ELECTRICAL SIMULATION OF THE CIRCULATORY
SYSTEM*

A. K. Tsaturyan UDC 611.08:539

An electrical model of the arterial part of the human vascular system is proposed. This
model is used to investigate the impedance, the shape of the pressure and flow waves, and the
static characteristics of the vascular system under normal conditions and in the case of arti-
ficial circulation. In order to simulate the ACA pump, the problem of the quasi~one-dimen-~
sional flow of a viscous fluid in a tube with wave~type variation of the radius is considered.

A comparison of the results with the results of direct measurements in man shows that they
are in gualitative and quantitative agreement. Simulation also reveals certain characteristics
of pulse-wave propagation in artificial circulation. An explanation of the effects observed is
proposed, and their possible influence on the activity of the organism is discussed.

§1. Model Equations

In modeling segments of the arteries we used the analogy between the electrical processes in a long
cable and the quasi-one-dimensional equations of motion of a viscous fluid in an elastic tube. In deriving
the telegraph equations from the Navier —Stokes equations and the equations of shell theory it is necessary
to make a series of assumptions, such as the assumption that the flow is axisymmetric and the radius of the
vessel small as compared with the length of the pulse wave, etc. The validity of these assumptions was
discussed in [1], where it is also possible to find a derivation of the telegraph equations from the equations
of mechanics. The blood flow in an arterial segment has been described by the system
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where g, p, p, 4, F, Iy, b, E are the flow rate, pressure, density, and viscosity of the blood, the cross-
sectional area and radius of the vessel, and the thickness and Young's modulus of the vessel wall, respec~
tively; z and t are the axial coordinate and time. In order further to simplify Egs. (1), we replace the par-
tial derivatives with respect to x by the finite differences of the values at the ends of the segment:
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Here g, and p, are the flow rate and pressure in the inlet section; g and p are the same variables at the
segment outlet. The order of approximation of system (1) by system (2) is equal to J/A, where ] is the
length of the segment and A is the pulse-wavelength. Clearly, even for segments several tens of centi-
meters long, the accuracy of approximation is good enough, and, cousequently, the construction of models
containing hundreds of short segments is not always justified. In order to describe organic circulation, we
used the equation RE D, (t) +py(t) —py =RCR g (t) + (R +Rp)§4(t), where py is the venous pressure, which is
assumed constant; C is the elasticity of the vascular system of the organ; R is the resistance of the small
arteries; R is the resistance of the arterioles, capillaries, and venules. In order to describe the flow of
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Fig. 1. Block diagram of model (a), basic circuits of arterial
segment (b; notation same as in Table 2), peripheral segment (c;
notation same as in Table 3), and ACA analog (d).

Fig. 2. Frequency dependence of absolute value of dimensionless
impedance. ( } model in regime A; (——=) model in regime
B; (——*—) model of {3]; (O) measurements in man [4]. Total
peripheral resistance in regime A—Rpey=1.4 * 10° kgf- m™-

sec™l,
20}-P-10° kgt'-m_"-s?Cf a blood in the roller-type ACA pump we used the first two equations of
N A e /Y system (1), F being assumed to be a given function of x and t:
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T, A, and v are the compression factor, the length of the working sec~
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oo tion of the pump, and the roller speed. Substituting (3) in the second
’ ;f Y - equation of system (1) and integrating, we obtain
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Fig. 3. Pressure~ (a) and flow-
(b} wave amplitudes measured
on the model in regime B in ar
arterial segments 2, 4, 6, and8.

g(0. ) =g (A 1) =go(h).

We now substitute 4) in the first equation of (1) and integrate with res-
pect to X from 0 to A. After certain manipulations, we obtain the final

equation of the pump:
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§2. Layout and Construction of the Model

A block diagram of the model and circuit diagrams of its parts are shown in Fig. 1. In making the
model we used commercial resistors and capacitors. The inductances and resistances of less than 10Q
were made by hand. For the resistances the deviation from nominal was not more than 2% and for the re-

actances, not more than 10%.

Conversion from mechanical to electrical guantities and vice versa was based on the data given in
Table 1. The Young's modulus of the vessel wall was assumed to be 4 - 10° kgf- m~%, the viscosity of the
blood 3+ 1073 kgf- m™1. sec-!, and its density 1.05° 10° kgf- m~°, The radii of the segments, their lengths,
and the values of the flow friction, the elasticity, and the inertia of the blood for these segments, together
with the corpesponding data for the pump, calculated from the expressions R=8rul/ F’r C=3Fryl/2Eh; L=
pl/F, are given in Table 2. The peripheral resistance of the organs was calculated starting from data on
the mean rate of flow through the organ, and their elasticily was assumed, as in {2], to be proportional to
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TABLE 1.

. Units
Quantity hydrodynamic f electrical
Time 1 sec. {04 sec
Frequency 1Hz 10* Hz
Capacity’ 1m3 .t 10-2¢C
Flow 1 ma3. sec 102 A
Pressure 1 mm Hg=1.33. 10% kgf - m-!. 1p-1V
sec™
Resistance 1 kgf.m=4 , sec™! 75-10-% &
Elasticity 1 kgf-t. mée sec? 1,33 F .
Inertia 1 kgfem-4 75-1071 g~force
TABLE 2
R108 o0
. 100 110 kg.m™ | L1F . 2
Vessel o m m g.sec""l kgf . m™ kgf 1, m4.sec
Ascending aorta 1,40 5,5 0,15 2,1 119,0
Arch of aorta 1,00 40 0,25 1,1 52,0
Thoracic aorta 0,75 20,0 410 10,1 148,0
Abdominal aorta | 0,62 5,3 2,80 4,7 20,0
2 0,59 5,3 2,80 5,3 18,0
3 0,55 53 4,50 6,0 16,0
Iliac artery 0,36 6,0 33,00 12,0 6.9
Femoral artery 0,28 40,0 350,00 110,0 15,0
Innominate artery 0,62 34 2,80 3,0 13.0
Left brachiocephilic artery 0,40 11,0 47,00 21.0 120
ACA 0,77 95,0 31,00 72,0 —

the volume of blood in them, using a proportionality factor of 0.3 kgf+ m~!- sec™, An exception was made
for the vessels of the brain, which are almost incapable of expanding under pressure. The elasticity of the
organs, their hydraulic resistance, and the resistance of the portal veins are given in Table 3. Inthe case
of the artificial circulation simulator we took into account the resistance of the oxygenator, supply tubes,
and cannula.

§3. Resulis of Simulation

Simulation was carried out in two different regimes. The first (regime A) simulated the normal func-
tioning of the circulatory system. In this case the generator signal was supplied fo the ascending aorta
(segment 1 in Fig. 1); the part of the valve was played by a semiconductor diode. In the second case (re-
gime B) artificial circulation was simulated. The signal was supplied to be femoral artery (segment 8), the
generator was connected to the ACA analog, and the mode] was modified as described ahove,

impedance. We measured the dependence of the impedance on the frequency of the ginusoidal signal.
The results for regime A are shown in Fig. 2 together with the results for the model described in [3] and
the results of direct measurements in man [4] obtained by dividing the corresponding pressure harmonics
by the flow-rate harmonics. Accordingly, there are direct measurements only for frequencies that are
multiples of the pulse rate. I is clear from these graphs that the impedance measured on the proposed
model is closer to the actual impedance than in the case of the more detailed model of [3]: in the latter the
compliance of the organs was disregarded, so that the impedance oscillates more rapidly than in fact it
should. The discrepancies between the actual impedance and the results of the simulation at high frequen-
cies are evidently associated with the inertia and viscous properties of the vesse!l wall, which were not
taken into account in the model. However, for the first and fundamental harmonics of the heart the model
reproduces the actual impedance quite well,

The frequency dependence of the impedance for regime B is also shown in Fig. 2. The sharp in~-
crease in impedance is associated with the fact that the femoral arfery is smaller and stiffer than the aorta.

The total flow friction in regime B is approximately twice as great as in regime A, This is due,
firstly, to the introduetion of additional resistances (oxygenator, cannula, increase in the resistance of the

femoral artery owing to flow turbulence) and, secondly, to the functional modification of the model (signal
supplied to the femoral artery).
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TABLE 3 Wave Propagation. For regime B the shapes of the pres-
sure and flow waves in the ascending, thoracic, and abdominal

Organ, limb, 10> kgt m4. o feg;f; . aorta and in the femoral artery are shown in Fig. 3. Here it is
jec possible to observe the effect, known in physiology, of a peripheral
g;z;;tl gg,gg Es increase in pressure-wave amplitude and decrease in flow-wave
2 50,00 100,0 amplitude, This effect was discussed in [3], where the increase
%i htagrrnm g%gg 00 in pressure amplitude was attributed to interference of the pri~
Neck 45,00 84,0 mary and reflected waves, and the decrease in flow-rate ampli-
et e (spleen) ‘183’;% 2%:8 tude to ramification of the flow,
Intestine | 7,70 150,0 In regime B the pressure-wave amplitude fell sharply in the
Kidnevs o Ry femoral artery as compared with the starting value produced by
Leg | tllg,gg Zgg,g the pump, but in the aorta remained almost constant. The flow
Portal vein @ 012 . amplitude decreased with distance from the femoral artery, but the
2 0.40 - ratio of this amplitude to the mean flow rate actually increased.

If it is recalled that in regime A this ratio decreased, then the
considerations advanced by the authors of [3] are insufficient to
explain the wave propagation in the model.

A possible explanation of the effects associated with wave propagation is the influence of the decrease
in the radius of the aorta, which in the model was taken into account "in steps.” In [5] flow in a slowly
tapering vessel was investigated by the small-parameter method. The nature of the solution obtained by the
authors makes it possible to attribute the model effects to the variation in the mean radius of the aorta from
the heart toward the periphery.

CONCLUSIONS

1. By taking into account the elasticity of the vascular system of the internal organs it is possible to
simulate the impedance with high accuracy on a quite simple model.

2. Perfusion through the femoral artery sharply increases the resistance and especially the reactance
because of the changed distribution of the blood flow in the vascular system.

3. The change in the amplitudes of the pressure and flow pulse waves toward the periphery is pri-
marily associated with the change in vessel geometry, not with wave reflection.

4. A whole series of factors, such as an increase in total impedance, the change in wave amplitude
along the aorta, the almost total absence of high-frequency harmonics, leads to a decrease in pressure
pulsation in the case of perfusion through the femoral artery. Clearly, the decrease in pulsation amplitude
should, in its turn, affect the nonlinear component of the carotid sinus reflex.

5. Reversing the blood flow in the femoral artery and the aorta leads to a decrease in the mean
arterial pressure (up to 10%) in the head and upper limbs as compared with the other parts of the body,
which clearly can also have an unfavorable effect on the activity of the organism.
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