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Modeling of small Helmholtz resonators based on electroacoustical analogies often results in
significant disagreement with measurements, as existing models do not take into account some
losses that are observed in practical implementations of such acoustical circuits, e.g., in
photoacoustic Helmholtz cells. The paper presents a method which introduces loss corrections to the
transmission line model, resulting in substantial improvement of simulations. Values of the loss
corrections obtained from comparison of frequency responses of practically implemented resonators
with computer simulations are presented in tabular and graphical form. A simple analytical function
that can be used for interpolation or extrapolation of the loss corrections for other dimensions of the
Helmholtz resonators is also given. Verification of such a modeling method against an open
two-cavity Helmholtz structure shows very good agreement between measurements and
simulations. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2773929�
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I. INTRODUCTION

Helmholtz resonator is a structure that has found numer-
ous applications. One of them is photoacoustics. Photoacous-
tic phenomenon relies on producing a thermal and pressure
wave due to absorption of light by a substance illuminated
by the light.1 If the light intensity is modulated with an
acoustic frequency, absorption of the light results in corre-
sponding, periodic changes of pressure, which means that a
sound is generated. Amplitude APAS of the sound can be de-
scribed as2

APAS �
�P

fV
, �1�

where � is the light absorption coefficient, P is the light
power, f the light intensity modulation frequency, and V the
volume of the cell.

Once the photoacoustic signal is produced, its further
behavior is purely acoustical. In particular, if the cell is op-
erated at its acoustic resonance frequency, amplitude of the
photoacoustic signal will be amplified by the Q factor of the
cell.2 That is why the Helmholtz structure is one of the most
often used cell designs, especially in the case of photoacous-
tic investigation of solids.1–3 Such a cell consists of two cavi-
ties connected with a duct. Usually the investigated sample is
placed in one of the cavities and illuminated with light, while
the other cavity is equipped with a sound detector �Fig. 1�.
One of the main advantages of the Helmholtz resonator ap-
plied as a photoacoustic cell is that its overall volume can be
kept very small �a few cm3 or even below 1 cm3�, which is
quite important, as the photoacoustic signal amplitude in-
creases against cell volume �Eq. �1��. Taking into consider-
ation that properties of the cell directly affect sensitivity of
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the whole photoacoustic setup, design of the cell should be
always given special attention. A common tool used during
this process is simulations of the frequency responses of the
cells, so that it is possible to evaluate and compare properties
of many different cells without having them manufactured,
which speeds up the design process and lowers its cost. In
the case of photoacoustic Helmholtz cells the most common
simulation method is based on acoustoelectrical analogies.

II. ACOUSTOELECTRICAL ANALOGIES IN MODELING
OF PHOTOACOUSTIC HELMHOLTZ RESONATORS

The acoustoelectrical analogies is a well-known method
based on the fact that behavior of acoustical elements can be
described by means of corresponding electrical components.
The photoacoustic Helmholtz resonator from Fig. 1 can be
then simulated in a circuit shown in Fig. 2�a�, in which cavi-
ties are modeled by capacitors, and interconnecting duct by
an inductor connected in series with a resistor. The first
drawback of the mentioned lumped components model is
that there are several sets of definitions that can be used for
obtaining L and R components values, given, for instance, in
the works of Morse,4 Nolle,5 Nordhaus and Pelzl.6,7 But the
most important is that no matter which of the mentioned
definition sets is used, the model does not produce results
that would be in good agreement with measured frequency
responses of the resonators.8 Although simulated resonance
frequencies are usually not far away from the measured val-
ues, calculated Q factors of the resonators, which are crucial
in photoacoustic applications, differ sometimes as much as
about 1000 times from the measurements �if the components
are defined as by Morse4�, and even the definition set that
gives the closest match often produces Q factor values 20
times greater than the measured ones.9

Much better results can be obtained if the interconnect-
ing duct is represented by a transmission line �see Fig. 2�b��,

9
which includes viscous and thermal losses. Although use of
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transmission line model is usually considered when length of
the duct is becoming comparable to the acoustical wave-
length, the model gives significant improvement also in cases
of much shorter ducts, hence it should be used as a standard
approach. The transmission line model is based on character-
istic impedance Zw and propagation constant �w of the line
which can be calculated from definitions specified, e.g., in
Ref. 10. Zw and �w can be then used in conversion of the
transmission line into equivalent T circuit �Fig. 2�c��.11

In comparison to the lumped components model, use of
the transmission line model results in a much closer predic-
tion of the resonator behavior. However, despite a significant
decrease of Q factor errors, losses are still underestimated,
and in some cases the ratio of simulated to measured values
of Q factor still exceeds an order of magnitude �see Table
I—column 4�.9

The transmission line model can be further extended by
the introduction of radiation losses Rrad end corrections Lends,
Rends,

5,12–15 acoustical impedance of the microphone Zmicr,
16

viscous and thermal losses of the cavities RvCi and RtCi,
5 etc.,

but the main result of these changes is an increase of com-
plexity of the model �Fig. 3�, while its properties are still far
away from expectations �see Table I—column 5�.9 Such a

FIG. 1. Sketch of a small Helmholtz resonator applied to photoacoustic
investigation of solids.

FIG. 2. Models of the resonator presented in Fig. 1, based on acoustoelec-
trical analogies: �a� lumped components model, �b� transmission line model,
�c� transmission line model with the transmission line component replaced

by an equivalent lumped T section.
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difference between theoretical and measured properties of
the resonators is a bit surprising, taking into consideration
that many researchers have investigated properties of Helm-
holtz resonator and their works show usually much better
agreement between theory and measurements �see, for in-
stance, Refs. 17–20�. The probable reason is that the men-
tioned works were conducted on the Helmholtz resonators of
much larger size, while at smaller volumes other phenomena
become dominant and result in a noticeable increase of the
losses inside the resonators.

As a purely theoretical approach was resulting only in
different versions of an unsatisfactory model, a practical
workaround approach was applied. The goal was to obtain a
relatively simple model that would give much closer agree-
ment between theoretical and experimental results.

III. LOSS CORRECTIONS OF THE TRANSMISSION
LINE MODEL

A fact that resonance frequencies obtained from the
transmission line model were in good agreement with the
measured values, and that the main problem was lack of
accuracy regarding simulation of Q factors, led to the con-
clusion that not all the losses are included in the model. In
small Helmholtz resonators viscous and thermal cavity losses
are not the main reason for damping the oscillations. It is
more likely that the main sources of losses are flow distur-
bances �due to rapid change of a cross section at the duct-
cavity boundary� and interaction between the jet flowing out
of the duct and being reflected by the cavity wall �or the
microphone membrane� placed at a relatively small distance
in front of the duct opening. Such effects can be modeled by
means of resistances R�oss placed between the components
that correspond to acoustical properties of the duct and the
cavities �Fig. 4�. The resistances R�oss can be then treated as
loss corrections �similarly to the well known end correc-
tions�, which include all the losses that occur at the duct-
cavity boundaries, including radiation losses, resistive com-
ponents of end corrections, jet reflection losses, etc.
Certainly, in order to obtain noticeable influence of the loss
corrections on the frequency responses of the resonators, val-
ues of R�oss must not be much smaller than the real parts of
the impedances Z3 and Z4. Hence, it may be convenient to
express R�oss as a function of the impedances Z3 and Z4. In
order to simplify the model it was assumed that relationship
between R�oss and Z3, Z4 for a given resonator is fixed, so
that

R�oss = � Re�Z3� = � Re�Z4� . �2�

Such an approach is a modified concept of correction
factors presented briefly in Ref. 21, where one can also find
a detailed description of how to calculate values of the com-
ponents used in the models presented in Figs. 2 and 3 and of
a routine used for extraction of the correction factors. In
order to evaluate coefficients � �retrieved similarly to the
mentioned correction factors�, frequency responses of 48 dif-
ferent combinations of resonator dimensions were measured
and compared to simulated responses. The resonators had
2.0 cm3 sample cavity, the microphone cavity was 0.5, 1.0,

3
1.5, and 2.0 cm , and the duct between the cavities was 2.0,
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3.0 or 4.0 cm long and 1.0, 2.0, 3.0 or 4.0 mm in diameter.
The obtained values of coefficients � are presented in Table I
and in Fig. 5.

TABLE I. Values of the coefficients � vs resonator dimensions extracted
measured ratio of Q factors of these resonators �theoretical Q factor values

Duct diameter
�mm�

Duct length
�cm�

Microphone ca
volume �cm3

1 2 0.5
1 2 1
1 2 1.5
1 2 2
1 3 0.5
1 3 1
1 3 1.5
1 3 2
1 4 0.5
1 4 1
1 4 1.5
1 4 2
2 2 0.5
2 2 1
2 2 1.5
2 2 2
2 3 0.5
2. 3 1
2 3 1.5
2 3 2
2 4 0.5
2 4 1
2 4 1.5
2 4 2
3 2 0.5
3 2 1
3 2 1.5
3 2 2
3 3 0.5
3 3 1
3 3 1.5
3 3 2
3 4 0.5
3 4 1
3 4 1.5
3 4 2
4 2 0.5
4 2 1
4 2 1.5
4 2 2
4 3 0.5
4 3 1
4 3 1.5
4 3 2
4 4 0.5
4 4 1
4 4 1.5
4 4 2
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When analyzing the above set of the coefficients �, it
can be easily noticed that they increase with the intercon-
necting duct diameter and against microphone cavity vol-

the measurements of 48 different Helmholtz resonators and theoretical to
lated from the models given in Figs. 2�c� and Fig. 3�.

Qtheor /Qmeas

�Fig. 2�c��
Qtheor /Qmeas

�Fig. 3� �

2.00 1.95 0.30
1.49 1.48 0.23
1.32 1.31 0.16
1.17 1.16 0.15
2.03 1.96 0.22
1.50 1.48 0.15
1.39 1.38 0.25
1.23 1.22 0.10
2.14 2.07 0.25
1.69 1.66 0.13
1.42 1.40 0.15
1.10 1.09 0.10
4.08 4.02 0.74
2.33 2.31 0.37
1.94 1.92 0.30
1.66 1.65 0.22
3.36 3.27 0.61
2.42 2.39 0.35
2.00 1.99 0.36
1.69 1.68 0.21
3.30 3.23 0.58
2.40 2.37 0.33
2.03 2.01 0.28
1.70 1.69 0.20
7.56 7.42 1.40
3.67 3.64 0.63
2.81 2.79 0.46
2.18 2.17 0.33
5.18 5.06 1.13
3.48 3.45 0.59
2.70 2.69 0.48
2.13 2.13 0.34
5.04 4.97 1.03
3.51 3.47 0.55
2.64 2.63 0.42
2.16 2.15 0.34

13.17 12.91 2.00
5.67 5.62 0.94
3.98 3.96 0.62
2.92 2.91 0.42
8.12 7.96 1.70
4.96 4.91 0.92
3.66 3.63 0.69
2.84 2.83 0.47
7.24 7.11 1.49
4.97 4.92 0.84
3.62 3.59 0.63
2.74 2.73 0.49

FIG. 3. Enhanced transmission line
model including additional loss
mechanisms, e.g., radiation imped-
ance, end corrections, microphone im-
pedance, etc.
from
calcu

vity
�
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ume, while they are not much influenced by the duct length.
This confirms the previous assumption that the transmission
line model quite precisely describes losses inside the duct,
and that the main loss sources which were not included in the
previous models are located outside the duct.

Although a set of coefficients � is already of some help
in the process of designing, having an analytical function
describing such coefficients would be much more conve-
nient, especially if applied for modeling purposes. Hence,
some further work concentrated on development of such an
analytical description. Taking into consideration, that values
from Table I show a slightly nonlinear relationship of � ver-
sus duct diameter �, parabolic approximation was used, so
that

� = A� + B�2. �3�

In order to find description for A and B the following
routine was applied. At first all 12 point sets from Fig. 5
were approximated by individual parabolic functions �Fig.
6�a��. The functions were then analyzed in order to obtain a
common form as in the Eq. �3� with some efforts made to-
wards compromise between a relatively simple definition of
A and B and possibly close fit to the given experimental data
from Table I, which finally resulted in

A = 0.0001 · �1 – 8 � �
V1 + V2

V1V2
, �4�

FIG. 4. Simple transmission line model with loss corrections �R�oss�.

FIG. 5. �Color online� Coefficients � obtained from measurements of 48

different photoacoustic Helmholtz resonators.
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B = �
i=1

2

96,000 · 2−2,000,000Vi, �5�

where Eq. �4� is valid only for duct shorter than 12.5 cm �for
greater � values, A should be substituted by zero�. In the
above equations �Eqs. �2�–�5�� standard SI units should be
used �the length and diameter of the duct � should be given
in meters, volumes V1, and V2 at both ends of the duct in
m3�. In comparison to individual parabolic functions from
Fig. 6�a� the above definitions give a little bit worse fit to the
experimental data �Fig. 6�b��, but the main character of the
relationship is preserved.

The presented loss-improved transmission line compo-
nents were verified against an open photoacoustic Helmholtz

FIG. 6. Approximation of coefficients � presented in Fig. 5 by analytical
functions: �a� with every point set approximated by an individual function,
�b� with a single function used for approximation of all the points.
cell. Structure of the cell is shown in Fig. 7�a�. In order to
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use a similar approach as in dual cavity closed resonator, the
external space was treated as an additional cavity V2� of a
large volume �e.g., a few m3�. Such a resonator can be mod-
eled in a circuit given in Fig. 7�b�. In the measured resonator
the sample cavity was 2.0 cm3 in volume, microphone cavity
was 1.5 cm3, duct between the two was 3.0 cm in length and
3.0 mm in diameter, while the connection between the
sample cavity and external space had a form of two parallel
ducts: 5.0 cm in length and 2.0 mm in diameter each. Figure
8 presents measured frequency response of the resonator
�black dots� compared with results calculated from the trans-
mission line model without corrections �solid line� and with
loss corrections �based on Eqs. �2�–�5�; dashed line�. The
frequency response has two resonance peaks. The one at the
higher frequencies results mainly from interaction of the two
smaller cavities and the interconnecting duct �that were of

FIG. 7. Triple-cavity Helmholtz resonator �a� and its transmission line mode
resonator �for this purpose volume V2� was assigned value of several m3�.

FIG. 8. �Color online� Comparison of measurements of the open two-cavity
Helmholtz resonator �black dots� with simulations based on standard trans-
mission line model �solid line� and transmission line model with loss cor-

rections �dashed line�.
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dimensions identical to one of the resonators measured and
used for the purpose of evaluation of the gamma coeffi-
cients�. The other resonance peak results mainly from the
interaction of the third �large� cavity that was connected with
the sample cavity with the ducts that were longer than these
used for the purpose of evaluation of the gamma coefficients.
Good agreement between the simulations and measurements
proves that the analytical function describing the gamma co-
efficients was implemented correctly, because the model
works well in the case when partial geometry of the resona-
tor is similar to one of these from which the gamma coeffi-
cients were derived �the right resonance peak�. It shows that
the model also gives very good results in the case when it
was used with extrapolation of the loss corrections, when the
geometry was different from the previously measured struc-
tures �the left resonance peak�. It is clearly visible, that al-
though both models �without and with loss corrections� prop-
erly reflect actual resonance frequencies, amplitudes
measured at the frequencies close to resonances are in good
agreement only with the model including loss corrections.
Fitting quality of both models was compared by calculation
of mean absolute percentage error and root averaged squared
error. For the experimental data as given in Fig. 8 the men-
tioned errors were at the level of 10% and 14% for the best
fit of the loss-improved model, while for the best fit of the
model without loss corrections the errors were significantly
higher �respectively 19% and over 60%�, which proves much
higher fitting quality of the loss-improved model.

Finally, it should be noticed, that if none of the cavities
is small, the values of A and B are negligible and the pro-
posed loss-improved model approaches the standard trans-
mission line model from Fig. 2�c�. This means that the pre-
sented model can be treated as an enhancement which
preserves features of the standard transmission line model for
the Helmholtz resonators of standard �not very small� size,
but which substantially improves modeling results for the
resonators of reduced size. The proposed loss-correction

h loss corrections �b� used for simulation of an open dual-cavity Helmholtz
l wit
model was intended for modeling of Helmholtz resonators
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�including multi-cavity structures� with cavities of at least
0.5 cm3 and ducts with diameter of 1–4 mm, not shorter
than 2 cm.

IV. CONCLUSIONS

Some cited works and presented comparison of the mea-
sured and simulated frequency responses of a small Helm-
holtz resonator showed that the standard transmission line
model �even with some enhancements like radiation imped-
ance, microphone impedance, end corrections, etc.� based on
acoustoelectrical analogies does not produce satisfactory re-
sults due to underestimation of losses that occur in the reso-
nator. Proposed improvement of the model was based on the
concept of additional loss correction components placed at
the ends of the transmission line. Loss corrections were ob-
tained experimentally from a reasonable number of two-
cavity Helmholtz resonators and approached by an analytical
function, that can be used for interpolation and extrapolation
of the correction factors for resonators of some other dimen-
sions. Verification of the presented model with loss correc-
tions against an open multi-cavity Helmholtz resonator
showed very good agreement between measured and simu-
lated frequency responses, which leads to the conclusion that
the presented approach has a good chance of producing
promising results not only in the case of simple two-cavity
resonators, but also in the case of complex, multi-cavity
small acoustic structures.

1Y.-H. Pao, Optoacoustic Spectroscopy and Detection �Academic, New
York�, Chap. 8.

2A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in
photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72,
1937–1955 �2001�.

3V. P. Zahrov and V. S. Letokhov, Laser Optoacoustic Spectroscopy,
Springer Series in Optical Sciences �Springer, Berlin, 1986�, Vol. 37,
Chap. 5.3.
J. Acoust. Soc. Am., Vol. 122, No. 4, October 2007
4P. M. Morse, Vibration and Sound �McGraw–Hill, New York, 1948�, pp.
234–235.

5A. W. Nolle, “Small-signal impedance of short tubes,” J. Acoust. Soc. Am.
25, 32–39 �1953�.

6O. Nordhaus and J. Pelzl, “Frequency dependence of resonant photoacous-
tic cells: The extended Helmholtz resonator,” Appl. Phys. 25, 221–229
�1981�.

7J. Pelzl, K. Klein, and O. Nordhaus, “Extended Helmholtz resonator in
low-temperature photoacoustic spectroscopy,” Appl. Opt. 21, 94–99
�1982�.

8T. Starecki, “Modeling of photoacoustic Helmholtz by means of acoustic-
electrical analogies,” Electronics Telecommunications Quaterly 39, 307–
312 �1993�.

9T. Starecki, Analiza Porównawcza Modeli Komory Helmholtza do
Przyrządów Pomiarowych Typu PAS �Comparitive Analysis of Photoa-
coustic Helmholtz Cell Models-in Polish� �Ph.D. dissertion, Warsaw Uni-
versity of Technology, Warsaw �1994�.

10A. H. Benade, “On the propagation of sound waves in a cylindrical con-
duit,” J. Acoust. Soc. Am. 44, 616–623 �1968�.

11F. B. Daniels, “On the propagation of sound waves in a cylindrical con-
duit,” J. Acoust. Soc. Am. 22, 563–564 �1950�.

12U. Ingard, “On the theory and design of acoustic resonators,” J. Acoust.
Soc. Am. 25, 1037–1061 �1953�.

13R. W. Troke, “Tube-cavity resonance,” J. Acoust. Soc. Am. 44, 684–688
�1968�.

14J. B. Mehl, “Greenspan acoustic viscometer: Numerical calculations of
fields and duct-end effects,” J. Acoust. Soc. Am. 106, 73–82 �1999�.

15K. A. Gillis, J. B. Mehl, and M. R. Moldover, “Theory of Greenspan
viscometer,” J. Acoust. Soc. Am. 114, 166–173 �2003�.

16A. J. Zuckerwar, “Theoretical responses of condenser microphones.” J.
Acoust. Soc. Am. 64, 1278–1285 �1978�.

17A. Selamet, P. M. Radavich, N. S. Dickey, and J. M. Novak, “Circular
concentric Helmholtz resonators,” J. Acoust. Soc. Am. 101, 41–51 �1997�.

18M. Moloney, “Quality factors and conductances in Helmholtz resonators,”
Am. J. Phys. 72, 1035–1039 �2004�.

19T. A. Johansson and M. Kleiner, “Theory and experiments on the coupling
of two Helmholtz resonators,” J. Acoust. Soc. Am. 110, 1315–1328
�2001�.

20J. Wu and I. Rudnick, “Measurements of the nonlinear tuning curves of
Helmhlotz resonators,” J. Acoust. Soc. Am. 80, 1419–1422 �1986�.

21T. Starecki, “Practical improvements of modeling of photoacoustic Helm-
holtz cells,” Proc. SPIE 6159, 653–658 �2006�.
Tomasz Starecki: Modeling of small Helmholtz resonators 2123


