the sound 
transmitted through the shell immersed in air for various particular cases. The theory of the scattering and 
absorption of waves incident upon a cylinder at angles other than normal is developed for this purpose. The 
results and their implications are discussed in detail. 

U, V, W 

Z 

LIST OF MAJOR SYMBOLS 

radius of shell 

phase velocity 
half-thickness of shell 

phase constant: •/c 
order number of mode 

acoustic pressure 
acoustic pressure amplitude 
absorption coefficient 
specific acoustic resistance ratio; radial cylin- 
drical coordinate 

axial, circumferential, and radial components 
of displacements of shell 
time--and space--independent amplitudes of 

dimensionless ratio: x = ka 
dimensionless specific acoustic impedance 
ratio; axial cylindrical coordinate 
specific acoustic impedance 
Neumann factor: •0= 1; e•= 2, m>0. 
angle of inddence of plane wave upon cylinder 
Poisson's ratio 

acoustic power, per unit length 
density 
angular cylindrical coordinate 

Superscripts 
a absorbed 

c contents of shell 
i incident wave 
s scattered wave 
sh shell 

INTRODUCTION 

HIS paper is a theoretical study of the trans- 
mission of sound energy through a thin, elastic 

cylindrical shell immersed in a fluid medium. Particular 
attention is focused on evaluating a "transmission loss" 

* This research has been aided in part by funds made available 
under a contract with the Office of Naval Research. A summary 
of this work was presented orally by the author at the 49th 
meeting of The Acoustical Society of America, in July, 1955. 
[See, J. Acoust. Soc. Am. 27, 1011 (1955).] 

t Now with Cambridge Acoustical Associates, 1278 Massa- 
chusetts Avenue, Cambridge, Massachusetts. 

for the shell, considering it to be a structure isolating 
the interior region from sound waves incident upon the 
exterior. In order to simplify the analysis, the shell is 
assumed to be uniform and infinitely long. 

The incident sound wave is taken as an infinite 

plane wave incident upon the shell at an angle 0 relative 
to the normal to the shell axis. (See Fig. 1.) The wave 
will be considered as approaching in the radial plane 
defined by the equation 4= •r. Then the inddent wave 
can be expressed as a .sum of partial waves each charac- 
terized by a dependence upon the q• coordinate of the 
form cos(m4), where m is an integer. All the partial 
waves have the same dependence upon the cylindrical 
axial coordinate z, namely that of a wave traveling 
in the z direction with a velocity c•= to/k,= c/sinO; this 
dependence has the form: expj(oJt-k,z). These partial 
waves constitute the forcing functions acting upon the 
shell. Under certain conditions (which are assumed in 
this analysis and will be discussed later) the total 
response of the shell and its contents is the sum of the 
responses to the individual partial waves of the incident 
sound. The analysis can then be carried through for 
each partial wave independently. 

In this paper the sound energy transmitted through 
the shell is determined by evaluating the absorption 
cross section of the shell by an extention of methods 
developed for studies of the scattering and absorption 
of normally incident sound. • An essential part of this 
method is the evaluation of the acoustic impedance of 
the cylinder for a given partial wave. Therefore a large 

lNCIDENT INCIDENT • 

•-'0 

END VIEW SIDE. VIEW 

Fig. 1. Geometrical relationships. 

a B. Lax and H. Feshbach J. Acoust. Soc. Am. 20, 108-124 
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part of this paper is devoted to the evaluation of the 
impedance to normal forces presented by a thin shell, 
as a function of the axial wavelength and angular 
dependence of the forces. In this analysis a bending 
theory of shell vibration z is used which is valid so long 
as the wavelengths of shell motion are large compared 
with the shell thickness. In other words, the analysis 
cannot be extended to the very high frequencies where 
the shell motion is like a Rayleigh wave. These im- 
pedance functions, and the use of an impedance 
concept, can be very useful in the consideration of 
other problems involving the interaction of an elastic 
shell with fluid media. 

SCATTERING OF WAVES NOT NORMALLY 
INCIDENT 

Consider an infinite plane acoustic wave in a fluid 
incident upon a cylindrical surface at an angle 0 relative 
to the normal to the cylindrical axis. The wave is 
assumed to be approaching that axis in a direction 
lying in the radial plane q•=,r. It is readily verified that 
the expression for this incident pressure wave in 
cylindrical coordinates is a series of the form 

pi=Poe-ik,•ei•tZ,,=oe.,(-j)'"J,•(krr) cosm•, (1) 

where kz=k sin0 and k•=k cos0. The acoustic dis- 
turbance from this wave which is caused by the presence 
of the shell--the scattered wave is a solution of the 

wave equation representing an outgoing wave. If the 
assumption is made that the scattered pressure wave 
has the same z dependence as the incident wave, a the 
general solution can be represented in a series of the form 

ps = e--ikzzei•t•A mH•(•) (k•r) cosm4•. (2) 

The sum of the two series is the general solution in the 
presence of the shell. The complex amplitude factors 
A • remain to be determined. 

The total radial outward particle velocity zb in the 
fluid medium outside the cylinder which corresponds to 
this total acoustic pressure p= (p•+p') can be deter- 
mined from the acoustic force equation 

Op/Or = -, (0•10t•). (3) 

The amplitude factors A.• are determined by the 
requirement that the total wave satisfy the boundary 
conditions at the surface of the cylinder, r= a. This 
boundary condition will be taken as a normal 
impedance. Specifically we postulate an inward-looking, 
modal, specific acoustic impedance, Z•, which relates 
the radial particle velocity and pressure at r=a by 
the equation 

p.•(a) = --zb•(a)Z•, (4) 

where zb• and p,• are the ruth terms in the series 
expansions for radial velocity and pressure. 

• E. H. Kennard, J. Appl. Mech. 20, 33-40 (1953). 
a The assumption will be discussed in a moment. 

Such a modal impedance cannot be defined in all 
cases. Its existence requires that the motion of the 
cylinder in response to a modal force p., with angular 
distribution cosrr•, shall have the same angular 
distribution. Obviously the presence of angular periodic- 
ities in the cylinder will negate this possibility; e.g., 
with a rigid diagonal strut in the shell, pressures in the 
m=0 mode will cause motions in the m= 2 and other 

modes. However, the initial assumption that the 
cylinder is uniform justifies the use of these modal 
impedances. In just the same manner, the assumed 
uniformity in the axial direction justifies the assump- 
tion, made in connection with Eq. (2), that all responses 
to the incoming plane wave will have an axial depend- 
ence of the same form as that wave. 

The previous equations can now be combined and 
solutions obtained for the scattered wave amplitudes 
A,•. Straightforward algebraic manipulation yields the 
expressions 

. , (s) (m) 

where x•= k•a=o•a/c•; c•= c/cos•; and z,•, z,,, •, z• • are 
modal acoustic impedance ratios for the cylinder, 
incident wave, and scattered wave respectively. These 
impedance ratios are defined 

(6) 

The primes on the Bessel and Hankel functions indicate 
derivatives with respect to the argument. 

This expression for the amplitudes A,, differs from 
expressions in previous analyses for a normally- 
incident wave primarily in that it employs impedance 
ratios in place of admittance ratios; however Eq. (5) 
can readily be converted into admittances to show 
the equivalence with standard expressions. The prefer- 
ence for impedances is based on the fact that the 
impedance of the combination of thin shell and its 
contents is the sum of the impedances of the parts. 
The other difference from analyses for norraally- 
incident waves is the appearance of the velocity c, in 
place of ½; the velocity c, is the phase velocity of the 
incoming plane wave in a direction normal to the axis 
of the shell and in the plane of that axis and the direc- 
tion of propagation of the wave. These similarities to 
standard analyses mean that standard tables • are 
applicable and, indeed, that the results of previous 
analyses for normally-incident waves are directly 
transferable, if c, is used in place of c, in so far as the 
impedance z• is independent of angle of incidence. This 
latter condition is not satisfied by elastic shells and 
cylinders. 

In the present analysis we are specifically interested 
s Among others, see reference 1, and Lowan, Morse, Feshbach, 

and Lax, "Scattering and radiation from circular cylinders and 
spheres," U.S. Navy Department, July, 1946, reprinted for the 
Office of' Naval Research, March, 1954. 
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in the power absorbed by the shell and its contents. 
Therefore we shall develop the expression for the 
absorption cross section of the cylinder, or, more 
simply, for the cross-sectional absorption coefficient 
which equals the absorption cross section divided by 
the diameter, 2a. The cross-sectional absorption 
coefficient Q• is defined as the ratio of the power 
absorbed (per unit length) to the power in the incoming 
plane wave which is incident upon a unit length of the 
longitudinal section (the plane •=+,r/2). The ap~ 
proach will be very similar to that presented by Lax 
and Feshbach,' except for the use here of impedances. 

The power absorbed, per unit length, is 

IIa= -- («)f•. Re(pzb*)ad•, (7) 
where the minus sign is necessary to obtain flux into 
the cylinder. The superscript star indicates the complex 
conjugate. The power incident on the longitudinal 
section, per unit length is simply 

ffi= Po:a cosO/oc. (8) 

Equation (7) must be evaluated from the series 
expansions for pressure and radial velocity; it is 
convenient to introduce the modal impedances in the 
series for pressure. Cross terms, involving modes with 
different m, vanish in the integration. Straightforward 
manipulation leads eventually to an expression for the 
cross-sectional absorption coefficient in the form 

Q•=ZQ,• • 

Q•*= (2•,dx•)r,•,..'/[ (r•,+r,•')% (x,•+xj)•]. (9) 

where 

,.= Re(g•), x,•=Im(z,•), 

r.'= Re½..') = (21,m)lU'2+ X ':) (10) 

xJ =Im (zJ) = -- 

The radiation resistance ratios rJ and reactance ratios 
xJ a• •rhaps most •adily computed from functions 
defined and tabulated by Lowan, Mor• et alA through 
the equations 

rJ= (C.•/CJ) sin(•--•J) 

xJ= (CJCJ) cos(•-ad). 

They have been computed and preented in graphical 
fore by Junget2 

The denominator of the expression for Q•= in Eq. (9) 
will be recognized as the square of the modal impedance 
premnted to an ideal membrane vibrating on the surface 
of the cylinder, including both the impedance of the 
cylinder and •e r•iation impedance. 

Miguel C. Junger, J. Acoust. Soc. Am. 24, 288-289 (1952). 

FORCED WAVES IN A CYLINDRICAL SHELL 

It is desired to determine the impedance of the shell 
to a radial driving force, as a function of the axial 
wavelength and the angular dependence of the force. 
We assume that only normal, radial stresses are applied 
to the surfaces of the shell, conditions appropriate to a 
shell immersed in a fluid medium. 

In order to meet the boundary conditions, the radial 
component of displacement of the shell must have a 
functional dependence upon the z and • coordinates 
identical with that for the particle velocity in the 
surrounding fluid medium. In general that dependence 
can be written as an infinite series, but the analysis can 
be carried out for each mode (single term of the series) 
separately. Let us now consider the forced motion of a 
single mode in a thin shell, under the action of normal 
radial stresses, with the purpose of determining the 
modal impedance Zm. 

The displacements from equilibrium of the median 
surface of the shell wall in the axial, tangential, and 
radially outward directions can be written for the 
ruth mode in the form 

u=jU cos•tc•e-i•ae i•t 

v= V sinmcke-i•:•ei•t (12) 

• = W cosm•ff-i k•:e iø•t. 

The expression for w is chosen to match terms in the 
series used in the previous section; the expressions for 
u and v have been chosen, after a preliminary look at 
the differential equation of shell motion, to yield a 
complete solution in which the ratios of amplitudes 
U/W and V/IV would be real. The pressure acting on 
the outside and inside surfaces of the shell will be 
written 

p+ = P+ 
(13) 

p-= p- cosncke-ie•ei % 

When Eqs. (12) and (13) are substituted in the 
dynamical equations for motion of a thin shell, three 
simultaneous, linear algebraic equations are obtained 
relating the amplitudes of motion U, V, W m•d the 
amplitudes of the external pressures P+ and P-. These 
equations may be solved by the method of determinants 
for the amplitude of radial motion W as a function of 
the pressures. 

The solution obtained is quite complicated since the 
dynamical equations are quite precise in their descrip- 
tion of motions of thin shells. Indeed, the equations 
show that the simple concept of a radial modal kn- 
pedance for the shell is not precisely correct. This simple 
concept is one in which the impedance at the outer 
surface of the shell is the sum of one contribution 

uniquely determined by the shell and a second term 
determined by the fluid medium inside the shell. 
Fundamentally, this concept is based on the failure 
to recognize differences in the radial motions of the 
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inner and outer surfaces of the shell or to discriminate 
between the effects on shell motion of pressures inside 
and outside. These errors in the simple concept appear 
in the more precise solution described above by the 
presence of factors of the form [l-kO(h/a)]. The 
correction terms, of the order (h/a), are not always 
negligible compared with unity even in a thin shell 
where (h/a) is small. However, a careful study of the 
equations reveals that the correction terms become 
important only when the impedance predicted by the 
simple concept becomes very large. Fortunately, these 
are the regions in which we have least interest; in an 
analysis of the transmission of sound, interest is 
naturally concentrated in the regions of small impedance 
where the sound transmission is large. 

Therefore in this analysis we shall neglect the small 

correction terms in order to retain the simple concept 
of impedance for the shell, with its appurtenant 
advantages that a single solution for the shell, by 
itself, can be used in all situations. Although this 
approach discards some terms in (h/a), it is not to be 
considered as based on the "membrane theory" of 
shells; the effects of bending, for example, are correctly 
included, except in those regions where the impedance 
is very large. The modal, inward-looking radial im- 
pedance of the shell which results from this analysis 
can be written 

Z'a,• = = jo"cL(2h/a) (D/xz. Dss), (14) 
-j•W 

where D is the whole determinant and Dss is the (3-3) 
cofactor of the array: 

2(1- 
In this equation, ½r. is a velocity characteristic of the 
shell material so that x•,=coa/½n is a frequency param- 
eter. The quantity x•=coa/c,= 2,ra/X,, where X• is the 
axial wavelength, is fundamentally a measure of the 
axial trace wavelength of the incoming plane wave. 
It was shown in the previous sections that c,= c/sinO; 
therefore x• varies with frequency and angle of incidence. 

The impedance Z• 'a vanishes when the determinant 
D vanishes. The conditions for this occurrence have 

been considered in another paper•; they are identical 
with the conditions for the existence of free waves in the 
shell. The coincidence is fundamental; the free waves 
in the shell are motions in which there is radial motion 

(except in the case of the axisymmetrical shear, or 
torsion, wave) in the absence of external forces. It 
follows directly that an external force with the same 
frequency and wavelengths as the free wave would 
"see" no impedance. 

The impedance Z• 'a becomes infinite when the 
cofactor Dsa vanishes and in the limit as frequency 
(i.e., x•) approaches zero. The conditions for the 
vanishing of Daa can be written analytically in the 
forms 

x•=x,•+m a, or (1--v)x•/2=x•+m •. (15) 

There is a very simple interpretation of these expres- 
sions. The wave for which the displacements assume 
the form given in Eq. (12) can be interpreted as the 

• P. W. Smith, Jr., I- Acoust. Soc. Am. 27, 1065-1075 (1955). 

sum of two waves traveling around the shell in two 
helical paths with opposite twists. • The sum of the two 
helical waves forms the vibration considered here, 
which is a wave standing in the q• direction and traveling 
in the z direction. The helical waves are traveling in a 
direction making an angle O:q-tan-X(m/x•) with the 
generators of the cylinder. The phase constant ka 
= (w/ca) of each helical wave in its direction of propa- 
gation is such that kaaa •= (x•Z+m•'). Equations (15) 
are therefore equivalent to statements that the shell 
is being forced to move in helical waves traveling with 
a velocity equal either to the low-frequency velocity 
of a longitudinal wave in a flat plate (corresponding 
to x,?) or to the velocity of a shear wave in a flat plate 
(corresponding to (1--v)x,?/2). Consider the second 
case. The shear wave in a flat plate is a vibration in 
which there is no motion normal to the surface. This 

is a-type of motion which is not natural to the curved 
plate or shell (except in the axisyrametrical case). To 
force the shell to move in this way requires external 
constraining forces. But the lack of a corresponding 
normal motion signifies that the normal impedance 
must be infinite. A similar argument can be made in the 
first case, except that there, although the median 
surface of the plate executes no normal motion, the 
inner and outer surfaces move very slightly in a normal 
direction due to Poisson contraction. Because of the 

slight motion, the normal impedance will properly be 
large but not infinite; this error is due to the approxi- 
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mation discussed earlier. These considerations also 

demonstrate that an impedance, in the form shown in 
Eq. (14), cannot be specified in this case since the 
normal motion of the outer surfaces will depend on the 

sum of the external pressures; it is the sum of pressures 
which tends to contract the thickness of the shell. 

The impedance function defined in Eq. (14) can be 
written, after much rearranging of terms, in the form 7 

I 

Z,? = jo•acL(2h/a) (1/xL) I 1 -- xL2-f 
[xL •-- (1- v)xh•/2]Em•+ •x?]-- (1- v 2) (i- v)mXx,2/2 

333 

h 2 +__[x•4 4- r 
3a•L 2(1-- r) 3v (xL•- (1- v)xh•/2- (1- •'2)x•/2) ] } 2 ' (16) 

where xh x= (m2q-x?), and D33 is the cofactor of the 
determinant having a value 

O• = [•'-•][•'-- (1-- •)x•'/2]. 

This rather formidable expression can be considered 
as made up of two parts; within the braces, the first 
three terms are due to the membrane action of the shell 

while the term multiplied by (h2/3a •) is a bending 
term due to the finite thickness of the shell wall. The 

bending term is generally unimportant except when 
x• is very large or when the membrane terms are very 
small. Numerous approximations for these terms can 
be made under various conditions; however, extreme 
care must be exercised in order that the process of 
approximation be consistent? 

RADIAL IMPEDANCE OF A THIN SHELL 

In this section we shall present some results of 
computation from Eq. (16) of the radial modal im- 
pedance of the shell. The profusion of variables and 
•arameters in the equation makes it necessary to be 
somewhat arbitrary in the choice of variables for 
plotting results. In the graphs shown here, we have used 
the frequency parameter x• as abscissa and the velocity 
ratio (c•/c•)= (xL/x,) as ordinate. Each graph pertains 
to a single value of mode number m; all graphs have 
been computed for the same values of Poisson's ratio 
(viz., v = «) and of the ratio of wall thickness to diameter 
(vi% h/a=l/100). The curves plotted are contours 
in the (c•/c•)--xg plane along which the shell imped- 
ance is constant. Each curve is labeled with the value 
of a normalized shell reactante 55,d • defined as 

•',d • = Z,? /[jo*•c z (2h/a)-]. (17) 
Positive values of this reactance indicate that the 

inward-looking impedance of the shell is massive in 
character, while negative values correspond to im- 
pedances which are spring-like. The graphs for m= 0,1,2 
are shown in Figs. 2, 3, and 4. If the results had been 
plotted in three dimensions, with shell reactance as the 
third coordinate plotted vertically, one would have 
obtained a surface for each m which, at any point, 
slopes upward in a more or less "northeasterly" 

s Indeed, it may be said that a significant proportion of the 
literature on shells is based on the possibility of making similar 
approximations in different fashions. 

direction (i.e., for increasing values of (c,/cg) and xn). 
The most striking features of the surfaces are the 
infinities of reactance which were discussed earlier. The 

reactance has a negative infinite value at x•=0, 
rn• 1, or at (Cz/C•)=O. The other infinities occur along 
the lines defined in Eq. (15); there the reactance 
surfaces have the form of a vertical escarpment, 
plunging from a positive infinite value to a negative 
infinite value. 

A study of the reactance charts reveals that there 
are no broad regions of low impedance except at very 
low frequencies when m> 0. In reaching this conclusion, 
it must be remembered that the contours are labeled 
with the value of the normalized shell reactance (see 
Eq. (17)); for the specific case of an aluminum shell 
immersed in air (h/a= 1/100), the normalization factor 
is such that a unit value of normalized reactance 

corresponds to 2.9X 104 rayls (cgs), or some 700 times 
the value of oc of air. Except at low frequencies, the 
impedance will be small only at points very close to the 
lines of zero impedance; that is, only for frequencies and 
angles of incidence (value of cz) very close to certain 
critical values. 

However, at low frequencies there are broad regions 
in which the impedance is low. This characteristic 
becomes much clearer when the data in the figures are 
replotted with a logarithmic frequency scale, so that the 
low-frequency region is not unduly compressed. At the 
same time, we shall change the ordinate scale from 
normalized axial velocity (c,/cL) to angle of incidence 
0 since, by definition in the present problem of sound 
transmission, the axial velocity is related to angle of 
incidence by the equation cz=c/sinO, where c is the 

? This impedance is very similar to the expression derived in a 
recent, excellent paper by L. Cremer, Acustica 5, 245-256 (1955). 
Professor Cremer's Eqs. (41) and (42) are identical with Eq. (16) 
except in the following particulars: (1) his impedance, being 
"outward-looking", is the negative of Eq. (16); (2) the terms in 
square brackets multiplied by the factor (h•/3a •) include, in 
Professor Cremer's results, only the first term shown here, v/z. 
x• •. This second difference becomes significant particularly at low 
frequencies (xg small) when x• is not too large. For a specific 
example, consider the frequencies for inextensional (bending- 
mode) resonances of a cylindrical shell, with no motion in the 
axial direction. Equation (16) yields the classical formula for the 
resonant frequency given by Rayleigh (Theory of Sound, 
second edition, 1894, par. 235 g), which can be written 
x• • = (h•/3a •) (m a-- m)•/(m•-k 1). (See reference 7.) The correspond- 
ing result from Cremer's work would be x• = = (h¾3a=)m•/(rn•+ 1). 
The difference is seen to be large only for the smaller values of m. 
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NORMALIZED FREOUENCY, x L 

F•c. 2. Contours of normal•.ed shell reactance 
form 0,,• },k/a-10-% 

velocity of sound in the surrounding fluid. This trans- 
formation has been made by assuming a ratio 
=6.36>< 10 -2, which is correct for a•n aluminum or steel 
shell immersed in air. The teacrance contours are 

labeled, as before, with the value of the normalized 
shell reactance defined in Eq. (17). The resulting plots 
for m--0, 1, 2 are shown in Figs. 5, 6, and 7. 

The fairly broad regions (in angle and frequency) of 
low impedance for the cases m= 1 and 2 are apparent 
from a study of these figures. The graph for m= 3 would 
be quite similar to that for m= 2 except that the fre- 
quency at which the zero reactance contour has a 
vertical asymptote would be higher. The minimum in 
the zero reactance curve for m= 2, which is also evident 

NORMNJZED FREQUENCY, XL 

F[o. 3. Countours of normalized shell reactance 
form 1, v },h/a=10 '•. 

in Fig. 4, is of some interest. It corresponds to a mini- 
mum in the axial phase veloci W of a free wave; the 
minimum value and the frequency of occurrance are 
dependent on the shell thickness through the formulas 

c•\ 2 2& /m 2-- 1 \ 

--I CL/mi,• 3a 
08) 

m(m 2-1). 

' 
A •cond m•um • the zero teacrance contours is 

apparent at higher frequencies. •is m'•um, which 
is •pprox•ately the •me Mr all values of m, is de•ed 

øo 05 i 15 2 2.5 • 
NORMht. IZED FREQUENCY, XL 

F[o. 4. Contours of normalized shell reactance 
for m--2, •=«, k/a=10 •. 

09) 

CROSg-gRCTIONAL ABSORPTION COEFFICIENT 

The analysis of the transmission of sound through 
a cylindrical shell, from outside to inside, faces peculiar 
difficulties in the attempt to define a useful measure 
of the insulating properties of the shell, i.e. a "trans- 
mission loss." Ln the case of a plane partition, these 
problems do not arise; the transmission loss is defined 
as the ratio of energy transmitted by the wall to the 
energy incident upon it (the ratio being averaged over 

a A semiquantitative discussion of the noise transmission 
problem with comments on these minima is to be found in a letter 
by Junger and Smith, Acustica •, 47-48 (1955). The formulas 
presented here are more accurate approximations which differ 
slightly from the earlier expressions. 
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angle of incidence). This definition implies the absence 
of reflections on the "receiving" side of the wall. In 
practical measurements or applications the spaces on 
each side are bounded by partly reflective walls, but 
the spaces are sufficiently large and irregular that 
corrections can be made in terms of reverberation 

times or room constants? In the case of a cylindrical 
shell the inside "receiving" space is finite, regular, 
and--in many cases of interest--relatively small. 
Therefore the acoustical reaction, considered either as 
reflections or as an acoustical impedance, is quite 
reso•mnt and markedly dependent on frequency. There 
is a temptation to postulate some sort of "diffusing 
structure" inside the cylindrical shell so that a "room 
constant" or "reverberation time" might be used. 
However such an approach would face many difficulties, 
due, first, to the possibly small size of the receiving 
space and, secondly, to the coupling between modes 
that would thereby be introduced in the responsive 
motion of the shell. Such mode coupling was expressly 
forbidden in the previous analysis (see section on 

h/ I I I II/ '•/ \i•\1•111 
-I0 '•* -•1'1 t ',•l] I I I'71] I1 _, 

III II III 
III II II1•1] 

I I IIII I] •1 
tit I. I I III II •11 

•mv-freqaency co.tours of •rm=l•cd shell 
for •=0, •={, M== 10 •. 

Scattering of Waves) in the interests of mathematical 
simplieity. 

In this paper, calculations have been made for two 
particular cases chosen to yield some prelimhmry 
understanding of the general problem. In each case, 
the cross-sectional absorption coefficient Q• rEq. (9)] 
has been used as the measure of the sound insulating 
properties of the shell. It will be remembered that this 
coefficient was defined as the ratio of power absorbed 
to the power incident in the plane wave. Since no 
losses in the shell have been postulated (they will be 
discussed later), all the power absorbed must be 
transmitted to the interior. In the first case, it was 
assumed that the normal specific acoustic impedance 
of the inside space is numerically equal to the value of 
(•) for air, independent of mode and angle of incidence. 
Analytically, this results in the expression for the 
impedance at the outer surface of the shell [-see Eqs. 

•0See, e.g., Leo L. Beranek, Acoustics (McGraw-Hill Book 
Company, Inc., New York, 1954), part XXV. 

Fio. 6. Low-frequency contours of normal•.ed she]) reactance 
form 1,•, «,h/•=]O •. 

(4) and (14)] 
z,•=z,,,.•+t•. (20) 

In the second case, it was assumed that there is some 
undefined mechanism inside the shell such that only 
the inward-traveling wave exists in that space. This 
assumption is made in an obvious analogy to the 
situation for which the transmission loss of a flat plate 
is defined. The inward~traveling wave solution of the 
wave equation in cylindrical coordinates is well known 
to be a Hankel function of the first kind. It is quite 
easy to show that the analytical expression for the 
impedance at the outer surface of the shell, in this 
second case, is 

Z,• = Z,,'•+j•[•J" (x S/fL,½'" (xS ]. (2•) 

The second term•the impedance of the inward- 
traveling wave has both resistive and reactive parts. 
[-See Eq. (6).3 

The results of computation in these two cases are 
presented in Figs. 8 and 9. The graphs show the modal 
absorption coefficients Q•' plotted in decibels re unity 
(i.e., I01og•0Q,• •) as a function of the angle of incidence 
of the plane wave. Each graph represents the results at a 
single low frequency, specifically x•=0.02. The total 
absorption coefficient Q" is the algebraic sum of the 
modal coefficients Esee Eq. (9)] and therefore a curve 
of Q• as a function of angle lies close to the modal curve 
which is highest at any given angle. 

I I'll III il I t*il t.I 

• I I I1 III • /VZV I I I'L]I 

Fro. 7. Low-frequency contou• of no•al•ed •ell r•ct• 
for m-2, •, 
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Fro. 8. Partial absorption coefficients of shell as function of 
angle of incidence # assuming a t• normal impedance inside. 
Results computed for a low frequency (xL-O.02) for a shell 
with •=«, h/a= 10 -•. 

DISCUSSION 

The results presented in the two Figs. 8 and 9 are 
remarkably similar in nature in spite of the very 
different assumptions concerning the acoustic im- 
pedance inside the shell. They both exhibit a very 
sharp peak in the curve for m=0 which would be of 
little importance in the over-all picture, i.e., if the 
sound energy were distributed smoothly over all angles 
of incidence. On the other hand, the curves for m= 1 
and 2 exhibit broad peaks which are of major im- 
portance; the angle at which the peaks appear is 
approximately the angle for which the shell reactance 
vanishes. [See Figs. 6 and 7.] The relative values of the 
modal absorption coefficients for different values of 
m decrease as m increases because the amplitudes of the 
different modes in the series expansion for the incoming 
plane wave [Eq. (1)] decrease with increasing m at 
this low frequency. Furthermore the absorption coeffi- 
dents for corresponding values of m in the two figures 
are lower in Fig. 9 principally because of the very 
small values of the resistance in that case. 

The results were computed for the single frequency 
corresponding to xL=0.02; this frequency was chosen 
because, first, it lies in the region of low shell reactance 
and, secondly, because it is a round number. However, 
it is quite easy to deduce from the reactance contours 
Figs. 5 to 7 the nature of the variation of the absorption 
coefficients with frequency. If the frequency is increased 
from xL=0.02, the values for m=0 would become 
generally larger due to a decrease in the values of 
reactance. On the other hand, the values for m= 1 and 2 
would become generally smaller, particularly for values 
of 0 above the value for peak absorption; however the 
peak value would not be strongly affected, so that the 
peaks wohld tend to become sharper as functions of 0. 
As the frequency is decreased from x•.=O.02, the 
opposite tendencies would be observed. Near x•.=0.16 
the teacrance for m= 2 very nearly vanishes for a large 
band of angles 0 and the absorption would exhibit a 
correspondingly wide and high plateau. Below that 
frequency, the absorption curve for m= 2 would not 
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FIG. 9. Partial absorption coefficients of shell as function of 
angle of incidence 0 assuming as inside termination an ingoing 
wave. Results computed for a low frequency (xr.=0.02) for a 
shell with •=«, It/a= 10 •. 

have a peak but would resemble the m=3 curve of 
Fig. 8 in shape; as frequency is further decreased this 
m=2 absorption curve would become gradually less 
important. 

It was assumed in the analysis of impedance of the 
shell that there were no losses in the shell vibration. 

However the possibility of shell losses is implicit in the 
derivation of the expression for the absorption coeffi- 
cients [Eq. (9)], and their effect, whatever their origin, 
can be deduced from that expression. The presence of 
shell losses requires that the resistance ratio of the 
cylinder r, be taken as the sum of two parts, 

(22) 

where the first part is the contribution of the shell and 
the second part is the contribution of the contents of 
the shell; previously rJ had been the only resistive 
term. Now, the total power absorbed by the cylinder 
is absorbed individually by the shell and the contents 
in proportion to their resistances. Since our interest is 
confined to the sound power that reaches the interior, 
it is necessary to modify the expression for the absorp- 
tion coefficients [Eq. (9)•; the modified modal absorp- 
tion coefficient is therefore 

Q•=' = r,•Q,•/r,• 

This coefficient expresses the ratio of the power (in 
mode m) transmitted to and absorbed in the contents 
of the shell to the power in the incident plane wave 
which is directed toward the longitudinal section of the 
cylinder. It is seen that the introduction of losses in the 
shell affects the modified coefficient only in the value 
of the denominator, through the term r•. As previously 
pointed out, the denominator is the square of the total 
impedance to vibration at the surface of the cylinder. 
Unless the quality factor "Q" of the cylinder is quite 
small, the introduction of shell losses will be apparent 
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only near resonance, i.e. when (x,,+x,,")= 0. However 
these resonances are the regions of highest values of the 
coefficients Q,•" so that the result is very useful. If the 
shell losses are made to predominate over other (radia- 
tion, etc.) losses, then the peaks in the modified coeffi- 
cients Q,•' would decrease 6 db with each doubling 
of the shell resistance. 

In conclusion, comments can be made concerning 
the possibility of extention of the present method of 
analysis to more complicated shells, made up of struc- 
tural members and an attached skin. If the frequency 
is low enough that the skin would partake of the motion 
of the structure, it should be possible to replace the 
real shell by an equivalent uniform shell. Modification 
of the shell analysis would be necessary in cases when 
the effective elastic constants are different in the axial 

and circumferential directions. However, it would be 
expected that many of the conclusions of this analysis 
would be qualitatively applicable to the more compli- 
cated case. 

APPENDIX 

Certain asymptotic and approximate forms for the 
modal absorption coefficients can be derived for use in 
special cases. At low frequencies, when the parameter 
xr is small, it can be shown 4 that the modal radiation 

resistance ratio r,,*(x,) approaches 

It will be noted that xr = k,a=o•a cosO/c. 
At the resonant frequency or angle, defined by 

(X,•q-x,•') = 0, the modified absorption coefficient [Eq. 
(23)] assumes a quite simple form. Subject to the 
approximation of a low frequency and the further 
approximation that the resistance r,•, of shell and 
contents, predominates over the radiation resistance 
r.,', then 

8•r at resonance: p%d-' (m!)•k•- ] •-•. 
Off the resonant frequency, the reactonce of the shell 

will usually predominate over the resistance terms and 
the other reactances; subject to this approximation, at 
low frequencies Q,? is given by the expression 

8*r (x•'• 2"• off resonance: Q%'-' (m !)2\-•-/ (x,,,'a) 2' 
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Vibrations of Ferroelectric Cylindrical Shells with Transverse Isotropy. 
I. Radially Polarized Case 

J. F. HASKINS* AND J. L. WALSI2I t 
U. & Navy Electrohies Laboratory, San Diego 52, California 

(Received December 14, 1956) 

Expressions for the coupled mechanical vibrations and electrical admittance of ferroelectric tubes having 
transverse isotropy are derived and the results supported with experimental data. Coupled modes in radially 
polarized barium titanate tubes are examined as a function of length to radius ratio. A frequency-dependent 
expression is given for the admittance in terms of electromechanical coupling, capacitance, and tube length. 
Results permit close prediction of resonant frequencies. An optimum length to radius ratio of 2.9 is indicated 
for maximum electromechanical coupling with the gravest radial mode in a radially polarized tube. 

1. INTRODUCTION 

HIS paper is concerned with the vibrations and electrical characteristics of an electrically driven 
cy]indrk'al tube of a ferroelectric ceramic. The mechani- 
cal resonance of thin-walled cylindrical tubes for the 
isotropic case is given by Love3 Later a similar result 

* Now at Convair-Astronautics, A Division of General Dy- 
namics, San Diego, California. 

t Now at Hughes Aircraft Company, Culver City, California. 
• A. E. H. Love, Mathematical Theory of Elastldly (Dover 

Publications, New York, 1944), fourth edition, p. 546. 

was obtained by Giebe and Blechschmidt z using an 
entirely different approach, but arriving at the same 
formula for mechanical resonance. Recently Stephenson s 
has worked out formulas for both the mechanical and 

electrical properties of short hollow cylinders of barium 
titanate. 

We will demonstrate how the formula for mechanical 

resonance is valid for a radially polarized ferroelectric 

a E. Glebe and E. Blechschmidt, Ann. Physik, Ser. 5, No. 5, 
I8,417 (1933). 

a C. V. Stephenson, J. Acoust. Soc. Am. 28, 51-56 (1956). 


