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The general Kirchhoff theory of sound propagation in a circular tube is shown to take a 
considerably simpler form in a regime that includes both narrow and wide tubes. For tube radii 
greater than ro, = 10-3 cm and sound frequenciesf such that r•f 3/2 < 106 cm s- 3/2, the 
Kirchhoff solution reduces to the approximate solution suggested by Zwikker and Kosten. In 
this regime, viscosity and thermal conductivity effects are treated separately, within complex 
density and complex compressibility functions. The sound pressure is essentially constant 
through each cross section, and the excess density and sound pressure (when scaled by the 
equilibrium density and pressure of air, respectively) are comparable in magnitude. These last 
two observations are assumed to apply to uniform tubes having arbitrary cross-sectional shape, 
and a generalized theory of sound propagation in narrow and wide tubes is derived. The two- 
dimensional wave equation that results can be used to describe the variation of either particle 
velocity or excess temperature over a cross section. Complex density and compressibility 
functions, propagation constants, and characteristic impedances may then be calculated. As an 
example, this procedure has been used to determine the propagation characteristics for a tube 
of rectangular cross section. 

PACS numbers: 43.20.Mv 

INTRODUCTION 

The propagation of sound in a uniform, circular tube is a 
fundamental problem that arises in many areas of acoustics. 
The exact solution, given many years ago by Kirehhoff l 
(also, see Rayleigh 2 ), accounts for the effects of both air 
viscosity and thermal conductivity in tubes of arbitrary di- 
ameter. While generally true, the equations obtained from 
this theory are unnecessarily complicated for many applica- 
tions. More recently, Zwikker and Kosten 3 introduced a 
simpler, approximate treatment. The effects of viscosity and 
thermal conductivity are treated separately and summarized 
in terms of complex density and compressibility functions. 
Many researchers have since adopted this approximate theo- 
ry. 4-7 

The validity of the Zwikker and Kosten approach was 
originally justified only for the extremes of "low" and 
"high" frequencies; 3 an intermediate band of frequencies 
could not be treated. Moreover, another regime of behavior 
(at very high frequency or very large radius} was not consid- 
ered. Tijdeman a has examined the applicability of the 
Zwikkcr and Kosten approach more carefully. Propagation 
constants for a cylindrical tube were obtained through a nu- 
merical implementation of the exact Kirchhoff theory. 
These calculated results were compared to the Zwikker and 
Kosten solution and found to be in agreement in the limit of 
small "reduced frequency." 

An alternate approach will be considered in this paper. 
The equations that make up the exact Kirchhoff solution 
will be used as a starting point. These equations will be 
shown to reduce analytically to the Zwikker and Kosten so- 
lution when simplifying approximations, appropriate for 

certain choices of tube radius and sound frequency, are ap- 
plied. The range of values of radius and frequency that per- 
mit this simplification delineates the regime for which the 
Zwikker and Kosten approach is valid. 

The complex density and compressibility functions giv- 
en by Zwikker and Kosten have been selected as our target 
approximations because of the explicit comparisons, already 
made by these authors, to the Kirchhoff theory. However, 
other approximate treatments, presented in different for- 
mats, have been discussed by various authors. Crandall 9 has 
considered the velocity distribution through a cross section 
of a cylinder when thermal conductivity is assumed negligi- 
ble; with this assumption, laminar flow is obtained and prop- 
agation characteristics can be calculated. Daniels;ø has con- 
sidered the thermal conduction inside cylindrical tubes and 
derived a relationship between temperature change and 
sound pressure; this analysis assumes, though, that thermal 
gradients along the tube axis may be ignored. These approxi- 
mate velocity and thermal conduction aspects may be 
brought together, with the propagation of sound in cylinders 
being described in terms of equivalent series impedances and 
shunt admittances.• •-•3 

The circular tube is a prototypal geometry for many 
endeavors, and extension of the theory to tubes having non- 
circular cross sections is desirable. One example is in the 
study_of sound propagation in porous materials. 6'•4 Pores 
are rarely circular and, in modeling real materials, micro- 
structural factors representing the departure from a circular 
cross section must be introduced. 

Certain features of the solution for the circular tube will 

be identified as being applicable to tubes of arbitrary cross- 
sectional shape, and a general procedure will be derived for 
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the calculation of their propagation characteristics. To dem- 
onstrate the utility of the procedure, the propagation charac- 
teristics of a tube of rectangular cross section will be derived. 

I. KIRCHHOFF THEORY FOR THE CIRCULAR TUBE 

The theory presented by Kirchhoff is outlined here. 
This provides a basis for the discussion and approximations 
in the later sections. 

We consider a tube of radius r•, containing an ideal gas 
of viscosity # and thermal conductivity K. The axial direction 
• and radial direction ? are as indicated in Fig. 1. Several 
quantities are involved in the description of the state of the 
gas: These are the pressure P, the temperature T, the density 
p, and the particle velocity V. The first-order relations 
between these variables are given by the linearized Navier- 
Stokes force equation (e.g., Refs. 15 and 16), the mass conti- 
nuity equation, and an equation describing thermal conduc- 
tion within the gas: • 

CaV -- '7P + 31t V(V-V) --/• VXVXV, Po cat = (1) 

(2) Po V-V, 
cat 

K?2T=Tø (poCo-•tP--PoC.•t), (3) Po 

where Po, To, and Po are the equilibrium density, tempera- 
ture, and pressure of air, CL, is the specific heat (per unit 
mass) at constant volume, and Cp is the specific heat at con- 
stant pressure. As well, for an ideal gas, the equation of state 
may be written as 

caP Po (p CaT Op ) (4) caW-po ø + To . 
An exp(iwt) time dependence will be assumed for all 

variables, where • is the angular frequency and iis ( -- 1 ) 
Complex quantities •, •, •, and v, representing the sound 
pressure, the excess density, the excess temperature, and the 
particle velocity, respectively, are then introduced through 

P(t) = Po + 

p(t) =Po + 
T(t) = To + 
V(t) = Re{vd•'). ( 5 ) 

FIG. 1. The cylindrical tube for which the exact Kirchhoffsolution is appli- 
cable. The axial direction •., along which sound is assumed to propagate, and 
the radial direction ? are indicated. 

With these forms, Eqs. ( 1 )-(4) become 

kOpoV = -- ?p + • ?(V-v) --/• ?X?Xv, (6) 

iro5 = -- Po V-v, (7) 

•c V" r = ( iro To/P o ) (po C,.p - PoCk5), (8) 
P-- (Po/poTo)(por + To5). (9) 

The boundary conditions require that the velocity and 
excess temperature be zero on the tube wall so equations will 
be written in terms ofv and r. Eliminatingp and 5 from these 
equations, we obtain 

iopov-- Pø Vr+(Pø + 4 ) •-o xio• • ?(V.v)-/•?xVXv, 
(10) 

•c V-'r---- kopoCor+po7•(C • -- CL.)V-v. (11) 
Introducing the constants v and V through 

V=l•/Po, v'=•c/(poC,,), (12) 

and making use of the relation, valid for ideal gases, 

C• -- C,, = Po/(poro), (13) 
then Eqs. (10) and ( 11 ) can be written as 

c-' (-]- v + d kov-- •o Vr+ 4 ioy)V(V-v) - vVXVXv, 
(14) 

v' V2r= icor+ (y-- l)To V.v. (15) 

Here, y is the ratio Cv/Co of specific heats, and the adiabatic 
sound speed c has been introduced through 

Po c2 = YPo. (16) 

Once the velocity and excess temperature have been 
computed, the sound pressure and excess density may be 
calculated using Eqs. (7) and (9). 

Equations (14) and (15) are general, for ideal gases, 
and could be examined for a variety of possible tube cross- 
sectional shapes. In this section, though, only tubes of circu- 
lar cross section will be considered. The solution, in this case, 
has been given by Kirchhoff. • Let v be composed of radial 
and axial components, i.e., 

v = q? + uZ (17) 
Then, traveling wave solutions are given by 

u = [AQ--A•rn(ico/,• -- v')Qi 
-- A•m( io/,• 2 -- v')Q• ]e'% (18) 

[ q= -- ( Po/v) -- m 2 dr A•- -- v' dr 

dr ] e , (19) 
7'= (y-- I)To(A•Q I + A2Q•)e'", (20) 

where the functions Q, Q•, and Q• are given by 

Q = Jo Jr( rn• -- io/v) 

QI = Jo Jr( rn• --/l• )l/•], (21) 
Q• = Jo [ r( m• -- g2 ) l/•], 
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and where t• 1 and 22 are the small and large roots of I xlO': 

(22) -- 

The •tor exp(•z) i• •ommon to both •o•ponents o• 
lo•ity •nd t•e e•ce• temperature. The p•m•eter • i• 
propagation constant. It is evaluated by setting u, q, and t 
equal to zero at the tube wall. This leads to an expression that 
can be solved (numerically) to give m: 

2 m _ = 

(iw ) dlnO2 A2 •5 - 0. (23) o 
In this expression, the derivatives are taken with respect to r • • lo 4 
and evaluated at the wall, i.e., at r = r•. 

Following Weston •7 (with the correction of a sign), by 
setting u = r= 0in Eqs. (18) and (20), theconstantsA, At, 
and A 2 are determined, giving -- 

[ o u = mB -- iw • 
1 x lif e 

( ] i• t mz 
-- -- V ,oQi•Q2 e , (24) -- 

I' 0 q = B (iw/• • m 2 g 2 dr 

(25) 

r=B(y- 1)ToQ•o( -Q2•oQl +Q,wQ2)e mz, (26) 

where the subscript w indicates an evaluation of the term Q, 
Q•, or Q2 at the tube wall, and where the constant B is 

B= -A,/(QwQ2•). (27) 

Using Eqs. (7) and (9), the solution given above may be 
extended to describe explicitly the excess density, 

•5 = poBQw [ ('V'AI/[O -- 1 )Q2wQt 

-- (v'/[2/œto -- 1)Q•Q2 ]e '", (28) 

and the sound pressure, 

p = PoBQ• [ (¾'A l/io -- 7/)Q2wQ1 

- (v'A2/ico - Y)Qi•Q2 ] emz, (29) 
Equations (24)-(29) have been used to calculate the 

position dependence of the state quantitiesp, r, and $, and of 
the velocity components q and u. The key step of the numeri- 
cal calculation is the determination of the propagation con- 
stant rn through Eq. (23). A Newton's method was found to 
work well for all choices of frequency and radius; this itera- 
tive calculation was relatively insensitive to initial choice of 
m, and an arbitrary starting value of (0.02 + i0.06) cm- • 

0.5 • 

- (,:ll - 

lx10 'e 

0.5 B (el 

I I I 1 
0.2 0.4 0.6 0.8 1.0 

Radial position, r/r w 

FIG. 2. Variation of several propagation parameters along a radius of a 
tube, from the center •. axis to the tube wall at r = r,.. The magnitudes of (a) 
axial velocity u; (b) radial velocity q; (c) excess temperature r, relative to 
the ambient T o; (d) sound pressure p, relative to the ambient Po; and (el 
excess density, relative to the ambient Po are shown. The results are for a 
tube of radius 0.01 cm, at a sound frequency of 100 Hz. With a viscous 
boundary layer thickness of 0.022 cm, this is a "narrow" tube. 

was used in all cases. In Fig. 2, results are shown for a tube 
having a diameter of 0.01 cm, at a sound frequency of 100 
Hz. Shown in panels (a)-(e) are the magnitudes of u, q, 
r/To, P/Po, and •/Po; all five quantities are displayed as a 
function of the radial position r. The viscous boundary layer 
thickness, calculated using d o = (2v/w)•/2, is 0.022 cm, so 
that this tube may be considered narrow. In Fig. 3, a similar 
set of results is shown for a tube of 0.1-cm diam, for a fre- 
quency of 10 kHz. The boundary layer thickness, 
do = 0.0022 cm, is much less than the tube radius so the tube 
may be considered wide. The variations in axial velocity u, 
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FIG. 3. As in Fig. 2, but for a tube of radius 0.1 cm, at a sound frequency of 
10 kHz. The viscous boundary layer thickness is 0.0022 era, so the tube is 
considered "wide." 

excess temperature r, and excess density 6 appear primarily 
within a few d o of the tube wall. 

Several features in Figs. 2 and 3 are of particular inter- 
est. The sound pressure is essentially constant through the 
cross section of the tube, for both wide and narrow cases. 
The only significant variation of pressure is the exp(mz) 
axial dependence, along the length of the tube. The excess 
density and the sound pressure are comparable in magni- 
tude, when scaled by Po and Po, respectively. In Fig. 2, 
Im/po I is very nearly equal to lp/to l; from Eq. (9), this sug- 
gests that the sound propagation is isothermal, and indeed, 
[v/To[ is considerably smaller. In Fig. 3, lr/po] is smaller 
than [P/Po I by a factor A = 1.4 over most of the cross see- 
tion, but the two terms become equal at the tube wall; from 
Eq. (8), the propagation is essentially adiabatic in the cen- 
tral core of this "wide" tube. For both tubes, the radial veloc- 
ity is considerably smaller than the axial velocity. 

In many applications, including the study of porous ma- 
terials, the detailed variation of velocity, density, and tem- 
perature, through a cross section, is not required. The final 
desired result is the aoerage of the quantity over the cross 
section of a single pore, or tube. Hence, for a quantity •'(s), 
we calculate the average (•') using 

(g) = •r-r •(s)dA, (30) 
where s is a general position vector within the cross-sectional 
plane and ,4 r is the total cross-sectional area. For a circular 
tube of radius r,,,, this average is simply 

(g ) = wr• 2•rg( r)dr. (31) 
For the discussion in Sec. II, the vel•ity and excess density, 
averaged through the cross section, will be required. Inte- 
grating a•ording to Eq. (31), Eqs. (24) and (28) give 

r• • •' (m•--i•/v) m 

and 

(m' -A, 

• .• W' e mz (m' - ,,1., )u2 
(32) 

2BQ•, ( /l, v' - iro QawR,,,, (•5) = po ..... 
t'cor,u (rn 2 -- A, )•/• 

'•2 v' -- io 17 •e (m2 _/12 )1/2 Qi 2w/ , (33) 
where the functions R, R•, and R2 are Bessel functions of 
order 1: 

R = J• [r(m 2 -- io)/v)l/-•], 

/t, = J, - x, )'"], (34) 
R 2 =J• [r(m • 

with the subscript w indicating evaluation of these functions 
at r: r w. 

!1. APPROXIMATE SOLUTION FOR NARROW AND WIDE 
CIRCULAR TUBES 

The Kirchhoff solution for the propagation of sound in 
circular tubes is generally true. However, the equations are 
complicated and difficult to apply. Simpler, approximate ex- 
pressions were proposed by Zwikker and Kosten, 3 but justi- 
fication of these expressions was given only for the extremes 
of "low" and "high" frequency. Numerical comparison of 
the two approaches, though, reveals very good agreement 
over a wide range of frequency and tube radius. s In this 
section, the exact Kirchhofftheory will be examined critical- 
ly, and the applicability of approximate solutions deter- 
mined. 

Weston •: has studied the solution presented by Kirch- 
hoff and identified three main types of propagation, distin- 
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guished by the following two discriminants 
d4 = 2r,,f 4/2, d2 = 10-Sr,d c3/2. (35) 
The narrow tube has d4 ,• 1 cm s •/2; the wide tube has 

d4 >> 1 cm s - 4/2, and d2 ,• 1 cm s - 3/2; and the very wide tube 
has d2 >> 1 cm s - 3/2. Weston's classification excludes very 
narrow tubes with radii less than 10-,3 cm, for which the 
radius approaches the mean-free path, and frequencies 
greater than 108 Hz, for which the wavelength approaches 
the mean-free path. In this and the following sections, we 
will restrict our attention to the regime composed of both 
narrow and wide tubes, i.e., the broad range of frequencies 
and radii encompassed by 

r•f 3/2 < 106 cm S- 3/2 and r•o > 10 3 cm. (36) 
The solution given by Kirchhoff will be examined and shown 
to reduce to a much simpler form in this regime. 

Some approximations can be made at the outset. With 
v = 0.151 cm2/s and c = 34300 cm/s, it is found that 

cov/c 2 • 1 ( 37) 

for frequencies below 108 Hz, and so the roots of Eq. (23) are 

24 z - w:/c:, A2 zico7//V. (38) 

For air, 7/= 1.4 and v' = 0.30 cm2/s, giving A4 ,<22. 
Weston states that the argument of the function Q•, i.e., 

r(m 2 _A 4 )4/2, is small for both narrow tubes and wide 
tubes. This is confirmed in Fig. 4, in which the argument, 
evaluated at r = rw, is shown as a function of frequency for 
several tube radii. The dashed curve indicates the maximum 

extent of the regime being considered, i.e., r•r3/2 = 106 
cm s- 3/2. The argument of Q4 is less than 0.1, within the 
regime that includes both narrow and wide tubes. Thus 
terms that involve this argument may be approximated. We 
have 

Q4 •.1, (39) 

to better than 0.25%, and 

-- -- (rn 2 --X• )4/2R• 
dr 

.• -- •l(m2 -- A, )r, (40) 

10' 

i0 -• 

10 '2 I I I [ I I I 
0.1 I I0 I00 1K 1OK lOOK IM 10/,6 

Frequency (Hz) 

FIG. 4. The magnitude of the term r.,(m 2 --.•.• )•/2, which appears in 
KirchhoWs theory, for several tube radii. The dashed curve indicates the 
limit r,,f •/2 = 10 6 cm S 3/2, above which the tube approaches the "very 
wide" regime. Below this limit curve, for both narrow and wide tubes, the 
term is small, leading to significant simplifications in the theory. 
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FIG. 5. Comparison of the propagation constant m to three terms involved 
in KirchhoWs theory. Here, Im[ 2 has been calculated for several values of 
tube radius, as a function of frequency, and plotted as the thick curves. It 
may be compared to the terms Iko/v I, [A• 1, and l•2 I, which are shown as the 
thinner lines. For tube radius greater than 10 '• cm, m • is much smaller in 
magnitude than ito/v and A:. 

to better than 0.125%. With these approximations, the 
sound pressure, in Eq. (29), takes a simple form 

p• -- PoB7/Q,,Q2•e'" (41) 

None of the terms in this expression depend on the radial 
variable r. The sound pressure is essentially constant 
through the cross section of the tube, as was observed in Figs. 
2 and 3. 

Simplifications of other expressions are possible on con- 
sidering the magnitude of the propagation constant m. In 
Fig. 5, the magnitude ofm 2 has been plotted as a function of 
frequenc• for various tube radius. These may be compared 
with the terms I,L, I, IA= I, and li,/vl, which have been plot- 
ted on the same graph as the thinner lines. We note that 

[ml<l&l and Im21<1io/¾1, (42) 

provided that the radius is greater than 10 3 cm. This is the 
regime that has been assumed in this section. Thus we may 
ignore m 2 relative to both •-2 and iw/v in the expressions of 
Sec. I. 

Applying these approximations to Eq. (23), a simpler 
expression is obtained for the propagation constant 

m 2 = -- (W2/C2){1 -J- 2(7/- l)( -- ko7//V) -•/2 

- ior/v)"llrw) 

X{1 -- 2( -- iw/v)-'/2G [r•( -- iwlv)'/2]/r•}-', 
(43) 

where the function G is defined according to 

G [• ] = J, (•)/Jo (•)- (44) 
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It is important to note in Eq. (43) that the effects of viscosity 
and the effects due to thermal conduction are now separate. 
The first term enclosed by braces { } depends only on the 
thermal conduction properties, through the term v', and is 
independent of viscosity. Conversely, the term enclosed by 
the second set of braces depends only on the air viscosity, 
through the term v. 

The same approximations can be applied to Eqs. (32) 
and (33), giving, for the average velocity and the excess den- 
sity, 

(u) = (mBc2/iro)O2•, 

x[Qw-2(-iro/v) •/•Rw/r,,]e "•z, (45) 
= -poBQw [Q2, + 2(r- ]) 

X ( -- iro/V) - mR•,•/r• ] e'"5 (46) 
If a complex density function p(o•) is defined through 

iop(o){u) - dp (47) 
dz 

then Eqs. (42) and (45) may be brought together to give 

p(co) =po{l -- 2( -- ico/v) - 

XG [r,,( -- io/v)m]/r•,} '. (48) 
This complex density includes both inertial and viscous con- 
tributions. It is noted, though, that thermal conduction ef- 
fects are not present. In a similar fashion, we define a com- 
plex compressibility function C(ro) using 

C(m) = (•)/PoP. (49) 
Then, combining Eqs. (42) and (46), 

C(o) = ( l/yP o ){1 + 2(y - 1 ) ( - ia•y/v') - 

XG [r,•( -- icor/v')'/2]/r•,}. (50) 
The complex compressibility is a function of thermal con- 
ductivity, but not of viscosity. 

The propagation constant may be written in a simple 
form. Using Eqs. (43), (48), and (50), we obtain 

m • = -- co•p(o)C(a•). (51) 
The main results of this analysis are the approximate 

expressions obtained for the propagation constant, the com- 
plex density, and the complex compressibility, as given by 
Eqs. (43), (48), and (50), respectively. They represent con- 
siderable simplification over the exact results obtained by 
Kirchhoff, but they have application over a broad range of 
sound frequencies and tube radii. Numerical calculations 
confirm that these approximate expressions and the com- 
plete Kirchhoff theory give nearly identical results for fre- 
quencies and tube radii in the stated range. 

These approximate expressions were presented by 
Zwikker and Kosten 3 previously, but the verification of the 
results was given only for the extremes of low and high fre- 
quency. In their work, the velocity problem and the thermal 
conduction problem were treated separately; the expression 
for complex density was obtained with thermal conductivity 
assumed zero and the compressibility calculated with viscos- 
ity assumed zero. Approximations to these functions, in the 
low- and high-frequency cases, were compared with corre- 
sponding approximate terms from the exact Kirchhofftheo- 

ry and found to be the same. However, Zwikker and Kosten 
were not able to demonstrate that their results were consis- 

tent with the exact theory at intermediate frequencies. The 
work in this section (and the numerical comparisons per- 
formed by Tijdeman 8 ) provides the verification for the in- 
termediate frequency range and explicitly defines the range 
of sound frequency and tube radius over which the Zwikker 
and Kosten equations are applicable, i.e., through Eq. (36). 

III. GENERALIZATION TO TUBES OF ARBITRARY 

CROSS-SECTIONAL SHAPE 

A general procedure is developed here for the determin- 
ation of the propagation characteristics of tubes that are uni- 
form along their length but have arbitrary cross-sectional 
shape, as indicated in Fig. 6. The procedure is appropriate 
for tubes in the narrow and wide tube regimes. 

Equations ( 6)- (9) are general and not restricted to cir- 
cular tubes. However, determining a solution to these gen- 
eral equations, for a tube of arbitrary cross-sectional shape, 
would be a formidable challenge. In the case of the circular 
tube, the solution obtained by Kirchhoff was exact and thus 
valid for narrow, wide, and very wide tubes. We have seen, 
though, that considerable simplification of the Kirchhoffso- 
lution is obtained if we restrict our attention to only narrow 
and wide tubes. It is reasonable to suppose that considerable 
simplification of the general equations might also be ob- 
tained in the same regime of narrow and wide tubes. These 
simplified equations would then be applicable to tubes of 
arbitrary cross-sectional shape. 

Three features of the solution for the circular tube, with- 
in the narrow and wide regimes, are of particular interest: 

( ! ) As seen in Figs. 2 and 3, the sound pressurep (and 
hence, dp/dz as well) does not vary significantly through a 
cross-sectional slice. Calculations confirm that variations 

are very small, being proportional to r•f 3/2 and reaching 
0.1% only when rudf 3/2 is at its maximum of 10 6 cm s -•/2. 
We will assume that p contains only the axial exp(mz) de- 
pendence, and is constant through each cross section of non- 
circular tubes. 

(2) The excess density and the sound pressure are of 
comparable magnitude when scaled by Po and Po, respec- 
tively. As suggested by the examples of Figs. 2 and 3, the two 
terms will be equal in magnitude for isothermal conditions 
and will differ by a factor ofy = 1.4 for adiabatic conditions. 
We will assume, then, that 

•/Po •P/Po. (52) 

FIG. 6. Sketch of a possible tube geometry for which the generalized theory 
would be appropriate. The tube cross section is arbitrary in shape, but con- 
stant along Ire propagalion axis. 
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(3) For the regime that includes both narrow and wide 
circular tubes, the propagation constant m is much smaller 
than certain other terms. In accordance with Eq. (42), it will 
be assumed that Ira21 is negligible relative to lice/v] and to 
l i•oT/v'l for tubes with arbitrary cross-sectional shape. 

These three assumptions will be adopted for tubes hav- 
ing arbitrary cross-sectional shape. It will be noted that we 
are not assuming laminar flow. This assumption is not neces- 
sary for the development of the theory. The radial compo- 
nent of velocity, though, is considerably smaller than the 
axial component, reaching a maximum of 2% only when 
rwf 3/2 is at its upper limit of 10 6 cm s - 3/2 

Consider, first, the general force expression, Eq. (6). 
The • component of this equation may be rewritten as 

--•u• -•V'v . (53) 
The term involving V.v is negligible. To see this, we use Eqs. 
(7), (12), and (16), and the general assumption of Eq. (52) 
to obtain 

-- • V.v • •(i•&o )• 3 

• • (iwvy/c 2)p. (54) 
By the general approximation expressed by Eq. (37), then, 
this term is much less thanp and may be ignored in Eq. ( 53 ). 
Noting that both p and u vary with z only as exp (mz) for the 
assumed traveling wave solution, and with Ira21 • l i•/vl, Eq. 
(53) becomes 

V•u - (i•/v)u • (m/•)p, (55) 
where the V• term is the part of the Laplacian operator V 2 
representing differentiation within the cross section, i.e., 

•2 
Vz•v • ' + • (56) 

&2 

Thus the force equation has been cast in the form of a two- 
dimensional boundary value problem, with the sound pres- 
sure acting as a driving term. 

A corresponding equation can be obtained for the excess 
temperature v. Eliminating 8 between Eqs. (8) and (9), 
making use of the definitions in Eqs. (12) and (13), and 
with [m 21 4 li•y/v'[, we find 

V•v- (i•/v')v = - (i•/•)p. (57) 
It is evident that the equations for the velocity and for 

the excess temperature have the same form. Moreover, the 
boundary conditions are the same, i.e., both u and v must be 
identically zero on the perimeter of the two-dimensional 
cross section. Thus we are able to consolidate the two bound- 
ary value problems into a single form. Considering the veloc- 
ity equation first, a generalized variable • is introduced 
through 

u = - (mp/iwpo)•, (58) 
with which Eq. (55) becomes 

V•- (•/V)• = - •/V, (59) 
where the constant • is just v. The temperature equation can 
be treated in a similar fashion. If we set 

v = (v'p/y•)•, (60) 

substitute this into Eq. (57), and take V = v'/?, then we 
obtain the same equation, Eq. (59), that was obtained for the 
velocity. 

Equation (59) provides the basis for calculating the 
propagation characteristics of tubes of arbitrary cross-sec- 
tional shape. Suppose that a solution ½ has been found, satis- 
fying the boundary condition that ½ = 0 on the perimeter of 
the cross section. We are interested in the average of this 
solution over the cross section. Hence, using Eq. (30), an 
average (½) may be calculated. This average quantity re- 
tains a dependence on •/which we indicate symbolically by 
introducing a function F(•/) through 

FO/) = (½). (61) 

We are then able to obtain several necessary quantities in 
terms of this function: 

(u) = - (mp/icopo)F(v), (62) 
(r) = (v'plTK)F(v'/y), (63) 

and, using Eq. (9), 

{•5) = pop/Po -- (Po v'p/To Ttc)F( V /7/). (64) 
The complex density and complex compressibility functions 
have been defined in Eqs. (47) and (49), respectively. With 
Eqs. (62)-(64) above, and with Eq. (13), they may be ex- 
pressed in terms of the function F as 

p(o) =po/F(v) (65) 

and 

C(•o) = (1/TPo)[T- (7/- l)F(v'/?)]. (66) 
The propagation constant may be evaluated by consid- 

ering the equation for mass continuity, Eq. (7). Averaging 
over the cross section and assuming only an axial component 
of velocity, 

i(o{•5) = --pom{u). (67) 

Thus we have 

m 2 = --co2p(w)C(o)) 

= - (•o2/c2){[? -- (T- 1)F(v'/T)]/F(v)} (68) 
in accordance with Eq. (51), which was obtained for the 
circular tube. 

The characteristic impedance of the tube may also be 
expressed in terms of the functions F(r/). Keeping in mind 
that the assumed exp (mz) dependence of all quantities cor- 
responds to a wave traveling in the - 2 direction, we define 
the characteristic specific impedance as Z= 
Then, using Eqs. (47) and (68), we get 

Z = [p(co)/C(co)]m 

=pocF(v)- •/2[T- (•-- 1)F(v'/T)] 1/2. (69) 

IV. APPLICATION OF THE GENERAL PROCEDURE 

Section III provides a procedure for the determination 
of the propagation characteristics of sound in uniform tubes 
of arbitrary cross-sectional shape. Here, we consider two ex- 
amples of the application of the method. 
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A. The circular tube 

The simplest example is a tube of circular cross section. 
The solution is already known for the narrow and wide tube 
regimes, having been presented in Sec. II. The general proce- 
dure of Sec. III should give the same result. 

For a circular geometry, with no angular dependence of 
velocity or excess temperature, Eq. (59) is 

1 a (rd•_ira•_ ira (70) 
This has a solution 

•b(r) = 1 - Jo [r( - iaff•l)'/2]/J o [r•, ( - iaff•l),/z], 
(71) 

which, when averaged over the cross section, gives 

F(r/) = 1 -- 2( -- io•/• I ) - •/ZG [ r•, ( - iaff • 1) I/2 ] /r•,, 
(72) 

where G is as defined in Eq. (44). 
It is easily verified that using this F(•/) with Eqs. (65), 

(66), and (68) gives the same complex density, complex 
compressibility, and propagation constant, respectively, 
that were obtained earlier as Eqs. (48), (50), and (43). 

B. Rectanõular tube 

A tube of rectangular cross section is considered next. 
Coordinates x and y, in the cross-sectional plane, are intro- 
duced, as indicated in Fig. 7. The width of the tube (in the x 
direction) is 2a and the height (in the y direction) is 2b. 

Equation (59) takes the form 

• • + • • io• • = _ ira (73) 
8x • 8y • • • 

We assume for the solution • an expansion of the form 

•(x,y)= • • A• cosa•xcosfl. y, (74) 
•0 •0 

where the constants a• and • are given by 

a• • (• + •)v/a, 

• = (n + •)•/b. (75) 
•ch te• of the expansion satisfi• the •undary condition 
• = Oonx = • a and ony = • b, and together they form a 

FIG. 7. Rectangular tube, with the coordinates used in the analysis. The 
tube has a width 2a, along the x direction, and a height 2b, along the y 
direction. 

complete set of basis functions. The expansion of Eq. (74) is 
substituted into Eq. (73) to give 

(76) 

The coe•cients A•, are evaluat• by making u• of the orth- 
ogonality of the cosine functions. Both sides of•. (76) are 
multiplied by (cos a•.x cos •,.y), then integrated over x 
from -- a to + a and over y from -- b to + b, leading to 

i• 4( -- 1)•( -- 1)" 
Ak. -- • (77) 

•ab a•,a• + • + i•/•) 

•e solution of Eq. (73) is then 

4i• • • (--1)•(--1)"cosa•xcos•,,y •= qab _ a•(a• + • + i•/•) k =On 0 

(78) 

The function F(•), appropriate to a rectangular cross 
section, is obtained by averaging Eq. (78) over the cross 
section of the tube. With Eqs. (30) and (61), then, 

F(q)-- 4i• a•,(a• +fl• + 
(79) 

The complex density and complex compressibility functions 
follow, using Eqs. (65) and (66): 

P(o) =P0 4• 

+ I} • , (80) 
V ]J 

C(o) = • 1 v'a•b • 

( iy)]-'} •O • • 2 2 X• a•. +•,+ . 
(81) 

•e propagation constant and characteristic impedance 
may be calculated using Eqs. (68) and (69). Results equiva- 
lent to these, i.e., •s. (73)-(81), have been obtained 
cently by Roh et al. • 

The implications of these results for the modeling of 
porous, rigid-framed mate•als will be considered in a future 
Paper. We will consider here only one limiting •aSe of th• 
theo•, a limit for which results exist in the literaiure. 

Consider the behavior when a•b, i.e., the narrow slit 
extreme. In this limit, th• • term Within th• parentheses 
Eq. (79) may be dropped. With the definitions in •. (75), 
this simplification gives 

F( • ) 4i•b • • + • • • o 

- • i•b •1 • • 
(82) 

The two sums c•n be evaluated, giving 

•(•) = I -- (i•b2/•) • I/a tanh(i•b2/•)l/• (83) 
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for the narrow slit. Introducing a dimensionless parameter A 
as 

A = b(w/v)•/2, (84) 

and the Prandtl number N by 

N= yv/v', (85) 
we obtain 

p((o) =Po [ 1 -- tanh(i•/2A)/(i•/2A) ] t, (86) 
C(•o) = (1/TPo)[1 + (7/- 1) 

Xtanh(i•/2N•/2A)/(i•/2N•/2A) ]. (87) 

These equations are the same as the expressions given by 
Attenborough 6 for the narrow slit (after making allowance 
for a difference in assumed time convention). 

The work presented here is applicable to the study of the 
acoustical properties of porous materials. Various theoreti- 
cal models 6'•4 introduce "shape factors" to accommodate 
the departure of pore cross sections from a circular shape. 
Using the formalism discussed in Sec. III, we are able to 
calculate directly the acoustical properties of samples con- 
taining pores with specific cross-sectional shapes, and ap- 
propriate shape factors may be inferred. 
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V. CONCLUDING REMARKS 

The Zwikker and Kosten 3 approximation for sound 
propagation in a circular tube has been validated for a broad 
range of tube radius and sound frequency, given by 
r w > 10- 3 cm and r•j c3/2 < 106 cm S- 3/2. This regime in- 
cludes both narrow and wide tubes, according to WestoWs 
classification. •? This validation was based on a critical appli- 
cation of the exact theory given by Kirchhoff. • The effects of 
viscosity are contained solely within a complex density term, 
and the effects of thermal conductivity solely within a com- 
plex compressibility term. 

The theory has been generalized to describe sound prop- 
agation in uniform tubes having cross sections of arbitrary 
shape. Examination of the solution for the circular tube re- 
veals two key features that we assume are generally true, in 
the narrow and wide tube regime. First, the sound pressure is 
constant through each cross section. Second, the sound pres- 
sure and the excess density, when scaled by the values of 
ambient pressure and temperature, respectively, are of com- 
parable magnitude. Using these two assumptions, a general 
approach for tubes of arbitrary cross-sectional shape has 
been derived. Separate equations are obtained describing the 
variation of velocity and excess temperature over a cross 
section. Both equations have the same form, though, and the 
solution of a single two-dimensional boundary value prob- 
lem [Eq. (59)] allows both complex density and complex 
compressibility functions to be determined; the propagation 
constant and characteristic impedance for the tube may be 
calculated from these functions. As an example, the general 
procedure has been used to determine the sound propagation 
characteristics in tubes of rectangular cross section. 
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