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Abstract

This paper collects together various facts about digital waveguide networks (DWN) used in
acoustic modeling, particularly results pertaining to lossless scattering at the junction of N in-
tersecting digital waveguides. Applications discussed include music synthesis based on physical
models and delay effects such as artificial reverberation. Connections with Wave Digital Filters
(WDF), ladder/lattice digital filters, and other related topics are outlined. General conditions
for losslessness and passivity are specified. Computational complexity and dynamic range re-
quirements are addressed. Both physical and algebraic analyses are utilized. The physical
interpretation leads to many of the desirable properties of DWNs. Using both physical and
algebraic approaches, three new normalized ladder filter structures are derived which have only
three multiplications per two-port scattering junction instead of the four required in the well
known version. A vector scattering formulation is derived which maximizes generality subject
to maintaining desirable properties. Scattering junctions are generalized to allow any waveguide
to have a complex wave impedance which is equivalent at the junction to a lumped load imped-
ance, thus providing a convenient bridge between lumped and distributed modeling methods.
Junctions involving complex wave impedances yield generalized scattering coefficients which
are frequency dependent and therefore implemented in practice using digital filters. Scattering
filters are typically isolable to one per junction in a manner analogous to the multiply in a
one-multiply lattice-filter section.
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1 Introduction

The theory of lossless scattering of traveling waves has had an enormous influence on theory and
practice in science and engineering. For example, classical scattering theory has found applica-
tions in transmission-line and microwave engineering [3], geoscience and speech modeling [39, 35],
numerically robust filter structures [27, 35, 111, 113, 112, 114, 110], and estimation theory [9].
Moreover, signal processing models of acoustic systems based on a sampled traveling-wave physical
description have recently led to extremely efficient structures for musical sound synthesis based on
physical models [93, 97, 118, 115, 134, 76, 100] and for delay effects such as artificial reverberation
[91, 106, 79, 122, 84, 125].

The solution of the wave equation in terms of traveling waves began with d’Alembert’s first
publication of it in 1747 [20]. While it may seem likely that scattering theory would have developed
with transmission-line analysis in the early part of this century, the concept of the scattering
matrix was introduced from general physics to the microwave engineering literature in 1948 (see,
e.g., [3, p. 851]). The scattering formalism was developed independently and simultaneously for
lumped networks by Belevitch [3, p. 851]. Since then, many fruitful lines of development have
grown from the traveling-wave formalism, including results in insertion-loss filter theory, distributed
amplifier design, the design of n-ports in telephone applications, wave digital filters, the applications
mentioned in the previous paragraph, and the many results discussed in the references.

1.1 Digital Filters as Physical Models

The mainstream literature in digital signal processing does not routinely include methodology
for using digital filters as physical modeling elements. On the other hand, literature on general
numerical simulation techniques for physical dynamic systems does not generally cover relevant
good practice in digital signal processing. Recent applications [91, 56, 64, 122, 134] have shown that
many benefits can be derived from taking a physical point of view with respect to digital filtering
computations. For example, robust, rapidly time-varying, nearly lossless digital filters (such as
needed, e.g., for a guitar string simulation) can be developed more easily using a physical approach,
and conditions for the absence of unnatural artifacts become more clear. Moreover, nonlinear
extensions are much more straightforward when there is a physical interpretation for each of the
processing elements. While some benefits of the physical modeling perspective have been realized
in the form of general-purpose digital filter structures with good numerical properties, such as
ladder and lattice filters,1 more general use of signal processing elements and analysis/optimization
methods in physical modeling applications appears to be rare.

The original Kelly-Lochbaum (KL) speech model [39] employed a ladder filter with delay ele-
ments in physically meaningful locations, allowing it to be interpreted as a discrete-time, traveling-
wave model of the vocal tract (see the allpass portion of Fig. 5 for a similar diagram). Assuming a
reflecting termination at the lips, the KL model can be transformed via elementary manipulations
to the ladder/lattice filters used in linear predictive coding (LPC) of speech [92]. The early work
of Kelly and Lochbaum appears to have been followed by two main lines of development: (1) “ar-
ticulatory” speech synthesis which utilizes increasingly sophisticated physical simulations [50, 22],
and (2) linear predictive coding of speech [57]. The all-pole synthesis filter used in LPC, when
implemented as a ladder filter, can be loosely interpreted as a transformation of the KL model

1Following previous usage conventions, we use the term “ladder filter” when the graph of the filter is planar, and
“lattice filter” when the graph is non-planar.
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[57]. There have been ongoing efforts to develop low bit-rate speech coders based on simplified
articulatory models [89, 29]. The main barrier to obtaining practical speech coding methods has
been the difficulty of estimating vocal-tract shape given only the speech waveform.

There have been a few developments toward higher quality speech models retaining the sim-
plicity of a source-filter model such as LPC while building on a true physical model interpretation:
An extended derivative of the Kelly-Lochbaum (KL) model, adding a nasal tract, neck radiation,
and internal damping, has been used to synthesize high-quality female singing voice [14]. Sparse
acoustic tubes, in which many reflection coefficients are constrained to be zero, have been pro-
posed [54, 32]. Conical (rather than the usual cylindrical) tube segments and sparsely distributed
interpolating scattering junctions have been proposed as further refinements [117, 115].

In musical sound synthesis and delay-effects applications, digital waveguide models have been
used for distributed media, such as vibrating strings, bores, horns, plates, solids, acoustic spaces,
and the like [93, 94, 97, 14, 15, 16, 18, 17, 36, 37, 103, 44, 46, 47, 8, 48, 98, 123, 119, 126, 116,
124, 115, 118, 120, 130, 6, 23, 49, 82, 121, 41, 73, 68, 100, 45, 77, 86, 87, 107, 85, 74, 101, 102, 30].
A digital waveguide is typically defined as a bidirectional delay line containing sampled traveling
waves. This paper is concerned with general properties of digital waveguide models.

Digital waveguide models often include lumped elements such as masses and springs. Lumped
element modeling is the main focus of wave digital filters (WDF) as developed principally by
Fettweis [26, 27]. Wave digital filters derive from a scattering-theoretic formulation [4] and bilinear
transformation [65] of lumped RLC elements. The formal traveling-wave signals in the scattering-
theoretic description of lumped circuit elements are known as wave variables. Interfacing to digital
waveguide models is simple since both use scattering-theoretic formulations. In acoustic modeling
applications, WDFs can provide digital filters which serve as explicit physical models of mass,
spring, and dashpot elements, as well as more exotic elements from classical network theory such
as transformers, gyrators, and circulators. An example of using a WDF to model a nonlinear
mass-spring system is the “wave digital piano hammer” [127]. For realizability of lumped models
with feedback, wave digital filters also incorporate short waveguide sections called “unit elements,”
but these are ancillary to the main development. The digital waveguide formulation is actually
more closely related to “unit element filters” which were developed much earlier than WDFs in
microwave engineering [72].

Vaidyanathan and Mitra [113] developed a class of digital filters containing both the WDFs
and the Gray-Markel normalized ladder structures [35], and proved low passband sensitivity to
coefficient quantization and the absence of limit cycles, even under time-varying conditions. The
generalized filter structure in [113] can itself be interpreted as a DWN consisting of a single nor-
malized scattering junction (see Section 4) joining an input/output port and N waveguides which
are each 1/2 sample long and reflectively terminated at their other end.

Vaidyanathan and Mitra also defined a general family of multivariable digital ladder filters
[112] and derived a synthesis procedure for m-input k-output transfer-function matrices based on
recursive extraction of generalized scattering junctions from an allpass transfer-function matrix in
which the desired transfer function is embedded. Each “vector” scattering junction is an elegant
generalization of that in the Gray-Markel normalized ladder filter [57]. The extraction approach
starts from the specification of a k×m matrix fraction description [43] of the desired allpass matrix
and proceeds directly in the z domain.

Digital waveguide models, in contrast to WDFs and generalized Gray-Markel ladder filters, are
typically derived directly from the geometry and physical properties of a desired acoustic system.
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They are often used to simulate nearly lossless distributed vibrating structures such as strings,
tubes, rods, membranes, plates, and so on, but only up to a certain bandwidth (the limit of human
hearing in audio applications). In many cases we do not want simply to implement a transfer
function; we need instead a complete model with which we can interact in a physically consistent
way, even when parameters are time-varying and nonlinearities are introduced. In such cases,
digital waveguide networks can provide a solid foundation.

1.2 Digital Waveguide Networks (DWN)

Wave propagation in distributed physical systems can be efficiently simulated using DWNs. The
simplest case is a single bidirectional delay line which simulates wave propagation in a lossless
cylindrical acoustic tube or ideal vibrating string [97] (see Fig. 1). A slightly more complex case is
the cascade connection of two or more bidirectional delay lines, interconnected by two-port lossless
scattering junctions, as in the Kelly-Lochbaum vocal-tract model (see Fig. 5, allpass section).

Terminating a cascade of bidirectional delay lines with an infinite or zero impedance yields
total reflection from the termination (far left or far right in Fig. 5). In this case, delay elements
for sampled signals traveling toward the termination can be commuted through the scattering
junctions and combined with the delay elements for signals traveling away from the termination,
and the sampling rate can be lowered by a factor of two [92]. This derives the ladder digital
filter structure used in more modern speech coding via linear prediction [57]. Extending this
procedure, the multivariable digital lattice filters synthesized according to [112] can be transformed
via elementary delay manipulations to a multivariable DWN.

Wave propagation in membranes and volumes can be efficiently simulated using a waveguide
mesh which is a grid of bidirectional delay lines interconnected by N -port lossless scattering junc-
tions [93, 122, 84, 125, 30]. Highly efficient, multiply-free, lossless meshes can be obtained when
the number of waveguides intersecting at each junction is a power of two [91]; this happens in
the simple rectilinear 2D mesh, and also in the tetrahedral 3D mesh (analogous to the diamond
crystal lattice) [125]. The common feature of DWNs is sampled unidirectional traveling waves in
distributed wave-propagation media.

Digital waveguide networks (as well as WDFs or any digital filter with a physical interpretation)
can be regarded as a special case of finite difference methods (FDM) [109]. Normally, FDMs are
derived directly from differential equations by replacing differentials (dx, dt, etc.) by finite steps
(∆x, ∆t, etc.). A major distinction of DWN-induced FDMs is their inherent stability. Since DWNs
for lossless media are by construction lossless networks of lossless sampled transmission lines, the
stability problems normally associated with FDMs are avoided at the outset. Moreover, dispersion
is often avoided completely in the 1D case, and it can be controlled from a different perspective in
higher dimensions [124]. These advantages are quite useful in acoustic modeling applications which
involve large-order systems which are very close to lossless (such as a vibrating string, plate, or
reverberating chamber).

To incorporate linear propagation distortions (frequency-dependent attenuation and dispersion),
recursive digital filters are typically embedded in the DWN at specific points. Rather than imple-
ment attenuation and dispersion in a uniformly sampled, distributed fashion (i.e., a small amount
of filtering between each pair of unit-delay elements), one digital filter will normally implement
the attenuation and dispersion associated with a much larger section of medium [97]. In principle,
the required filter order increases with the size of the section being “summarized,” but in nearly
lossless media such as strings and acoustic tubes, the filtering per unit length of medium is so weak
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that very low-order filters give very good approximations to many samples worth of wave propaga-
tion. This “lumping” of losses and dispersion in the discrete-time simulation can yield enormous
complexity reductions, but it is also a source of approximation error which must be considered in
the context of the application. In acoustic modeling over audio bandwidths, approximations of
this kind are normally inaudible so long as the overall decay rates and tunings of the modes of the
structure being modeled are preserved.

1.3 Properties of DWNs

Each delay element of a DWN can be interpreted precisely as a sampled traveling-wave component
in a physical system, unlike the delay elements in ladder and lattice digital filters. Due to the
particular bilinear-transform frequency warping used in typical WDFs, the delay elements in WDFs
can be precisely interpreted as containing samples of physical traveling waves at dc, fs/4, and fs/2,
where fs denotes the sampling rate.

Because simple sampling of traveling waves is used to define DWNs, aliasing can occur if the
bandwidths of the physical signals become too large, or if nonlinearities or time-varying parameters
create signal components at frequencies above the Nyquist limit. (The bilinear transform, on the
other hand, does not alias.) An advantage of simple sampling is that the frequency axis is preserved
exactly up to half the sampling rate, while in the case of the bilinear transform, the frequency axis
is warped so that only dc, fs/2 and one other frequency can be mapped across exactly.

Due to the precise physical interpretation of DWNs, nonlinear and time-varying extensions are
well behaved and tend to remain “physical”, provided aliasing is controlled. (See Section 6.)

Because delay elements appear in physically meaningful locations in both the forward and
reverse signal paths of a DWN, there is no restriction to a reflectively terminated cascade chain
of scattering junctions as is normal in the ladder/lattice filter context. Digital waveguides can be
coupled at junctions, cascaded, looped, or branched, to any degree of network complexity. As a
result, much more general network topologies are available, corresponding to arbitrary physical
constructions.

Lumped elements can be integrated into DWNs and results from WDF theory can be used to
model both linear and nonlinear lumped circuit elements [58, 127, 21].

The instantaneous power anywhere in a DWN can be made invariant with respect to time-
varying filter coefficients, as discussed in Sections 4 and 5. This can be seen as generalizing the
normalized ladder filter [35, 92, 95].

As a result of the strict passivity which follows directly from the physical interpretation, no
instability, limit cycles, or overflow oscillations can occur, even in the time-varying case, as long as
“passive scattering” is used at all waveguide junctions [113, 92]. As explained in Section 6, passive
scattering may be trivially obtained simply by using extended internal precision in each junction
followed by magnitude truncation of all outgoing waves leaving the junction. However, in scattering
intensive applications such as the 2D and 3D mesh, magnitude truncation often yields too much
damping due to round-off, and more refined schemes must be used.

The basic characteristics of DWNs can be summarized as follows [95]:

• DWNs are derived by sampling traveling-wave descriptions of distributed physical wave-
propagation systems such as strings, acoustic tubes, plates, gases, and solids.

• Each delay element of a DWN has a precise physical interpretation as a sample of a unidirec-
tional traveling wave.
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• The frequency axis is preserved up to half the sampling rate (i.e., it is not warped according
to the bilinear transform).

• Physically meaningful nonlinear, time-varying extensions are straightforward.

• Aliasing can occur due to nonlinearities, time variation, or inadequate bandlimiting of initial
conditions and/or input signals.

• Fully general modeling geometries are available (e.g., in contrast to ladder/lattice filters).

• Lumped models can be simply interfaced to DWNs.

• Overall signal energy can be simply controlled.

• Instability, limit cycles, can overflow oscillations can be suppressed by using “passive scatter-
ing.”

• Sensitivity to coefficient quantization can be minimized.

• A synthesis procedure exists for constructing any single-input, single-output (SISO) transfer
function by means of a DWN [111], and any m-input, k-output transfer function by means
of a multivariable DWN [112].

1.4 Paper Outline

Section 2 gives a generalized formulation of waveguide models: After a short introduction in classical
terms, we consider the m-component dual variables p and u, which can be associated with any
physical wave quantities such as acoustic pressure and volume velocity, or voltage and current.
This discrete-time multivariable formulation, while leading to results similar to those in classical
electrical network theory [4], provides a general framework giving a unified treatment of various
modeling problems.

In Section 3, we define the lossless junction of waveguide sections in terms of energy conservation.
Such a formulation yields a class of lossless scattering junctions larger than that arising from the
set of all physically meaningful scattering junctions.

Section 4 discusses power normalization of waveguide variables, and the results are applicable
to both physical and non-physical scattering junctions.

In Section 5, we summarize formulas for physical, normalized, and unnormalized scattering
junctions of m-variable waveguide branches. We show how these junctions can be loaded with a
lumped network and present an example in acoustic modeling.

In Section 6, using the physical interpretation of the computations, we give conditions for
ensuring passivity of nonlinear and time-varying DWNs.

In Section 7, we present an algebraic analysis of the lossless junction, and the fundamental con-
dition of losslessness is translated into the domain of eigenvalues and eigenvectors of the scattering
matrix.

Section 8 shows how physical junctions can be implemented efficiently, both in the normalized
and unnormalized cases. As a byproduct, two new three-multiply, three-add normalized lattice
sections are derived. It is shown that the proposed implementations are robust with respect to
coefficient quantization, and dynamic range requirements are addressed.
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Section 9 considers an abstract geometric (as opposed to physically geometric) interpretation
of physical scattering computations. The normalized scattering matrix is shown to be equivalent
to a Householder reflection, while the unnormalized case can be seen as an oblique Householder
reflection. Householder matrices are highly valued in numerical analysis because they conserve nu-
merical dynamic range and thereby yield robust algorithms [34]. As a byproduct of this viewpoint,
another new three-multiply, three-add normalized lattice section is derived which is especially well
suited for implementation on general-purpose digital signal processing chips.

For completeness, Section 10 briefly covers the extension of lossless scattering and junction nor-
malization to the case in which scattering matrices may contain complex rational transfer function
elements. Such cases arise in the computational modeling of acoustic systems such as intersecting
conical tubes and woodwind fingerholes. Junctions loaded by an arbitrary lumped impedance (e.g.,
a Helmholtz resonator mouthpiece model or complex violin bridge impedance), can also be handled
this way.

2 Basic DWN Formulation

This section reviews the DWN paradigm and briefly outlines considerations arising in acoustic
simulation applications.

The formulation is based on dual m-dimensional vectors of “pressure” and “velocity” p and
u, respectively. These variables can be associated with acoustic pressure and particle- or volume-
velocity, or they can be anything analogous such as electrical voltage and current, mechanical force
and velocity, etc. We call these dual variables Kirchhoff variables to distinguish them from wave
variables which are their traveling-wave components. For concreteness, we will focus on pressure
and velocity waves in a lossless, linear, acoustic tube. In acoustic tubes, velocity waves are in units
of volume velocity (particle velocity times the tube cross-sectional area) [60].

2.1 The Ideal Acoustic Tube

First we address the scalar case. For an ideal acoustic tube, we have the following wave equation [60]:

∂2p(x, t)

∂t2
= c2 ∂2p(x, t)

∂x2
(1)

where p(x, t) denotes (scalar) pressure in the tube at the point x along the tube at time t in seconds.
If the length of the tube is LR, then x is taken to lie between 0 and LR. We adopt the convention
that x increases “to the right” so that waves traveling in the direction of increasing x are referred to
as “right-going.” The constant c is the speed of sound propagation in the tube, given by c =

√

K/µ,
where K is the “spring constant” or “stiffness” of the air in the tube,2 and µ is the mass per unit
volume of the tube. The dual variable, volume velocity u, also obeys (1) with p replaced by u. The
wave equation (1) also holds for an ideal string, if p represents the transverse displacement, K is
the tension of the string, and µ is its linear mass density.

The wave equation (1) follows from the more physically meaningful telegrapher’s equations [24]:

− ∂p(x, t)

∂x
= µ

∂u(x, t)

∂t
(2)

2“Stiffness” is defined here for air as the reciprocal of the adiabatic compressibility of the gas [61, p. 230]. This
definition helps to unify the scattering formalism for acoustic tubes with that of mechanical systems such as vibrating
strings.
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−∂u(x, t)

∂x
= K−1 ∂p(x, t)

∂t
(3)

Equation (2) follows immediately from Newton’s second law of motion, while (3) follows from
conservation of mass and properties of an ideal gas [61].

The general traveling-wave solution to (1), (2), and (3) was given by D’Alembert [60] as

p(x, t) = p+(x− ct) + p−(x + ct)
u(x, t) = u+(x− ct) + u−(x + ct)

(4)

where p+, p−, u+, u− are the right- and left-going wave components of pressure and velocity, re-
spectively, and are referred to as wave variables. This solution form is interpreted as the sum of
two fixed wave-shapes traveling in opposite directions along the uniform tube. The specific wave-
shapes are determined by the initial pressure p(x, 0) and velocity u(x, 0) throughout the tube for
x ∈ [0, LR].

2.2 Multivariable Formulation of the Acoustic Tube

A straightforward multivariable generalization of the telegrapher’s equations (2) and (3) gives the
following m-variable generalization of the wave equation (5):

∂2p(x, t)

∂t2
= KM−1 ∂2p(x, t)

∂x2
(5)

in the spatial coordinates xT △
=
[

x1 . . . xm

]

at time t, where M and K are m×m non-singular,

non-negative matrices which play the respective roles of multidimensional mass and stiffness. The
second spatial derivative is defined here as

[

∂2p(x, t)

∂x2

]T
△
=

[

∂2p1(x, t)

∂x2
1

. . .
∂2pm(x, t)

∂x2
m

]

(6)

For digital waveguide modeling, we desire solutions of the multivariable wave equation which
involve only sums of traveling waves, because traveling wave propagation can be efficiently simulated
digitally using only delay lines, digital filters, and scattering junctions. Consider the eigenfunction

p(x, t) =






est+v1x1

. . .
est+vmxm






△
= estI+V X · 1 (7)

where s is interpreted as a Laplace-transform variable s = σ + jω, I is the m×m identity matrix,

X
△
=diag(x), V

△
=diag([v1, . . . , vm]) is a diagonal matrix of spatial Laplace-transform variables (the

imaginary part of vi being spatial frequency along the ith spatial coordinate), and 1T △
=[1, . . . , 1].

Substituting the eigenfunction (7) into (5) gives the algebraic equation

s2I = KM−1V 2 △
= C2V 2 (8)

where C is the diagonal matrix of sound-speeds along the m coordinate axes. Since C2V 2 = s2I,
we have

V = ±sC−1. (9)
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Substituting (9) into (7), the eigensolutions of (5) are found to be of the form

p(x, t) = e
s

(

tI±C−1X
)

· 1 (10)

Having established that (10) is a solution of (5) when condition (8) holds for the matrices M

and K, we can express the general traveling-wave solution to (5) in both pressure and velocity as

p(x, t) = p+ + p−

u(x, t) = u+ + u− (11)

where p+△
=f(tI−C−1X), with f being an arbitrary superposition of right-going components of the

form (10) (i.e., taking the minus sign), and p−△
=g(tI + C−1X) is similarly any linear combination

of left-going eigensolutions from (10) (all having the plus sign). Similar definitions apply for u+

and u−. When the time and space arguments are dropped as in the right-hand side of (11), it is
understood that all the quantities are written for time t and position x.

When the mass and stiffness matrices M and K are diagonal, our analysis corresponds to
considering m separate waveguides as a whole. For example, the three directions of vibration (one
longitudinal and two transverse) in a single terminated string can be described by (5) with m = 3.
The coupling among the strings occurs primarily at the bridge in a piano [132]. As we will see
later, the bridge acts like a junction of several multivariable waveguides.

When the matrices M and K are non-diagonal, the physical interpretation can be of the form

C2 △
= KM−1 (12)

where K is the stiffness matrix, M is the mass density matrix. C is diagonal if (8) holds, and in
this case, the wave equation (5) is decoupled in the spatial dimensions. There are physical examples

where the matrices M and K are not diagonal, even though C2 △
= KM−1 is. One such example,

in the domain of electrical variables, is given by m conductors in a sheath or above a ground plane,
where the sheath or the ground plane acts as a coupling element [63, pp. 67–68].

Note that the multivariable wave equation (5) considered here does not include wave equations
governing propagation in multidimensional media (such as membranes, spaces, and solids). In
higher dimensions, the solution in the ideal linear lossless case is a superposition of waves traveling
in all directions in the m-dimensional space [60]. However, it turns out [122] that a good simulation
of wave propagation in a multidimensional medium may be in fact be obtained by forming a mesh of
unidirectional waveguides as considered here, each described by (5). Such a mesh of 1D waveguides
can be shown to solve numerically a discretized wave equation for multidimensional media [125].

2.3 Generalized Wave Impedance

From the multivariable generalization of (2), we have, using (10), ∂p(x, t)/∂x = −M∂u(x, t)/∂t⇒
±sC−1p = −sMu⇒ p = ±CMu = ±K1/2M1/2u

△
= ±Ru, where ‘+’ is for right-going and ‘−’

is for left-going. Thus, following the classical definition for the scalar case, the wave impedance is
defined by

R
△
= K1/2M1/2 = CM
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and we have
p+ = Ru+

p− = −Ru− (13)

Thus, the wave impedance R is the factor of proportionality between pressure and velocity in a
traveling wave. It is diagonal if and only if the mass matrix M is diagonal (since C is assumed
diagonal). The minus sign for the left-going wave p− accounts for the fact that velocities must
move to the left to generate pressure to the left. The wave admittance is defined as Γ = R−1.

More generally, when there is a loss represented by a diagonal matrix G, we have, in the
continuous-time case,

p = eGXe
s

(

tI−C−1X
)

· 1 (14)

where X
△
= diag(x) as before, leading to the admittance matrix

Γ = M−1C−1 − 1

s
M−1G (15)

For the discrete-time case, we may map Γ(s,x) from the s plane to the z plane via the bilinear
transform [65], or we may sample the inverse Laplace transform of Γ(s,x) and take its z transform
to obtain Γ̂(z, x).

A linear propagation medium in the discrete-time case is completely determined by its wave
impedance R(z, x) (generalized here to permit frequency-dependent and spatially varying wave
impedances). A waveguide is defined for purposes of this paper as a length of medium in which
the wave impedance is either constant with respect to spatial position x, or else it varies smoothly
with x in such a way that there is no scattering (as in the conical acoustic tube). For simplicity,
we will suppress the possible spatial dependence and write only R(z).3

2.4 Generalized Complex Signal Power

The net complex power involved in the propagation can be defined as [4]

P = u∗p = (u+ + u−)∗(p+ + p−)

= u+∗
Ru+ − u−∗

R∗u− +

u−∗
Ru+ − u+∗

R∗u−

△
= (P+ − P−) + (P× − P×∗) (16)

where all quantities above may be functions of z, and “∗” denotes paraconjugation (transposition
and complex conjugation on the unit circle in the z plane). The quantity P+ = u+∗

Ru+ is
called right-going active power (or right-going average dissipated power4), while P− = u−∗

R∗u−

3There are no tube shapes supporting exact traveling waves other than cylindrical and conical (or conical wedge,
which is a hybrid) [69]. However, the “Salmon horn family” (see, e.g., [60, 96]) characterizes a larger class of
approximate “one-parameter traveling waves.” In the cone, the wave equation is solved for pressure p(x, t) using a
change of variables p′ = px, where x is the distance from the apex of the cone, causing the wave equation for the
cone to reduce to that of the cylindrical case [2].

4Note that |z| = 1 corresponds to the average physical power at frequency ω, where z = exp(jωT ), and the wave
variable magnitudes on the unit circle may be interpreted as RMS levels [4, p. 48]. For |z| > 1, we may interpret
the power P(z) = u∗(1/z∗)p(z) as the steady state power obtained when exponential damping is introduced into the
waveguide giving decay time-constant τ , where z = exp(−T/τ) exp(jωT ) [4, p. 48].
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is called the left-going active power. The term P+−P−, the right-going minus the left-going power
components, we call the net active power, while the term P× − P×∗ is net reactive power. These
names all stem from the case in which the matrix R(z) is positive definite for |z| ≥ 1. In this case,
both traveling components of the active power are real and positive, the active power itself is real,
and the reactive power is purely imaginary.

2.5 Medium Passivity

Following the classical definition of passivity [4, 133], a medium is said to be passive if

P+ + P− ≥ 0 (17)

for |z| ≥ 1. Thus, a sufficient condition for ensuring passivity in a medium is that each traveling
active-power component be real and non-negative.

To derive a definition of passivity in terms of the wave impedance, consider a perfectly reflecting
interruption in the transmission line, such that u− = u+. For a passive medium, using (16), (17)
becomes

R(z) + R∗(1/z∗) ≥ 0 (18)

for |z| ≥ 1. The wave impedance R(z) is an m-by-m function of the complex variable z. Condition
(18) is essentially the same thing as saying R(z) is positive real [128], except that it is allowed to
be complex (but Hermitian), even for real z.5 The matrix R∗(1/z∗) is the paraconjugate of R,
i.e., the unique analytic continuation (when it exists) of the Hermitian transpose of R from the
unit circle to the complex z plane [110]. Since the inverse of a positive-real function is positive
real, the corresponding generalized wave admittance Γ(z) = R−1(z) is positive real (and hence
analytic) in |z| ≥ 1. In other terms, the sum of the wave impedance and its paraconjugate is
positive semidefinite.

We say that wave propagation in the medium is lossless if the wave impedance matrix satisfies

R(z) = R∗(1/z∗) (19)

i.e., if R(z) is para-Hermitian (which implies its inverse Γ(z) is also).
Most applications in waveguide modeling are concerned with nearly lossless propagation in

passive media. In this paper, we will state results for R(z) in the more general case when applicable,
while considering applications only for constant and diagonal impedance matrices R. As shown in
Section 2.3, coupling in the wave equation (5) implies a non-diagonal impedance matrix, since there
is usually a proportionality between the speed of propagation C and the impedance R through the
non-diagonal matrix M .

The wave components of equations (11) travel undisturbed along each axis. This propagation
is implemented digitally using m bidirectional delay lines, as depicted in Fig. 1. We call such a
collection of delay lines an m-variable waveguide section. Waveguide sections are then joined at
their endpoints via scattering junctions (discussed further in following sections) to form a DWN.

5A complex-valued function of a complex variable f(z) is said to be positive real if

1) z real ⇒ f(z) real

2) |z| ≥ 1 ⇒ Re{f(z)} ≥ 0

Positive real functions characterize passive impedances in classical network theory [129].
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Figure 1: An m-variable waveguide section.

2.6 Impulsive Signals Interpretation

Let c denote the speed of propagation in one branch of an m-variable waveguide section having real,
positive wave impedance R. Let L be the linear length of this branch in samples. The propagation
time from one end to the other is Tp = L/c. If Tp = nT , where T is the sampling interval of the
digital network, the (frequency-independent) propagation in the branch can be precisely simulated
(ignoring any roundoff errors due to scattering at the endpoints). Extending this restriction to every
branch in the network, we can state that a DWN is equivalent to a physical waveguide network
in which the input pressure signals are streams of weighted impulses at intervals of T seconds.
This equivalence is also true in the case of time-varying wave impedances. The impulsive nature of
the propagating signals serves to sample the junction scattering coefficients at the digital sampling
instants.

2.7 Bandlimited Signals Interpretation

A more practically useful correspondence between physical and digital waveguide networks is ob-
tained by assuming the inputs to the physical networks are bandlimited continuous-time Kirchoff
variables. The signals propagating throughout the physical network are assumed to consist of fre-
quencies less than fs/2 Hz, where fs = 1/T denotes the sampling rate. Therefore, by the Shannon
sampling theorem, if we record a sample of the pressure wave, say, at each unit-delay element every
T seconds, the bandlimited continuous pressure fluctuation can be uniquely reconstructed through-
out the waveguide network. Saying the pressure variation is frequency bandlimited to less than
fs/2 is equivalent to saying the pressure distribution is spatially bandlimited to less than fs/2c, or,
a one-sample section of waveguide is less than half a cycle of the shortest wavelength contained in
a traveling wave. In summary, a DWN is equivalent to a physical waveguide network in which the
input signals are bandlimited to fs/2 Hz. This equivalence does not remain true for time-varying
or non-linear DWNs.
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In the case of time-varying wave impedances, the time-variation of the resultant scattering coef-
ficients applies a continuous amplitude modulation to the continuous propagating signals, thereby
generating sidebands. If the signals incident on a junction are bandlimited to f1 Hz and the scat-
tering coefficients are bandlimited to f2 Hz, then the signals emerging from an interconnection
of waveguides are bandlimited only to f1 + f2 Hz. If the network is nontrivial, a portion of the
amplitude-modulated signals may return to the same time-varying junction, and the signal band-
width expands to f1 + 2f2, and so on. A time-varying junction eventually expands the bandwidth
of the signals contained in the network to infinity. With a fixed sampling rate fs in the DWN,
we obtain aliased versions of the physical signals. The general result is that time-varying physical
waveguide networks cannot be simulated by DWNs at a fixed sampling rate. In practice, however,
we obtain good approximate digital simulations by working with wave variables and junction pa-
rameters bandlimited to much less than fs/2, and by using sufficient damping (implemented using
low-pass filtering) in the network so that the aliased signal energy is attenuated below significance.

Particular care must be used also when inserting nonlinear elements into waveguide networks,
since they also extend the bandwidth, and frequency foldover will result. Nonlinear elements are
almost always present in the excitation blocks of musical instruments (e.g., reeds, bows, and felt-
covered hammers), sometimes also in the resonators (e.g., brasses, sitar strings and cymbals), and
sometimes also in the output amplification/diffusion stage (e.g., a saturating amplifier or speaker
simulation). Nonlinearities in the resonators (such as a sitar string) may be sufficiently weak so that
inherent low-pass filtering can attenuate nonlinearly generated high frequencies to insignificance
before they alias. Also, nonlinear excitations can be bandlimited using a lowpass filter if they are
not strongly coupled to the resonator they excite (the “source-filter” decomposition). Similarly,
nonlinearities in the output path can be implemented without aliasing in the absence of feedback
to the resonator or excitation. In some practical cases, conditions for the passivity of nonlinearities
can be determined [127, 62, 81]. However, preventing aliasing is much more difficult. One strategy
is to use low-order polynomials to implement nonlinearities. A polynomial of order n expands the
bandwidth by only a factor of n. Therefore, bandlimiting the nonlinearity input to fs/(2n) and
oversampling by a factor of n will avoid aliasing.

A third reason (beyond time-variation and nonlinearity support) for adopting a sampling rate
significantly higher than the audio frequency bandwidth is the necessity of using fractional delays.
These are needed whenever a high spatial resolution is needed, or when the waveguide length must
be “continuously” variable. In all these cases digital interpolators must be used, in the form of
FIR or IIR filters, ideally allpass (see next subsection). To some extent, both FIR and IIR filter
types introduce amplitude and/or phase distortion at high frequencies, so it is typically beneficial
to increase the sampling rate and provide a “guard band” between 20 kHz (for high fidelity audio)
and fs/2.

2.8 Interpolated Digital Waveguides

Integer delay lengths are not sufficient for musical tuning of digital waveguide models at commonly
used sampling rates [40]. The simplest scheme which is typically tried first is linear interpolation.
However, poor results are obtained in some cases (such electric guitar models) due to the pitch-
dependent damping caused by delay-line interpolation. As is well known [88], linear interpolation
is equivalent to a time-varying FIR filter of the form y(n) = α(n)x(n) + [1 − α(n)]x(n − 1), and
for α(n) = 0.5 (for interpolation half way between available samples), the gain of the interpolation
filter at fs/2 drops to zero. In some cases, such as for steel string simulation, the interpolation filter
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becomes the dominant source of damping, so that when the pitch happens to fall on an integer
delay-line length (α = 0), the damping suddenly decreases, making the note stand out as “buzzy.”
In such cases, something better than linear interpolation is required.

Allpass interpolation is a nice choice for the nearly lossless feedback loops commonly used in
digital waveguide models [40, 104], because it does not suffer any frequency-dependent damping.
Its phase distortion normally manifests as a slight mistuning of high-frequency resonances, which is
usually inaudible and arguably even desirable in most cases. However, allpass interpolation instead
has the problem that instantly switching from one delay to another (as in a “hammer-on” or “pull-
off” simulation in a string model) gives rise to a transient artifact due to the recursive nature of the
allpass filter. Transient artifacts can be reduced or eliminated by “warming up” a second instance
of the filter using the new coefficients in advance of the transition (ideally several time-constants
in advance) and, at the desired transition time, switching out the old filter and switching in the
new [120]. In this way, the new filter is switched in with state consistent with the new coefficients.
Another approach is to cross-fade from the old filter to the new filter, allowing consistent state to
develop in the new filter before its output fades in.

Another popular choice is Lagrange interpolation [46, 115, 1, 88] which is a special case of
FIR filter interpolation; while the transient artifact problem is minimal since the interpolating
filter is nonrecursive, there is still a time-varying amplitude distortion at high frequencies. In fact,
first-order Lagrange interpolation is just linear interpolation, and higher orders can be shown to
give a maximally smooth frequency response at dc (zero frequency), while the gain generally rolls
off at high frequencies. Allpass interpolation can be seen as trading off this frequency-dependent
amplitude distortion for additional frequency-dependent delay distortion [13]. A comprehensive
review of Lagrange interpolation appears in [115].

Both allpass and FIR interpolation suffer from some delay distortion at high frequencies due to
having a nonlinear phase response at non-integer desired delays. As mentioned above for the allpass
case alone, this distortion is normally inaudible, even in the first-order case, causing mistuning or
phase modulation only in the highest partial overtones of a resonating string or tube.

Optimal interpolation can be approached via general-purpose bandlimited interpolation tech-
niques [105, 70]. However, the expense is generally considered too high for widespread usage at
present. Both amplitude and delay distortions can be eliminated over the entire band of human
hearing using higher order IIR (e.g., allpass) or FIR interpolation filters in conjunction with some
amount of oversampling. A comprehensive review of delay-line interpolation techniques is given in
[53].

2.9 Lossy, Dispersive Waveguides

In reality, distributed linear propagation is never lossless. There is always some attenuation and
dispersion per unit distance traveled by a wave in the medium. In principle, implementing loss and
dispersion calls for a digital filter to be inserted at the output of every delay element to precisely
simulate one sample of wave propagation. In practice this is generally unnecessary. Instead, we
may normally implement digital filters sparsely along each digital waveguide [97, 99]. Each filter
provides the attenuation and dispersion corresponding to the propagation distance over the section
it covers. In other words, lossy, dispersive media are approximated by piecewise lossless media
having the same average attenuation and dispersion over long distances. Loss and dispersion are
thus lumped at sparse points along the waveguide model rather than being lumped at each spatial
sampling point.
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In the 1D case, it is possible to obtain exact results using sparsely lumped losses and dispersion,
thanks to the commutativity of linear, time-invariant elements [99]. For example, consider an
acoustic cylinder which is L samples long. If the per-sample traveling-wave filter is given by Hs(z),
and if we only care what happens at the endpoints of the tube, then we need only implement the
filter HL

s (z) at each end of the L-sample tube, prior to any junctions. Since the per-sample filtering
Hs(z) is typically very weak, the stronger filter HL

s (z) is normally also quite weak and readily
approximated to within audio specifications by a low-order digital filter.

It is easy to show that the per-sample traveling-wave filter Hs(z) for any passive propagation
medium such as a string or acoustic cylinder must satisfy

∣
∣Hs(e

jω)
∣
∣ ≤ 1 for all ω ∈ [−π, π]. That

is, wave propagation in a fixed wave impedance cannot increase traveling-wave amplitude at any
frequency. This is a convenient stability criterion which is straightforward to ensure in practice.

In summary, wave propagation in a general linear time-invariant medium is thus simulated using
a (possibly interpolated) delay line to handle the time-delay associated with the propagation, and
one or more digital filters to sparsely implement losses and dispersion where needed, such as prior
to a bow-string contact model [90].

2.10 The General Linear Time-Invariant Case

Let y(t, x) denote the transverse displacement, in one plane, of a vibrating string [60]. The complete
linear time-invariant generalization of the lossy, stiff string is described by the differential equation

∞∑

k=0

αk
∂ky(t, x)

∂tk
=

∞∑

l=0

βl
∂ly(t, x)

∂xl
. (20)

which, on setting y(t, x) = est+vx, (or taking the 2D Laplace transform with zero initial conditions),
yields the algebraic equation,

∞∑

k=0

αks
k =

∞∑

l=0

βlv
l. (21)

Solving for v in terms of s is, of course, nontrivial in general. However, in specific cases, we
can determine the appropriate attenuation per sample G(ω) and wave propagation speed c(ω) by
numerical means. For example, starting at s = 0, we normally also have v = 0 (corresponding to the
absence of static deformation in the medium). Stepping s forward by a small differential j∆ω, the
left-hand side can be approximated by α0 +α1j∆ω. Requiring the generalized wave velocity s/v(s)
to be continuous, a physically reasonable assumption, the right-hand side can be approximated by
β0 + β1∆v, and the solution is easy. As s steps forward, higher order terms become important one
by one on both sides of the equation. Each new term in v spawns a new solution for v in terms of
s, since the order of the polynomial in v is incremented. For each solution v(s), let vr(ω) denote
the real part of v(jω) and let vi(ω) denote the imaginary part. Then the eigensolution family
can be seen in the form exp {jωt± v(jω)x} = exp {±vr(ω)x} · exp {jω (t± vi(ω)x/ω)}. Defining

c(ω)
△
=ω/vi(ω), and sampling according to x → xm

△
=mX and t → tn

△
=nT (ω), with X

△
=c(ω)T (ω),

(the spatial sampling period is taken to be frequency invariant, while the temporal sampling interval
is modulated versus frequency using allpass filters), the left- and right-going sampled eigensolutions
become

ejωtn±v(jω)xm = e±vr(ω)xm · ejω[tn±xm/c(ω)]

= Gm(ω) · ejω(n±m)T (ω) (22)
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where G(ω)
△
=e±vr(ω)X . Thus, a general map of v versus s, corresponding to a partial differential

equation of any order in the form (20), can be translated, in principle, into an accurate, local, linear,
time-invariant, discrete-time simulation. The boundary conditions and initial state determine the
initial mixture of the various solution branches as is typical in, say, the stiff string [19].

In summary, a large class of wave equations with constant coefficients, of any order, admits a de-
caying, dispersive, traveling-wave type solution. Even-order time derivatives give rise to frequency-
dependent dispersion and odd-order time derivatives correspond to frequency-dependent losses.
Higher order spatial derivatives can be approximated by higher order time derivatives and treated
similarly [10]. The corresponding digital simulation of an arbitrarily long (undriven and unobserved)
section of 1D medium (such as a string or acoustic tube) can be simplified via commutativity to at
most two pure delays and at most two linear, time-invariant filters. In higher dimensions, such as
for the 2D mesh, the per-sample filtering cannot in general be exactly commuted to the boundaries
of the mesh. However, an approximation problem can be solved which matches the observed modal
frequencies and decay rates using sparsely distributed low-order filters in an otherwise lossless mesh
(e.g., around the rim).

In practical physical simulation scenarios, such as for real-world strings or acoustic tubes, it is
generally most effective to identify experimentally the attenuation and dispersion associated with
wave propagation at each frequency over the band of interest [108, 49]. These data can be used to
design a digital filter which gives an optimal approximation over the propagation distance desired.
If needed, the per-sample filter identified in this way can be translated into higher-order terms
in the wave equation for the medium. Thus, the wave equation itself can be “identified” from
measured input-output behavior of the medium (assuming it is linear and uniform) rather than
being derived from physical principles and physical constants of the medium as is classically done
[61, 11].

3 The Lossless Junction

A scattering junction of waveguide sections is characterized by its scattering matrix A. The rela-
tionship between the N incoming and outgoing traveling waves is given by:

p− = Ap+ (23)

where p+ is the vector of incoming waves (assumed scalar here) and p− is the vector of outgoing
waves relative to the junction (see Fig. 2). We say that the junction is N -way (or it has N branches)
if N is the dimension of the incoming and outgoing wave vectors.

We now consider the case of a constant scattering matrix A. The more general case of scattering
matrices as functions of z will be considered in Section 10.

The net complex power entering the junctions is

P = u∗p = p+∗Γ∗(1/z∗)p+ − p−∗Γp− +

p+∗Γ∗(1/z∗)p− − p−∗Γp+

= (P+ − P−) + (P× − P×∗) (24)

where Γ is the diagonal matrix containing the N wave admittances of all the branches meeting at
the junction. Assuming the branch admittances are Hermitian and nonzero, we have that Γ has
positive real elements along its diagonal and zeros elsewhere. The quantity P+ = p+∗Γp+ ≥ 0 is
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Figure 2: A schematic depiction of the 3-way waveguide junction.

incoming active power, and P− = p−∗Γp− ≥ 0 is then the outgoing active power relative to the
junction. The term P+ − P− is the absorbed active power, while the term P× − P×∗, containing
the mixed incoming and outgoing waves, is called the reactive power.

A scattering junction is said to be passive when the absorbed active power is nonnegative, i.e.,
when

P+ ≥ P− (25)

for |z| ≥ 1. In other terms, the outgoing active power does not exceed the incoming active power.

3.1 Generalized Lossless Scattering

A scattering junction is said to be lossless if P+ = P−, i.e., the active power absorbed at the
junction is zero. In the case of lossless propagation in a passive medium, it is easy to verify
from (19), (23) and (24) that this is ensured if and only if

Γ(z) = A∗Γ(z)A (26)

where Γ(z) is a generalized wave admittance which is para-Hermitian and analytic for |z| > 16. In
this case the matrix A is said to be a lossless scattering matrix. We refer to (26) as the condition
of losslessness.

When wave propagation occurs in a medium which is passive but not necessarily lossless, the
condition for lossless scattering becomes

Γ∗(1/z∗) = A∗Γ(z)A (27)

Notice that (26) is closely related to the well-known

6Note that by the maximum modulus theorem, if a matrix of meromorphic functions is positive definite on the
unit circle and analytic outside the unit circle, it is necessarily positive definite everywhere outside the unit circle.
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Lyapunov equation [43] for testing the asymptotic stability of discrete-time linear systems.
The definition of lossless junctions employed here includes junctions arising from the connection

of physical waveguides, and extends the formal treatment to non-physical junctions as well. In
certain applications, it can be useful to use non-physical scattering matrices having a particular
structure which increases the computational efficiency, or which gives the desired behavior of the
system [78, 79].

In DWNs, waveguide sections separating scattering junctions are normally implemented using
delay lines. Since in any physical simulation there will be delay in both directions, the delay lines
isolate the scattering junctions, allowing parallel computation of the junctions. This is an advantage
over traditional ladder/lattice filters in which delay elements are present in only one flow direction
[57, 92], thus preventing both a direct pipelined computation and a physical interpretation. On the
other hand, having the delays along only one direction is easier to work with when the problem is
to realize a ladder/lattice filter having a prescribed transfer function [57, 112].

4 The Normalized Lossless Junction

In some applications it is worthwhile to normalize the traveling waves so that all waveguides
effectively have unit impedance, R(z) = I. To normalize, pressure waves are multiplied by a
(matrix) square root of the wave admittance, and velocity waves are multiplied by a (matrix)
square root of the wave impedance. Conservation of power at a lossless junction implies that the
signal dynamic range is conserved in a mean square sense for normalized waves. This can be very
useful in fixed-point implementations of large networks, especially in the time-varying case, since
signal scaling problems are avoided and the full dynamic range can be achieved at every point of
the network. Normalized waveguide networks can be seen as a generalization of the normalized
ladder filter [35].

4.1 Time-Varying Normalized Waveguide Networks

A time-varying waveguide network can be created by changing one or more impedances over time.
This induces changes in the scattering junctions connecting the various impedances. Defining time
variation this way also preserves the physical interpretation of the time-varying network which is
critical for keeping a handle on passivity and hence on stability and numerical robustness.

Since the signal power associated with, say, a single traveling pressure sample p(n) stored
within a delay element in a scalar digital waveguide is Pp(n) = p2(n)Γ, where Γ is the (scalar)
wave admittance of the associated waveguide, modulating a waveguide impedance also modulates
the stored signal power in that waveguide. That is, the stored power associated with the sample
p(n) varies proportional to Γ(n). This is not the case with normalized waves. The normalized
counterpart of pressure sample p(n) is p̃(n) = p(n)

√

Γ(n), and the associated power is always just
the square of the sample value: Pp̃(n) = p̃2(n) = p2(n)Γ(n) = Pp(n). The scattering junctions
connecting normalized waveguides are modulated by the time-varying impedances, but the stored
signal power in the normalized waveguides is not. For the case of lossless scattering junctions,
signal energy is constant throughout the time-varying network. This gives a general class of energy
conserving time-varying digital filters which, along with passive rounding rules, are also free of limit
cycles and overflow oscillations [92]. Thus, normalized waveguide networks decouple signal power
in the network from time variations in the scattering coefficients: A change in the wave impedance
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changes the scattering properties of the junctions but does not alter the instantaneous signal power
in the network.

4.2 Isolating Time-Varying Junctions

Since waveguide sections are typically terminated on both ends by scattering junctions, a change
in one waveguide impedance modulates both scattering junctions rather than only one as may
be desired. It is possible to vary the coefficients of only a single junction when the network is
an acyclic graph (which can be thought of as a generalization of the cascade chain as used in
ladder/lattice filters). Consider the simple case of the cascade chain: Suppose there are N wave-
guides abutted end to end and numbered 1 through N from left to right. Suppose further that we
want to modulate only the scattering junction between sections m and m + 1. We can accomplish
this by modulating the impedance Rm+1 of section m+1. Let the modulation signal be denoted by
g(n) = Rm+1(n)/Rm+1(0), assuming the modulation begins after time 0. Then we can cancel the
modulation at the right endpoint of section m + 1 by modulating the impedance of section m + 2
by g(n) (since the scattering coefficients at the junction of two waveguides depends only on the
impedance ratio). However, now we have to also modulate the impedance of section m + 3 by g(n)
in order to prevent modulation at the junction of sections m + 2 and m + 3. Continuing in this
way, we must modulate the impedances of all waveguides to the right of section m by g(n) in order
to obtain an isolated modulated junction between sections m and m + 1. This argument extends
readily to an acyclic graph, and breaks down whenever a “downstream” branch is connected to an
“upstream” branch, i.e., whenever there is a cycle in the waveguide network graph.

The simultaneous variation of many wave impedances determines an instantaneous variation
of the stored signal power. When the waveguides are normalized, the signal power remains fixed.
As a result, it is possible to vary isolated junctions in the normalized case without worrying about
energy modulation consequences in other parts of the network.

Another way to isolate impedance variations in a time-varying network is by means of ideal
transformers which can step the wave impedance up or down by an arbitrary factor without inducing
reflections. The basic theory of the digital waveguide transformer is discussed in Appendix A, and
Section 9 discusses further applications.

4.3 Scattering of Normalized Waves

We consider first diagonal impedance matrices, since they have an intuitive physical counterpart in
lossless acoustic tubes. Under this assumption, we have the impedance matrix

R = diag[R1, . . . , Rn] (28)

and the admittance matrix
Γ = diag[Γ1, . . . ,Γn] = R−1. (29)

By (19) and the assumption of a passive medium, the normalized pressure waves are uniquely
defined as

p̃±i =
p±i√
Ri

= p±i
√

Γi (30)

where the three signs above are all taken as “+” or all as “−”. (Square roots in this paper are
always taken as positive.) We can write also

p̃± = Γ
1

2 p± (31)
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where Γ
1

2 is the diagonal square root of Γ. The junction of normalized waveguides is in this case
represented by the scattering matrix

Ã = Γ
1

2 AΓ− 1

2 (32)

As a side note, this equation is analogous to the relation between power-wave scattering matri-
ces and voltage-wave scattering matrices as found in the WDF literature [27] for lumped circuit
elements.

In the more general case, when the (complex) admittance matrix Γ is not necessarily diagonal,
but remains positive semidefinite as required for lossless propagation, we have that Γ admits a
Cholesky factorization

Γ = U∗U (33)

where U is upper triangular. We can define the normalized pressure waves as

p̃± = Up± (34)

The normalized scattering junction is obtained via the following similarity transformation on the
unnormalized scattering matrix:

Ã = UAU−1 (35)

Theorem 1 The scattering matrix of a normalized junction is unitary, i.e.,

Ã
∗
Ã = I (36)

Proof: From the condition of losslessness (26), we have Ã
∗
Ã = U−∗A∗U∗UAU−1 = U−∗A∗ΓAU−1 =

U−∗ΓU−1 = U−∗U∗UU−1 = I

By an explicit computation of the matrix product in (36) we can show that the terms of any
column of Ã are power complementary, i.e.,

N∑

i=1

| ãi,k |2 = 1 (37)

for all k.

5 Physical Scattering Junctions

All scattering matrices arising from the connection of N scalar physical waveguides have the same
basic structure which is an efficient subset of the set of all lossless scattering matrices in the sense
of (26). To fix the setting, consider the parallel junction of N lossless acoustic tubes, each with real,
positive, scalar wave admittance Γi. The pressure at the junction is the same for all N waveguides
at the junction point, and the velocities from each branch sum to zero. These physical constraints
yield scattering matrices of the form

A =











2Γ1

ΓJ
− 1 2Γ2

ΓJ
. . . 2ΓN

ΓJ

2Γ1

ΓJ

2Γ2

ΓJ
− 1 . . . 2ΓN

ΓJ

. . .
2Γ1

ΓJ

2Γ2

ΓJ
. . . 2ΓN

ΓJ
− 1











△
= 1αT − I (38)
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where ΓJ and α are defined as follows:

ΓJ =
N∑

i=1

Γi (39)

α
△
=

2

ΓJ
[Γ1, . . . ,ΓN ]T (40)

It is easy to verify that the matrix A satisfies the condition of losslessness (26). In the particular
case of equal-impedance waveguides, we have

Ae =










2
N − 1 2

N . . . 2
N

2
N

2
N − 1 . . . 2

N
. . .
2
N

2
N . . . 2

N − 1










△
=

2

N
11T − I (41)

We notice that the elements of each row of matrix A in (38) and (41) are allpass complementary,
i.e., |∑N

k=1 ai,k | = 1, for all k. Since the scattering matrix Ae for equal-impedance waveguides is
symmetric, the elements of any row or column of matrix Ae are allpass complementary. Since Ae

remains unchanged in the normalized case, the elements of each row and column are also power
complementary.

The equal-impedance case is particularly important when N is a power of two. In this case,
all the multiplications can be replaced by right-shifts in fixed-point arithmetic, and considerable
savings in circuit area can be achieved in a VLSI implementation. This case has been explored in
the design of efficient digital waveguide meshes [91, 122, 125].

The scattering matrix for a connection of N normalized physical waveguides is given by (32).
It can be more explicitly written as

Ã =














2Γ1

ΓJ
− 1 2

√
Γ1Γ2

ΓJ
. . . 2

√
Γ1ΓN

ΓJ

2
√

Γ2Γ1

ΓJ

2Γ2

ΓJ
− 1 . . . 2

√
Γ2ΓN

ΓJ

. . . . . .

. . . . . .
2
√

ΓNΓ1

ΓJ

2
√

ΓNΓ2

ΓJ
. . . 2ΓN

ΓJ
− 1














△
= 2γγT − I (42)

where γ
△
= 2√

ΓJ
[
√

Γ1, . . . ,
√

ΓN ]T , and the power-complementary property (37) can be verified for

both rows and columns.
In the expressions (38)–(42), the elements of the matrices are real, since the one-variable wave-

guides intersecting at the junction have real, positive impedances.
Normalized N -way scattering junctions represented by real matrices can be implemented by

N(N −1)/2 CORDIC processors [38]. Since the scattering matrix is orthogonal (real and unitary),
it corresponds to a rotation in N dimensions. Any such rotation can be obtained by N(N − 1)/2
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planar rotations [34], with each planar rotation being realizable using a CORDIC processor. This
formulation can be useful for VLSI implementations.

The junction represented by the expressions (38) to (42) is formally a parallel junction. The
corresponding series junction can be obtained by taking the dual of the parallel junction, i.e.,
by replacing admittance with impedance and interchanging pressure and velocity. In the series
junction, the velocity is the same in all waveguides at the junction, and the pressures (or forces)
sum to zero.

Parallel junctions occur naturally in the case of intersecting acoustic tubes, while series junctions
arise at the intersection of N transversely vibrating strings, where the transverse velocity must be
the same for all N strings. For waves in strings, force waves play the role of pressure waves in
acoustic tubes. Note that the wave equation (1) for strings is usually written in terms of transverse
displacement. However, choosing velocity and force as Kirchhoff variables unifies the treatment of
vibrating strings with that of acoustic tubes.

5.1 Parallel Junction of Multivariable Complex Waveguides

We now consider the scattering matrix for the parallel junction of N m-variable physical waveguides,
and at the same time, we treat the generalized case of matrix transfer-function wave impedances.
Equations (13) and (11) can be rewritten for each m-variable branch as

u+
i = Γi(z) p+

i

u−
i = − Γ∗

i (1/z∗) p−
i

(43)

and
ui = u+

i + u−
i

pi = p+
i + p−

i = pJ1
(44)

where Γi(z) = R−1
i (z), pJ is the pressure at the junction, and we have used pressure continuity to

equate pi to pJ for any i.
Using conservation of velocity we obtain

0 = 1T
N∑

i=1

ui

= 1T
N∑

i=1

{

[Γi(z) + Γ∗
i (1/z∗)] p+

i

−Γ∗
i (1/z∗)pJ1}

(45)

and

pJ = S1T
N∑

i=1

[Γi(z) + Γ∗
i (1/z∗)] p+

i (46)

where

S =

{

1T

[
N∑

i=1

Γ∗
i (1/z∗)

]

1

}−1

. (47)
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Hence, the scattering matrix is given by

A = S







1T
[

Γ1 + Γ∗
1 . . . ΓN + Γ∗

N

]

. . .

1T
[

Γ1 + Γ∗
1 . . . ΓN + Γ∗

N

]






− I (48)

It is clear that (38) is a special case of (48) when m = 1. If the branches do not all have the same
dimensionality m, we may still use the expression (48) by letting m be the largest dimensionality
and embedding each branch in an m-variable propagation space.

5.2 Loaded Junctions

In discrete-time modeling of acoustic systems, it is often useful to attach waveguide junctions to
external dynamic systems which act as a load. We speak in this case of a loaded junction. The load
is expressed in general by its complex admittance and can be considered a lumped circuit attached
to the distributed waveguide network.

Examples of loaded junctions can be found in certain representations of finger holes in wind-
instrument modeling [93, 80], or in bridge terminations in stringed-instrument modeling [98] (see the
example in the next section). They are also a natural way to load a waveguide mesh to simulate air
above a membrane [31]. Sometimes the load can be time-varying and even nonlinear, as in the case
of a piano hammer hitting a string [127, 7]; in this case, the hammer is modeled as a mass-spring
system in which the spring stiffness nonlinearly depends on its compression, and the impedance
“seen” by the string changes continuously during contact. Finally, the loaded junction equations
can be used to interface a DWN with other types of physical modeling simulations (e.g., a WDF):
In such a case, the attached load is simply the driving-point impedance of the external simulation.

To derive the scattering matrix for the loaded parallel junction of N lossless acoustic tubes,
the Kirchhoff’s node equation is reformulated so that the sum of velocities meeting at the junction
equals the exit velocity (instead of zero). For the series junction of transversely vibrating strings,
the sum of forces exerted by the strings on the junction is set equal to the force acting on the load
(instead of zero).

The load admittance ΓL is regarded as a lumped driving-point admittance [128], and the equation

UL(z) = ΓL(z)pJ(z) (49)

expresses the relation at the load. In acoustic modeling applications, ΓL is normally first obtained in
the continuous-time case as a function of the Laplace transform variable s. Denote the continuous-
time Laplace transform by Γc

L(s), and the inverse Laplace transform by γc
L(t). To preserve the

tuning of audio resonances of acoustic systems, the load admittance is usually converted to discrete
time by the impulse-invariant method, i.e., simple sampling of γc

L(t) in the time domain. In simpler
cases in which there is only one resonance to be transformed from the s plane to the z plane,
such as a piano-hammer model (a mass-spring system) or the individual terms of a partial fraction
expansion, the bilinear transform s = α(z − 1)/(z + 1) may be used [65].

In the impulse-invariant case, to avoid aliasing, we require Γc
L ≃ 0 for frequencies near and

above half the sampling rate. Since the driving-point admittances of acoustic systems are not
generally bandlimited (consider the driving-point impedance of an elementary mass Γc

L(s) = 1/ms
or spring Γc

L(s) = Ks), anti-aliasing filtering should be applied to γc
L(t). The bilinear transform is
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inherently free of aliasing since the entire jω axis in the s plane is mapped only once to the unit
circle in the z plane, but as a result of this mapping, the frequency axis is warped, and the behavior
at continuous-time frequencies can be mapped to the same discrete-time frequencies at only three
points (dc, half the sampling rate, and one more frequency which is arbitrary). For this reason, the
impulse-invariant method is normally preferred when the precise tuning of more than one spectral
feature is important.

In case of a time-varying or nonlinear load, as in the piano-hammer model, to avoid aliasing, the
load impedance should vary sufficiently slowly and/or be sufficiently weakly nonlinear so that the
low-pass filtering in the DWN will attenuate modulation and/or distortion products to insignificance
before aliasing occurs in the recursive network.

The scattering matrix for a loaded parallel junction of N lossless, scalar waveguides with real
wave impedances can be rewritten as [93]

AL =













2Γ1

ΓJ
− 1 2Γ2

ΓJ
. . . 2ΓN

ΓJ

2Γ1

ΓJ

2Γ2

ΓJ
− 1 . . . 2ΓN

ΓJ

. . . . . .

. . . . . .
2Γ1

ΓJ

2Γ2

ΓJ
. . . 2ΓN

ΓJ
− 1













where

ΓJ = ΓL +
N∑

i=1

Γi (50)

For the more general case of N m-variable physical waveguides, the expression of the scattering
matrix is that of (48), with

S =

[

1T

(
N∑

i=1

Γi

)

1 + ΓL

]−1

(51)

5.3 Example: Bridge Coupling of Piano Strings

As an application of the theory, we outline the digital simulation of two pairs of piano strings. The
strings are attached to a common bridge which acts as a coupling element between the strings (see
Fig. 3). An in-depth treatment of coupled strings can be found in [132].

To a first approximation, the bridge can be modeled as a lumped mass-spring-damper system,
while for the strings, a distributed waveguide representation is more appropriate. For the purpose
of illustrating the theory in its general form, we represent each pair of strings as a single 2-variable
waveguide. This approach is justified if we associate the pair with the same key in such a way that
both the strings are subject to the same excitation. Since the 2×2 matrices M and T of (5) can be
considered to be diagonal in this case, we could alternatively describe the system as four separate
scalar waveguides.

The ith pair of strings is described by the 2-variable impedance matrix

Ri =

[

Ri,1 0
0 Ri,2

]

(52)
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Figure 3: Two pairs of strings coupled at a bridge.

The lumped elements forming the bridge are connected in series, so that the driving-point
velocity7 u is the same for the spring, mass, and damper:

u(t) = um(t) = uk(t) = uµ(t) (53)

Also, the forces provided by the spring, mass, and damper, sum:

p(t) = pm(t) + pk(t) + pµ(t) (54)

We can derive an expression for the bridge impedances using the following relations in the Laplace-
transform domain:

Pk(s) = (k/s)Uk(s)
Pm(s) = msUm(s)
Pµ(s) = µUµ(s)

(55)

Equations (55) and (54) give the continuous-time load impedance

RL(s) =
P (s)

U(s)
= m

s2 + sµ/m + k/m

s
(56)

In order to move to the discrete-time domain, we may apply the bilinear transform

s← α
1− z−1

1 + z−1
(57)

to (56). The factor α is used to control the compression of the frequency axis. It may be set to 2/T
so that the discrete-time filter corresponds to integrating the analog differential equation using the
trapezoidal method, or it may be chosen to preserve the resonance frequency (preferred).

We obtain

RL(z) =
[

(α2 − αµ/m + k/m)z−2

+ (−2α2 + 2k/m)z−1

+ (α2 + αµ/m + k/m)
]/[

α/m(1− z−2)
]

7The symbols for the variables velocity and force have been chosen to maintain consistency with the analogous
acoustical quantities.
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The factor S in the impedance formulation of the scattering matrix (48) is given by

S(z) =





2∑

i,j=1

Ri,j + RL(z)





−1

(58)

which is a rational function of the complex variable z. The scattering matrix is given by

A = 2S








R1,1 R1,2 R2,1 R2,2

R1,1 R1,2 R2,1 R2,2

R1,1 R1,2 R2,1 R2,2

R1,1 R1,2 R2,1 R2,2







− I (59)

which can be implemented using a single second-order filter having transfer function (58).

6 Nonlinear, Time-Varying DWNs

The DWN paradigm is highly useful for constructing time-varying nonlinear digital filters which
are guaranteed stable in the Lyapunov sense [59, 25]. Lyapunov stability analysis involves finding
a positive-definite “Lyapunov function” (which is like a norm defined on the filter state), which
decreases each time step (given zero inputs) in the presence of linear or nonlinear computations
(such as numerical round-off). Whenever each state variable (delay element) in a filter computation
has a physical interpretation as an independent wave variable, a Lyapunov function can be defined
simply as the sum of wave energies associated with the state variables. By choosing the scattering-
junction round-off rules to be passive (e.g., by using magnitude truncation), the total stored energy
in the filter decreases or remains the same relative to an infinite-precision implementation. As
long as the infinite-precision filter is asymptotically stable, the quantized filter must be also. Thus,
the total stored energy in any “physical” digital filter is precisely what is needed for a Lyapunov
function.

Since many ladder, lattice, and wave digital filters are equivalent to DWNs, possibly after some
delay manipulations [51, 92, 93, 75], it is clear that DWNs can be used to realize a wide class of
transfer functions. In particular, every filter transfer function can be realized as a linear combination
of DWNs (in a manner analogous to using “tap parameters” on a ladder or lattice filter [57, 12]), and
linear combinations are well behaved in the presence of nonlinearities and time-varying parameters.

In practice, Lyapunov stability in a DWN is normally guaranteed by ensuring that wave-
variables are never amplified by nonlinear operations or time-varying gains. For example, magnitude
truncation on each output of an extended-precision scattering junction suffices to ensure passivity.
Non-amplifying nonlinearities and varying gains are sufficient for passivity but sometimes too dissi-
pative, especially in waveguide mesh applications [122]. A more refined rule is obtained by summing
rounded-off energy (or an approximation to it) in an accumulator and changing the direction of
rounding so as to servo the cumulative energy error to zero [93].

In the normalized case, the energy associated with each signal sample in a DWN is given by
the square of that sample,8 so the total energy stored in a DWN is given simply as the sum of

8Strictly speaking, a squared wave variable in a normalized waveguide is proportional to signal power [97], and
we should multiply by the sampling interval T to obtain units of energy. However, such a constant scale factor is
inconsequential.
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squares of all the samples contained in all the delay elements. In the unnormalized case, the energy
of the jth sample xi,j(n) in waveguide i, at time n, is given by x2

i,j(n)/Ri, where Ri is the wave
impedance of the ith waveguide, and the total energy at time n in the DWN can be written as

E(n) =
N∑

i=1

Mi∑

j=1

x2
i,j(n)

Ri
.

where Mi is the length of waveguide i in samples. The DWN is stable in the presence of time-
varying nonlinearities so long as E(n) (the Lyapunov functional for the DWN) is not increased
when all inputs are zero, i.e.,

E(n + 1) ≤ E(n).

Thus, magnitude truncation (rounding toward zero) at the output of all scattering junctions (with
extended precision internal to each junction) preserves network stability, as does multiplication of
any wave variable by a nonlinear or time-varying gain gi,j(n) not exceeding 1 in magnitude, i.e.,
we only require |gi,j(n)| ≤ 1, for all n.

The above general result is applied in the following specific example (which is related to a
waveguide sitar model):

( )ny
( )[ ]nyng ,

z−N

Allpass ( )zA

Figure 4: A feedback loop containing a delay line, an allpass filter, and a time-varying nonlinearity.

Theorem 2 A feedback loop containing an allpass filter A(z) (assumed here to be exactly imple-
mented), a delay line of any length N > 0, and a time-varying nonlinearity g[n, y(n)], as shown in
Fig. 4, is stable in the Lyapunov sense if |g[n, y(n)]| ≤ 1 for all n. If the initial stored energy is
E(0), then the total energy remaining at time n is given by

E(n) = E(0)−
n∑

i=1

{1− g2[i, y(i)]}y2(i)

Proof: It suffices to show that (a) the arrangement of Fig. 4 is numerically equivalent to a
DWN, and (b) y(n) is a wave variable of the DWN corresponding to a unit impedance. Consider
the redrawing of Fig. 4 as in Fig. 5. The delay line is broken into two halves to form a digital
waveguide. (If the delay line length is odd, a sample of delay can be moved in cascade with the
allpass filter.) It is well known that an arbitrary order M allpass filter can be realized in the form of
a digital ladder filter [57] with no “taps,” and it is straightforward to show that such a ladder filter
can be manipulated into a digital waveguide filter by splitting each unit delay into two half-delays
and commuting half of the half-delays around the ladder so that there is a half-delay between each
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scattering junction on both the upper and lower rails of the lattice [92].9 In this configuration,
also shown in Fig. 5, the ladder filter is a DWN consisting of a cascade of digital waveguides,
where the input and output of the allpass are the incoming and outgoing wave variables at the left
of the leftmost waveguide of the allpass, and the rightmost waveguide is terminated on the right
by a perfect reflection (infinite wave impedance, given pressure or force waves). Without loss of
generality, we may choose the wave impedance of the bidirectional delay line to be 1. The return
signal y(n) from the allpass is a wave variable at wave impedance 1, and its energy at time n is
y2(n). After scaling by the nonlinearity, its energy becomes |g[n, y(n)]|2y2(n), and the energy lost
each sample interval is therefore {1− g2[n, y(n)]}y2(n), which is nonnegative, and the total energy
lost is simply the sum over time of these per-sample losses.

k1 − k1

1 − k1

1 + k1

R1R0 = 1

z−N 2

z−N 2 ( )[ ]nyng ,

z− 21

z− 21
( )ny

{ {

Digital
Waveguide

Nonlinearity
Allpass filter in Kelly-Lochbaum DWN form

z− 21

z− 21

…

…
kM − kM

1 − kM

1 + kM

RM ∞

Figure 5: A system equivalent to Fig. 4 containing a bidirectional delay line (digital waveguide)
terminated reflectively on the left, terminated on the right by an allpass reflectance, and containing
a time-varying nonlinearity on the return wave from the allpass.

Corollary 1 All lossless nonlinearities or time-varying gains in the system of Fig. 4 can only select
between the values +1 and −1.

Corollary 2 The amplitude of y(n) is bounded by y(n) ≤
√

E(n).

Corollary 3 The signal y(n) will approach zero asymptotically so long as |g[n, y(n)]| ≤ 1 − ǫ for
some fixed ǫ > 0, irrespective of how g may vary with time or as a function of y.

Of course, by keeping track of the energy gained or lost, as illustrated in the above theorem,
and by controlling the gain/nonlinearity so that energy gained or lost is compensated at a later
time, a wider class of nonlinear and/or time-varying systems may be defined which are lossless on
average. An example is the exactly lossless (on average) DWN which servos round-off error energy
to zero mentioned above. It is also possible to approximate lossless nonlinear behavior within the
allpass filter [67, 127].

9Altering a ladder filter to convert it to a DWN can also be accomplished using the cut-set method of Kung
[51, 12].
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7 Algebraic Properties of Lossless Junctions

Comparing (38) and (42) shows that the elements of the normalized scattering matrix Ã in (42)
are

ãi,j = ai,j

√
Γi√
Γj

= 2
√

ΓiΓj

/
N∑

k=1

Γk − δ(i− j) = ãj,i (60)

where δ(n)
△
=1 for n = 0 and 0 for n 6= 0. Hence, the normalized scattering matrix Ã is symmetric.

As was shown in Theorem 1, it is easy to verify by direct computation that Ã is also unitary (i.e.,
ÃÃ

∗
= Ã

∗
Ã = I), so that all its eigenvalues are on the unit circle. Since all eigenvalues of a real,

symmetric matrix are real [66], Ã has eigenvalues only at ±1. Moreover, since by (32) Ã and A

are related by a similarity transformation, A also must have all eigenvalues at +1 or −1.
An elementary eigenvector analysis can be conducted using physical analogies. It is well known

that a symmetric matrix has orthogonal eigenvectors. For the equal-impedance case, one eigenvector

is always e0 =
[

1 1 . . . 1
]T

by symmetry: this corresponds to a collision of equal pressure

waves at the junction, so the return scatter must be identical. This corresponds to the eigenvalue 1.
For the -1 eigenvalues, a similar interpretation can be found: inject a unit pressure wave at all the
branches but one, and “pull out” a pressure wave having magnitude N−1 at the remaining branch.
In this case, the return scatter is inverted, since we have arranged that the pressure be zero at the
junction and hence at each branch termination. In this way we can find N eigenvectors analogous

with e1 =
[

−(N − 1) 1 . . . 1
]T

which span the (N −1)-dimensional subspace associated with

the eigenvalue -1. Note that e0 is orthogonal to this subspace, while the ei are not mutually
orthogonal for i > 0.

For unequal impedances, a similar physical interpretation can be found for the eigenvectors.
If we supply equal pressure waves to all branches at the junction, the reflected waves must be
equal by symmetry, since p−i = pJ − p+

i , where pJ is the junction pressure and all the p+
i are

equal. Hence, e0 =
[

1 1 . . . 1
]T

remains an eigenvector corresponding to the eigenvalue

1. On the other hand, if we inject a unit pressure wave into all the branches but the jth and
“pull out” a pressure wave having magnitude

∑

i6=j Γi/Γj at the jth branch, then the junction
pressure pJ is again forced to zero by construction and the return scatter at any branch is the
negative of the incoming wave on that branch. In this way we can find N eigenvectors analogous

with ej =
[

1 . . . 1 −∑i6=j Γi/Γj 1 . . . 1
]T

spanning the (N − 1)-dimensional subspace

associated with the eigenvalue -1. In this case, none of the eigenvectors is necessarily orthogonal
to the others.

The foregoing is an example of how physical intuition can help in finding algebraic properties
of a given matrix in physical applications.

Another property of the scattering matrix A is that it is its own inverse: A2 = I. This
corresponds physically to the fact that if the results of a scattering operation are fed back to the
same junction as incoming waves, the result must be the inverse of the original scattering. An
implication of this is that lossless scattering networks can be run in reverse, i.e., by changing the
directions of all the delay lines and computing the junctions as dictated by the wave impedances, the
network will compute its own inverse. If there are inputs and outputs, they must be interchanged.
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7.1 Conditions for Lossless Scattering

We now present a theorem characterizing the condition of losslessness in terms of the eigenvalues
and eigenvectors of the scattering matrix.

Theorem 3 A scattering matrix A ∈ CN×N is lossless if and only if its eigenvalues lie on the unit
circle and it admits a basis of N linearly independent eigenvectors.

Proof: By definition (26), A is lossless if A∗ΓA = Γ, where Γ is a positive definite matrix.
Therefore, Γ admits a Cholesky factorization Γ = U∗U where U is an upper triangular matrix
which converts A to a unitary matrix via similarity transformation: A∗ΓA = Γ ⇒ A∗U∗UA =
U∗U ⇒ Ã

∗
Ã = I, where

Ã = UAU−1 (61)

This shows the eigenvalues of every lossless scattering matrix lie on the unit circle. It readily follows
from similarity to Ã that A admits N linearly independent eigenvectors.

Conversely, assume |λi| = 1 for each eigenvalue λi of A, and that there exists a matrix T of
linearly independent eigenvectors of A. Then the matrix T diagonalizes A to give T−1AT = D ⇒
T ∗A∗T−1∗ = D∗, where D = diag(λ1, . . . , λN ). Multiplying, we obtain T ∗A∗T−1∗T−1AT =
D∗D = I ⇒ A∗T−1∗T−1A = T−1∗T−1. Thus, the condition of lossless scattering (26) is satisfied
for Γ = T−1∗T−1 which is Hermitian and positive definite.

Theorem 3 can be extended to lossless junctions of lossy waveguides, as the reader can easily
verify by applying the above proof to (27).

It is worth noting that most research in feedback delay networks for artificial reverberation has
been concerned only with orthogonal feedback matrices [42, 33] rather than on the more general class
of matrices satisfying the losslessness condition (26) [78, 106, 79]. This is an excessive restriction
since many of the matrices naturally arising from models of lossless physical junctions are not
orthogonal. As can be seen above, physical scattering matrices are orthogonal only if we restrict
attention to propagation in equal-admittance media [Γ(z) = I], or to propagation of normalized
waves.

8 Complexity Reduction: A Physical Approach

The scattering matrix of a physical junction of N waveguides (38) can be expressed in terms of the
alpha parameters as

A = 1αT − I (62)

where αT =
[

α1 α2 . . . αN

]

, and in the lossless case,

αi
△
=2Γi

/
N∑

j=1

Γj . (63)

The vector of outgoing pressure waves can be expressed as

p− = Ap+ △
= 1pJ − p+ (64)

where pJ = αT p+ can be interpreted as the “junction pressure.” Thus, the matrix-vector multipli-
cation can be seen to require only N multiplications and 2N − 1 additions.

31



Equation (64) can be rewritten as

pJ =
N∑

i=1

αip
+
i , αi

△
=

2Γi

Γ1 + · · ·+ ΓN

p−j = pJ − p+
j (65)

This is the canonical form of the scattering relations for a physical N -way scattering junction
parametrized in terms of the alpha parameters.

Whenever possible, it is advisable to set the branch impedances so that αi = 1 for some i,
and therefore only N − 1 multiplications are needed. This is achieved when the ith waveguide
admittance equals the sum of all the other admittances. According to Fettweis’ terminology for
wave digital filters, the ith junction port is called a reflection-free port, and the ith branch is said
to be adapted to the other N − 1 branches. Physically, a wave traveling into the junction on a
reflection-free port will be fully scattered into the other branches meeting at the junction, with no
reflection back along branch i.

In time-varying applications, it is also convenient to maintain scaling such that
∑N

j=1 Γj = 1
so that no divisions or renormalizations are necessary in the alpha parameters. This is easily
accomplished by setting the admittance of branch 1, say, to

Γ1(n) = 1−
N∑

i=2

Γi(n) (66)

provided this remains nonnegative.
Since the alpha parameters sum to 2 in the lossless case, the first element, say, of the vector α

can be expressed as

α1 = 2−
N∑

i=2

αi (67)

Thus, the vector of outgoing pressure waves can be computed as

p− = 1αT p+ − p+

= 1

(

2p+
1 −

N∑

i=2

αip
+
1 +

N∑

i=2

αip
+
i

)

− p+

= 1

[

2p+
1 +

N∑

i=2

αi(p
+
i − p+

1 )

]

− p+ (68)

which implies

p−j = 2p+
1 +

N∑

i=2

αi(p
+
i − p+

1 )− p+
j

= p−1 − (p+
j − p+

1 )
︸ ︷︷ ︸

available

(69)

In Fettweis’ terminology, the port corresponding to the first waveguide is called the dependent
port. Organizing the computations as in (68), a scattering junction can be performed with N − 1
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multiplications and 3N − 2 additions instead of N multiplies and 2N − 1 additions using (64).
Saving and reusing differences as implied in (69) eliminates another addition to get the number
of [multiplies,adds] down to [N − 1, 3(N − 1)] (see Fig. 6 for N = 2). If we add the assumption
that one of the ports is reflection-free, we get additional savings and use only N −2 multiplications
and 3N − 5 adds [28]. Exploiting the dependent port leads to a small savings in the number of
multiplies at the expense of an increase in the constant of proportionality in the number of adds.
Nevertheless, for the case N = 2, the formulation (69) is advantageous, since it can be implemented
with one multiply and three adds.

-

-

p

pp

+

+

p-

-

1

1

2

2α
2

Figure 6: A one-multiply, three-add, scattering junction parametrized by an alpha parameter.

An important advantage provided by the organization of computations (68) and (69) is that
they force the junction to be row allpass complementary (see section 5) even under coefficient
quantization. The following theorem establishes the connection between allpass complementarity
and structural losslessness of the scattering matrix.

Theorem 4 Condition (67) (implying row allpass complementarity of the scattering matrix) is
necessary and sufficient for structural losslessness of the physical scattering junction of N scalar
waveguides in the presence of coefficient quantization.

Proof: Denote the quantized scattering matrix by Â
△
= 1α̂T − I, where α̂ = α − ǫ, and ǫ =

[ǫ1, . . . , ǫN ]T is the vector of quantization errors in the alpha parameters αi = α̂i + ǫi. We must

show that for every ǫ, there exists a positive-definite matrix Γ̂ such that Â
T
Γ̂Â = Γ̂ exactly.

Under the assumption that Γ̂ is diagonal, which follows from restriction to a physical junction of
scalar waveguides, we need only find N positive diagonal elements Γ̂i which satisfy the definition of
losslessness of Â. Let γ̂ = Γ̂1 = [Γ̂1, . . . , Γ̂N ]T denote the vector of diagonal elements of Γ̂. Then
losslessness requires

Γ̂ = Â
T
Γ̂Â

= (α̂1T − I)Γ̂(1α̂T − I)

= α̂α̂T (1T γ̂)− α̂γ̂T − γ̂α̂T + Γ̂ (70)

Thus, we must find positive Γ̂i such that

Γ̂iα̂j + Γ̂jα̂i = α̂iα̂j

N∑

l=1

Γ̂l (71)
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Let Γ̂i = cα̂i/2 where c is any positive constant. Since α̂i is positive, so is Γ̂i. (While α̂i is restricted
to certain values, Γ̂i may be any positive real value). The condition (71) becomes

α̂iα̂jc = α̂iα̂jc
N∑

l=1

α̂l/2 (72)

which holds if and only if
N∑

l=1

α̂l = 2 (73)

and this identity is provided by condition (67).
We see that exact losslessness of a physical waveguide junction is assured provided only that

the actual alpha parameters are positive and sum precisely to 2 after quantization. The proof
extends readily to nonnegative α̂i by assigning Γ̂i = 0 to any waveguide branch corresponding to a
port for which α̂i = 0. (Note that α̂i = 0 corresponds to a branch which contributes no signal to
the junction, and a branch with zero admittance can convey no signal power. Such a situation is
physically degenerate so that if quantization forces α̂i to zero for some i, the corresponding branch
may be removed from the junction.)

The above theorem is quite simple from a physical point of view: All we require for exact
losslessness is that the quantized scattering matrix correspond to some valid lossless scattering
matrix. From the physical correspondence (63) between the alpha parameters and the branch wave
admittances it is clear that losslessness holds when α̂1 + · · ·+ α̂N = 2. For more general passivity,
we can add a positive real “load” admittance ΓL to the sum over Γj above to obtain that scattering
passivity holds if and only if the alpha parameters are positive and sum to a value not exceeding 2.

The above discussion is only concerned with passivity of the scattering matrix itself. The
application of the matrix is assumed to be exact. Since rounding of the final outgoing waves is
necessary in practice, we add

Corollary 4 Sufficient conditions for the passivity of a DWN are (1) all scattering matrices are
passive, (2) intermediate outgoing waves are computed exactly at each junction in extended precision
before rounding, and (3) the final outgoing waves from each junction are rounded passively.

Since extended intermediate precision is required to ensure passivity, it is of interest to examine
the additional bits required.

Theorem 5 For an order N junction with m-bit alpha parameters (m > 1) and n-bit scalar wave
variables (n > 2) computed in fixed point, the extended precision needed to implement the canonical
scattering formula (64) is (a) one additional bit for the computation of junction pressure pJ , and
(b) two additional bits for the computation of each outgoing wave p−j .

Proof: From (64), assuming 0 < αi ≤ 2 and −1 ≤ p+
i < 1, we have

|pJ | =
∣
∣
∣
∣
∣

N∑

i=1

αip
+
i

∣
∣
∣
∣
∣
≤

N∑

i=1

αi

∣
∣
∣p+

i

∣
∣
∣ <

N∑

i=1

αi ≤ 2

Hence (a) one additional bit is sufficient for the inner-product accumulator for pJ . That the extra
bit is necessary is shown by taking p+

i = −1 for all i in which case pJ = −2 for any set of lossless
alpha parameters.
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The outgoing wave variables are computed as p−i = pJ − p+
i , and a single bit is clearly sufficient

to provide the needed headroom for a single subtraction in general. That the second headroom bit is
necessary is shown by considering the example N = 2, α1 = 0, α2 = 2, p+

1 = 1/2, p+
2 = −1, in which

case p−1 = −2 − 1/2 = −2.5. If α1 = 0 is not allowed, then an example is obtained with α1 = ǫ1,
α2 = 2−ǫ1, p+

1 = −1, p+
2 = 1−ǫ2, for which p−1 = (ǫ1−1)(−1)+(2−ǫ1)(1−ǫ2) = 3−2ǫ1−2ǫ2+ǫ1ǫ2.

For this to exceed 2, we must have 2ǫ1 + 2ǫ2 − ǫ1ǫ2 < 1. With m = 3 or more, we can choose
ǫ1 = 1/4, and with n = 3 or more, we can take ǫ2 = 1/4, and the inequality is satisfied. Thus, (b)
two extra bits are necessary and sufficient for the computation of each outgoing wave variable p−j .

It is perhaps surprising at first that only one extra bit suffices for the junction pressure compu-
tation, no matter how many branches are impinging on the junction. Ordinarily, an inner product
of length N requires log2(N) headroom bits. The single headroom bit requirement is a direct result
of the alpha parameters being restricted to positive partitions of 2 in the lossless case, or a positive
partitioning of a positive number less than 2 in the lossy, passive case.

Since an out-of-range outgoing traveling wave typically must be “clipped” in practice (i.e.,
replaced by −1 if negative and 1 − ǫ2 if positive), the two extra carry bits are normally fed along
with the next lower bit (the in-range sign bit) to saturation logic which implements clipping as
needed.

The computations (68) or (69) can also be used to implement precisely lossless or passive time-
varying junctions. In this case, the passivity constraints become

N∑

i=2

αi(n) ≤ 2

αi(n) ≥ 0 (74)

where n is time in samples, since α1 implicitly obeys (67) in formulas (68) and (69). (Here we
allow αi(n) = 0 which may be a convenient way to eliminate waveguide branches momentarily in
the time-varying case.)

A junction of normalized waveguides can be obtained from (68) or (69) by transformer-coupling
each branch other than the first with a waveguide having wave admittance Γ1. The ideal transformer
introduces two additional multiplications for each branch except one. Therefore, the normalized
junction for arbitrary impedances can be implemented using 3(N −1) multiplications and 3(N −1)
additions.

8.1 The Three-Multiply Normalized Lattice Section.

A well known two-port unnormalized scattering junction [57], implemented using one multiply and
three adds, can be derived by organizing (64) as

p−1 = p+
2 + p∆

p−2 = p+
1 + p∆

(75)

where
p∆

△
= ρ(p+

1 − p+
2 ), (76)

and

ρ
△
= α1 − 1 = 1− α2 =

Γ1 − Γ2

Γ1 + Γ2
=

R2 −R1

R2 + R1
(77)
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is the reflection coefficient seen at an impedance step from R1 to R2, i.e., at port 1. In the
ladder/lattice filter literature, only a 4-multiply, 2-add normalized junction appears to be known.
A normalized, three-multiply junction can be obtained simply by coupling any one-multiply junction
such as (75) with an ideal transformer [92] (see Appendix A), as illustrated in Fig. 7, where

g
△
=
√

Γ2/Γ1 (78)

However, any lossless two-port junction which preserves a physical interpretation will do. For
example, a transformer can also be attached to the alpha-parametrized one-multiply junction of
Fig. 6 to obtain the three-multiply normalized junction of Fig. 8, having essentially the same
properties as that of Fig. 7.
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Figure 7: A three-multiply, three-add, normalized scattering junction parametrized in terms of a
reflection coefficient.
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Figure 8: A three-multiply, three-add, normalized junction parametrized in terms of an alpha
parameter.

Note that a high quality sinusoidal oscillator requiring only one multiply can be formed by
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adding a unit delay on either side of a three-multiply junction and reflectively terminating (in
which case the transformer multiplies cancel) [103].

One-multiply two-port scattering junctions enforce structural losslessness in finite precision
arithmetic since the allpass complementarity condition (67) is always true. A normalized junction
obtained by transformer-normalizing a one-multiply junction is also structurally lossless, provided
the transformer multipliers are implemented in extended precision. In practice, normalized junc-
tions of this type are made passive by using any non-amplifying rounding rule at the output.

Denoting the ideal transformer coefficients by g−
△
=
√

Γ2/Γ1 and g+ = 1/g−, the passivity condition
on the transformer with quantized coefficients ĝ− = g− − ǫ− and ĝ+ = g+ − ǫ+ is ĝ+ĝ− ≤ 1, even
in the time-varying case.

Since one of the transformer coefficients is always greater than 1, fixed-point implementations
require support for an integer part, unlike the fractional fixed-point format used in most DSP chips.
Since the transformer commutes with the junction in the two-port case, the larger coefficient can,
without loss of generality, be chosen to apply to the signal entering the junction. As an example of
the increased internal dynamic range required, if ρ ∈ [−1+ǫ, 1−ǫ], the transformer coefficients may
become as large as

√

2/ǫ− 1. If ǫ is the “machine epsilon,” i.e., ǫ = 2−(n−1) for typical n-bit two’s
complement arithmetic normalized to lie in [−1, 1), then the dynamic range of the transformer
coefficients is bounded by

√
2n − 1 ≈ 2n/2. In summary, while transformer-normalized junctions

trade a multiply for an add in the two-port case, they require up to 50% more bits of dynamic
range within the junction adders.

9 Complexity Reduction: A Geometric Approach

A convenient expression for the scattering matrix of a junction of N normalized waveguides is
obtained in terms of

uT
n

△
=
[ √

Γ1

√
Γ2 . . .

√
ΓN

]

(79)

The normalized scattering matrix Ã can then be expressed as

Ã = 2
uuT

‖u‖2 − I (80)

where ‖u‖2 △
= uT u. Note that u is the eigenvector of Ã corresponding to the eigenvalue 1. A

matrix of the form −Ã is known as a Householder reflection [34], and it produces the mirror image
of a given vector about the hyperplane orthogonal to the vector u.

The Householder structure (80) can be exploited to speed up the matrix-vector multiplication.
Define

w
△
= βuT

np+ (81)

where β = 2
/
‖ un ‖2 . The computation of the outgoing waves can be expressed as:

p− = Ãp+ = unw − p+ (82)

Thus, N multiplications and N − 1 additions are needed to compute the scalar product in (81),
and N multiplications and N additions are needed for the final multiply-add in (82). In the case
of an acyclic network graph, we can eliminate at least one multiplication in (82) by scaling all
impedances appropriately. A total of 2N − 1 multiplications and 2N − 1 additions are needed.

37



The unnormalized Householder reflection H = ‖ un ‖2I − 2unuT
n is structurally a unitary

transformation in the sense that H∗H remains a constant diagonal matrix after quantization of
the vector un [110]. Hence, if all the incoming waves p+ are scaled by ‖ un ‖−2, normalized
junctions implemented in this way conserve their losslessness even under coefficient quantization.
To be conservative, it is sufficient to scale the incoming waves by a constant slightly less than
‖ un ‖−2, in such a way that the junction has a small loss. Preferably, however, we may scale
the Γi so that they sum to 2K for some integer K, in which case ‖ un ‖−2 becomes a power of 2
implementable as a simple shift in fixed-point binary arithmetic.

Similarly, the unnormalized junction (38) can be interpreted as an “oblique Householder” reflec-

tion, in the sense that the sum of the vectors p+ and p− is colinear with the vector
[

1 . . . 1
]

which lies on the diagonal of the parallelogram whose edges are given by the incoming and
outgoing wave vectors. As we have already noticed in section 8, even in this case the matrix
A = 21ΓT /< 1,Γ > − I can be implemented as a structurally lossless transformation, and there-
fore it is well suited as a building block for large networks using fixed-point computations.

Computations (64) and (82) do not lend themselves to highly parallel implementations because
of the scalar product needed to compute w or pJ . A scalar product needs O(log2 N) additions to
be computed on O(N) processors [55].

Yet Another Three-Multiply Normalized Lattice.

Further variations arise from analyzing the two-variable scattering junction algebraically. In the
case of two arbitrary real, positive, scalar, waveguide impedances, the scattering relations are

[

p−1
p−2

]

=

[
2Γ1

Γ1+Γ2
− 1 2Γ2

Γ1+Γ2

2Γ1

Γ1+Γ2

2Γ2

Γ1+Γ2
− 1

] [

p+
1

p+
2

]

= A

[

p+
1

p+
2

]

(83)

The two-port normalized scattering matrix can be expressed as

Ã =

[

cos(θ) sin(θ)
sin(θ) − cos(θ)

]

(84)

where

cos(θ)
△
=

Γ1 − Γ2

Γ1 + Γ2
, sin(θ)

△
=

2
√

Γ1Γ2

Γ1 + Γ2
.

The matrix Ã is a (negated) Householder reflection, and it reflects any input across the line
defined by the eigenvector [cos(θ/2), sin(θ/2)]. The quantities involved in (82) can be set to be

uT
n =

[

1 g
]

=
[

1
√

Γ2/Γ1

]

and β = α1 = 2Γ1/(Γ1 + Γ2). The signal-flow graph obtained

from (84) is the well-known normalized ladder section. The application of (82) in the two-port case
leads to the signal-flow graph of Fig. 9.

It is worth noting that the realization of Fig. 9 can be implemented, for Γ1 > Γ2, with all
coefficients in [−2, 2), thereby needing only a one-bit integer part. Parametrizing in terms of the
reflection coefficient ρ = α− 1 can be used to confine all parameters to the range [−1, 1), requiring
no integer part. Note also that the junction computation consists of three sequential multiply-adds,
as naturally fits the architecture of many current DSP chips.
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Figure 9: A three-multiply-add normalized junction.

The normalized 2-port junction can also be obtained by applying transformer coupling to a
2-multiply, 3-add unnormalized junction.

Consider the unnormalized 2× 2 section in Kelly-Lochbaum form. Defining ρ = Γ1−Γ2

Γ1+Γ2
, we can

write the outgoing pressure wave on the left port as

p−1= ρp+
1 + (1− ρ)p+

2

= ρp+
1 + p+

1 − p+
1 +

1− ρ

1 + ρ
(1 + ρ)p+

2

= βp+
1 − p+

1 +
Γ2

Γ1
βp+

2

= −p+
1 + β(p+

1 +
Γ2

Γ1
p+
2 ) (85)

For the right outgoing pressure wave we have

p−2 = (1 + ρ)p+
1 − ρp+

2

= βp+
1 − ρp+

2 − p+
2 + p+

2

= βp+
1 − p+

2 +
Γ2

Γ1
βp+

2

= −p+
2 + β

(

p+
1 +

Γ2

Γ1
p+
2

)

(86)

With these algebraic manipulations we have obtained the 2-multiply 3-add unnormalized junction.
It does not offer any benefit over the classic lattice or ladder sections; however, now consider
normalization via transformer coupling. Figure 10 shows how to obtain the 3-multiply-add junction
of Fig. 9: after transformer coupling the 2-multiply junction, just push the transformer into the
junction and consolidate the multipliers.

So far, we have obtained three alternative realizations of the three-multiply, three-add, normal-
ized junction. By comparing Figures 7, 8 and 9, we can say that, for an implementation on a general
purpose DSP chip with a parallel multiply-add instruction, the junction of Fig. 9 seems to offer
some benefit over the other two. In fact, we can organize the computations into three multiply-adds
in series, thus achieving a better pipeline. For VLSI design, the direct implementation of the matrix
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Figure 10: Obtaining a three-multiply-add normalized junction via transformer coupling.

product using the matrix (84) may be best, since it can be done with four parallel multiplications
or CORDIC sections [38].

10 Non-constant scattering matrices and applications

The formulation of sections 3 and 4 can be restated for the more general case in which the scattering
matrix has elements which are functions of z.

In this case the scattering relationship is

p−(z) = A(z)p+(z) (87)

In the case of lossless propagation, the scattering junction is said to be lossless if

Γ(z) = A∗(1/z∗)Γ(z)A(z) (88)

In the more general case of passive propagation, the scattering junction is said to be lossless if

Γ∗(1/z∗) = A∗(1/z∗)Γ(z)A(z) (89)

By adding (89) to its conjugate transpose we get

Γ(z) + Γ∗(1/z∗) = A∗(1/z∗)[Γ(z) + Γ∗(1/z∗)]A(z) (90)

and we see that the construction of a normalized scattering matrix proceeds from a spectral fac-
torization (if it exists) of the real part of the admittance matrix:

Γ(z) + Γ∗(1/z∗) = U∗(1/z∗)U(z) (91)

When the medium is passive we have Γ(z) + Γ∗(1/z∗) ≥ 0, and a spectral factorization does exist.
The normalized scattering matrix is then

Ã(z) = U(z)A(z)U−1(z) (92)
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and it is para-unitary, i.e.,
Ã

∗
(1/z∗)Ã(z) = I . (93)

A real-coefficient matrix Ã(z) which is analytic for |z| ≥ 1 and which satisfies (93) is called
Lossless Bounded Real [63, 112]. The condition (93) implies that the elements of any column of
Ã(z) are power complementary, i.e.,

N∑

i=1

| ãi,k(e
jω) |2 = 1 . (94)

In fixed-point implementations, the condition (94) can be satisfied as shown in [71, 83, 114]. Given
a set of N power-complementary filters {ã1,k(z) . . . ãN,k(z)}, they can be implemented by means
of N allpass filters under mild conditions [114], and the property of power complementarity is
structurally induced in the sense that coefficient quantization cannot alter it.

Applications of Generalized Scattering

The generalized scattering-matrix transfer function can be used to describe the intersection of
conical acoustic tubes having different taper angles [96, 117, 130, 76]. Conical waveguides have a
complex “one-pole” wave impedance in the continuous-time case [2, 5]. As a result, the elements
of the scattering matrix for intersecting cones become first-order filters in place of real scattering
coefficients. It turns out that the entire scattering junction for adjoined conical sections can be
implemented using a single first-order IIR filter, analogous to the one-multiply lattice-filter junction
[76], and “one-filter” forms exist also for the normalized case, in the presence of losses, and when
there is a discontinuity in cross-sectional area (as in piecewise cylindrical acoustic tubes). In the
discrete-time case, higher order filters and a guard band are necessary for high accuracy at all audio
frequencies.

An interesting property of conical waveguide junctions is that the reflection coefficient corre-
sponding to reflection from a decreasing taper angle (e.g., from a cylinder to a converging cone), is
unstable. That is, the impulse response of such a junction contains a growing exponential compo-
nent. The growing exponentials are always canceled by reflections (e.g., from the conical tip), but
special care must be taken when using unstable one-pole filters in a practical model [131], or else
FIR filters may be used to implement the truncated growing exponential impulse response including
the canceling reflection from the other end of the converging conical segment [85]. Another promis-
ing approach (so far not implemented to our knowledge), is to choose normalized waves instead of
pressure waves for the simulation.

Results similar to the conical junction are obtained for models of toneholes in woodwind bores
[119, 115, 85]. In this application, the tonehole can be regarded as a three-port junction in which
two of the ports connect to the bore on either side of the tonehole, and the third port connects
to the tonehole itself. While the wave impedance of the bore is real for a cylindrical tube such as
the clarinet, the tonehole presents a complex lumped impedance at the junction. (Alternatively,
the tonehole can be modeled as an extremely short waveguide terminated by a simple reflection
when closed and a complex radiation reflectance when open.) As in the case of intersecting cones,
the reflection and transmission coefficients at the tonehole junction become one-pole filters in the
continuous-time case, and third-order filters perform very well in the discrete-time case [85, 87]. In
addition, it is possible to obtain low-order one-filter forms which handle all filtering in the tonehole
junction [107]. However, unlike the conical junction case, the junction filter is always stable.
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A third application similar to piecewise conical tube modeling and tonehole modeling is the
modeling of coupled strings intersecting at a point driving a lumped impedance (e.g., a “bridge”
model for a piano). Again, a “one-filter junction” is available [98], analogous to the one-multiply
lattice-filter section. However, in this case, the one filter, while shared by all the strings, must
contain all important body resonances (e.g., of a piano soundboard) “seen” through the bridge
by the strings. A bridge filter is therefore not naturally a low-order filter. However, low-order
approximations have been found to sound quite good, and it can be argued that strong coupling at
isolated frequencies is musically undesirable. In other words, a smoother bridge reflectance, having
a frequency response which follows only the upper envelope of the measured magnitude response,
may be preferable.

The generalized scattering-matrix transfer function can also be used to simulate wave scattering
by an object among discrete directions of arrival. If we consider N waveguides to simulate wave
propagation along a set of N directions, the element ai,j of the scattering matrix can be interpreted
as the coefficient applied to the signal coming in from direction j and being transmitted out along
direction i. The scattering coefficients are highly dependent on frequency, and this can be handled
using frequency-dependent elements of the scattering matrix. For example, wavelengths which are
small compared with the object tend to reflect, or scatter according to the texture of the object
surface, while wavelengths which are larger than the object tend to diffract around it and send
scattering components in all directions. Consider the simpler case of incident wave energy scat-
tering from a textured wall. In this case, wavelengths larger than the “grain size” of the texture
tend to reflect specularly, while smaller wavelengths are scattered into a range of new directions
according to well known formulas [52]. As a rough approximation for this case, we might use a
single high-pass filter for all of the N −1 transmitted waves, and the complementary low-pass filter
for the reflected wave, as in the “cross-over” scheme proposed by Regalia et al. [71]. In such a
scheme, low frequencies are reflected specularly while high frequencies are diffusely reflected along
N − 1 directions.

11 Conclusions

A variety of topics related to digital waveguide networks (DWN) were discussed, within a gener-
alized formulation which arises naturally from sampled traveling-wave solutions to physical wave
equations. The idealized elements of DWNs are sampled lossless waveguides, or ideal transmission
lines, intersecting at lossless scattering junctions. Such networks are a generalization of well known
lattice and ladder digital filter structures, and many desirable properties of such filters are carried
over. In physical modeling applications, lossy and dispersive waveguides and junctions are utilized,
as are nonlinear and time-varying extensions.

Lossless junctions of normalized and unnormalized waveguides were investigated, and lossless-
ness was characterized for both physical and non-physical junctions, in both energy-based and
algebraic approaches. Depending on the application at hand, the energy-based viewpoint may
be more advantageous over the algebraic viewpoint, or vice versa. For example, we introduced
three new three-multiply, normalized, lattice-filter sections, each derived by adopting a different
approach.

The main applications of digital waveguide networks so far seem to be in the fields of artificial
reverberation, musical sound synthesis, and physical simulation of nearly lossless propagation in
media such as air, plates, membranes, and vibrating strings. We expect future applications to be
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plausible in any field needing numerically robust and computationally efficient simulation of largely
linear propagation media, especially when the wave propagation is close to lossless, and when a
fixed upper frequency limit makes sense in the application, as it does in most audio applications.
In other terms, DWNs provide an effective “bandlimited medium” simulation, being especially
efficient in the lossless case. Also, in many audio applications, it has proved sufficient to implement
losses only sparsely in the DWN, using a single digital filter, e.g., to “summarize” the losses and
dispersion over a fairly large section of medium, so that most of the efficiency of the lossless case
is retained in the lossy, dispersive case. The time-varying case can be made free of “parametric
amplification” effects by means of waveguide normalization. Finally, the nonlinear case, while not
being bandlimited and therefore prone to aliasing, is greatly facilitated and made more robust by
the use of a simulation structure which is precisely understood from a physical point of view.

Appendix A: The Digital Waveguide Transformer

A useful technique for junction normalization is by insertion of ideal transformers. First we define
the ideal transformer in the 2 × 2 case (N=2) and apply it to the normalization of junctions
where the impedance matrix is diagonal. Then we show a generalization to the N ×N case and a
non-diagonal impedance matrix.

The ideal cascade transformer is a lossless 2-port which scales up pressure by some factor and
scales down velocity by the same factor without generating scattering reflections. Signal power is
conserved. Since a transformer introduces a discontinuity in both pressure and velocity, it is not
physical (although there are physical approximations used in microwave engineering). A conical
acoustic tube section can be regarded as an approximate transformer, as can horn loudspeakers.

+

-

+

-

p1 p2u1 u2RR 21 :

Consider the general two-port diagram in Fig. 11. Since a 2-port transformer, by definition,
preserves signal power, we have

p1u1 = (p+
1 + p−1 )(p+

1 − p−1 )/R1

= −(p+
2 + p−2 )(p+

2 − p−2 )/R2

= −p2u2 (95)

which is satisfied by
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△
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where g is defined as the “turns ratio” since it corresponds to the voltage stepping ratio in electric
transformers. Regarding the 2-port transformer as a special kind of two-waveguide junction, its
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scattering matrix is

Σ =




0

√
R1
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R2

R1
0




△
=

[
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g 0
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(97)
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Figure 11: The ideal 2-port transformer.

The ideal 2-port transformer is depicted in Fig. 11.
In the case of a junction of N waveguides, we can normalize the junction by making all the

waveguide impedances equal. This is accomplished by inserting N 2-port transformers, each of
them coupling the original branch impedance at the junction with a unit impedance at each wave-
guide. This corresponds to the diagonal similarity transformation of (32). Of course, we can choose
one of the original branch impedances as reference impedance, so that inserting (N − 1) 2-port
transformers will suffice.

The physical interpretation of ideal transformers can be extended more generally. We define
the generalized ideal transformer as a 2N -port satisfying the equations [63]

p1 = T ∗p2

u2 = −T u1
(98)

where p1 and u1 are respectively the N -component vectors of pressure and velocity at the first
group of N ports, and p2 and u2 are the corresponding vectors for the second group of N ports.
T is an N ×N matrix called the turns-ratio matrix.

It is easy to check that the definition (98) satisfies the conservation of power:

u1
∗p1 = −u2

∗T−1∗T ∗p2 = −u2
∗p2 (99)

To normalize a junction in the general case of non-diagonal impedance matrix, we can use a
transformer having turns-ratio matrix

T = U−1∗ (100)

where U is the Cholesky factor of (33). The resulting scattering matrix is therefore given by (35).
We can say that the matrix U of (33) acts as an ideal transformer on the vector of all N

waveguide variables.
An important application of the ideal transformer is to decouple scattering junctions from their

attached waveguide branches. That is, by modulating the transformer “turns ratios,” we may
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arbitrarily modulate the scattering parameters without also modulating the signal power stored in
the waveguide branches.
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[115] V. Välimäki, Discrete-Time Modeling of Acoustic Tubes Using Fractional Delay Filters, PhD thesis,
Report no. 37, Helsinki University of Technology, Faculty of Elec. Eng., Lab. of Acoustic and Audio
Signal Processing, Espoo, Finland, Dec. 1995.
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