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It is shown that the two main parameters governing the propagation of sound waves in 
gases contained in rigid cylindrical tubes, are the shear wave number, s = R ~ ,  and 
the reduced frequency, k = toR/ao. It appears possible to rewrite the most significant 
analytical solutions for the propagation constant, F, as given in the literature, as simple 
expressions in terms of these two.parameters. With the aid of these expressions the various 
solutions are put in perspective and their ranges of applicability are indicated. 

It is demonstrated that most of the analytical solutions are dependent only on the shear 
wave number, s, and that they are covered completely by the solution obtained for the 
first time by Zwikker and Kosten (1949). 

The full solution of the problem has been obtained by Kirchhoff (1868) in the form of 
a complicated, complex transcendental equation. In the present paper this equation is 
rewritten in terms of the mentioned basic parameters and brought in the attractive form 
F(F,s,k) = 0, which is solved numerically by using the Newton-Raphson procedure. As 
first estimate in this procedure the value of F according to the solution of Zwikker and 
Kosten is taken. Results are presented for a wide range of s and k values. 

1. INTRODUCTION 

The problem of  the propagation of sound waves in gases contained in cylindrical tubes is a 
classical one, to which famous names are connected like Helmholtz [1], Kirchhoff [2] and 
Rayleigh [3]. Since then many papers have been written on the subject, often in relation to 
studies dealing with the dynamic response of pressure transmission lines [4-34]. 

The analytical solutions given in the literature can be divided roughly into two groups. 
The first group comprises "solutions obtained by analytical approximations of the full 
Kirchhoff solution, which is given in the form of  a very complicated transcendental equation 
[2, 3]. The solutions of  the second group have been derived directly from the basic equations 
governing the problem, by the introduction of  one or more simplifying assumptions. 

The first approximations of  the full Kirchhoff solution were produced by Kirchhoff [2] 
himself for "wide" tubes and by Rayleigh [3] for "nar row" tubes. Later on, higher order 
approximations have been given by Weston [4], who derived formulae for the transitions 
"narrow-wide", "wide-narrow", "wide-very-wide" and for "very wide" tubes. 

Analytical solutions of  the second group obtained directly from more or less simplified 
basic equations have been presented by, among others, Kerris [5], Zwikker and Kosten [6], 
Iberall [7], Rohmann and Grogan [8], and by Karam and Franke [9]. 

Numerical solutions of  the problem were published by Tsao [I0], Gerlach and Parker [11], 
Scarton and Rouleau [12], and by Shields, Lee and Wiley [13]. Tsao [10] based his finite 
difference solution on the same simplified basic equations as used by Zwikker and Kosten 
[6], and Iberall [7]. In the papers of Gerlach and Parker [11 ], and Scarton and Rouleau [12] 
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2 It. TIJDEMAN 

the basic equations are simplified considerably by the assumption that thermal effects are 
negligible. This simplification made it possible to derive a set of two decoupled equations, 
which have been solved by means of the method of eigenvalues. In references [I I] and [12] 
the existence of higher order modes is shown and in reference [12] the first thirty-two modes 
are presented. 

The numerical solution for the fundamental mode of Shields et  al. [13] has been obtained 
by an iterative solution of the full Kirchhoffequation and thus can be considered as the most 
complete solution so far available. 

In the subsequent sections of this paper it first is shown, by a consideration of the basic 
equations, that the problem of small amplitude, sinusoidal motions of a fluid column in a 
rigid cylinder is completely determined by the following four parameters (a list of symbols is 
given in Appendix D): 

s = R ~/p~o)]tt , the shear wave number, sometimes also referred to as the Stokes number, 

k = ogR/ao, the reduced frequency, 

a =/V~tCp/2, the square root of the Prandtl number, 

= C J C v ,  the ratio of specific heats. 

As for a given gas a and ~, often can be considered as constants, the two main parameters 
are the shear ware  ntunber  and the red t t ced f requency .  Subsequently, the most significant 
analytical solutions of the propagation constant F t  given in the literature are rewritten as 
simple expressions in s and k and collected in Table 1, which for the sake of completeness 
also contains the solution of Helmholtz [1], obtained from a Poiseuille-like consideration of 
the motion in axial direction. 

It is demonstrated that nearly all the approximate solutions are covered completely by the 
solution obtained for the first time by Zwikker and Kosten [6], and also to be found in the 
later references [7] and [14]-[17]. This solution may be designated as the "low reduced 
frequency solution", because the solution depends only on the shear wave number and is 
valid only for k ,~ 1 and k]s  ~ 1. 

To the author's knowledge analytical solutions without the restriction k ~ I have been 
published only by Weston in reference [4], which solutions are valid only for very large values 
of the shear wave number. It further appears that the exact results of Shields et aL [13J-- 
once they are expressed in the main parameters s and k--cover only a rather limited range of 
these parameters. To remove these limitations a new numerical solution of the full Kirch- 
hoff equation is presented. This "exact" solution can be obtained relatively easily by re- 
writing the full Kirchhoffequation in terms of the four non-dimensional parameters mentioned 
before. This procedure leads to the attractive equation 

F ( r , s , k , a , 7 ) = O ,  

which can be solved numerically by making use of the Newton-Raphson procedure. As a 
first estimate the value of F resulting from the "low reduced frequency solution" has been 
taken. 

t Defined in section 3. 
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NuMerical values of the propagation constant are given for a wide range of the main 
parameters s and k, which may be helpful in further studies and calculations. 

The results reveal that the propagation constant strongly depends on the reduced frequency 
in the range of relatively low shear wave numbers (s<4) and that in this area a strong dis- 
persion occurs. 

2. FORMULATION OF THE PROBLEM 

The equations describing the motion of a fluid column in a circular cylinder are the Navier- 
Stokes equations (one in the axial and one in the radial direction), the equation of continuity, 
the equation of state and the energy equation, giving the balance between thermal and kinetic 
energy. 

These five equations suffice to obtain the solution for the same number of unknown 
quantities: namely, the velocities in the axial and radial directions, the density, the tempera- 
ture and the pressure. 

The aforementioned equations can be simplified to (see Appendix A) 

(2.1) 

an +VL\a57 + 
+ k  + + + , (2.2) 

k all ~1) ~ ) 
i k p = -  ~ +  ~q+ , (2.3) 

p = p + T, (2.4) 

i r = i  ~ ' -  i 1 {a2T l O T  02T~ 
7 " P + - -  + 

if the following assumptions are introduced: 
(a) homogeneous medium, which means that the wave length and the tube radius must 

be large in comparison with the mean free path; for air of normal atmospheric 
temperature and pressure, this condition breaks down for f >  l0 s Hz and R < 10 -5 cm; 

(b) no steady flow; 
(c) small amplitude, sinusoidal perturbations (no circulation and no turbulence); 
(d) tube long enough, so that end effects are negligible. 

To obtain the solution for a rigid tube of constant circular cross-section, equations (2.1)- 
(2.5) have to satisfy the following boundmy conditions and assumptions: 

(a) at the rigid tube wall the axial and radial velocity must be zero: i.e., 

at tl = 1, u = 0 and t, = O; (2.6) 

(b) the radial velocity must be zero at the tube axis due to the axisymmetry of the 
problem: i.e., 

at tl = O, t, = 0 (2.7) 
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and u, p, p and Thave to remain finite; 
(c) the heat conductivity ofthe tube wall is large in comparison with the heat conductivity 

of the fluid: i.e., 
at t 1 = 1, T =  0 (isothermal walls). (2.8) 

3. REVIEW OF ANALYTICAL SOLUTIONS GIVEN IN THE LITERATURE 

The solution, for the pressure perturbation,p, ofequations (2.1)--(2.5) in general can be put 
in the form 

p = {AQ1) ere+ B( t l )  e -r~} e t'~', 

with r/and ~ being the dimensionless co-ordinates (see Figure 1). 
The propagation constant occurring in this solution consists of a real part, F' ,  representing 

the attenuation over a unit distance in the ~ direction, and an imaginary part, F ' ,  being the 
phase shift over the same distance. 

Figure I. Co-ordinate system. Dimensionless co-ordinates: ~ = ~ox[ao; 11 =r[R. 

As stated already in the introduction, the most significant analytical solutions for F, known 
in the literature, can be expressed in terms of the four basic parameters (see Table 1). 

A closer examination of the formulae in Table I reveals that the expressions do not contain 
the reduced frequency, k, except for the "wide-very-wide" and the "very wide" approxima- 
tions of Weston [4]. In these cases the expressions for the attenuation, among other things, 
contain the term 

F~t~, 2 s 2 + 

which equals the attenuation of plane waves in free air [3] and which is independent of the 
tube radius. 

In the "wide" tube solution of Kirchhoffthe parameters s and a are present, which indicates 
that both viscosity effects and heat conductivity have been accounted for. Putting ~, = 1 
(isothermal conditions) reduces the Kirchhoff solution to that of Helmholtz. For both solu- 
tions the result l imF = i holds, this being the solution for plane waves in free air without 
absorption. '-'~ 

The solution which Rayleigh obtained for the "narrow" tube, by assuming the diameter so 
small that heat is transferred freely from the center to the wall, does not contain the parameter 
a, which means that only viscosity effects are involved. 

As mentioned in the introduction, Weston's formulae are higher order approximations of 
the full Kirchhoffsolution and therefore it is not surprising that the first terms of the "narrow- 
wide" approximation equal the Rayleigh solution, whereas the first terms of the "wide- 
narrow" and "wide-very-wide" transitions show the characteristics of the "wide" tube of 
Kirchhoff. 

The analytical solutions of the second group, obtained directly from simplified basic 
equations, are of a different type, with the exception of the "high frequency solutioh" of 
Karam and Franke [9], which looks very similar to that of Kirchhoff. 
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The mutual relationship of all the analytical solutions to one another, except Weston's 
"wide-very-wide" and "very wide" approximations, is shown in Figures 2(a) and (b), where 

-the attenuation, F', and the phase shift, F" are plotted as functions of the shear wave number, s. 
A point of interest revealed by Figures 2(a) and (b) is that the solution obtained for the 

first time by Zwikker and Kosten [6], and designated as the "low reduced frequency solution", 
passes continuously from Rayleigh's solution into the solution of Kirchhoff. 

The "low reduced frequency solution", to be discussed in more detail in the next section, 
can be shown to be valid over the complete range of shear wave numbers in the case k < 1 
and k/s < 1. The solution therefore covers all the solutions in Table I, except the "wide-very- 
wide" and "very wide" approximations of Weston. 

Another point of interest revealed by Figures 2(a) and (b) is that "narrow" tube solutions 
are valid for low values ors and "wide" tube solutions for high values of this parameter. 

As a large value ofs(=R ~ )  can be obtained not only for large tube radii but also for 
high frequencies, large mean densities or pressure and small viscosity, it is clear that names 
like "narrow", "wide" or "high frequency solution", as used in the literature, are somewhat 
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misleading, the more so as most of the formulae of Table 1 in their original versions are written 
explicitly in terms of radius and frequency. 

The importance of the shear wave number as the governing parameter, already recognized 
by Zwikker and Kosten [6], has been stressed by Iberall in his discussion appended to 
reference [8] and later also by the author in reference [18] and by Goldschmied in reference 
[19]. 

To make the picture of  the analytical solutions for k ,~ 1 complete, the results of Kerris 
[5], who assumed isentropic conditions, and of Rohmann and Grogan [8], who produced 
an approximate solution of already simplified basic equations, are shown in Figure 3. A 
comparison of both solutions with the "low reduced frequency solution" reveals that the 
formulae of references [5] and [8] are not too accurate. 

4. MAIN RESULTS OF THE "LOW REDUCED FREQUENCY SOLUTION" 
4.1. GENERAL 

In this section the properties of the "low reduced frequency solution" will be discussed in 
somewhat more detail, because it is the solution which has proven to be suitable for most of 
the practical applications [9, 17, 19-23] and which, moreover, serves as the first approxima- 
tion in the procedure to determine the "exact" solution, to be discussed in section 5. 

The derivation of the "low reduced frequency solution", including the complete set of 
acoustic variables, is given in Appendix B. It can be verified a posteriori that this solution is 
valid if the following conditions are fulfilled: 

k.~ 1 and k/s.~ 1If 

4.2. PROPAGATION CONSTANT 

The solution for the propagation constant, F, yields 

with 

F = J J~ 
J2(i3/2s ) ~ f ~ '  (4.1a) 

[ )~ - I  J2~i3/2as)J -I 
n = 1 + - - ~  Jo(i3/2 as} (4.1 b) 

As a solution identical to equation (4.1a) can be obtained if the equation of state (A4) and 
the energy equation (A5) together are replaced by the polytropie relation p]~n = constant, 
the thermodynamic process within the tube evidently can be considered to occur polytropic- 
ally, with the (complex) polytropic constant, n, given by equation (4.1b). This polytropic 
constant is a function of the product as, which means that the constant does not depend on 
the viscosity and only accounts for the effect of heat conduction. The development of the 
polytropie constant with as is shown in Figure 4. Asymptotic values are limn = 1 and 

$-~O 

limn = ),, corresponding to isothermal and isentropic conditions, respectively. 

I f  one puts n = ~, independently of as, the solution of Kerris [5] is obtained. This implies 
that the difference between the "low reduced frequency solution" and the solution of Kerris 
given in Figure 3, is caused by the losses due to heat conduction. 

1 These conditions differ from the condition given by Rott [24], who states that it is sufficient to assume 
that the radius of the tube is much smaller than its length. He therefore proposed the name "long tube" 
approximation. 
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When the isothermal conditions are assumed, i.e., n = 1, the formula of  D'Souza and 
Oldenburger [25] for hydraulic lines is obtained. 

In Appendix C it is shown that solution (4.1) converges to the "wide" tube solution of 
Kirchhoff for very large values of  the shear wave number. At very small values of this para- 
meter solution (4.1) passes over into Rayleigh's "narrow" tube solution. Moreover, it is 
shown that at vanishingly small values of  the shear wave number the law of  Poiseuille is 
obtained. 

4.3.  VELOCITY DISTRIBUTIONS IN AN INFINITELY LONG TUBE 

Next consider the velocity distributions in axial and radial direction for an outgoing wave, 
in an infinitely long tube. The velocity profiles (magnitudes) are shown in Figures 5(a) 
and (b). 

Tube wal l  Tube wall 
~ / / / / / / / " J / / / / / J / ' / ' / ' ~ ' /  

~ i i l l l l i l / / 7 1 1 1 / / / / /  l i i i / / / l l l l l l l l l l l i l l l l i /Z i i l l l l l i i i l l i l / J l l l l l J i J / J  

I I I I I I I 
o o-s ,-o ,-s o 0-25 o so 

lul?- Ivl/k 

(a) (b) 

Figure 5. Velocity distribution in (a) axial direction and (b) radial direction according to the "low reduced 
frequency solution". 



10 H. TIJDEMAN 

At low values of the shear wave number the axial velocity shows a parabolic profile. At 
higher values the amplitudes ofthe velocity in the central part ofthe tube become smaller and 
the profile becomes more and more uniform. At very high values ofthe shear wave number the 
velocity profile is almost completely fiat, with small peaks close to the tube wall. 

The velocity profiles, as described in the early work of Crandall [26] and of Sexl [27], have 
been verified experimentally by Harris, Peev and Wilkinson [28] for a liquid-filled tube. 

The distribution of the radial velocity (Figure 5(b)), which in the "low reduced frequency 
solution" appears to be directly proportional to the reduced frequency, k (see Appendix B), 
reveals that maximum radial velocities occur at relatively small shear wave numbers. 

4.4. PHASE VELOCITY AND GROUP VELOCI/Y 

Another point of interest concerns the phase velocity, W, which in terms of the present 
notation can be expressed as 

W = aolP*.  (4.2) 

The phase velocity can be considered as the speed of propagation of an infinitely long sinu- 
soidal wave. The present case deals with a so-called dispersive medium, because the phase 
velocity depends on the frequency, which means that sinusoidal waves with different 
frequencies propagate with different velocities. This implies that the propagation of a signal 
consisting of two or more sinusoidal waves, with different frequencies, is accompanied by a 
change in the signal shape. 

For instance, if one considers the propagation of a carrier wave with a superimposed 
modulation, one can distinguish the phase velocity, IV, being the motion of the elementary 
wavelets, and the group velocity, U, being the velocity with which the modulation is 
propagated (see Figure 6). 

jWavelets 

"--~L~" '~ -.--~" 

Group 

Figure 6. Sketch of a modulated wave showing group and wavelet components. 

Between the group velocity, U, and the phase velocity, IV, the following relation exists 
[35, 36]: 

aW 
U =  W+ K , (4.3) 

0Jr 

with r = co] W being the wave number. The velocities U and Ware identical for non-absorbing 
media, but they may differ considerably in dispersive media. 

For the present case of a gas-filled tube it can be shown that 

U 2 
- -  = ( 4 . 4 )  

ao a 
r*<s> + {s. r'<s>} 
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This result, as obtained by numerical differentiation of the imaginary part of the "low reduced 
frequency solution", is plotted in Figure 7. It can be seen that high frequency waves propagate 
faster than low frequency waves. In Figure 7 also the phase velocity of the "low reduced 
frequency solution" is given. There exists a considerable difference between phase velocity 
and group velocity. The fact that U > W implies, for instance, that the elementary wavelets 
in the example of a modulated carrier wave are building up in front of the modulation and 
disappear at the rear end. 

In Figure 8 a comparison is presented of the group velocity following from the "low 
reduced frequency solution" and the group velocities according to the approximate solutions 
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Figure 8. Comparison of  various solutions for the group velocity. 
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of Rayleigh, Kirchhoff and Weston. It can be observed that the approximate solutions are 
not able to close the gap between ,--0.5 < s < ,~4. 

Now consider the propagation of a short isolated succession of wavelets, with the system 
at rest before the signal arrives and also after it has passed. Then, after a certain length of 
propagation through the dispersive medium, first very weak signals, the so-called forerunners, 
will appear. Thereafter, the main signal, with intensities of the order of magnitude of the 
input signal, will arrive. The velocity at which the forerunners propagate is called the front 
velocity and the main signal arrives with the signal velocity. According to Brillouin [35] the 
signal velocity is practically equal to the group velocity, except in regions with very large 
absorption. In that case the group velocity loses its meaning as a signal velocity. The maximum 
speed with which the forerunners can propagate equals the undisturbed velocity of sound, ao~ 

In reference [29] Holmboe and Rouleau, who experimentally investigated the propagation 
of a short pulse in a liquid-filled tube, mention the unexpected appearance ofahigh frequency 
disturbance that preceded the pulse at the receiving transducer. The above consideration 
justifies the thought that this phenomenon most likely has to do with the dispersive behaviour 
in a tube filled with gas or liquid and that the observed high frequency signals are the fore- 
runners. 

5. NUMERICAL SOLUTION OF THE FULL KIRCHHOFF EQUATION 

The full solution of the basic equations (2.1)-(2.5), without assumptions other than those 
discussed in section 2, is given in the original paper of Kirchhoff [2]. The solution is obtained 
in the form of a transcendental complex frequency equation, which does not lend itself to 
further analytical treatment. The derivation of the transcendental equation is not repeated 
here, because a very detailed account of the Kirchhoff paper is given in reference [3]. 

By using the knowledge that the problem is governed by the four basic parameters s, k, tr 
and ~, the original Kirchhoff solution can be brought into a much more attractive form, if the 
quantities used are rewritten in terms of these basic parameters. 

After some manipulation the solution of Kirchhoff(see reference [3], p. 324, equation (11)) 
can be rewritten as 

:/- '  ("'~ f 'n 'l iZ(Z_i~.i, (I 1) [ dr/ )w+ \a2s2 (~'k2 -il)[ dr/ )w 

with 

{ ~'k2 i 1 / / d l n Q 2 ) =  
0 

dr/ jw 

Q = Jo(qk(Z - is2/k2)V2), 

QI = Jo(qk(Z - xl)t/2), 

(5.1a) 

Q2 = Jo(qk( Z - x2)!/2) �9 

xl and x2 are the small and large roots of 

l + x  1+i: ,3 + (5.1b) 
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and Z = F 2. The suffix w denotes the value of a quantity at the wall (q = I). A more convenient 
form of equation (5.Ia) is: 

( $2/-1/2( l I ) Jld.Ofl~ 
F ( Z ) = i Z  Z - i ~ . 2 ]  \x ,  x2" ~ .  

+ ( ~k2 i 1 

with 

[ ~k2 i 1)  Jl(~3) 
- \':---~ - ~ ( z -  x~) ''~ --Jo<~3> = o, (5.2) 

Ot I = k ( Z  - -  i s 2 / k 2 )  t l2 ,  Ot 2 = k(Z -- xl) m, ~3 = k(Z - x2) t/2. 

From equation (5.2) one can easily derive 

- - = F ' ( Z ) = i 0 z  Z - , - . ~ ]  x'~l - x-22 [Jo(~, )  Z - i  k2 ] 

- 5 z  z - i F /  jo--~US,> + � 8 9  1 - -  + 
~lJo(~,> J~(cq)JJ 

I ( rk~ _ 7, ( z -  x,)-,,2 - -  + k- l 
+ 2 \ , : s  ~ Jo<~@ 

Jl<~2> + J~<~'>/] 

+ 
~3Jo'(%) J~(~x3>]] 

(5.3) 

1 yk2 - i ( Z - x 2 )  - m  - -  + k 1 
-- 2" a 2s'---'~ Z Jo(~3) 

Equation (5.1) can be solved numerically with respect to Z, i fs  and k are given. An effective 
procedure to solve the equation is the Newton-Raphson procedure: 

F(Z.) 
Z . + ,  = Z .  - - ( 5 . 4 ) "  

F'(Z.) 

As start value of the procedure that value o f Z  = if2 is taken which can be obtained from the 
"low reduced frequency solution" for the desired value of the shear wave number, s. Con- 
vergence is obtained in a few steps. 

For the Bessel functions involved (first kind, integer order and arbitrary complex argu- 
ments), an efficient algorithm was developed by Simons [37]. His algorithm is based on an 
integral representation for the Bessel functions and evaluation of the integral with the 
trapezoidal rule, which appears to have a remarkably small error .  
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Once the solution of Z has been obtained, the axial and radial velocity profiles can be 
calculated from 

and 

l) 
x2 Jo(tl:xl) Jo(ct2> Jo(%) 

( ~k2 --i 1 I 
-1- \C r2 S ' ' - '~  ~11 ] J~ J~ J~ 

\ 0 -2 S " "  ~ ~ J~ Jo(~2) Jo(r/~t3) 

- ~ = i Z  - i ~-i] 

Tk 1 ) 
+ ~ a2 s---- 7 - i ~ ( z  - x l )  I/2 Jo(~l)  J~K,la~> Jo(~37 

_/, 
0"2 S'"-'~ -- ~-2 (Z -- x2) '/2 Jo(ct,) Jo(c~2) J,(r/~3). 

(5.5) 

(5.6) 

Expressions (5.5) and (5.6) were obtained from the corresponding expressions of reference 
[3], rewritten in terms of the basic parameters used here. B is a constant, which depends on the 
boundary conditions to be applied. 

6. RESULTS OF THE NUMERICAL SOLUTION 

6.1. DISCUSSION OF RESULTS 

The results of the numerical solution of the full Kirchhoff solution for the propagation 
constant, F, are given in Tables 2 and 3 for a wide range of s and k values and are also 
presented in Figures 9(a) and (b). These figures show a large effect of the reduced frequency 
on both attenuation and phase shift, especially in the range of relatively low values ofs. For 
small values of k the exact solution approaches the "low reduced frequency solution", 
discussed in the preceding sections. From Figures 10(a) and (b), presenting the attenuation 
and phase shift as functions o fk  for constant shear wave numbers, it becomes clear that for 
shear wave numbers below about 4 a strong dispersion occurs. Among other things, this is 
reflected in the phase velocity, W, which in certain regions becomes larger than the un- 
disturbed velocity of sound, ao. 

The large influence of the reduced frequency for s<4  also is reflected in the exact solutions 
for the velocity profiles, calculated from equations (5.5) and (5.6) and presented in Figure 11. 
For small values of k the shapes of the velocity profiles in Figure I 1 are exactly the same as 
those obtained in the "low reduced frequency solution", shown in Figures 5(a) and (b). 
For higher values o fk  the influence is largest on the velocity profiles for s<4.  



PROPAGATION OF SOUND IN TUBES 15 

4"4 

4"0 

3 6  

3"2 

2.8 

L 
.~ 24 
"6 

2 . 0  

1.6 

1.2 

0.8 

04 

"Low_ ._reduced frequency solution" (a) - 

-040r 

-0 50~ 

IO 

0 I 7' 13 4 5 G 7 0 I 2 3 4 5 6 7 

Shear wave number, S 

Figure 9. Exact solution of (a) F '  and (b)/ '~ as functions of  shear wave number and reduced frequency. 

L ,  4 

o o 

~3 

I I I i 

Iol 
~ '=0.4 

_ 2 " . . . . . . . _ . . _ . . . . 0~  

; i i I I 
0 Irr 02r r  03~r 04rr 0-Srr 

7 

~ 4  

~ 3 

~ 2 

i i i i 

(bl 

' ~  I 
Olrr OZrr 0.3rr 0-47r 051r 

Reduced frequency k 

Figure 10. Exact solution of (a) F '  and (b) F" as functions of reduced frequency. 



3 

0 

6 

6 

0 

6 

v'~ 

0 

0 

0 

0 

0 

6 

0 
6 

0 

II 

I ' ~1  ~ ~ ' ~ " ~ , . ~  I ' ~ ~  

. . . . . .  ~ . . ~ .  

~ A h h h ~ d 6 6 6  

. . . . . .  ~ 1 7 6 1 7 6 1 7 6  



6 r  

6 o o o o 6 o 6 o o o o o 6 6 6 6 6 6 6 6  

~ ~ ~ 0 ~ ~ 0  
~ ~ ~ ~ o o o o o o o o  
6 o o o o 6 o 6 o o o o o o 6 6 6 6 6 6 6  

~ 9 ~ @ Z T T Z ? 9 9 9 9 9 9 9 9  
O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

~ ~ ~ ~ 0 ~ ~  
~ ~ ~ ~ ~ 0  

o o o o o o o o o o o o o o 6 6 6 6 6 6 6  

~ ~ ~ ~ ~ 0 ~  

O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

~ ~ 9 9 9 9 9 9 9 9 9 9 9 9 9  
O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

n o  

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  

~ ~ 0 ~ ~ ~ ~  
~ ~ ~ O 0 0 0 0 0 0 0 0  
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6  

0 ~ 0  



L 

le, 

0 

0 

6 

9 

le. 

o. 
II 

s 
o 

o 

6 6 6 6 6 6 6 6 6 6 6 6 6 6  

6 6 6 6 6 6 6 6 6 6 6 ~  

~ ~  ~ o  ~ 

. . . . . . . . . . .  ~ 1 7 6 1 7 6  

. . . . . . . . .  ~ . . . .  



~ ~ 1 7 6 1 7 6  . . . .  . . . . . .  o . ~ 1 7 6  

. . . . .  9 ~ ~ 9 ~ 9 9 ~ 9 9 9 9  

r ~ "~I ~ I " ~ ' - ~ , . " ~ , , ' ~ ' - ~ ' - ~ 0 0 ~ 0 0 0  O 0  C~ 

~ ~ ~ 1 " 1 ~ 1 ~ 1 ~ 1 ~ ' ~  

�9 . . . ~ . ~ . ' ~ . . ~ . ' ~ . ' ~  . ~ .  9 9 9 9 9 ~ 9 9 9  

9 9 9 ~ 0 . ~ ~ 9 9 9 9 9 9 9 9 9  

. . . . . .  ~ - - . . - -  .-- . - - . - - 9 9  . ~  ~ . ~ 1 7 6 1 7 6  



IL TIJDEMAN 

S=IO 
~ k  =0.025~" 

S=4 

_ ,_ 0_,25~'f_ ~.~____~__--If _ "0 25~r 

S=2 ~ " ~  .k=0.025~ 0-50rr~. ~ k=O.O257r 

S= ~~ 025"n" 
Z 

G~.~l k =0 025"tr 

I I I I I I 
o o.s ~.o ~.5 o 0.25 

lul.y Ivl/k 
Figure l 1. Velocity distributions in radial and axial directions. 

6.2. COMPARISON WITH OTHER NUMERICAL SOLUTIONS 

As already mentioned numerical solutions for the propagation of sound waves in cylindrical 
rigid tubes have been obtained by Tsao [10], Gerlach and Parker [l 1], Scarton and Rouleau 
[12], and by Shields, Lee and Wiley [13]. 

The solution of Tsao [10] is based on the same simplified basic equations as used for the 
"low reduced frequency solution" and therefore this solution, which makes use of a finite 



6 6 6 6 6 6 6 6  

~ 

. . ~ . ~  

v 



22 H. TIJDEMAN 

difference method, does not contribute new points of view for the case of sinusoidal 
perturbations. 

In the solutions of references [11] and [12] the additional assumption is made that thermal 
effects are negligible, which means that the temperature perturbation no longer appears as an 
unknown. The way of solution followed in references [11] and [12] with the help of the method 
of eigenvalues will become much more complicated, if not impossible, in case thermal effects 
also have to be included. 

To the author's knowledge, a solution for the fundamental mode of the complete set of 
equations has been published previously only by Shields et al. [13], who also started from the 
transcendental equation derived by Kirchhoff (equation (5.2) of the present paper, but not 
expressed in terms of the basic parameters). They solved the Kirchhoff equation iteratively, 
using as a first approximation of the propagation constant the value 

with 

[  ]ao 
I v ' =  ~ t r  -t" i - - ,  (6.1) 

69 

~,,lass = ~ ,  + ct, la,, .  ( 6 . 2 )  

cq and vt are theabsorption and phase velocity according to the "wide tube" solution of 
Kirchhoff, which in the present notation reads 

l : ,  
~, = , (6.3) 

oo (6.4) 

In reference [13], instead of equation (6.4), the formula 

[ ' v, = I (6.5) 

has been used, which, however, is valid only for high values ofs. Rayleigh [3] hasgiven equation 
(6.4) as well as equation (6.5) without any comment. Clearly equation (6.4) is the proper one. 
The quantity Ctc~as, is the free air absorption, which in the notation here can be written as 

1 k 2 ( 4  7 - 1  m 

- -  - 7 - ) - -  a,,a~ = 2 s 2 + (6.6) 
t /0  

To solve equation (5.2) Shields et al. substitute the first value of Z = F 2, obtained from 
equation (6.1), into the arguments of all Bessel functions and furthermore into the first two 
terms of equation (5.2). From the third term of the latter equation a new value of Z is calcu- 
lated and so on. 

Shields et al. present tables of the fractional error in the Kirchhoff phase velocity 

I) - -  I) t 
Av' = ~ (6.7) 

a o  - -  v t  
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and the fractional error in the absorption 

23 

A n  t = ~1~ - o~tr  
(6.8) 

~ t c l a s s  

These quantities are given as functions of  

I) t 
Avt = 1 - - -  (6.9) 

ao 

and a reduced frequency parameter, which is equivalent to k/rc. 
With the help of expressions (6.1)-(6.9) the propagation constant can be converted into a 

function of the basic parameters k and s.'[" 
Table 4 shows that after this conversion, a good agreement is obtained between the results 

of reference [13] and the present results. Moreover, it becomes clear that Shields et aL have 
covered the shear wave number range between 2.6069 and 20.8556. In this range of shear wave 
numbers and for already small reduced frequencies, the main conclusion reached in reference 
[13] is that "the exact value of the phase velocity differs about the same amount from the phase 
velocity in Kirchhoff's "wide tube" approximation as the latter velocity differs from the 
undisturbed velocity of sound". 

The present results--compare Figures 2(b) and 9(b)--show that this conclusion is incorrect 
and that within the mentioned range of  shear wave numbers the "wide tube" approximation 
is rather accurate. The wrong conclusion was drawn in reference [13] because equation (6.5) 
was used instead of equation (6.4), which accounts for the largest part of the observed 
differences. 

7. CONCLUSIONS 

The main conclusions to be drawn from the present investigation are as follows. 
(I) The problem of  sound propagation through cylindrical tubes is governed by the 

following parameters: the shear wave number, s = R ~ ,  the reduced frequency, 
k = coR]ao, the square root of the Prandtl number, a, and the ratio of specific heats, Y- 
For a given gas the shear wave number, s, and the reduced frequency, k, are the two 
main parameters. 

(2) Rewriting the existing analytical solutions for the propagation constant, F, in terms 
of s and k offers a good means to compare the various solutions and to determine 
their range of validity. 

(3) Most of the analytical solutions depend on the shear wave number, s, only and are 
covered completely by the "low reduced frequency solution", obtained for the first 
time by Zwikker and Kosten. 

(4) An exact solution for the propagation constant, F, is presented, obtained by a 
numerical solution of the full Kirchhoff equation with the help of the Newton- 
Raphson procedure. 

(5) The exact solution shows a larger influence of the reduced frequency, k, for relatively 
small values of the shear wave number (s<4). 

t For conversion of the results of reference [13l, ofcourse, the approximate expression (6.5) is used instead 
of the correct expression (6.4). 
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APPENDIX A: BASIC EQUATIONS 

The basic equations for the motion of  a fluid in a circular tube (Figure I) are 
(a) the Navier-Stokes equations, for a constant value of  the viscosity, p, 

_ra,  aal + +,i j = - -  

~ - + o ~ +  = - - -  

(b) the equation of  continuity, 

(A1) 

er ~ r  ~ + + + + ' r Or 
(a2)  

at ax T;r ax + + = 0, (A3) 
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(c) the equation of  state for an ideal gas, 

/~ = PRo T, (A4) 

(d) the energy equation, 

pC,, "~-+ a~x + v ~ J  = ;" [-~-~'r~ + -  ~-r +-ff~-x~ ] + ~  + a ~ + ~ ap+#G ( A 5 ) "  r ar 

where ~b is the dissipation function, representing the heat transfer due to internal friction, 

~=2L\~ / +\Tr) + +T;x+T~] 3 + ~ +  " 

Upon assuming 

rt = ao u<x, r> e u~t, 

= ao v<x, r> e j~'', 

p = ps(l + p<x, r> e I'~ = 
p,a~ 

- (1 + p ( x , r ) e l ~ ' ) ,  

/5 = p~(1 + p(x,r)eU~'),  

•=  T,(I + T(x ,  rFet'~'), (AO 

with u, v, p, p and T being small sinusoidal perturbations, and by introduction of  the 
dimensionless co-ordinates 

= r tl = r[R, (A7) 

the equations (AI)-(A5) can be rewritten as 

ill 
l a p  # 1 

A 
O~ p~co R 2 

(((,o 7 , 
-Z-o - ~ + ~ + 7 1  + 

(A8) 

i v  = - - ~ ] + - -  R "--7 r / 0 ~ /  =-~ ~ p,~ t t -~  ~+ 

(A9) 

~+ ~+- , 

r/ 
(Al0) 
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p = p +  T, (Al l )  

)" "pTo~ [ 0'I 2 + n'l ~ + + '  -P" 
iT- -  ~ R- 2" mR .7 

In these equations the four parameters can be distinguished: namely, 

(Al2) 

s = R V ~ ,  the shearwave number, 

tr = V ' ~ - ~ - ,  the square root of  the Prandtl number, 

k = toR/ao, the reduced frequency, being proportional to the ratio o f tube  radius to wave 
length, 

7 = CflC~, the ratio of specific heats. 

In terms of these parameters the basic equations become equations (2.1)-(2.5) of  section 2. 

APPENDIX B: DERIVATION OF THE "LOW REDUCED FREQUENCY SOLUTION" 

When the internal tube radius is small in comparison with the wave length and the radial 
velocity component,  v, is small with respect to the axial velocity, u (i.e., toR/ao < I and v/u < 1), 
the basic equations (2.1)-(2.5) can be reduced to 

iu . . . .  + + , (BI) 
a~ ~ [ ~  , la , lJ  

lap 
o . . . . .  (B2) 

7 oq 

ik ,=-  (B3) 

p = p + T, (B4) 

i T = i  : p + + (BS) a'1 

with the boundary conditions 

at t /=  1, u = 0, v = 0, T = 0, 

at ~/= 0, v = 0. (B6) 
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From equation (B2) it follows immediately that the amplitude of the pressure perturbation, 
p, depends only on the axial co-ordinate, ~. 

Upon putting u =f(~>h(z>, with z = i3/2rls, equation (BI) can be rewritten as 

with the solution 

0 2 h 1 Oh i @ 
az 2 + -  + h -  - -  , (B7) z ~z yf<~) d~ 

i @ 
h(z> = Cl Jo<z> + C2 Yo(z> + . . . .  (B8) 

yf(~> de 

To maintain a finite value ofu  for r/= 0, the constant (72 has to be zero. 
From the condition tt = 0 for r/= 1 it follows that 

wherefrom 

i I @ 
f ( r  ~, C~Jo<i3/2s> d~ '  (B9) 

i @ [  Jo(i3/2 v/s) ] 
u=f<r 1 �9 (BI0) 

7 d~j Jo<i3/2 s> 

Equation (B5) for the temperature perturbation, T, can be solved in a very similar way as 
the equation for the axial velocity. The solution that fulfils the requirement that Tremains 
finite for r/= 0 and vanishes for ~/= 1 yields is 

T = ~ - I  [ J~ a~/s>] 
- p 1 -  
7 Jo<i 3/2 aS> ] 

Substitution of equations (BI0) and (B11) into equation (B4) gives 

(Bll) 

[ - -  { J~ a~lS31] p = p - T = p  1 ~ - 1  I -  " �9 
~' ~ J J  

Finally the equation of continuity (B3) has to be satisfied; thus 

(Bl2) 

By using equations (BI0) and (B12) this can be expressed as 

1 a(v.r/) = ik  p 1 - Y 1 1 Jo(i3/2as> ]) + ~ ~ 1 Jo(i3/2s > ]j  (BI4) t/ 0q 

1 a(v.'-,1) = k i p +  (B13) 
tl ~r/ ~x J" 
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After integration with respect to q one has 

1 dZP(  ~1 Ja<i3t2t/s> / ] + 7 " ~  �89 +F({> �9 i 3/z s Jo<i 3/2 s> } 

From the boundary condition v = 0 at r/-- 1 it follows.that 

-F(r189 {1+ )t-I J2<ia/Z6rs>} l d2pJ2<ialZs> 
- ~ Jo<i3/Zas> 2)t d~ 2 Jo<i3/2~;)" 

Due to the axial symmetry, limv = 0. This requirement is fulfilled if F(~> = 0, or 
~1--*0 

P (1 q" ) t - - l .  J2<i3/20"s>/ l d2pj2<ial2s> 
? Jo<ia/2as> )t d~ 2 Jo<i3/2s> 

- -  - -0 .  

From the equation (BI7) one can solve forp: 

with 

and 

p = A e re + Be -re, 

/ Jo<i a/2 s> 
F = ,VJ2<ia/2s------- ~ 

,,= [1+ 
"~ Jo<i 3'2 as> J 

The  solution for the other acoustic variables becomes 

i t [  
U= m 1 

)t 

Jo<i s/z ,ls>] 
l [~ ere - B e-"], 

v=ik  �89 1+ J2<i3/2s > + -  
7 -- I Jl<i 3/2 o'/]s> 

i 3/2 0"$ Jo<i 3/2 o's> 

)t J,<?~Dls>] 
i3/2t/s J2<i3/Zs > ] [A e r: + Be-r~], 

p= I-- ~ 1 ~ . .  [Aere+Be-r:], 

7 

T =  )t-l[1)t Jo<?/z a,ls> ] / [A e" + B e-re]. 

29 

(B15) 

(BI6) 

(BI7) 

(BlSa) 

(Bl8b) 

(B18c) 

(Bl9) 

(B20) 

(B21) 

(B22) 
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The constants A and B can be determined by specifying additional boundary conditions at 
both ends of  the tube. 

From the solution for the radial velocity, v, it can be verified that the condition v]u ,~ 1 is 
fulfilled i f k  ,~ 1 and k]s ,~ 1. 

APPENDIX C: BEHAVIOUR OF THE "LOW REDUCED FREQUENCY SOLUTION" 
AT VERY LARGE AND AT VERY LOW VALUES OF THE SHEAR WAVE NUMBER 

The solution for the pressure perturbation, p, according to the "low reduced frequency 
solution", is given in Appendix B, equations (BI 8a)-(Bl 8c). For  large values of  the shear wave 
number, s, the solution can be approximated by the use of  the following expansions of  the 
Bessel functions involved [38]: 

with 

Jo(i3/2x) = her (x )  + i bei (x ) ,  

eX/4~2 
ber ( x )  - - -  [Lo cos 0 - Mo sin 0], (Cla) xvS-;  

and 

eXl-~ 
bei ( x )  = ~ [Mo cos 0 + Lo sin 0] (CI b) 

xvS"   

X 
0 -  

v5 8 

L o =  1 + ~ cos -- + . . - ,  
l ! 8 x  4 

12 7[ 

l l8x 
3/o = -  sin 4 + . . . ;  (Clc) 

with 

J~(i 3/2 x)  = ber2(x) + i bei2(x), 

ber2(x) = 
ex/..~ 

I-L2 cos 0 + M2 sin 0], (C2a) xv'  

and 

ex/VT 
bei2(x) = XV/~-- ~ I -M2 cos 0 - L2 sin 0] (C2b) 

4"22. - 1 n 
L2 = 1 c o s 7  + ' " ,  

l ! 8x  4 

4-2 2 -  1 n 
. 

M 2 =  l !8x  s in4  + "  "" (C2c) 
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With these expansions it can be shown that 

31 

Jo<i312x) ' X/2 V~ 
~ - 1 -  ~ + i - - .  

J,<i 3/2 x> x x 
(c3) 

By using expression (C3), equation (B18c) for n can be written as 

~ - !  v ~  7 - 1  
n = 7 -  - -  + i  + ' - ' .  

as  ~ as  
(C4) 

From expression (C4) it follows directly that limn = ),. 
$--* o~ 

(c5) 

The expression for F can be approximated by 

[ c,+i,(, l+ )j 
F ~  i + - - - -~-  2 as  (c6) 

which equals the "wide" tube solution of Kirchhoff. 
For very large values of  s, 

l i m F = i ,  
$ - -~  co 

(c7) 

being the solution for a plane wave, without viscosity and heat effects. For small values of the 
shear wave number the following approximations of the Bessel functions are valid: 

x, 
J o ( i  3/2 X)  ~ 1 - -  ~-~ + " "  + i 

x6 ) 
2 6.(3!)----5 + " "  ' (C8) 

J2(W 2 x)  ,~ ~ + . . . .  i + . . . .  (C9) 
24.3! 

The ratio then can be approximated by 

J2( i  3/2 x )  . x 2 
,~ - - 1 - - "  (Cl0) 

Jo ( i  3/2 X )  8 

Using expression (CI0) in equation (B18c) gives 

7 -  1 (as) 2 
n ~ l + i  ~ + - - ' ,  ( e l l )  

8 
wherefrom 

limn = 1. (C12) 
3 ~ 0  

The approximated expression for the propagation constant becomes 

( / F,~ - i s@]8]  = 2 ( 1 + 0  s (c13) 
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This result is identical to the solution of Rayleigh. 
The velocity in the axial direction has been derived as (Appendix B, equation (B10)) 

0 = a o u =  ~ ~ -  1 -  Jo< W2s> J i o ~  ~xx 1 jo<P/,s> ] (C14) 

The mean velocity is equal to 

I 

'f 
0 

(c~5) 

Substitution of equation (C14) into equation (CI 5) leads to 

~ , .  = m 
1 Jz<i3/2s> dp 

- -  ~ 

imp~ Jo<i3/'s> dx 
(C 16) 

Introduction of the approximation (CI0) gives 

o r  

I is 2 dp 
/~m ~-- 

imps 8 dx  

D 2 "1 dp 

32 p dx 
(C17) 

This is the well known expression for the Poiseuille flow. 

Co 
Co 
f 

i=V-~  
J. 

k = eoR/ao 
I1 

p =p,(l +pc"~ 
P, 
P 
r 

R 

Ro 

t 
7"= T,(I + Te'~ 

T, 
T 
U 

t~ = / r  e Ic" 
N 

t7 --- vaoe t'~ 

APPENDIX D: LIST OF SYMBOLS 

undisturbed velocity of sound 
specific heat at constant pressure 
specific heat at constant volume 
frequency (Hz) 
imaginary unit 
Bessel function of first kind of order n 
reduced frequency 
kind of polytropic constant, given in equation (4.1 b) 
pressure 
mean pressure 
amplitude of pressure perturbation 
co-ordinate in radial direction 
internal tube radius 
gas constant 
shear wave number 
time 
temperature 
mean temperature 
amplitude of temperature perturbation 
group velocity 
velocity component in-axial direction 
amplitude of velocity perturbation in axial direction 
velocity component in radial direction 
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/2 
W = ao/F* 

x 

Y .  
F=F'+iF" 

F" 
F "  

~, = c p / c o  

tt = r / R  
h" = co/W 

2 
/a 

= coxlao 
/5 =" p , ( l  + p e  t'~ 

p+ 
p 

a 2 = /~Cp/ ) .  

co = 2r t f  

amplitude of velocity perturbation in radial direction 
phase velocity 
co-ordinate in axial direction 
Neumann function of first kind of order n 
propagation constant 
attenuation per unit distance in ~ direction 
phase shift per unit distance in ~ direction 
ratio of specific heats 
dimensionless co-ordinate in radial direction 
wave number 
thermal conductivity 
absolute fluid viscosity 
dimensionless co-ordinate in axial direction 
density 
mean density 
amplitude of density perturbation 
Prandtl number 
frequency (rad/s) 

Note: in the numerical examples the value of y = 1.4 and cr 2 = 0"71. 
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