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Abstract

This article describes physical modelling techniques that can be used for simulating musical
instruments. The methods are closely related to digital signal processing. They discretize
the system with respect to time, because the aim is to run the simulation using a computer.
The physics-based modelling methods can be classified as mass–spring, modal, wave digital,
finite difference, digital waveguide and source–filter models. We present the basic theory and
a discussion on possible extensions for each modelling technique. For some methods, a simple
model example is chosen from the existing literature demonstrating a typical use of the method.
For instance, in the case of the digital waveguide modelling technique a vibrating string model
is discussed, and in the case of the wave digital filter technique we present a classical piano
hammer model. We tackle some nonlinear and time-varying models and include new results
on the digital waveguide modelling of a nonlinear string. Current trends and future directions
in physical modelling of musical instruments are discussed.
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1. Introduction

Musical instruments have historically been among the most complicated mechanical systems
made by humans. They have been a topic of interest for physicists and acousticians for over
a century. The modelling of musical instruments using computers is the newest approach to
understanding how these instruments work.

This paper presents an overview of physics-based modelling of musical instruments.
Specifically, this paper focuses on sound synthesis methods derived using the physical
modelling approach. Several previously published tutorial and review papers discussed
physical modelling synthesis techniques for musical instrument sounds [73, 129, 251, 255,
256, 274, 284, 294]. The purpose of this paper is to give a unified introduction to six
main classes of discrete-time physical modelling methods, namely mass–spring, modal,
wave digital, finite difference, digital waveguide and source–filter models. This review also
tackles the mixed and hybrid models in which usually two different modelling techniques are
combined.

Physical models of musical instruments have been developed for two main purposes:
research of acoustical properties and sound synthesis. The methods discussed in this
paper can be applied to both purposes, but here the main focus is sound synthesis. The
basic idea of physics-based sound synthesis is to build a simulation model of the sound
production mechanism of a musical instrument and to generate sound with a computer
program or signal processing hardware that implements that model. The motto of
physical modelling synthesis is that when a model has been designed properly, so that it
behaves much like the actual acoustic instrument, the synthetic sound will automatically
be natural in response to performance. In practice, various simplifications of the model
cause the sound output to be similar to, but still clearly different from, the original
sound. The simplifications may be caused by intentional approximations that reduce the
computational cost or by inadequate knowledge of what is actually happening in the acoustic
instrument. A typical and desirable simplification is the linearization of slightly nonlinear
phenomena, which may avert unnecessary complexities, and hence may improve computational
efficiency.

In speech technology, the idea of accounting for the physics of the sound source, the human
voice production organs, is an old tradition, which has led to useful results in speech coding
and synthesis. While the first experiments on physics-based musical sound synthesis were
documented several decades ago, the first commercial products based on physical modelling
synthesis were introduced in the 1990s. Thus, the topic is still relatively young. The research
in the field has been very active in recent years.

One of the motivations for developing a physically based sound synthesis is that musicians,
composers and other users of electronic musical instruments have a constant hunger for better
digital instruments and for new tools for organizing sonic events. A major problem in digital
musical instruments has always been how to control them. For some time, researchers of
physical models have hoped that these models would offer more intuitive, and in some ways
better, controllability than previous sound synthesis methods. In addition to its practical
applications, the physical modelling of musical instruments is an interesting research topic for
other reasons. It helps to resolve old open questions, such as which specific features in a musical
instrument’s sound make it recognizable to human listeners or why some musical instruments
sound sophisticated while others sound cheap. Yet another fascinating aspect of this field
is that when physical principles are converted into computational methods, it is possible to
discover new algorithms. This way it is possible to learn new signal processing methods from
nature.
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2. Brief history

The modelling of musical instruments is fundamentally based on the understanding of
their sound production principles. The first person attempting to understand how musical
instruments work might have been Pythagoras, who lived in ancient Greece around 500 BC. At
that time, understanding of musical acoustics was very limited and investigations focused on
the tuning of string instruments. Only after the late 18th century, when rigorous mathematical
methods such as partial differential equations were developed, was it possible to build formal
models of vibrating strings and plates.

The earliest work on physics-based discrete-time sound synthesis was probably conducted
by Kelly and Lochbaum in the context of vocal-tract modelling [145]. A famous early musical
example is ‘Bicycle Built for Two’ (1961), where the singing voice was produced using a
discrete-time model of the human vocal tract. This was the result of collaboration between
Mathews, Kelly and Lochbaum [43]. The first vibrating string simulations were conducted in
the early 1970s by Hiller and Ruiz [113, 114], who discretized the wave equation to calculate
the waveform of a single point of a vibrating string. Computing 1 s of sampled waveform took
minutes. A few years later, Cadoz and his colleagues developed discrete-time mass–spring
models and built dedicated computing hardware to run real-time simulations [38].

In late 1970s and early 1980s, McIntyre, Woodhouse and Schumacher made important
contributions by introducing simplified discrete-time models of bowed strings, the clarinet
and the flute [173, 174, 235], and Karplus and Strong [144] invented a simple algorithm that
produces string-instrument-like sounds with few arithmetic operations. Based on these ideas
and their generalizations, Smith and Jaffe introduced a signal-processing oriented simulation
technique for vibrating strings [120, 244]. Soon thereafter, Smith proposed the term ‘digital
waveguide’ and developed the general theory [247, 249, 253].

The first commercial product based on physical modelling synthesis, an electronic
keyboard instrument by Yamaha, was introduced in 1994 [168]; it used digital waveguide
techniques. More recently, digital waveguide techniques have been also employed in MIDI
synthesizers on personal computer soundcards. Currently, much of the practical sound
synthesis is based on software, and there are many commercial and freely available pieces
of synthesis software that apply one or more physical modelling methods.

3. General concepts of physics-based modelling

In this section, we discuss a number of physical and signal processing concepts and terminology
that are important in understanding the modelling paradigms discussed in the subsequent
sections. Each paradigm is also characterized briefly in the end of this section. A reader
familiar with the basic concepts in the context of physical modelling and sound synthesis may
go directly to section 4.

3.1. Physical domains, variables and parameters

Physical phenomena can be categorized as belonging to different ‘physical domains’. The
most important ones for sound sources such as musical instruments are the acoustical and
the mechanical domains. In addition, the electrical domain is needed for electroacoustic
instruments and as a domain to which phenomena from other domains are often mapped.
The domains may interact with one another, or they can be used as analogies (equivalent
models) of each other. Electrical circuits and networks are often applied as analogies to
describe phenomena of other physical domains.
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Quantitative description of a physical system is obtained through measurable quantities
that typically come in pairs of variables, such as force and velocity in the mechanical domain,
pressure and volume velocity in the acoustical domain or voltage and current in the electrical
domain. The members of such dual variable pairs are categorized generically as ‘across
variable’ or ‘potential variable’, such as voltage, force or pressure, and ‘through variable’ or
‘kinetic variable’, such as current, velocity or volume velocity. If there is a linear relationship
between the dual variables, this relation can be expressed as a parameter, such as impedance
Z = U/I being the ratio of voltage U and current I , or by its inverse, admittance Y = I/U .
An example from the mechanical domain is mobility (mechanical admittance) defined as the
ratio of velocity and force. When using such parameters, only one of the dual variables is
needed explicitly, because the other one is achieved through the constraint rule.

The modelling methods discussed in this paper use two types of variables for computation,
‘K-variables’ and ‘wave variables’ (also denoted as ‘W-variables’). ‘K’ comes from Kirchhoff
and refers to the Kirchhoff continuity rules of quantities in electric circuits and networks [185].
‘W’ is the shortform for wave, referring to wave components of physical variables. Instead of
pairs of across and through as with K-variables, the wave variables come in pairs of incident
and reflected wave components. The details of wave modelling are discussed in sections 7
and 8, while K-modelling is discussed particularly in sections 4 and 10. It will become obvious
that these are different formulations of the same phenomenon, and the possibility to combine
both approaches in hybrid modelling will be discussed in section 10.

The decomposition into wave components is prominent in such wave propagation
phenomena where opposite-travelling waves add up to the actual observable K-quantities.
A wave quantity is directly observable only when there is no other counterpart. It is, however,
a highly useful abstraction to apply wave components to any physical case, since this helps in
solving computability (causality) problems in discrete-time modelling.

3.2. Modelling of physical structure and interaction

Physical phenomena are observed as structures and processes in space and time. In sound
source modelling, we are interested in dynamic behaviour that is modelled by variables, while
slowly varying or constant properties are parameters. Physical interaction between entities in
space always propagates with a finite velocity, which may differ by orders of magnitude in
different physical domains, the speed of light being the upper limit.

‘Causality’ is a fundamental physical property that follows from the finite velocity of
interaction from a cause to the corresponding effect. In many mathematical relations used
in physical models the causality is not directly observable. For example, the relation of
voltage across and current through an impedance is only a constraint, and the variables can
be solved only within the context of the whole circuit. The requirement of causality (more
precisely the temporal order of the cause preceding the effect) introduces special computability
problems in discrete-time simulation, because two-way interaction with a delay shorter than
a unit delay (sampling period) leads to the ‘delay-free loop problem’. The use of wave
variables is advantageous, since the incident and reflected waves have a causal relationship.
In particular, the wave digital filter (WDF) theory, discussed in section 8, carefully treats
this problem through the use of wave variables and specific scheduling of computation
operations.

Taking the finite propagation speed into account requires using a spatially distributed
model. Depending on the case at hand, this can be a full three-dimensional (3D) model such as
used for room acoustics, a 2D model such as for a drum membrane (discarding air loading) or
a 1D model such as for a vibrating string. If the object to be modelled behaves homogeneously
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enough as a whole, for example due to its small size compared with the wavelength of wave
propagation, it can be considered a lumped entity that does not need a description of spatial
dimensions.

3.3. Signals, signal processing and discrete-time modelling

In signal processing, signal relationships are typically represented as one-directional cause–
effect chains. Contrary to this, bi-directional interaction is common in (passive) physical
systems, for example in systems where the reciprocity principle is valid. In true physics-based
modelling, the two-way interaction must be taken into account. This means that, from the
signal processing viewpoint, such models are full of feedback loops, which further implicates
that the concepts of computability (causality) and stability become crucial.

In this paper, we apply the digital signal processing (DSP) approach to physics-based
modelling whenever possible. The motivation for this is that DSP is an advanced theory and
tool that emphasizes computational issues, particularly maximal efficiency. This efficiency is
crucial for real-time simulation and sound synthesis. Signal flow diagrams are also a good
graphical means to illustrate the algorithms underlying the simulations. We assume that the
reader is familiar with the fundamentals of DSP, such as the sampling theorem [242] to avoid
aliasing (also spatial aliasing) due to sampling in time and space as well as quantization effects
due to finite numerical precision.

An important class of systems is those that are linear and time invariant (LTI). They can
be modelled and simulated efficiently by digital filters. They can be analysed and processed
in the frequency domain through linear transforms, particularly by the Z-transform and the
discrete Fourier transform (DFT) in the discrete-time case. While DFT processing through
fast Fourier transform (FFT) is a powerful tool, it introduces a block delay and does not easily
fit to sample-by-sample simulation, particularly when bi-directional physical interaction is
modelled.

Nonlinear and time-varying systems bring several complications to modelling.
Nonlinearities create new signal frequencies that easily spread beyond the Nyquist limit, thus
causing aliasing, which is perceived as very disturbing distortion. In addition to aliasing,
the delay-free loop problem and stability problems can become worse than they are in linear
systems. If the nonlinearities in a system to be modelled are spatially distributed, the modelling
task is even more difficult than with a localized nonlinearity. Nonlinearities will be discussed
in several sections of this paper, most completely in section 11.

3.4. Energetic behaviour and stability

The product of dual variables such as voltage and current gives power, which, when integrated
in time, yields energy. Conservation of energy in a closed system is a fundamental law of
physics that should also be obeyed in true physics-based modelling. In musical instruments,
the resonators are typically passive, i.e. they do not produce energy, while excitation (plucking,
bowing, blowing, etc) is an active process that injects energy to the passive resonators.

The stability of a physical system is closely related to its energetic behaviour. Stability
can be defined so that the energy of the system remains finite for finite energy excitations.
From a signal processing viewpoint, stability may also be defined so that the variables, such
as voltages, remain within a linear operating range for possible inputs in order to avoid signal
clipping and distortion.

In signal processing systems with one-directional input–ouput connections between stable
subblocks, an instability can appear only if there are feedback loops. In general, it is impossible
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to analyse such a system’s stability without knowing its whole feedback structure. Contrary to
this, in models with physical two-way interaction, if each element is passive, then any arbitrary
network of such elements remains stable.

3.5. Modularity and locality of computation

For a computational realization, it is desirable to decompose a model systematically into
blocks and their interconnections. Such an object-based approach helps manage complex
models through the use of the modularity principle. Abstractions to macro blocks on the basis
of more elementary ones helps hiding details when building excessively complex models.

For one-directional interactions used in signal processing, it is enough to provide input
and output terminals for connecting the blocks. For physical interaction, the connections need
to be done through ports, with each port having a pair of K- or wave variables depending
on the modelling method used. This follows the mathematical principles used for electrical
networks [185]. Details on the block-wise construction of models will be discussed in the
following sections for each modelling paradigm.

Locality of interaction is a desirable modelling feature, which is also related to the concept
of causality. For a physical system with a finite propagation speed of waves, it is enough that a
block interacts only with its nearest neighbours; it does not need global connections to compute
its task and the effect automatically propagates throughout the system.

In a discrete-time simulation with bi-directional interactions, delays shorter than a unit
delay (including zero delay) introduce the delay-free loop problem that we face several times
in this paper. While it is possible to realize fractional delays [154], delays shorter than the
unit delay contain a delay-free component. There are ways to make such ‘implicit’ systems
computable, but the cost in time (or accuracy) may become prohibitive for real-time processing.

3.6. Physics-based discrete-time modelling paradigms

This paper presents an overview of physics-based methods and techniques for modelling and
synthesizing musical instruments. We have excluded some methods often used in acoustics,
because they do not easily solve the task of efficient discrete-time modelling and synthesis.
For example, the finite element and boundary element methods (FEM and BEM) are generic
and powerful for solving system behaviour numerically, particularly for linear systems, but we
focus on inherently time-domain methods for sample-by-sample computation.

The main paradigms in discrete-time modelling of musical instruments can be briefly
characterized as follows.

3.6.1. Finite difference models. In section 4 finite difference models are the numerical
replacement for solving partial differential equations. Differentials are approximated by
finite differences so that time and position will be discretized. Through proper selection of
discretization to regular meshes, the computational algorithms become simple and relatively
efficient. Finite difference time domain (FDTD) schemes are K-modelling methods, since
wave components are not explicitly utilized in computation. FDTD schemes have been applied
successfully to 1D, 2D and 3D systems, although in linear 1D cases the digital waveguides
are typically superior in computational efficiency and robustness. In multidimensional mesh
structures, the FDTD approach is more efficient. It also shows potential to deal systematically
with nonlinearities (see section 11). FDTD algorithms can be problematic due to lack of
numerical robustness and stability, unless carefully designed.
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3.6.2. Mass–spring networks. In section 5 mass–spring networks are a modelling approach,
where the intuitive basic elements in mechanics—masses, springs and damping elements—are
used to construct vibrating structures. It is inherently a K-modelling methodology, which has
been used to construct small- and large-scale mesh-like and other structures. It has resemblance
to FDTD schemes in mesh structures and to WDFs for lumped element modelling. Mass–spring
networks can be realized systematically also by WDFs using wave variables (section 8).

3.6.3. Modal decomposition methods. In section 6 modal decomposition methods represent
another approach to look at vibrating systems, conceptually from a frequency-domain
viewpoint. The eigenmodes of a linear system are exponentially decaying sinusoids at
eigenfrequencies in the response of a system to impulse excitation. Although the thinking
by modes is normally related to the frequency domain, time-domain simulation by modal
methods can be relatively efficient, and therefore suitable to discrete-time computation. Modal
decomposition methods are inherently based on the use of K-variables. Modal synthesis
has been applied to make convincing sound synthesis of different musical instruments. The
functional transform method (FTM) is a recent development of systematically exploiting the
idea of spatially distributed modal behaviour, and it has also been extended to nonlinear system
modelling.

3.6.4. Digital waveguides. Digital waveguides (DWGs) in section 7 are the most popular
physics-based method of modelling and synthesizing musical instruments that are based on
1D resonators, such as strings and wind instruments. The reason for this is their extreme
computational efficiency in their basic formulations. DWGs have been used also in 2D and
3D mesh structures, but in such cases the wave-based DWGs are not superior in efficiency.
Digital waveguides are based on the use of travelling wave components; thus, they form a
wave modelling (W-modelling) paradigm1. Therefore, they are also compatible with WDFs
(section 8), but in order to be compatible with K-modelling techniques, special conversion
algorithms must be applied to construct hybrid models, as discussed in section 10.

3.6.5. Wave digital filters. WDFs in section 8 are another wave-based modelling technique,
originally developed for discrete-time simulation of analog electric circuits and networks.
In their original form, WDFs are best suited for lumped element modelling; thus, they can
be easily applied to wave-based mass–spring modelling. Due to their compatibility with
digital waveguides, these methods complement each other. WDFs have also been extended
to multidimensional networks and to systematic and energetically consistent modelling of
nonlinearities. They have been applied particularly to deal with lumped and nonlinear elements
in models, where wave propagation parts are typically realized by digital waveguides.

3.6.6. Source–filter models. In section 9 source–filter models form a paradigm between
physics-based modelling and signal processing models. The true spatial structure and
bi-directional interactions are not visible, but are transformed into a transfer function that can
be realized as a digital filter. The approach is attractive in sound synthesis because digital filters
are optimized to implement transfer functions efficiently. The source part of a source–filter
model is often a wavetable, consolidating different physical or synthetic signal components
needed to feed the filter part. The source–filter paradigm is frequently used in combination
with other modelling paradigms in more or less ad hoc ways.

1 The term digital waveguide is used also to denote K-modelling, such as FDTD mesh-structures, and source–filter
models derived from travelling wave solutions, which may cause methodological confusion.
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Figure 1. Part of an ideal vibrating string.

4. Finite difference models

The finite difference schemes can be used for solving partial differential equations, such as
those describing the vibration of a string, a membrane or an air column inside a tube [264].
The key idea in the finite difference scheme is to replace derivatives with finite difference
approximations. An early example of this approach in physical modelling of musical
instruments is the work done by Hiller and Ruiz in the early 1970s [113, 114]. This line of
research has been continued and extended by Chaigne and colleagues [45,46,48] and recently
by others [25, 26, 29, 30, 81, 103, 131].

The finite difference approach leads to a simulation algorithm that is based on a difference
equation, which can be easily programmed with a computer. As an example, let us see
how the basic wave equation, which describes the small-amplitude vibration of a lossless,
ideally flexible string, is discretized using this principle. Here we present a formulation after
Smith [253] using an ideal string as a starting point for discrete-time modelling. A more
thorough continuous-time analysis of the physics of strings can be found in [96].

4.1. Finite difference model for an ideal vibrating string

Figure 1 depicts a snapshot of an ideal (lossless, linear, flexible) vibrating string by showing
the displacement as a function of position.

The wave equation for the string is given by

Ky ′′ = εÿ, (1)

where the definitions for symbols are K =̂ string tension (constant), ε =̂ linear
mass density (constant), y =̂ y(t, x) = string displacement, ẏ =̂ (∂/∂t)y(t, x) = string
velocity, ÿ =̂ (∂2/∂t2)y(t, x) = string acceleration, y ′ =̂ (∂/∂x)y(t, x) = string slope and
y ′′ =̂ (∂2/∂x2)y(t, x) = string curvature.

Note that the derivation of equation (1) assumes that the string slope has a value much
less than 1 at all times and positions [96].

There are many techniques for approximating the partial differential terms with finite
differences. The three most common replacements are the forward difference approximation,

f ′ ≈ f (x + �x) − f (x)

�x
, (2)

the central difference approximation,

f ′ ≈ f (x + �x) − f (x − �x)

2�x
(3)

and the backward difference approximation,

f ′ ≈ f (x) − f (x − �x)

�x
. (4)
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Figure 2. Block diagram of a finite difference approximation of the wave equation according
to (8). The diagram shows how the next displacement value of the current position y(n + 1, k) is
computed from the present values of its neighbours, y(n, k − 1) and y(n, k + 1), and the previous
value y(n − 1, k). The block z−1 indicates a delay of one sampling interval.

Using the forward and backward difference approximations for the second partial
derivatives and using indices n and k for the temporal and spatial points, respectively, yields
the following version of the wave equation:

y(n + 1, k) − 2y(n, k) + y(n − 1, k)

T 2
= c2 y(n, k + 1) − 2y(n, k) + y(n, k − 1)

X2
, (5)

where T and X are the temporal and spatial sampling intervals, respectively, and

c =
√

K/ε (6)

is the propagation velocity of the transversal wave. We may select the spatial and the temporal
sampling intervals so that

R = cX

T
� 1, (7)

that is, the waves in the discrete model do not propagate faster than one spatial interval at each
time step. Here, R is called the Courant number and the inequality is known as the Courant–
Friedrichs–Levy condition. Interestingly, the Von Neumann stability analysis (see, e.g. [264])
gives the same condition for R in the case of an ideal vibrating string. Now, by setting R = 1
it is easy to write (5) in the form that shows how the next displacement value y(n + 1, k) is
computed from the present and the past values:

y(n + 1, k) = y(n, k + 1) + y(n, k − 1) − y(n − 1, k). (8)

The recurrence equation (8) is also known as the leapfrog recursion. Figure 2 illustrates
this update rule as a signal-processing block diagram, as suggested by Karjalainen [127]. The
value of spatial index k increases to the right while the temporal index n increases upwards. The
diagram shows how the next displacement value of the current position y(n+1, k) is computed
from the present values of its neighbours, y(n, k − 1) and y(n, k + 1), and the previous value
y(n − 1, k). The diagram also indicates that the update rule is the same for all elements.

Equation (8) can conveniently be depicted using a spatio-temporal grid, a common
illustration for FDTD schemes, depicted in figure 3. Here, the horizontal axis represents
the spatial coordinate (i.e. position on the string) and the vertical axis represents the temporal
coordinate (i.e. the time instant). Barjau and Gibiat have investigated the similarities and
differences of the finite difference scheme and cellular automation schemes [18].

The finite difference model is a K method, i.e. it directly uses the physical variables as
parameters, which can then be obtained from the physical system. Sound synthesis is possible,
since the time-domain signal can be observed at one or several points in the system and then
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Figure 3. (a) Illustration of the 1D finite difference equation of an ideal string on a spatio-temporal
grid. The vertical axis denotes the time, while the horizontal axis denotes the spatial location on
the string. The left-hand side of equation (8) is presented with a black dot, while the values used
in the right-hand side of equation (8) are presented as blank dots. The arrows in (a) denote the
arithmetic operators of the equation and are usually left out, thus leading to a simplified form,
illustrated in (b).

converted to an audio signal. Interaction at any discrete point or at many points along the spatial
dimension is also allowed. A disadvantage is that the value of all points must be updated and
stored individually for every sample time. This renders the model computationally expensive
when there are many spatial sampling points.

4.2. Boundary conditions and string excitation

Since the spatial coordinate k of the string must lie between 0 and Lnom, which is the nominal
length of the string, problems arise near the ends of the string when evaluating equation (8),
because spatial points outside the string are needed. The problem can be solved by introducing
boundary conditions that define how to evaluate the string movement when k = 0 or k = Lnom.
The simplest approach, introduced already in [113], would be to assume that the string
terminations be rigid, so that y(n, 0) = y(n, Lnom) = 0. This results in a phase-inverting
termination, which suits perfectly the case of an ideal string. A noninverting termination of a
finite difference system is discussed in [127].

For a more realistic string termination model, several solutions have been introduced.
In [113], Hiller and Ruiz formulate boundary conditions for a lossy termination including
reflection coefficients rl and rr for the left and right termination, respectively,

y(n + 1, 0) = (1 − rl)y(n, 1) + rly(n − 1, 0) (9)

and

y(n + 1, Lnom) = (1 − rr)y(n, Lnom − 1) + rry(n − 1, Lnom). (10)

If the supports are lossless, i.e. if there is a perfect reflection at the boundaries, rl and rr will
equal unity; in general, however, they will be numbers between 0 and 1. For a guitar-like
string termination, where the string is clamped just behind the bridge, it is assumed [45] that
the string termination point and the bridge share the same displacement, leading to

y(n, Lnom − 1) = y(n, Lnom). (11)

The excitation of an FDTD string can also be implemented in several ways. If a plucked
string is to be modelled, probably the simplest way to excite an FDTD string is to set its initial
shape to match the displaced string prior to the release and then carry on with the simulation.
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If the initial shape y(0, k) of the FDTD string is set to resemble, e.g. the triangular form of a
plucked string, and if we assume that the string has no initial velocity, the string displacement
at time instant n = 1 must be set to [113]

y(1, k) =
{

y(0, k), k = 0, 1, . . . , Lnom, k �= j, j + 1,

1
2 [y(0, k − 1) + y(0, k + 1)], k = j, j + 1,

(12)

where j and j +1 denote the coordinates of the slope discontinuity (i.e. the peak of the triangle).
In a way, this points out the ‘correct direction’ for the string vibration after the initialization.
It must be noted, however, that if the spatial resolution of the string model is high, the vertex
of the triangle must be smoothed to avoid slope discontinuities that might cause problems with
high frequency partials and grid dispersion [45], an undesired property in FDTD models.

The plucking of a real string is, however, a more complex scheme than simply releasing the
string from its initial shape. The properties of the finger or a plectrum alter the behaviour of the
string, and measurements reveal that the release is rather gradual than instantaneous [192,193].
More advanced excitation models for FDTD strings have been suggested, e.g. in [45, 81].
A simple but useful FDTD string excitation method, which allows for interaction with the
string during run-time has been proposed in [127]. There,

y(n, k) ← y(n, k) + 1
2u(n) (13)

and

y(n, k + 1) ← y(n, k + 1) + 1
2u(n) (14)

are inserted into the string, which causes a ‘boxcar’ block function to spread in both directions
from the excitation point pair. Here, u(n) denotes the external excitation signal.

4.3. Finite difference approximation of a lossy string

Frequency-independent losses can be modelled in a finite difference string by discretizing the
velocity-dependent damping term in the lossy 1D wave equation

Ky ′′ = εÿ + d1ẏ − d2ẏ
′′, (15)

where d1 and d2 are coefficients that represent the frequency-independent and frequency-
dependent damping, respectively. Note that we have written the last term of equation (15)
as a mixed time-space derivative instead of a third-order time derivative as, for example,
in [45, 46, 113]. This is done because it can be shown [25] that having the third-order time
derivative term in the lossy wave equation makes the system ill-posed and can lead into
numerical instability, if the temporal and spatial sampling frequencies are high enough. It is
also important to note that, in any case, the loss terms in equation (15) are only approximating
the damping behaviour in a real string. A more sophisticated damping model is discussed, for
instance, in [50, 156].

The first-order temporal derivative can be approximated using the central difference
scheme (3), so that the recurrence equation (8) yields [45]

y(n + 1, k) = gk[y(n, k + 1) + y(n, k − 1)] − aky(n − 1, k), (16)

where

gk = 1

1 + d1T/2
(17)

and

ak = 1 − d1T/2

1 + d1T/2
. (18)
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Note that in this case d2 = 0 in equation (15). The string decay time can now be directly
controlled via the damping coefficient d1, since d1 = 1/(2τ), where τ is the time constant for
which the amplitude of the vibration decays to 1/e of its initial value.

Modelling the frequency-dependent losses is, however, a more demanding task.
Discretizing equation (15) using the backward difference scheme for the temporal derivative in
the last term and the central difference scheme for other terms, an explicit recurrence equation
is obtained, as shown in [25].

4.4. Stiffness in finite difference strings

The dispersive behaviour of strings is best simulated in FDTD models by directly discretizing
the stiff 1D wave equation

Ky ′′ = εÿ +
Eπr4

s

4
y ′′′′, (19)

where E is Young’s modulus and rs is the cross-sectional radius of the string. This leads to a
recurrence equation containing three additional spatio-temporal terms in the discretized wave
equation. The recurrence equation for stiff strings has been covered in several previous studies
(e.g. [45, 113]).

5. Mass–spring networks

The mass–spring networks work primarily in the mechanical domain and use a dual-pair
of K-variables, such as position and velocity or force and velocity. In this technique, the
physical system to be modelled is divided into lumped mass elements which are connected
by springs and dampers (links). The mass elements correspond to the nodes of a network
and are the smallest modules representing inertia. The links represent physical interactions
between them. The network of lumped mass elements, connected by links, approximates the
behaviour of a distributed system. Each element is discretized using finite differences (see
section 4) and operates locally. The fundamental difference between the finite difference and
the mass–spring networks techniques is that a network is built by connecting the modules,
rather than discretizing the governing equation for each case. Delay-free loops are avoided by
imposing a causality in the ordering of the operations. Usually, a delay is inserted between the
computation of a K-pair, and the two-way interactions are computed in an interleaved fashion.

The principles of mass–spring networks were introduced for musical instrument modelling
by Cadoz and his colleagues within their system CORDIS-ANIMA [38, 98]. CORDIS-
ANIMA is a physically-based formalism that allows modelling of objects prior to any sensory
(audio, visual, gestural) modalities. The developments, achievements and results related to
the CORDIS-ANIMA in a large time-span are outlined in a recent review paper by Cadoz and
his colleagues [39].

The mass–spring networks are nowadays also referred to as ‘mass-interaction’,‘cellular’ or
‘particle’ systems. Besides CORDIS-ANIMA, several other systems are built upon this basic
idea by relying on similar concepts but by placing additional constraints on computation, sound
generation or control. These systems are PhyMod [261], PMPD [109, 110], TAO [194, 195]
and CYMATIC [116].

In this section, we first present the basic principles of the mass–spring network systems
by considering a simple example in continuous time, then discuss the discretization and
implementation of this mechanical system. Our primary focus is on CORDIS-ANIMA, and
we consider other implementations by emphasizing their differences from CORDIS-ANIMA.
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Figure 4. A simple, continuous time mechanical system of two masses and a spring.

(This figure is in colour only in the electronic version)

5.1. Basic theory

A system is a collection of objects united by some form of interaction or interdependence,
where each object is characterized by a finite number of attributes [322]. The interactions
between the objects, as well as the interdependence between the object attributes, are usually
expressed in a computable mathematical form. Consider a very simple 1D mechanical system
composed of two particles M1 and M2, together with an ideal spring S3 linking them, as
illustrated in figure 4. The particles move along the x-axis and M1 is subjected to an external
force fext,1.

The relevant attributes of a particle are its mass m, displacement x(t), velocity v(t),
acceleration a(t) and the total force f (t) acting on the particle. The attributes of the spring
are its spring constant k, length at rest l0 and length under tension l(t).

The relations between the attributes of the particles M1 and M2 are given by Newton’s
second law of motion:

f1(t) = m1a1(t), (20)

f2(t) = m2a2(t). (21)

The relation between the attributes of S3 is given by Hooke’s law:

f3(t) = k(l0
3 − l3(t)). (22)

Next, we formulate the relations representing interactions. The first one relates the time-
varying length of the spring to the displacements of two masses

l3(t) = x2(t) − x1(t), (23)

whereas the next two relations impose force equilibria on the masses

f1(t) = fext,1(t) − f3(t), (24)

f2(t) = f3(t). (25)

A typical simulation of this system may require calculation of the displacements x1(t) and x2(t)

as a response to the external force fext,1(t). This simple system can easily be solved analytically
by substituting the interaction relations into the attribute equations and by suppressing the non-
relevant attributes. However, for numerical simulations involving a large number of particles,
it is advantageous to keep the attribute and interaction relations separate, as will be explained
further below.

5.1.1. Discretization. The objects of this system may be discretized using finite differences,
as discussed in section 4. By applying forward differences twice to the acceleration in
equation (20), we can obtain the displacement x1(n) as

x1(n) = 1

m1
f1(n) + 2x1(n − 1) − x1(n − 2), (26)
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Figure 5. Basic elements of a mass–spring network. (a) A one-port mass element. (b) A two-port
link element corresponding to an ideal spring.

where the sampling period �T is suppressed by normalization to unity and f1(n) is the total
force acting on the mass at the discrete time instant n. The mass object is thus an LTI one-port,
whose transfer function corresponds to the ratio of force and displacement. Similarly,

x2(n) = 1

m2
f2(n) + 2x2(n − 1) − x2(n − 2). (27)

The spring may be thought of as a two-port element that implements the interaction
relations or that calculates the output forces as a function of the input displacements. Then,

f3(n) = k(l0
3 − x2(n) + x1(n)), (28)

f1(n) = fext,1 − f3(n), (29)

f2(n) = f3(n). (30)

The one-port element corresponding to the mass object and the two-port element corresponding
to the link element are illustrated in figure 5.

5.1.2. Implementation. The instantaneous interdependency of the displacements x1(n) and
x2(n) and the forces f1(n) and f2(n) stands out as a problem for implementation. In other
words, if the discrete one-port mass objects were interconnected by the two-port link element, a
delay-free loop would occur. Mass–spring network systems typically impose a rule of causality
in the ordering of operations to overcome this problem; for instance, the displacements at
the instant n may be calculated using the forces defined at the instant n − 1, as is done in
CORDIS-ANIMA [38]. This practically means that the two-way interactions are computed in
an interleaved fashion, with a delay inserted between the K-pair. The side effects of this delay
are subject to numerous studies (see [10,33] for further discussion and improved techniques to
eliminate the delay-free loops). However, we use the CORDIS-ANIMA solution to construct
the mass–spring model corresponding to the basic mechanical system of figure 4. The resulting
model is shown in figure 6, where the forces calculated by the link element acting on the masses
M1 and M2 are designated as f3,1(n) and f3,2(n), respectively.

Models consisting of a large number of masses and links may be constructed by
superposing the input forces of each mass and piping out their output displacements. However,
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Mass M1

z 
-1

fext,1(n)

Link S3

f3,1(n)

Mass M2

z 
-1

f3,2(n)

f1(n-1) f2(n-1)

x1(n) x2(n)

Figure 6. Discrete-time version of the mechanical system in figure 4.

more advanced models would require special elements for termination, damping, time-varying
interactions and nonlinearities. Below, we discuss such elements within the CORDIS-ANIMA
system.

5.2. CORDIS-ANIMA

In CORDIS-ANIMA, a network is constructed from three LTI basic modules and an additional
‘conditional link’. The basic modules correspond to an ideal point ‘mass’, an ideal ‘spring’
and a ‘damper’ [98]. The basic LTI one-port mass element and the two-port spring element are
the same as the ones previously shown in figure 5. The damper is a two-port, LTI element with
a single parameter g corresponding to a viscous damping coefficient. The damping forces are
calculated as

f2(n) = g(x1(n) − x1(n − 1) − x2(n) + x2(n − 1)), (31)

f1(n) = − f2(n). (32)

The fourth element is a two-port ‘conditional link’ that combines the ideal spring and damping
equations into one. This element is not LTI, as it can modify its variables in time or implement
nonlinearities.

In CORDIS-ANIMA, these four elements are grouped according to the number of their
ports, resulting in two main object groups: one-port mass (or material) objects (MAT) and the
two-port objects that interconnect or link the mass objects (LIA). One-dimensional elements
are extended to accept vector inputs and calculate vector outputs for simulations in higher
dimensions; CORDIS-ANIMA thus supports higher-dimensional structures. In fact, within
the formalism, there are no dimensionality restrictions on the physical variables. The basic
library is extended by complementary elements [98]. For instance, a termination element is
a special mass object that produces a constant displacement regardless of the applied force.
Similarly, a gravity object is a special link element that always produces a constant force.

Besides the linear viscoelastic operations, two special link objects implement the time-
varying or nonlinear interactions. The first special element contains a proximity detector:
when two disconnected masses get closer, it implements a time-varying viscoelastic interaction
between them. This object is most useful for modelling struck instruments. The second special
element implements the nonlinear viscosity and elasticity by two table look-up operations.
The tables define the output forces as a function of the relative distance and velocity of the
interconnected mass objects.
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The CORDIS-ANIMA library is further extended by prepackaged modules. Some of
these modules support other synthesis paradigms, such as modal synthesis or basic digital
waveguides. Constructing a detailed mass-interaction network is still a non-trivial task, since
the objects and their interconnection topology require a large number of parameters. Cadoz
and his colleagues, therefore, have developed support systems for mass-interaction networks.
These systems include the model authoring environment GENESIS [42] (a user-interface
dedicated to musical applications of CORDIS-ANIMA), the visualization environment
MIMESIS [39] (an environment dedicated to the production of animated images) and tools for
analysis and parameter estimation [270].

A large number of audio–visual modelling examples is reported in [39]. These examples
include a model of a six-wheel vehicle interacting with soil, simple animal models such as
frogs and snakes and models of collective behaviour within a large ensemble of particles.
The most advanced model for sound synthesis by mass-interaction networks (and probably
by any physics-based algorithm) is the model that creates the musical piece ‘pico..TERA’,
which was developed by Cadoz using the CORDIS-ANIMA and GENESIS systems [36]. In
this model, thousands of particles and many aggregate geometrical objects interact with each
other. The 290 s of music is synthesized by running this model without any external interaction
or post-processing.

5.3. Other mass–spring systems

PhyMod [261] is an early commercial software for visualization and sound synthesis of
mass–spring structures. Besides the 1D mass and linear link objects, four nonlinear link
elements are provided. The program uses a visual interface for building a sound sculpture
from elementary objects. The basic algorithmic principles of this system (but not its visual
interface) has been ported to the popular csound environment [56].

The system PMPD2 [109, 110] closely follows the CORDIS-ANIMA formulation for
visualization of mass-interaction networks within the pd-GEM environment [206]. In addition
to the masses and links in one or more dimensions, PMPD defines higher-level aggregate
geometrical objects such as squares and circles in 2D or cubes or spheres in 3D. The PMPD
package also contains examples for 2D and 3D vibrations of a linear elastic string in its
documentation subfolder (example 5: corde2D and example 7: corde3D). Although the package
is a very valuable tool for understanding the basic principles or mass-interaction networks, it
has limited support for audio synthesis.

TAO3 specifically addresses the difficulty of model construction and the lack of a scripting
language in the CORDIS-ANIMA system [194, 195]. It uses a fixed topology of masses and
springs and provides pre-constructed 1D (string) or 2D (triangle, rectangle, circle and ellipse)
modules, but 3D modules are not supported. Operations such as deleting the mass objects for
constructing shapes with holes and joining the shapes are defined. For efficiency and reduction
in the number of parameters, TAO constrains the spring objects by using a fixed spring constant.
The system is driven by a score; the audio output is picked-up by virtual microphones and
streamed to a file, which is normalized when the stream finishes.

A real-time synthesis software called CYMATIC was recently developed by Howard and
Rimell [116]. The synthesis engine of CYMATIC is based on TAO, but it introduces two
important improvements. The first improvement is the replacement of the forward differences

2 PMPD has multi-platform support and it is released as a free software under the GNU Public License (GPL). It can
be downloaded from http://drpichon.free.fr/pmpd/.
3 TAO is an active software development project and it is released as a free software under the GPL. It resides at
http://sourceforge.net/projects/taopm/.

http://drpichon.free.fr/pmpd/
http://sourceforge.net/projects/taopm/
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Figure 7. Schematic presentation of the modal synthesis method.

common in all previous systems by central differences. The central difference scheme results
in a more stable model and reduces the frequency warping. The second improvement in
CYMATIC over TAO is the support for 3D structures, as in CORDIS-ANIMA and PMPD.

6. Modal decomposition methods

Modal decomposition describes a linear system in terms of its modes of vibration. Modelling
methods based on this approach look at the vibrating structure from the frequency point of view,
because modes are essentially a spectral property of a sound source. Nevertheless, physical
models based on modal decomposition lead to discrete-time algorithms that compute the value
of the output signal of the simulation at each sampling step. In this sense, modal methods have
much in common with other discrete-time modelling techniques discussed in this paper. In this
section, we give an overview of the modal synthesis, some filter-based modal decomposition
methods and the FTM.

6.1. Modal synthesis

An early application of the modal decomposition method to modelling of musical instruments
and sound synthesis was developed by Adrien at IRCAM [2, 3]. In his work, each
vibrating mode had a resonance frequency, damping factor and physical shape specified on
a discrete grid. The synthesis was strongly related to vibration measurements of a specific
structure or instrument, and this is where the modal data was obtained. A software product
called Modalys (formerly MOSAIC) by IRCAM is based on modal synthesis [78, 178].
Bisnovatyi has developed another software-based system for experimenting with real-time
modal synthesis [32].

Figure 7 shows the block diagram of a modal synthesis system. The input signal x(n)

can be interpreted as the force signal applied to a certain spatial point of a physical system.
Matrix � maps the force into a parallel resonator bank. The sum of their output signals,
y(n), can be interpreted as a velocity caused by the input force that is observed at one point.
Each resonator Rk(z) represents a single mode of the physical system that is modelled. The
resonance frequency, bandwidth and gain of these resonators define the modal synthesis model.
Stability of a modal synthesis system like this is easy to ensure, because it suffices to make
sure that each of the resonant filter has a stable pair of poles.

Alternatively, modal data can be derived analytically for simple structures, such as strings
or membranes. This requires spatial discretization, which leads to a decrease in the amount
of modes. As shown by Trautmann and Rabenstein [279], modal data obtained in this way
suffers from underestimation of modal frequencies. The error can be reduced by rendering the
spatial sampling grid denser, but this solution is undesirable for synthesis purposes, since it
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increases the number of modes and thus the computational cost becomes larger. An obvious
way to reduce the computational cost of real-time modal synthesis is to prune the number of
modes by leaving out some resonant filters.

6.2. Filter-based modal methods

Another approach to modal synthesis that is well suited for percussive sounds, such as drums
or bells, is to extract modal data from a recorded signal. Various signal-processing methods
are known that can estimate a digital filter transfer function for a given sampled signal. Sandler
used linear prediction techniques [223, 224] and Mackenzie et al applied the balanced model
truncation method [166] to obtain a digital filter model for drum sounds. Laroche [158]
and Macon et al [167] applied parametric methods on various frequency bands for the same
task. The frequency-zooming ARMA method [133] can yield a high-resolution parametric
filter model for acoustic signals even if they have a large number of modes located close to
each other in frequency. While all such filter models allow accurate modelling and flexible
modification of each resonance, they are less meaningful physically than analytically derived
or measurement-based modal synthesis models, since they lack information about the spatial
distribution of the modes.

Laroche and Meillier [159] proposed a parametric synthesis model for the piano based
on a modal resonator bank. This approach allows exact adjustment of the frequency, the
level and the decay rate for each mode of a vibrating string, which is helpful for imitating
the inharmonicity and complex temporal decay patterns of partials observed in piano tones.
State–space modelling discussed by Matignon et al [170,171] and by Depalle and Tassart [74]
is another approach to derive filter-based models. The resulting transfer function can be
implemented with modal resonant filters or as a high order digital filter. The coupled mode
synthesis technique introduced by Van Duyne [297] is another filter-based approach to modal
synthesis. It has a special filter structure in which allpass filters are used as building blocks
and they are all fed back through the same filter. Banded waveguides introduced by Essl
et al [86–90] combine characteristics from modal synthesis and digital waveguides, which we
discuss in section 7.

Cook has extended the idea of modal synthesis to parametric synthesis of percussive
sounds with noisy excitation [63,66]. This method is called physical inspired sonic modelling
or PhISM. Based on parametric spectral analysis, the PhISM method derives a resonator bank
and an associated excitation signal. From analysis of several types of excitation it is possible
to parametrize the strike position and style, which can then be used for real-time control. The
input signal for synthesis can be obtained, for example, by inverse filtering and by simplifying
the residual signal. Inverse filtering in this case refers to the process of filtering a recorded
signal using the inverted transfer function of the resonant filter bank.

The filter-based modal synthesis methods can be called source–filter models, since they
consist in essence of a filter transfer function and a properly chosen input signal. Source–filter
models are discussed in section 9 of this paper.

6.3. The functional transform method

A novel technique related to modal synthesis is the FTM introduced by Trautmann and
Rabenstein [207, 278, 279], which also describes a linear system in terms of its modes.
This method allows the derivation of accurate models based directly on physics for simple
geometries, just as can be done with finite difference models. The main novelty in functional
transform modelling is to apply two different integral transforms to remove partial derivatives.
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The Laplace transform operates on the temporal and the Sturm–Liouville transform on the
spatial terms of the partial differential equation. The multidimensional transfer function can
then be implemented using digital filters. For linear systems, this results in a set of second-order
resonators connected in parallel, just as shown in figure 7. The method can also be extended
for nonlinear systems [279, 280]. The FTM can be used for constructing accurate physical
models of vibrating strings and membranes without conducting physical measurements, if the
necessary numerical values of physical variables are known. Advantages of this modelling
method are that spatial discretization is unnecessary, that there is no systematic error in mode
frequencies and that the signal phase is correct with respect to both the input and the output
locations [279].

7. Digital waveguides

The digital waveguide (DWG) method is based on discrete-time modelling of the propagation
and scattering of waves. The principle was used already in the Kelly–Lochbaum speech
synthesis model [145, 266], in which the human vocal tract was simulated by unit-sample
delay lines and wave scattering junctions between them. Such modelling has often been called
‘transmission-line modelling’, but in computer music it is better known by the term ‘digital
waveguide modelling’. This term was proposed by Smith [245, 247] because of an analogy
to the concept of waveguide that has been used, for example, in microwave technology. For
almost two decades, DWGs have been the most popular and successful physics-based modelling
methodology, particularly for efficient sound synthesis applications [249, 253, 254].

In this section, we present an overview of digital waveguide modelling, deriving from
the behaviour of plucked strings and acoustic tubes, but also discussing modelling of other
instruments. Relations of DWGs to other modelling paradigms are mentioned briefly. Some
structures, such as extensions of the Karplus–Strong model, can be seen as intermediate cases
between DWGs and source–filter models. Although they may seem to belong more to the
source–filter category (section 9), in this presentation they are discussed primarily in the
present section on digital waveguides.

7.1. From wave propagation to digital waveguides

A vibrating string is a good example of one-dimensional wave propagation that can serve for
derivation of the digital waveguide principle. Here we present a formulation after Smith [253]
using an ideal string as a starting point for discrete-time modelling. A more thorough
continuous-time analysis of the physics of strings can be found, for example, in [96].

The derivation of digital waveguides can be started from figure 1 and the same wave
equation as for the finite difference models in section 4, i.e.

Ky ′′ = εÿ. (33)

It can be readily checked that any string shape that travels to the left or right with speed
c = √

K/ε is a solution to the wave equation. If we denote right-going travelling waves by
yr(x − ct) and left-going travelling waves by yl(x + ct), where yr and yl are arbitrary twice-
differentiable functions, then the general class of solutions to the lossless, one-dimensional,
second-order wave equation (33) can be expressed as

y(x, t) = yr(x − ct) + yl(x + ct), (34)

or, when time is the primary variable for expressing the signals,

y(t, x) = yr(t − x/c) + yl(t + x/c). (35)
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These forms, composed of opposite-travelling wave components of arbitrary waveforms, are
called the d’Alembert solution of the wave equation. Assuming that signals yr and yl in
equation (35) are bandlimited to one half of the sampling rate, we may sample the travelling
waves without losing any information. This yields

y(tn, xk) = yr(tn − xk/c) + yl(tn + xk/c)

= yr(nT − kX/c) + yl(nT + kX/c)

= yr[(n − k)T ] + yl[(n + k)T ], (36)

where T is the time interval and X the spatial interval between samples so that T = X/c.
Sampling is applied in a discrete space-time grid in which indices n and k are related to time
and position, respectively. Since T multiplies all arguments, we suppress it by defining

y+(m) =̂ yr(mT ) and y−(k) =̂ yl(mT ). (37)

The ‘+’ superscript denotes a travelling wave component propagating to the right and ‘−’
denotes propagation to the left. Finally, the left- and right-going travelling waves must be
summed to produce a physical output according to the formula

y(tn, xk) = y+(n − k) + y−(n + k). (38)

The next step is to make the model more realistic by including losses and dispersion that appear
in real strings.

7.2. Modelling of losses and dispersion

By adding proper derivatives of time, space or mixed time and space of different orders to the
wave equation, the damping and dispersion of travelling waves in the string can be specified.
For example the first-order spatial derivative (velocity) can control losses and the fourth-order
spatial derivative introduces dispersion, i.e. frequency-dependent wave velocity. Details on
the physics of string vibration damping are analysed, for example, in [282].

Instead of starting from partial differential equations with various order terms, DWG
models are typically designed by adding filtering operations to travelling wave signal paths
in order to simulate losses and dispersion found in practice. Since every time-invariant,
linear filter can be expressed as a minimum phase filter in cascade with an allpass filter,
we may factor the filter into its lossy part and its dispersive part. The minimum phase part
controls frequency-dependent gain (attenuation in a DWG) plus introduces minimal dispersion,
while the allpass part implements most of dispersion (frequency-dependent delay). A discrete
space-time simulation diagram appears in figure 8.

The discrete simulation of the travelling waves is exact, in principle, at the sampling
positions and instants, even though losses and dispersion are included in the wave equation.
The main requirement is that all initial conditions and excitations must be bandlimited to
less than one half of the sampling rate. Note also that the losses which are distributed in
the continuous solution have been consolidated, or lumped, at discrete position intervals of
cT in the simulation. The z-transform expression yields the transmission filter HT(z), which
summarizes the distributed filtering incurred in one sampling interval, including losses and
dispersion. Signal propagation to the right and left, respectively, is computed by

Y +
k (z) = Y +

k−1(z) HT(z) and Y−
k (z) = Y−

k+1(z) HT(z). (39)

If the signal values between spatial or temporal sampling points are needed, bandlimited
interpolation can yield them with arbitrary accuracy [154].
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Figure 8. Wave propagation simulated by a digital waveguide consisting of two delay lines for
wave components travelling in opposite directions. Each delay line is a sequence of unit delays
(z−1) and transmission filters HT(z) for losses and dispersion.

Figure 9. Digital waveguide obtained from the digital waveguide of figure 8 by consolidating
M unit delays and transmission filters in each delay line.

For computational efficiency reasons, the digital waveguide can be simplified by further
consolidation of elements between points of interest. Figure 9 shows how m consecutive delay-
line sections can be combined into a single delay of M samples and transmission transfer
function HM

T (z). This helps for time-domain simulation and sound synthesis, making the
DWG approach highly efficient.

7.3. Modelling of waveguide termination and scattering

A wave entering an ideally rigid termination of a string reflects back with inverted polarity,
i.e. the reflection can be represented by a constant coefficient equal to −1. A realistic
termination adds frequency-dependent losses and dispersion that can be modelled using digital
filters Ra(z) and Rb(z) as shown in figure 10. Excitation into and output from the DWG string
model can be realized as characterized conceptually in the figure.

Figure 11 illustrates the behaviour of an ideal terminated string when a triangular-shaped
displacement due to plucking is released. Several physical wave variables are characterized.
The initial displacement is triangular in shape, while the velocity and string slopes are
rectangular, and the acceleration as well as the curvature are impulse-like. From a sound
synthesis point of view, the acceleration variable is favourable, because an impulse is useful as
a single sample excitation. The radiated sound output of a string instrument is approximately
proportional to bridge velocity (obtained by integrating acceleration) above a certain critical
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Figure 10. DWG model of a terminated string. Reflections of waves at terminations are represented
by transfer functions Ra(z) and Rb(z). String input excitation and output probing are also shown
conceptually.

(a) Displacement (c) Acceleration

Pluck point

(e) Curvature

Pp Pp

pp pp

(d) Slope

Figure 11. The behaviour of different mechanical waves in an ideal terminated string at the moment
of plucking release: (a) displacement, (b) velocity, (c) acceleration, (d) slope and (e) curvature.

frequency, below which the radiation is proportional to acceleration. This is an idealized
description, whereby the detailed instrument body effects are also omitted.

The string termination discussed above is a special case of wave scattering. In scattering, a
part of wave energy entering a junction of connected waveguides is reflected back, and the rest
of the energy is distributed to other waveguide branches. The general case with an arbitrary
number of waveguides connected to a junction, including a direct excitation Uext, is depicted
in figure 12. In this case, we use the acoustic variables pressure P and volume velocity U

instead of mechanical string variables, i.e. tube-like waveguides are connected together. (The
capital letter symbols may be interpreted as Laplace, Fourier or Z-transforms.)

Junctions connecting elements must fulfil physical continuity constraints called the
Kirchhoff rules in the electrical domain. For a parallel junction of acoustic components in
figure 12, we may write

P1 = P2 = · · · = PN = PJ, (40)

U1 + U2 + · · · + UN + Uext = 0, (41)

where Pi are pressures and Ui volume velocities at the ports of the junction, PJ is the common
pressure of coupled branches and Uext is an external volume velocity injected to the junction.
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Figure 12. Parallel acoustic junction of admittances Yi with associated pressure waves indicated.
A direct volume velocity excitation Uext is also attached.

When port pressures are represented by incident (incoming) wave components P +
i and scattered

(outgoing) wave components P −
i , acoustic admittances attached to each port by Yi , and

Pi = P +
i + P −

i and U+
i = YiP

+
i , (42)

then the junction pressure PJ can be obtained as

PJ = 1

Ytot

(
Uext + 2

N−1∑
i=0

YiP
+
i

)
, (43)

where Ytot = ∑N−1
i=0 Yi is the sum of all admittances to the junction. Scattered pressure waves,

obtained from equation (42), are then

P −
i = PJ − P +

i . (44)

Figure 13 depicts the results of equations (41)–(44) as a signal flow diagram for the
computation of an acoustic 3-port scattering junction. Due to the duality of variable pairs, the
same diagram can be applied to a series connection and volume velocity waves so that pressures
and volume velocities are interchanged and admittances are replaced by impedances.

In figure 13, port 1 is terminated by admittance Y1 and port 2 is connected to a delay-line of
admittance Y2. Notice that for a passive termination Y1 the incoming port signal is zero so that
no computation is needed at that port. Port 3 is not connected. Dotted line regions show the
groupings of signal processing elements for block-based (object-based) computation, and the
bottom part of the figure depicts an abstraction diagram of these blocks. Arbitrary admittances
can be given by their z-transforms as digital filters (FIR or IIR filters or just as real coefficients
if all attached impedances are real). Note that each admittance is also represented in the block
1/

∑
Yi . For real-valued admittances, the scattering junction computation can be optimized

to minimize the number of operations needed [253].
An example of DWG string modelling in the mechanical domain is shown in figure 14,

where velocity waves are used and series connected junctions have equal velocity at each
port. A plucked string instrument with two strings is modelled by delay-line elements and
termination impedances Z = F/V , which are ratios of force F to velocity V . Plucking is
inserted as force to a point in the string and the output is the vibration velocity at the bridge. Both
strings have a common bridge impedance so that there is coupling between them. This leads
to ‘sympathetic vibrations’, whereby a vibrating string may transfer energy to another string,
resulting in its vibration, too. For a full-scale model of the acoustic guitar, each string should
have two subsystems, one for vertical and another for horizontal vibration with a matrix-like
coupling of string polarities at the bridge, and six such string systems should be included.
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Figure 13. Top: a 3-port parallel scattering junction for acoustic pressure waves. Incoming
pressures are P +

i , outgoing ones P −
i and PJ is common junction pressure. Port 1 (left) is terminated

by admittance Y1, port 2 (right) is connected to a delay-line having wave admittance Y2, and port 3
(top) is not connected. Bottom: block diagram with abstracted block notation and how the blocks
can be connected to form a 1D digital waveguide.
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Figure 14. A DWG block diagram of two strings coupled through a common bridge impedance (Zb)
and terminated at the other end by nut impedances (Zt1 and Zt2). Plucking points are for force
insertion from wavetables (WTi ) into junctions in the delay-lines (DLij ). Output is taken as the
bridge velocity.

7.4. Digital waveguide meshes and networks

The DWG scattering junction of figure 13 allows for arbitrary network topologies to be
formed as connections of delay lines and junction nodes. This is very flexible and useful
particularly because the stability of the network can be easily guaranteed by keeping all
elements passive (real part of each admittance positive at all frequencies). A special case
of digital waveguide networks (DWN) is the ‘digital waveguide mesh’, which has a regular
2D or 3D mesh-like structure [299]. Figure 15 illustrates a part of a rectilinear 2D mesh,
connecting each node to its four neighbours through bi-directional delay lines made of unit
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Figure 15. Part of a rectilinear 2D waveguide mesh structure. Bi-directional delay lines of unit
delays z−1 connect scattering junctions (square blocks).
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Figure 16. Single delay loop (SDL) structure containing loop filter Hl(z) and delay z−L.

delays. The 2D digital waveguide mesh can be used to model 2D resonators, such as percussion
membranes [4, 100]. The 3D digital waveguide mesh is applicable to 3D resonators, such as
rooms and enclosures [20, 117, 182, 226, 227, 230].

Digital waveguide meshes have the problem of dispersion in wave propagation,
i.e. different frequencies have different propagation speeds, typically such that high frequencies
propagate more slowly. In the rectilinear mesh it is also significantly direction-dependent,
i.e. dispersion is stronger in axial directions, while diagonal directions are dispersion-free.
This can be compensated by using interpolated meshes where the diagonal neighbours are
taken into account in the computation of scattering junctions [228, 230]. Another way to
obtain approximately direction-independent dispersion is to use triangular mesh structures in
2D modelling and tetrahedral mesh for 3D modelling [302]. Some dispersion remains both
with interpolation and non-rectilinear meshes. It can be compensated for by frequency warping
of the system impulse response off-line [228–230] or on-line [99,101,263]. This might not be
needed in many cases, however, because the human auditory system is less sensitive to spectral
details at high frequencies.

7.5. Reduction of a DWG model to a single delay loop structure

For efficient computation, the digital waveguide structure of figure 10 can be simplified further
in the case when the input–output transfer function is of interest only. Instead of the dual
delay-line signal loop, a single delay loop (SDL) structure [143] is used. Figure 16 illustrates
the idea of the SDL structure. Note that this is a source–filter model (see section 9), rather than
a strict physical model, because the signal variables in the single delay-line do not correspond
to the K- or wave variables in the physical system anymore. In spite of this, the SDL structures
have also been called digital waveguides.

A formal derivation of the SDL structure from the dual delay-line model has been
presented in [143]. Figure 17 depicts both of these forms, the dual delay-line version on
the top and the SDL structure in the bottom diagram. When considering signal paths E1→R1,
E2→L2→L1→E1, R1→R2 and R2→E2, which make a feedback loop in the dual delay-line
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Figure 17. Reduction of bi-directional delay-line waveguide model (top) to a single delay line
loop structure (bottom).

structure, the transfer function from excitation X(s) to bridge force F(s) can be derived in
the Laplace transform domain. After minor simplifications and moving to the Z-transform
domain, the following approximation results:

F(z)

X(z)
∼ HE(z)HL(z)HB(z) = (0.5 + 0.5z−Dp)

1

1 − Hl(z) z−L
I (z). (45)

Here the first term HE(z) = 0.5 + 0.5z−Dp corresponds to a comb filter that results from the
plucking point effect, i.e. cancelling of frequencies for which the delay Dp is a half-wavelength.
The second term HL(z) = 1/[1 − Hl(z)z

−L] is the SDL term as a feedback filter structure.
The term HB(z) = I (z) approximates integration (1/s in the Laplace domain) to obtain the
force at the bridge. In the form of a signal flow diagram, the SDL model obtained looks
like the bottom part of figure 17.

7.6. Commuted DWG synthesis

In synthesizing string instruments, there is a further requirement to include the instrument
body in the synthesis model. Different methods of body modelling will be discussed briefly
in section 9, but for improved efficiency of string instrument synthesis by SDL structure
‘commuted waveguide synthesis’ is found particularly useful. Proposed independently in [250]
and [142], commuted synthesis is based on the commutativity of linear systems connected in
cascade.

Figure 18 shows the derivation of the commuted source–filter structure in (c) from a
cascade of excitation E(z), string model S(z) and body model B(z), as shown in (a). Plucking
the string in (a) triggers feeding the excitation wavetable signal to the string model, the signal
being filtered finally by the body model, while in (c) an aggregate signal of excitation and
body response convolved into a wavetable is fed to the string model. Note that bi-directional
interactions between physical objects are reduced into a unidirectional signal flow.

Mathematically, the commuted DWG synthesis is based on the equivalences

Y (z) = E(z)S(z)B(z) ≡ E(z)B(z)S(z) ≡ A(z)S(z), (46)
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Figure 18. Principles of commuted DWG synthesis: (a) cascaded excitation, string and body,
(b) body and string blocks commuted and (c) excitation and body blocks consolidated into a
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Figure 19. Degrees of freedom for string vibration in the guitar.

where Y (z) is the model output and A(z) is the consolidation of excitation and body model,
i.e. a wavetable containing everything else in sound production except the string model. The
advantage of the commuted structure is that the body block is reduced from a computationally
expensive high-order digital filter to wavetable reading. This can reduce the computational
cost of the whole synthesis model by orders of magnitude.

7.7. Case study: modelling and synthesis of the acoustic guitar

The acoustic guitar is an example of a musical instrument for which DWG modelling is found to
be an efficient method, especially for real-time sound synthesis [134,137,142,160,286,295].
The DWG principle in figure 14 allows for true physically distributed modelling of strings
and their interaction, while the SDL commuted synthesis (figures 17 and 18) allows for more
efficient computation. In this subsection we discuss the principles of commuted waveguide
synthesis as applied to high-quality synthesis of the acoustic guitar.

There are several features that must be added to the simple commuted SDL structure in
order to achieve natural sound and control of the playing features. Figure 19 depicts the degrees
of freedom for the vibration of strings in the guitar. The transversal directions, i.e. the vertical
and horizontal polarizations of vibration, are the most prominent ones. The vertical vibration
connects strongly to the bridge, resulting in stronger initial sound and faster decay than the
horizontal vibrations that start more weakly and decay more slowly. The effect of longitudinal
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Figure 20. Dual-polarization string model with sympathetic vibration coupling between strings.
Multiple wavetables are used for varying plucking styles. Filter E(z) can control the detailed
timbre of plucking and P(z) is a plucking point comb filter.

vibration is weak but can be observed in the generation of some partials of the sound [320].
Longitudinal effects are more prominent in the piano [16, 58], but are particularly important
in such instruments as the kantele [82] through the nonlinear effect of tension modulation (see
section 11). The torsional vibration of strings in the guitar is not shown to have a remarkable
effect on the sound. In the violin it has a more prominent physical role, although it makes
virtually no contribution to the sound.

In commuted waveguide synthesis, the two transversal polarizations can be realized by
two separate SDL string models, Sv(z) for the vertical and Sh(z) for the horizontal polarization
in figure 20, each one with slightly different delay and decay parameters. The coefficient mp

is used to control the relative excitation amplitudes of each polarization, depending on the
initial direction of string movement after plucking. The coefficient mo can be used to mix the
vibration signal components at the bridge.

Figure 20 also shows another inherent feature of the guitar, the sympathetic coupling
between strings at the bridge, which causes an undamped string to gain energy from another
string set in vibration. While the principle shown in figure 14 implements this automatically if
the string and bridge admittances are correctly set, the model in figure 20 requires special signal
connections from point C to the vertical polarization model of other strings. This is just a rough
approximation of the physical phenomenon that guarantees the stability of the model. There is
also a connection through gc that allows for simple coupling from the horizontal polarization
to excite the vertical vibration, with a final result of a coupling between the polarizations.

The dual-polarization model in figure 20 is excited by wavetables containing commuted
waveguide excitations for different plucking styles. The filter E(z) can be used to control the
timbre details of the selected excitation, and the filter P(z) is a plucking point comb filter, as
previously discussed.

For solid body electric guitars, a magnetic pickup model is needed, but the body effect
can be neglected. The magnetic pickup can be modelled as a lowpass filter [124,137] in series
with a comb filter similar to the plucking point filter, but in this case corresponding to the
pickup position.

The calibration of model parameters is an important task when simulating a particular
instrument. Methods for calibrating a string instrument model are presented, for example,
in [8, 14, 24, 27, 137, 142, 211, 244, 286, 295, 320].

A typical procedure is to apply time-frequency analysis to recorded sound of plucked
or struck string, in order to estimate the decay rate of each harmonic. Parametric models
such as FZ-ARMA analysis [133, 138] may yield more complete information of the modal
components in string behaviour. This information is used to design a low-order loop filter
which approximates frequency-dependent losses in the SDL loop structure [14,17,79,244,286].
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A recent novel idea has been to design a sparse FIR loop filter, which is of high order but has
few non-zero coefficients [163, 209, 293]. This approach offers a computationally efficient
way to imitate the large deviations in the decay rates of harmonic components. Through
implementing a slight difference in the delays and decay rates of the two polarizations,
the beating or two-stage decay of the signal envelope can be approximated. For the
plucking point comb filter it is required to estimate the plucking point from a recorded tone
[199, 276, 277, 286].

Figure 21 depicts a detailed structure used in practice to realize the SDL loop. The
fundamental frequency of the string sound is inversely proportional to the total delay of the
loop blocks. Accurate tuning requires the application of a fractional delay, because an integral
number of unit delays is not accurate enough when a fixed sampling rate is used. Fractional
delays are typically approximated by first-order allpass filters or first- to fifth-order Lagrange
interpolators as discussed in [154].

When the loop filter properties are estimated properly, the excitation wavetable signal
is obtained by inverse filtering (deconvolution) of the recorded sound by the SDL response.
For practical synthesis, only the initial transient part of the inverse-filtered excitation is used,
typically covering several tens of milliseconds.

After careful calibration of the model, a highly realistic sounding synthesis can be obtained
by parametric control and modification of sound features. Synthesis is possible even in cases
which are not achievable in practice in real acoustic instruments.

7.8. DWG modelling of various musical instruments

Digital waveguide modelling has been applied to a variety of musical instruments other than the
acoustic guitar. In this subsection, we present a brief overview of such models and the features
that need special attention in each case. For an in-depth presentation on DWG modelling
techniques applied to different instrument families, see [254].

7.8.1. Other plucked string instruments. The acoustic guitar is particularly well suited to
digital waveguide modelling and sound synthesis. Many other plucked string instruments
are also relatively easy to model along the same guidelines, as long as there are no major
nonlinearities; among such instruments are the mandolin and the banjo. From the keyboard
string instrument family, the harpsichord also belongs to the plucked string category of
relatively linear behaviour and has been synthesized by a DWG model [293].

Several plucked string instruments exhibit nonlinearities to a degree where it has an
essential effect on the perceived sound. Good examples thereof are the Finnish kantele
[82, 130, 275] and the Turkish tanbur [84]. In both instruments, a specific termination
structure of the strings couples the longitudinal tension modulation, which originates in a
nonlinear way from string displacement, to the body and strongly radiates even harmonic
components [82]. This nonlinear phenomenon is distributed along the string so that no
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commutation and consolidation is possible in accurate modelling. This requires a realization
that is computationally much more expensive than a simple commuted DWG model.

Plucked string instruments that behave linearly in normal conditions can become highly
nonlinear when played in specific ways. The so-called slap bass sound [208] is generated
when a string is set into such a large amplitude that it touches frets or bounces back from the
fretboard. Entirely different nonlinearities are met in electric guitar modelling and synthesis.
The instrument itself is relatively straightforward to model [137], but it is often played through
a distorting amplifier or device that requires different modelling techniques [137, 268].

Nonlinearities are discussed in more detail in section 11.

7.8.2. Struck string instruments. The piano is the most common musical instrument where
strings are struck by a hammer that is accelerated by a key action mechanism [47, 46, 96].
Digital waveguide modelling of the piano has been studied actively in, for example [14–16,
22,25,27,254,258,298,301]. Modelling of the strings is basically similar to the acoustic guitar
case, although there are many more strings that come in 1–3 string groups per key. Therefore,
the coupling mechanism between strings and the soundboard is more complex.

One of the main challenges in struck string instruments and a clear difference from
plucked strings is the interaction of the hammer and the string. This is an inherently nonlinear
phenomenon, which makes the computationally efficient commuted synthesis more difficult
than in the guitar. The hammer first makes an impact to displace the string, but when the string
returns from displacement it makes another contact and possibly multiple further contacts with
the hammer. The details of multiple contacts depend on the initial hammer velocity, so that
the detailed time structure and therefore the spectrum of piano sound essentially varies from
pianissimo to forte playing. In commuted synthesis, this variance can be simulated either
by multiple wavetables for different hammer velocities or by using multiple application of
wavetable(s), each one for a separate hammer contact [254].

Another method to model the hammer–string interaction is by wave digital techniques
that are discussed in more detail in section 8. The so-called wave digital hammer [298] is a
physically well-motivated way to deal with discrete-time modelling of nonlinear interaction
in an energetically consistent manner.

In the piano, the longitudinal vibration of strings also has an effect that can be perceived.
There are, for example, so-called phantom partials and a multitude of signal components that
are due to nonlinear effects in the string [57]. Recently, these effects have also been added to
waveguide modelling and synthesis of the piano [16].

Piano strings, particularly thick wound strings for the lowest notes, exhibit clearly
perceptible inharmonicity, which originates from the stiffness of the strings [96]. Wave
propagation in the string is therefore dispersive. The dispersion can be modelled using an
allpass filter as a part of the feedback loop in the waveguide string algorithm [14,22,189,216,
240, 244, 272, 300].

As another keyboard instrument belonging to the struck string category, the clavichord
has also been modelled and synthesized using digital waveguide techniques [292].

7.8.3. Bowed string instruments. In the violin family of musical instruments, the strings
are normally excited by bowing [96]. The complex behaviour of friction between the
moving bow and the string results in so-called slip–stick alternation, and after a less regular
attack period the string eigenmodes synchronize this phenomenon to periodic vibration.
The slip–stick behaviour is highly nonlinear, which means that straightforward commuted
waveguide synthesis is not possible.
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Figure 22. Digital waveguide model of a single-reed woodwind instrument with cylindrical bore.
This can be applied, for example, to the clarinet.

Physical modelling of the dynamic behaviour of the violin was started by McIntyre,
Woodhouse and Schumacher, although understanding the physics of the instrument had been of
interest before (for a recent overview on the physics of the bowed string, see [321]). Particularly
in [172,236,237,243,317,318], the physical basis of violin behaviour has been developed and
modelled.

Digital waveguide modelling of bowed string instruments towards real-time synthesis has
been developed, since [244], from two starting points of view: modelling of the nonlinear bow–
string interaction and special versions of commuted synthesis. The former case, which tries
to duplicate the physical nonlinearity, is discussed further in section 11. For efficient sound
synthesis purposes, another approach can be taken, where commuted waveguide synthesis is
possible [252]. In it, each period of string vibration is given a separate wavetable excitation.
Due to the nonlinearity of the physical phenomenon, inclusion of both the excitation and the
body response in the wavetables becomes more problematic than, for example, in the guitar.

Other points of interest in DWG modelling of the violin are the torsional waves in
string vibration [241], the impact of string stiffness [240] and the effect of finite bow width
[115, 203–205, 238]. In addition to the violin family of musical instruments, bowing has also
been modelled in the context of unusual objects [239], including the musical saw.

7.8.4. Wind instruments. Wind instruments are acoustic sound sources in which a linear tube-
like resonator is combined with a nonlinear excitation system, i.e. mouthpiece and vibrating
reed(s) or the player’s lips [96]. The tube resonator can be modelled as a digital waveguide in
a way similar to string modelling, while the mouthpiece and the player’s lips require nonlinear
lumped element modelling. Wind instruments can be categorized by the mechanisms of
excitation and pitch control as (a) woodwind instruments with a single or double reed vibrating
and toneholes for length control, (b) brass instruments with player’s lips vibrating and valve
mechanism for tube length control and (c) ‘air reed’ instruments (flutes and organ pipes) where
an air jet blown to a sharp edge starts to vibrate according to the modes of an attached tube.

The clarinet is a typical wind instrument with a cylindrical bore and a single reed. Figure 22
shows a digital waveguide model used for clarinet sound synthesis [173,235,254]. It consists
of a bi-directional delay line as the bore waveguide, reflection and radiation output filters for
the open end (bell) and a nonlinear reed model. Mouth pressure activates the oscillation that
is sustained by positive feedback due to reed characteristics of flow versus pressure difference
across the reed. This nonlinear characteristics curve is mapped to a lookup table. Wind
instrument nonlinearities are discussed further in section 11.

The tube in wind instruments can be cylindrical or conical bore, and it can more or
less expand in diameter towards the radiation end of the tube (called the bell for clearly
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expanding cases). Modelling of the instrument bores has been studied in [19, 61, 70, 77, 231,
246, 248, 283, 287, 303, 304, 306, 307]. Conical and exponentially expanding bores are more
demanding to simulate than the cylindrical ones [19, 70, 77, 231, 248, 267, 283, 287, 303, 304,
306, 307].

Another part of wind instruments that requires modelling effort are the toneholes, which
are controllable side branch openings in the waveguide. Tonehole modelling is studied, for
example, in [28, 231, 232, 283, 290, 305]. When open, a tonehole works similarly to an open
end, and the rest of the bore towards the bell has little effect on sound production. When a
tonehole is closed, it corresponds to a short closed tube that has a minor effect on the wave
passing it.

Examples of brass instrument modelling are found, for example, in [312,313]. Modelling
of the player’s lip vibration is similar to the case of vocal fold modelling in speech and singing,
and it can be realized as a self-oscillating nonlinearity.

Yet another phenomenon of interest in brass instruments is the high pressure level of waves
in the instrument bore, which exhibits slight nonlinearity in air compression, and results in
the formation of shock waves [180, 181, 314]. This has to be taken into account in detailed
modelling of loud sounds with their particular ‘metallic’ timbre, for example, in the trumpet
and the trombone.

The flute and its air jet oscillation have been modelled by digital waveguide principles
in [288, 309].

7.8.5. Percussion instruments. Percussive instruments, such as drums and gongs, have been
studied from a physical point of view and with numerical methods, for example, in [49, 51,
52, 210], and they have been modelled and synthesized using 2D digital waveguide meshes
in [299,300]. (Actually those resonators are 3D objects if the air loading is taken into account.)
For 2D (and 3D) digital waveguides there is no way to consolidate the structure of figure 15
as can be done in the 1D case (see figure 9). Therefore, the wave-based computation of digital
waveguide meshes can become expensive for large structures. The losses can be commuted
to waveguide terminations, which allows the mesh itself to be lossless and thus maximally
simple.

Although the waveguide meshes are dispersive and therefore the higher modes do not have
correct frequencies, it is acceptable due to the reduced frequency resolution of human auditory
perception at high frequencies.

Many 2D resonators in percussive instruments exhibit nonlinear behaviour. This is
particularly true for gong-like instruments [96]. Such nonlinearities make strong inter-mode
coupling so that the vibration energy can spread, for example, from low to high frequencies
with audible shift in timbre. The nonlinearities themselves are inherently lossless and require
special techniques for simulation. Methods to realize such passive nonlinearities were proposed
in [202,296] and are briefly discussed in section 11. In a waveguide mesh synthesis of a gong,
it may suffice to add passive nonlinearities only at the rim termination of the instrument
model mesh, although in a real gong they are distributed. A further step in modelling
complexity from gongs is the Caribbean steel pan (steel drum) [96], where the distribution
of modal patterns creates regions tuned to different pitches and the nonlinearities make a rich
timbre.

7.8.6. Speech and singing voice. As mentioned above, modelling of voice production was
the early application of digital waveguide principle, at that time called the transmission line
principle [145]. Since then, the same principle has been used in numerous simulations of
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speech production, see for example [59, 128, 164, 267, 289], and in singing voice synthesis
[59, 60, 64, 150, 151], although it has not become popular in practical speech synthesis,
partly due to computational complexity compared with formant synthesis (see section 9) and
concatenation methods based on samples from real speech.

In voice production, the DWG principle can be applied to the vocal (and nasal) tract by
splicing it to short sections from the glottis to the lips. The admittance of each section is
controlled proportionally to the cross-sectional area in that position. The method is well suited
to articulatory modelling and synthesis whereby the movements of the articulators, particularly
of the tongue, can be mapped to the area profile for vocal tract control.

7.8.7. Inharmonic SDL type of DWG models. Digital waveguides are most straightforward
and efficient when applied to instruments producing harmonic spectrum of sound; this is
what a simple terminated delay line does when excited. The majority of instruments used in
western music produce fully or approximately harmonic sounds. DWGs needed for strongly
inharmonic sounds are necessarily more complex.

An example on DWG modelling of highly inharmonic instruments is synthesis of bell
sounds [140, 141]. By including a highly dispersive second-order allpass filter within a SDL
feedback loop it was found that bell sounds can be synthesized by an efficient DWG model.
Although only the lowest partials can be tuned relatively accurately, the perceptual quality of
DWG bell models can be made close to real bells. Notice that in this case the model does not
anyhow correspond to the spatial geometric structure and vibration distribution of a real bell.
Rather, this is a generic DWG model tuned in its parameters to produce realistic bell sounds.

8. Wave digital filters

The purpose of this section is to provide a general overview of physical modelling using WDFs
in the context of musical instruments. Only the essential basics of the topic will be discussed
in detail; the rest will be glossed over. For more information about the subject, the reader is
encouraged to refer to [254]. Also, another definitive work can be found in [94].

8.1. What are wave digital filters?

WDFs were developed in the late 1960s by Alfred Fettweis [93] for digitizing lumped analog
electrical circuits. The travelling-wave formulation of lumped electrical elements, where the
WDF approach is based, was introduced earlier by Belevitch [21, 254].

WDFs are certain types of digital filters with valid interpretations in the physical world.
This means that we can simulate the behaviour of a lumped physical system using a digital
filter whose coefficients depend on the parameters of this physical system. Alternatively,
WDFs can be seen as a particular type of finite difference scheme with excellent numerical
properties [254]. As discussed in section 4, the task of finite difference schemes in general is to
provide discrete versions of partial differential equations for simulation and analysis purposes.

WDFs are useful for physical modelling in many respects. Firstly, they are modular: the
same building blocks can be used for modelling very different systems; all that needs to be
changed is the topology of the wave digital network. Secondly, the preservation of energy and
hence also stability is usually addressed, since the elementary blocks can be made passive,
and the energy preservation between blocks are evaluated using the Kirchhoff’s laws. Finally,
WDFs have good numerical properties, that is, they do not experience artificial damping at
high frequencies.
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Figure 23. The N -port is a mathematical abstraction of a circuit element. It consists of N ports,
which all have two terminals. To each port j , a port voltage uj (t) and a port current ij (t) are
applied. A port is characterized by its port impedance Z0j , which defines the ratio between the
port voltage and current.

Physical systems were originally considered to be lumped in the basic wave digital
formalism. This means that the system to be modelled, say a drum, will become a point-like
black box, which has the functionality of the drum. However, its inner representation, as
well as its spatial dimensions, is lost. We must bear in mind, however, that the question of
whether a physical system can be considered lumped depends naturally not only on which of
its aspects we wish to model but also on the frequency scale we want to use in the modelling
(see section 3).

8.2. Analog circuit theory

This section introduces the analog elements that act as exemplars for the wave digital building
blocks.

8.2.1. N -ports. An N -port can be seen as a mathematical abstraction of a circuit element.
It is basically a ‘black box’ with N ports for interacting with other elements (see figure 23).
Each port consists of two terminals, and a port voltage is applied across them. Also, a current
is defined for each port, with the direction as shown in figure 23. The relationship between the
port voltage and current is defined by port impedance Z0j or its reciprocal, port admittance
Y0j , where j denotes the index of the port. For one-port elements, the index can be omitted.
The port impedances can have arbitrary values, as long as they remain non-negative. We thus
have an extra degree of freedom, which can be used later for simplifying the calculations.

Note that we could have used any other Kirchhoff pairs (force/velocity, pressure/volume
velocity) as well, but we chose to work in the electrical domain, as is usually the case with
WDFs. The domain under discussion can easily be changed at any point by replacing the
Kirchhoff pair with the one originating from the desired domain.

We next switch to using wave variables instead of Kirchhoff variables, in order to study
more thoroughly the one-port elements. This train of thought mostly follows the one provided
by Smith in [254]. Formally, the change of variables is implemented by defining the new
voltage wave variables a and b by[

a

b

]
=

[
1 Z0

1 −Z0

] [
u(t)

i(t)

]
, (47)

where a is the voltage wave travelling towards the port (also called the incident wave), while
b is the voltage wave travelling away from the port (also called the reflected wave).

The original K-variables can be obtained by properly summing up the wave variables:

u(t) = a + b

2
and i(t) = a − b

2Z0
. (48)
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It is worth noting that this differs from the wave decomposition often done in digital waveguides
(see, e.g. [253]), where the K-variables are obtained by summing the wave variables without
the scaling-by-two. We will discuss this in more detail in section 8.5.4.

Reflectance of a port is the transfer function that indicates the relation between an incoming
and an outgoing wave to that port. Formally, it can be obtained from the Laplace transform of
the reflected wave, divided by the Laplace transform of the incoming wave [254]:

SZ(s) = L{b}
L{a} = L{u(t) − Z0i(t)}

L{u(t) + Z0i(t)} = Z(s) − Z0

Z(s) + Z0
, (49)

where L is the Laplace operator. Note that here we used voltage waves in defining the
reflectance; had we used current waves, we would have obtained another formulation for
the reflectance. Therefore, this result can also be called the voltage-wave reflectance or the
force-wave reflectance in the mechanical domain.

8.2.2. One-port elements. This section will discuss the basic one-port elements: capacitors,
inductors, resistors, open- and short-circuits and voltage and current sources. We will derive
their individual reflectances in a similar way as in [254]. Two-port elements, such as gyrators,
transformers and QUARLs, are discussed, e.g. in [94].

For a capacitor, it holds that the current i(t) flowing through the element is proportional
to the time derivative of the voltage u(t) across it:

i(t) = C
∂u(t)

∂t
, (50)

where C is the capacitance in Farads. Using the Laplace transform, we have

I (s) = CsU(s), (51)

where s is the complex frequency variable, and I (s) and U(s) stand for the current and
voltage in the complex frequency domain, respectively. Using the generalized Ohm’s law, the
impedance of a capacitor can now be given as

ZC(s) = 1

Cs
. (52)

Substituting ZC(s) for Z(s) in equation (49), we obtain the reflectance of the capacitor as

SC(s) = ZC(s) − Z0

ZC(s) + Z0
= 1 − Z0Cs

1 + Z0Cs
. (53)

For an inductor, the voltage is in turn proportional to the time derivative of the current:

v(t) = L
∂i(t)

∂t
, (54)

where L denotes the inductance in Henrys. Similarly, taking the Laplace transform and
calculating the impedance, we have

ZL(s) = Ls. (55)

Substituting this result into equation (49), we obtain the reflectance of the inductor as

SL(s) = ZL(s) − Z0

ZL(s) + Z0
= s − Z0/L

s + Z0/L
. (56)

For a resistor, we have

u(t) = Ri(t), (57)
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where R is the resistance (in Ohms), and for the impedance we get simply

ZR(s) = R. (58)

Thus, the reflectance of the resistor becomes

SR(s) = 1 − Z0/R

1 + Z0/R
. (59)

Obviously, for the open and short circuit impedances, we have

Zoc(s) = ∞ (60)

and

Zsc(s) = 0, (61)

respectively. Hence, the reflectances become

Soc(s) = 1 (62)

and

Ssc(s) = −1. (63)

Note that this corroborates with our knowledge of wave propagation. An open circuit reflects
voltage waves without changing their phase, whereas the short circuit inverts the phase of the
reflecting voltage. In mechanical terms, a rigid wall termination reflects force waves without
phase inversion, while a free ‘frictionless’ termination inverts the phase of the reflecting force.
For velocity waves, such as the ones observable in a vibrating string4, the opposite is true: rigid
terminations invert the phase, whereas free terminations preserve it.

We will consider voltage and current sources in their digitized form in section 8.3.3. These
elements are needed if energy needs to be inserted into the system during run time. Otherwise,
initializing the voltage and current of the circuit is sufficient.

8.3. Wave digital building blocks

This section discusses the digitized versions of the analog elements already introduced and
provides rules for connecting them to form networks.

8.3.1. Discretization using the bilinear transform. The discretization of the network elements
discussed in section 8.3.3 is implemented using the well-known bilinear transform:

s → ψ = 2

T

1 − z−1

1 + z−1
= 2

T
tanh(sT /2), (64)

where z = esT denotes the discrete complex frequency, while T stands for the sampling
interval. By studying the real-valued discrete frequencies, we note that

Re[ψ] > 0 ⇔ Re

[
2

T

esT − 1

esT + 1

]
> 0 ⇔ Re[s] > 0 ⇔ |z| > 1, (65)

Re[ψ] < 0 ⇔ Re

[
2

T

esT − 1

esT + 1

]
< 0 ⇔ Re[s] < 0 ⇔ |z| < 1 (66)

and

Re[ψ] = 0 ⇔ Re

[
2

T

esT − 1

esT + 1

]
= 0 ⇔ Re[s] = 0 ⇔ |z| = 1. (67)

4 Actually, looking at a vibrating string one observes the displacement waves, but comparing them to their time
derivative, i.e. the velocity waves, one notices that they reflect similarly.
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Figure 24. The frequency error, i.e. the difference between the desired analog frequency and the
resulting digital frequency, caused by the bilinear transform as a function of the analog frequency.
The different lines denote different sampling frequencies. The sudden increase of the negative error
in sampling frequencies Fs = 8000 and Fs = 16 000 takes place at the Nyquist frequency, and the
following straight line denotes the fact that the error is 100%, since these frequencies cannot be
generated.

This means that the bilinear transform applies a Möbius mapping for the imaginary s axis in
the analog domain onto the unit circle in the digital domain. The frequency values with a
positive real part are mapped to the outer disk, while the frequency values with a negative real
part are mapped to the inner disk. By studying the inverse bilinear transform

z = 1 + s(T /2)

1 − s(T /2)
, (68)

we see that the analog dc (s = 0) is mapped onto z = 1, which corresponds to the real
digital frequency arg(z) = 0 rad. Also, the highest analog frequency (s = ∞) is mapped onto
z = −1, which corresponds to the highest digital frequency arg(z) = π rad.

Although the bilinear mapping is one-to-one so that aliasing does not occur, the frequency
scale is not linear but warped, especially at the high frequencies. Figure 24 illustrates the
digital frequency error as a function of analog frequency, with different sampling frequencies.
Fortunately, in most audio synthesis applications the frequencies of interest are considerably
lower than the Nyquist frequency, so this warping does not usually cause much trouble.

It is interesting to note that if z−1 is interpreted as the unit delay in the time domain,
the bilinear transform of equation (64) is equivalent to the trapezoidal rule for approximating
the time derivative [30]. We can now compare this approximation technique with the finite
difference approximation, introduced in equation (2):

∂y

∂t
≈ y(t) − y(t − T )

T
. (69)

If the temporal sampling interval is set to T = 1, as is often done in practice, we see that
the transfer function of the FDA becomes HFDA(z) = 1 − z−1, which is actually the (scaled)
numerator part of the bilinear transform. It is easy to show [254] that the FDA in fact maps
the imaginary axis onto a circle with radius 1/2, centred at z = 1/2. Obviously, the warping
of the frequencies is more severe in this case when compared with the bilinear transform. It
must be noted that also other numerical integration schemes for solving PDEs, such as the
Runge–Kutta method (see, e.g. [152]), can be interpreted as s-to-z mappings with different
numerical properties.
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8.3.2. Realizability. If the inductor element is now discretized using the bilinear transform,
using equation (56), its reflectance becomes

SL

(
2

T

1 − z−1

1 + z−1

)
= (2/T − Z0/L) − (Z0/L + 2/T )z−1

(2/T + Z0/L) + (Z0/L − 2/T )z−1
. (70)

Now, remembering that reflectance is actually the transfer function from the incident wave to
the reflected one, we see that it has a delay-free term in the nominator. When this element is
connected into a junction, we see that the incident wave (looking from the element’s view) is
evaluated using the reflected wave. Now, since there is a delay-free term in the reflectance of
this element, the system becomes implicit, since we would need the instantaneous output of
the system when calculating the input. Fortunately, we can solve this problem by utilizing the
extra degree of freedom, the port impedance, by assigning an appropriate value for it.

8.3.3. One-port elements. Defining Z0 = ZL = 2L/T for the impedance of the wave digital
inductor in equation (56), the reflectance simplifies to

SL(z) = −z−1. (71)

Similarly, selecting Z0 = ZC = T/(2C) for the impedance of the wave digital capacitor in
equation (53) simplifies reflectance to

SC(z) = z−1. (72)

Since the reflectance of the resistor is memoryless, i.e. there is no s-term in equation (59),
we can simply choose Z0 = ZR = R for the resistor’s impedance in equation (59), and the
reflectance goes to zero:

SR(z) = 0, (73)

which means that there is no reflection from the one-port resistor element. We will later find
out how connecting a wave digital resistor can still affect a system.

Voltage and current sources can also be implemented as wave digital elements. For the
voltage source, we have [94]

Su(z) = 2e − 1, (74)

and for the current source

Si(z) = 1 − 2e, (75)

where e is the voltage generated by the source. Table 1 summarizes the one-port elements
discussed thus far.

8.4. Interconnection and adaptors

The interconnection of different one-port elements is possible using adaptors. Adaptors
are N -port interfaces that enable the connection of other N -port elements and implement
the wave scattering resulting from the different port impedances. There are two types of
adaptors: parallel and series. The parallel adaptor is the wave digital equivalent of the
parallel connection from basic circuit theory. N -port elements connected in parallel share the
same voltage, while their currents sum up to zero. Intuitively, the series adaptor is in turn
the wave digital equivalent of the series connection. N -port elements connected in series share
the current and the voltages sum up to zero.

In this section, we will derive the scattering rules first for two-port parallel and series
adaptors, after which we will extend these results for obtaining the scattering rules for
N -port adaptors. This derivation process follows the guidelines presented in the WDF
literature [94, 254].
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Table 1. Table of the basic analog elements (column 2) and their wave digital versions (column 5).
Columns 3 and 4 contain the element impedances and the corresponding reflectances, respectively.

Element type Analog element Impedance Reflectance Wave digital element

Inductor ZL = 2L/T SL(z) = −z−1

Capacitor ZC = T/(2C) SC(z) = z−1

Resistor ZR = R SR(z) = 0

Open circuit Zoc = ∞ Soc(z) = 1

Short circuit Zsc = 0 Ssc(z) = −1

Voltage source Zu = 0 Su(z) = 2e − 1

Current source Zi = ∞ Si(z) = 1 − 2e

Figure 25. A two-port parallel adaptor. The subscripts of the K-variables u(t) and i(t) and the
wave variables a and b correspond to the number of the port to which they are assigned. Variables
uJ(t) and iJ(t) denote the voltage and current at the junction itself. The abstraction symbol for a
two-port series adaptor is otherwise identical, but the text ‘Parallel’ is changed to ‘Series’ inside
the adaptor.

8.4.1. Two-port adaptors. Let us consider a two-port parallel adaptor, illustrated in figure 25.
For the parallel connection, the voltages must be equal and the currents must sum up to zero, i.e.

u1(t) = u2(t) and i1(t) + i2(t) = 0. (76)
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Figure 26. The Kelly–Lochbaum implementation of the two-port scattering junction. Coefficient
ρ stands for the scattering coefficient.

Substituting equation (48) into equation (76), we have

a1 − b1

2Z1
+

a2 − b2

2Z2
= 0, (77)

and solving b1 and b2 from the first part of equation (48) we get

a1 − u1

Z1
+

a2 − u2

Z2
= 0 ⇔ u1

(
1

Z1
+

1

Z2

)
= a1

Z1
+

a2

Z2
(78)

and finally

u1 = u2 = uJ = Y1

Y1 + Y2
a1 +

Y2

Y1 + Y2
a2 = Y1a1 + Y2a2

Y1 + Y2
, (79)

where Yn = 1/Zn is the admittance of port n. Now, for the reflected wave b1, we have from
equation (48)

b1 = 2uJ − a1 = 2Y1a1 + 2Y2a2

Y1 + Y2
− a1 = Y1 − Y2

Y1 + Y2
a1 +

2Y2

Y1 + Y2
a2 (80)

and similarly for b2,

b2 = 2uJ − a2 = 2Y1

Y1 + Y2
a1 +

Y2 − Y1

Y1 + Y2
a2. (81)

Let us now think of connecting a wave digital one-port element to the first port of this adaptor
(see figure 25). If the reflectance of the one-port has a delay-free term; i.e. if a1 depends
directly on b1 as in equation (70), a delay-free loop is formed between the one-port and the
adaptor. This is the reason why we chose such values for the port impedances so that the
delay-free terms were eliminated in the reflectances in section 8.3.3.

Note also, that if we define a reflection coefficient asρ = (Y1−Y2)/(Y1+Y2), equations (80)
and (81) simplify to the familiar form[

b1

b2

]
=

[
ρ 1 − ρ

1 + ρ −ρ

] [
a1

a2

]
, (82)

called the Kelly–Lochbaum implementation of the scattering junction. This junction is
illustrated in figure 26.

For the two-port series adaptor, we have that the current is common and the voltages must
sum up to zero, i.e.

i1(t) = i2(t) and u1(t) + u2(t) = 0. (83)

Substituting equation (48) into equation (83) and solving b1 and b2 from the latter part of
equation (48), we have

iJ(t) = a1 + a2

Z1 + Z2
, (84)
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which denotes the current at the junction. Again, from equation (48), we get

b1 = Z2 − Z1

Z1 + Z2
a1 − 2Z1

Z1 + Z2
a2 (85)

and

b2 = − 2Z2

Z1 + Z2
a1 +

Z1 − Z2

Z1 + Z2
a2. (86)

Since

Yj = 1/Zj ⇒ ρ = Y1 − Y2

Y1 + Y2
= Z2 − Z1

Z1 + Z2
, (87)

we can denote equations (85) and (86) simply as[
b1

b2

]
=

[
ρ −(1 − ρ)

−(1 + ρ) −ρ

] [
a1

a2

]
. (88)

8.4.2. N -port adaptors. The scattering rules from the two-port adaptors can directly be
extended for defining the scattering of the N -port adaptors [254]. For the parallel connection,
we have

N∑
j=1

i(t) = 0 ⇔
N∑

j=1

aj − bj

2Zj

= 0, (89)

which becomes
N∑

j=1

aj − u(t)

Zj

(90)

after substituting bj = 2u(t) − aj . Note that the voltage u(t) is common in the parallel
connection. Now, we can formulate the total junction voltage as

u(t) = uJ(t) =
∑N

j=1 ajYj∑N
k=1 Yk

. (91)

From equation (48), we now have the reflected voltage wave as

bm = 2
∑N

j=1 ajYj∑N
k=1 Yk

− am for the parallel connection. (92)

For the series connection, we have

N∑
j=1

u(t) = 0 ⇔
N∑

j=1

aj + bj

2
= 0 ⇔

N∑
j=1

aj − Zj i(t) = 0, (93)

so the total junction current is

i(t) = iJ(t) =
∑N

j=1 aj∑N
k=1 Zk

. (94)

Again, from equation (48) we have

bm = am − 2Zm∑N
k=1 Zk

N∑
j=1

aj for the series connection. (95)
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Figure 27. A three-port series adaptor with a reflection-free third port. No delay-free loops can
then occur between the third port and the element connected to it, regardless of implementation of
that element.

It is interesting to note that the N -port wave digital adaptors perform the exactly same
computation as the N -port digital waveguide junctions [254], provided that the wave definitions
are compatible. We will return to this topic in section 8.5.4.

8.4.3. Reflection-free ports. In section 8.3.3 we defined the port impedances of the one-port
elements so that no delay-free loops could be formed when the one-ports were interconnected.
Optionally, we can make one of the ports of an N -port adaptor reflection-free by assigning
suitable values for the port impedances. More specifically, if we define the impedance of port
m to equal the sum of all other port impedances connected in series with it, i.e.

Zm =
N∑

j=1,j �=m

Zj , (96)

the impedance match from branch m to the junction becomes exact and no reflection occurs.
This can be checked by substituting equation (96) to equation (95) and obtaining

bm = am − 2

∑N
j=1,j �=m Zj∑N

j=1 Zj

N∑
j=1

aj = am − 2

∑N
j=1,j �=m Zj

2
∑N

j=1,j �=m Zj

N∑
j=1

aj = −
N∑

j=1,j �=m

aj (97)

for the series reflection-free port.
In the same manner, for the parallel connection, we can define the admittance of port m

to equal the sum of all other port admittances, i.e.

Ym =
N∑

j=1,j �=m

Yj , (98)

and obtain the wave leaving the parallel adaptor at port m from

bm = 2∑N
j=1 Yj

N∑
j=1,j �=m

Yjaj . (99)

Equations (97) and (99) now reveal that since the reflected wave at port m does not depend on
the incident wave am, no delay-free loop can be formed between the one-port and the adaptor,
regardless of implementation of the one-port element.

Figure 27 illustrates a three-port series adaptor, where the third port is reflection-free.
Note that the b3 terminal has a T-shaped ending to emphasize the fact that it does not depend
on a3.
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Table 2. Table of the analogies between different domains: electrical (first column), mechanical
(second column) and acoustical (third column). In the acoustic domain, ρair denotes the air density,
l denotes the length of a short, open tube, while a stands for the cross-sectional area of the tube.
V and c are the volume of a cavity and the speed of sound, respectively.

Electrical domain Mechanical domain Acoustical domain

voltage, u(t) force, f (t) air pressure, p(t)

current, i(t) velocity, v(t) volume velocity, u(t)

inductance, L mass, m acoustic inductance (in a tube),
ρair l/a

capacitance, C inverse of the spring constant, 1/k acoustic capacitance (inside a cavity),
V/ρairc

2

resistance, R mechanical resistance, R fluid-dynamic resistance, R

8.5. Physical modelling using WDFs

The modelling process of a physical system using WDFs can be summarized in the following
steps:

(i) Analyse the physical system to be modelled. Express a mechanical system using masses,
springs and dampers or an acoustic system using acoustic inductances, capacitances and
losses. Remember that if the elements share the same force (air pressure) they are
connected in parallel. If they share the same velocity (volume velocity) they are connected
in series. Find out which parameters are given and which must be obtained.

(ii) Move the system into the electrical domain using analogies between different domains.
(See table 2. For a more thorough discussion between the analogies between domains,
see, e.g. [10].)

(iii) Substitute the analog elements with the wave digital one-ports and their connections with
adaptors. Substitute the given parameters and use the equations presented in the previous
section to evaluate the desired quantities.

We will look more deeply into connecting the WDFs to form networks in the following
section. Section 8.5.2 will consider implementing nonlinearities in wave digital networks.

8.5.1. Wave digital networks. The one-port elements and the N -port adaptors discussed in
section 8.3 can now be connected for modelling physical structures. The connections between
the one-ports and adaptors should comply with the following rules.

• A terminal can be connected to no more than one other terminal only.

• The grouping of terminals must be preserved; i.e. if a terminal an of port n is connected to
a terminal bm of port m, the remaining terminals of these ports, namely bn and am, must
be connected also.

• The wave flow directions must be preserved within the terminals. This means that after
connecting a wave digital element into an adaptor the wave bn leaving the element must
become the wave am entering the adaptor [254].

• The impedances of connected ports must be equal. This is necessary since wave scattering
can be properly implemented only by the adaptor element, not by the port impedance itself.

• No delay-free loops can occur. We have demonstrated two techniques for accomplishing
this: choosing the element impedances properly or using reflection-free ports.
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Figure 28. A nonlinear capacitance connected in series with a linear inductance. The reactive part
of the capacitance is implemented by the mutator, while the resistive part is implemented by the
nonlinear resistor. Both terminals of the mutator are reflection-free, since there is no instantaneous
dependence between the incident and reflected waves.

8.5.2. Modelling of nonlinearities. We have so far discussed only linear systems. Although
many physical systems can indeed be considered linear, the characteristic tones of many
musical instruments are due to nonlinearities. This section briefly discusses modelling of
nonlinearities via WDFs. We will first consider the simulation of nonlinear resistors, after
which we will generalize our system to cover also nonlinear capacitors and inductors using
special mutator elements, as done in [225]. An overview on nonlinearities in WDFs can be
found in [197].

Let us consider a simple nonlinear resistor whose value depends on the voltage applied
over it. This means that there is a nonlinear dependency between the voltage and the current.
In practice, we can obtain samples of this dependency, e.g. by measurements, and the values
can be stored in a lookup table. Using this table, we can implement a wave digital version of
the nonlinear resistor in the following way [225].

• First, a K-variable at the port connected to the resistor, u(t) for example, is needed. This
can be obtained by evaluating the Thevenin equivalent of the rest of the circuit, for instance.

• Next, read the value of the other K-variable, i(t) in this case, from the lookup table using
its dual variable.

• Finally, use equation (47) to get the wave leaving the nonlinear resistor.

Note that in order to avoid delay-free loops, the nonlinear resistor must be connected to a
reflection-free port of an adaptor. This also means that the incident wave at the resistor does
not affect the reflected wave. A more analytical formulation of a nonlinear resistor can be
found in [175].

When the nonlinearity is reactive, i.e. it involves integrals or derivatives, the above
procedure does not suffice. In fact, any classical wave digital modelling attempt fails
due to computability problems [225], and special elements, called mutators, are needed.
Basically, mutators are two-port adaptors with memory, and their task is to implement the
reactive part of a general algebraic nonlinear element. A nonlinear capacitor, for example,
is constructed by connecting an R–C mutator to a nonlinear resistor. The interaction with
this nonlinear capacitor is then conducted using the remaining port of the mutator. A wave
digital circuit with a nonlinear capacitor connected in series with a linear inductor is shown in
figure 28.

Formally, implementing the reactive part of the nonlinearity is carried out by augmenting
the reflection coefficient ρ of a two-port scattering junction with memory in order to obtain a
reflection transfer function ρ(z). For the R–C mutator, it can be shown, as in [225], that the
reflection transfer function becomes simply

ρ(z) = z−1. (100)

For the R–L mutator, the reflection transfer function becomes [225]

ρ(z) = −z−1. (101)
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(a) (b)

Figure 29. The signal flow graph of (a) the R–C mutator and (b) the R–L mutator. These graphs
have been obtained from figure 26 by substituting ρ ← z−1 in (a), and ρ ← −z−1 in (b).

Note that this is in perfect agreement with our previous results; here the reflection coefficient
ρ of a two-port junction (see, e.g. figure 26) has just been replaced by a reflection transfer
function ρ(z), which in the case of an R–C mutator equals the reflectance of a wave digital
capacitor (equation (53)). Similarly, for the R–L mutator, we have ρ(z) = SL(z−1). The signal
flow graphs of the R–C and R–L mutators are illustrated in figure 29.

We will not consider time-varying WDFs here. Studies concerning them can be found,
e.g. in [265] and [31].

8.5.3. Case study: the wave digital hammer. As a case study, we will consider a nonlinear
wave digital piano hammer, introduced in [196]. This presentation of a piano hammer is a
simplified one; the hammer is thought to consist of a mass and a nonlinear spring, corresponding
to the compressing felt. Figure 30 shows the schematic diagram of the piano excitation
mechanism, along with the simplified model. The string that the hammer excites can be
modelled using a simple digital waveguide, attached to a damper, for modelling the losses.
When the hammer is in contact with the string, they must share the same velocity. Also, the
force that the hammer exerts on the string has an opposite but equal restoring force rising
from the string, so that the total force is zero. Therefore, we can conclude that the connection
between the string and the hammer is a series one.

For the losses, it is clear that the string and the damper share the same velocity since they
are in motion together, and the force between them adds to zero. Therefore, the string–damper
interaction is a series connection.

For the mass-to-spring connection, although the mass and the felt both share the same
velocity when the hammer is ‘in flight’, they have different velocities when the hammer is in
contact with the string, due to the felt compression. Also, since the same force is applied on
both the mass and the spring, the connection between them is parallel. With these in mind,
we can now present an electrical equivalent circuit of the nonlinear piano hammer with the
damper in figure 31, and its wave digital version together with the string in figure 32.

Note that since there are no sources in this system, the wave digital hammer cannot be
excited during run time. Instead, in order to move the hammer, we must set the initial parameter
values so that the hammer is in motion already when the simulation begins.

8.5.4. Wave modelling possibilities. There are also alternative ways to perform the wave
decomposition that we did in equation (47). As already stated, current (velocity) waves could
be used instead, which would be equivalent to changing the inductors to capacitors and serial
connections to parallel ones and vice-versa in our WDF networks. The behaviour of our model
would still remain essentially the same, since this would mean only using the dual system in
the Kirchhoffian sense.
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Figure 30. The schematic diagram of the excitation mechanism of a piano (a) (after [221]) and its
simplified version (b) consisting of a mass, spring, damper and a string. In (a), when the key is
pressed, energy is transferred via the lever mechanism to the hammer, which hits the string. The
hammer is coated with a soft felt, which compresses in a nonlinear fashion.

Figure 31. The electrical equivalent circuit of the nonlinear hammer with a damper. The resistance
value of the damper is given as R, and the inductance corresponding to the hammer mass is denoted
as L. The capacitor corresponding to the nonlinear spring is characterized by the capacitance
Cnonlinear . The string element would be connected to the free terminals of the circuit.

Optionally, we could define the voltage waves similarly to what is often done in the digital
waveguides: [

a

b

]
= 1

2

[
1 Z0

1 −Z0

] [
u(t)

i(t)

]
. (102)

Note that here summing the wave variables a and b gives the K-variable u(t) directly. This is
traditionally the case with digital waveguides, where, e.g. the string displacement at a certain
location is obtained by simply summing the wave components at that location. Therefore,
if the wave variables are defined as in equation (102), the wave digital systems and digital
waveguide structures become fully compatible. Otherwise, a scaling, like the one in figure 32,
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Figure 32. The wave digital presentation of the nonlinear piano hammer. The N near the top
resistor denotes its nonlinearity. The nonlinear capacitor is obtained connecting the nonlinear
resistor to an R–C mutator. The delay elements are bidirectional delay lines, implementing the
digital waveguide string. The termination of the string from the rigid boundary is phase-preserving,
since voltage (force) waves are used here. The reason for the scaling between the WDF and DWG
blocks will be discussed in section 8.5.4.

must be made. It must be emphasized, however, that wave digital networks are generally
not the same as digital waveguide networks, since in digital waveguides the impedance Z0 is
defined as the physical wave impedance [254], whereas in WDFs Z0 is an additional degree
of freedom that can be used for easing the calculations.

Another possibility for wave decomposition is to use power-normalized waves [94], where
the wave components are defined as[

a

b

]
= 1

2
√

R

[
1 Z0

1 −Z0

] [
u(t)

i(t)

]
. (103)

The advantage here is that the change in the wave impedances in different parts of the system
does not change the power transmitted by the waves; i.e. the signal power does not depend
on the impedances. This kind of behaviour is needed if time-varying wave digital networks
are desired. Otherwise, changing the impedance of an element would result in changing the
power and thus also the energy of the system. Power-normalized wave digital models have
been used, e.g. in [23].

8.5.5. Multidimensional WDF networks. All models considered so far have been lumped,
i.e. we have lost the spatial dimensions of the elements for obtaining simpler models. It is
worth noting, however, that the spatial dimensions of the models can be preserved if they are
modelled using multidimensional WDFs [94]. The procedure for deriving multidimensional
WDF elements is somewhat similar to what is done in the lumped case, the main difference
being the fact that the reference circuit must be presented by a multidimensional Kirchhoff
circuit, since a simple electrical equivalent does not suffice.

This circuit is far more of a mathematical abstraction than its lumped version, and the state
of the circuit depends on several variables, which may or may not include time [30]. A deeper
discussion of the multidimensional WDFs is outside the scope of this paper, and the reader
can find a thorough study of the topic in [30].
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Figure 33. Black box representation of a source–filter model.

8.6. Current research

Wave digital filters are used in various musical instrument models. Nonlinear wave digital piano
hammers have already been considered, e.g. in [23, 196, 298]. WDFs have also been used in
woodwind modelling, where the tonehole is considered as a lumped system [304, 305]. Very
recently, the energy-preserving abilities of WDFs have been used for designing energetically
passive time-varying generalizations of allpass filters [31]. Furthermore, these allpass
filters are used in generating an energetically well-behaving string model with time-varying
tension [187].

9. Source–filter models

The source–filter paradigm for modelling of acoustic systems and for synthesizing related
sounds dates back to early analog sound synthesis. Before computerized times, it was
used extensively in speech synthesis and coding studies since the Voder synthesizer by
Dudley (described in [95]) and many analog music synthesizers [281], such as the popular
Minimoog [43].

Source–filter modelling and synthesis consist of a wide range of methods from abstract
ad hoc signal processing techniques, which do not have any physical correspondence, to
methods that have a clear physical interpretation. As a matter of fact, every model that includes
an active excitation and a subsystem that processes the excitation can be seen as a source–filter
model. In this sense, all physics-based modelling paradigms discussed in this paper exhibit
the source–filter aspect; for example, a modal filterbank in the modal synthesis shows this
aspect. Particularly, the single delay-line versions in DWG theory are clearly source–filter
models.

There is no strict dividing line between truly physics-based modelling and abstract source–
filter models. One way to categorize systems is to refer to the simple black box representation
in figure 33. To be a true physical model, the source signal should be a physically relevant
variable, and the inner structure of the filter should correspond to the physical structure of the
system under study. Furthermore, the interaction of subsystems should be bi-directional in a
physics-based manner. In spatially distributed structures, the variables used should correspond
to the true spatial positions used for modelling. Such strict requirements can be essential if the
modelling is intended to gain understanding of the physical details of a particular system, for
example, in basic research of musical acoustics or virtual prototyping in instrument design.
On the other hand, in sound synthesis the requirement of real-time efficiency can typically be
fulfilled best by reducing the model to an abstract source–filter structure and uni-directional
signal flow.

In source–filter modelling, referring to figure 33, the source can be an oscillator to generate
a periodic or non-periodic waveform, such as a sine wave, sawtooth wave, impulsive signal,
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Figure 34. Typical ADSR envelope curve for controlling the signal level in sound synthesis.

noise or glottal waveform in speech synthesis. The source is often implemented as a wavetable,
i.e. a stored synthetic or sampled signal is repeated in a loop and it is then modified by the
filter.

The filter in discrete-time modelling can be any digital filter, linear or nonlinear, that is
applicable to the task at hand. Basic resonant filters are presented below in section 9.2 as
applied to the modelling of voice production and to speech synthesis. As a limit case we
can see the memoryless nonlinear operations for waveshaping, such as the popular frequency
modulation (FM) synthesis [54], which can be classified as an abstract synthesis algorithm but
hardly as a source–filter model.

The source and particularly the filter in figure 33 are controlled by time-varying parameters
in order to change the characteristics of sound as functions of time. A classical method in
computer music, for both analog and digital synthesizers, is to apply so-called ADSR (attack,
decay, sustain, release) characteristics to synthesis control. Figure 34 illustrates a typical
ADSR curve for the amplitude level of synthesized sound.

9.1. Subtractive synthesis in computer music

The term ‘subtractive synthesis’ has been used often in computer music to describe techniques
that are essentially source–filter modelling [5, 212]. The motivation to use this term probably
comes from the fact that ‘additive synthesis’ is used as a paradigm where signal components,
typically sinusoidal signals, are added to construct the desired signal spectrum. Therefore, it
seems logical to define subtractive synthesis as a contrasting way to synthesize sounds, because
it starts from a source signal and in a sense ‘subtracts’, i.e. attenuates some frequencies.

While the term ‘subtractive synthesis’ may seem logical, it can also be misleading as it does
not fit into the model-based terminology. The filter part does not only attenuate (i.e. subtract)
signal components, but it can amplify them as well. For this reason, we discourage using the
term ‘subtractive synthesis’ unless it is used in the historical context.

9.2. Source–filter models in speech synthesis

An early application of the source–filter approach was the modelling of voice production and
speech synthesis, first by analog and later by DSP [149]. It was found that the vocal tract
transfer function could be realized as a proper set of second-order resonator filters, each one
for a single formant resonance, i.e. eigenmode of the vocal tract [92, 95].

The formant resonators can be connected either in cascade (series) or in parallel. In the
cascade model of figure 35, the resonators are second-order lowpass filters with a resonance
peak that has a controllable frequency fi . If a small number of resonators is used, for
example i = 1, . . . , 4 in figure 35, a correction filter (HPC) is needed to compensate for
the missing higher formants. The source is a periodic excitation approximating the human
glottal waveform [148], controllable in frequency (F0) and amplitude. The cascade model is
particularly well suited to vowel synthesis.
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Figure 35. Cascade model of formant synthesizer.
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Figure 36. Parallel model of formant synthesizer.

A parallel formant synthesizer is characterized in figure 36. All formant resonators, which
must have bandpass filter characteristics, are fed from the same source and the outputs are
summed to obtain the synthetic speech signal. In this case, there are control parameters for the
formant frequency fi , the formant amplitude ai and the Q value Qi (resonance sharpness)
of each formant. The filter part can be fed by a periodic glottal source with frequency
control or by a noise source for frication sounds, and it can therefore also produce unvoiced
sounds.

Many other digital filter configurations have been applied to speech synthesis. The
development of digital filters and DSP was in fact greatly influenced by the needs of speech
signal processing. An important further step was the introduction of linear prediction [169],
which enabled the systematic analysis and synthesis of speech signals for coding (such as
CELP coding, [233]) and synthesis applications. Linear prediction is also useful in musical
signal processing applications.

In addition to speech synthesis and speech processing in general, the source–filter approach
has been used in modelling and synthesizing the singing voice [9, 219, 269].

9.3. Instrument body modelling by digital filters

The body or the soundboard of a musical instrument is a multidimensional resonator. In the
guitar, for example, the wooden box is a complex resonator structure that interacts with air
resonances in the box’s interior. Due to this multidimensionality, the body modelling is a
computationally heavy task that requires spatially distributed modelling methods, such as the
finite element, the boundary element or the finite difference method [75]. For real-time sound
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Figure 37. Signal flow diagram of Karplus–Strong algorithm.

synthesis, these methods are in most cases computationally too expensive. Thus, it is attractive
to try to reduce the body effect to a single digital filter.

A number of filter-based body models were introduced in [139]. These include frequency-
warped filters [108] and several basic techniques of filter decompositions. Since the models
with full auditory accuracy tend to be expensive even for today’s computers, simplifications
are desirable. Higher frequency modes can be made sparse or totally discarded or they may
be approximated by a reverberation algorithm [117, 198].

9.4. The Karplus–Strong algorithm

The Karplus–Strong algorithm is one of the basic inventions in computer music that later turned
out to be an interesting and extremely simplified case of a physics-based model as well as a
kind of source–filter. A wavetable is first filled with data, such as random numbers. Then it is
circulated like the single delay-line loop with a simple loop filter, see figure 37. This method
was proposed by Karplus and Strong [144], and soon thereafter it was extended to forms that
have a closer relationship to physics-based modelling [120, 143, 244].

In the original Karplus–Strong algorithm, the loop filter is an averager of two succeeding
samples, which corresponds to the transfer function H(z) = 0.5 (1 + z−1) and works as
a lowpass filter. Thus, the filter attenuates high frequencies in the loop faster than low
frequencies, which is exactly what happens, for example, in a plucked string. A new sound
can be started by loading new content into the delay line. The fundamental frequency can
easily be changed by controlling the sample rate of computation or the length of the delay line.
Due to the extreme simplicity of the algorithm, it enabled real-time sound synthesis using the
computers and processors of the early 1980s.

By feeding the excitation into the model from the dashed line input in figure 37 instead
of loading the delay line all at once, the algorithm is converted into a source–filter structure.
Through various extensions, it has been turned into different practical sound synthesis models,
as discussed in section 7.

9.5. Virtual analog synthesis

Digital subtractive synthesis is called virtual analog synthesis, when reference is made to
computational methods that imitate the sound generation principles of analog synthesizers of
the 1960s and 1970s. The term ‘virtual analog synthesis’ became a popular and commercial
term around 1995, when a Swedish company called Clavia introduced the Nord Lead 1
synthesizer, which was marketed as an analog-sounding digital synthesizer that used no
sampled sounds. Instead, all of its sounds were generated by simulating analog subtractive
synthesis using DSP techniques. Previously, the Roland D-50 synthesizer of the late 1980s
worked in a similar way, although it also used sampled sounds. An early example of an attempt
to design an analog-sounding digital synthesizer was the Synergy synthesizer [126].

What makes digital subtractive synthesis more demanding than is generally understood
is that imitating analog electronics with digital processing is not as easy as it may seem.
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Table 3. Hybrid modelling possibilities. The hybrid models encountered in the literature are marked
by ‘•’ symbols and the combinations that are currently untested are marked by ‘◦’ symbols.

K-methods Wave methods

Method Mass–spring Modal Finite difference Source–filter DWG WDF

Mass–spring • • ◦ • • ◦
Modal • • ◦ ◦ • •
Finite difference ◦ ◦ • • • •
Source–filter • ◦ • • • •
DWG • • • • • •
WDF ◦ • • • • •

One problem is aliasing caused by the sampling of analog waveforms that have sharp corners,
such as the square wave or the sawtooth wave. The spectra of such waveforms continue
infinitely high in frequency, and the signals are thus not bandlimited. Several algorithms
have been proposed to generate discrete-time versions of analog waveforms so that aliasing
is completely eliminated [177, 316] or is sufficiently suppressed [35, 157, 262, 285]. Another
difficulty is that analog filters do not obey the linear theory exactly: at high signal levels
they generate nonlinear distortion. This does not naturally occur in discrete-time signal
processing, but it must be implemented, for example, by using a memoryless nonlinear function
[118, 222].

Virtual analog synthesis can be seen to have similarities to the physical modelling synthesis
research: in the latter case computational simulations of acoustic systems are designed, while
in the former computational simulations are derived from electronic systems. Bandlimited
oscillator algorithms are not usually based on the actual electronic circuit that was used in
old music synthesizers, but instead on an imitation of their characteristic sound. However,
some digital filters used in virtual analog synthesis are digitized versions of electric circuits,
e.g. [118].

Another trend in audio and music processing is to simulate traditional analog
electronics used in tube amplifiers, such as those used by electric guitar, bass and
electric organ players. This problem is demanding due to nonlinearities in the tube
behaviour. A simple model of a tube preamplifier for the electric guitar has been introduced
in [137].

10. Hybrid models

Since both the wave models and K-models presented in earlier sections have their own pros
and cons, it might be beneficial to combine their advantages in the same model. The results
of combining different modelling schemes are known as hybrid or mixed models. Using
hybrid approaches in sound synthesis to maximize strengths and minimize weaknesses of each
technique is addressed in [119]. It has been pointed out that hybridization typically surfaces
after a technique has been around for some time and its characteristics have been explored
extensively. A corollary of this remark is that six commonly used techniques presented in
previous sections result in 21 possible combinations. These combinations are schematically
shown in table 3. Note that this table is redundant, as an upper-triangular 6×6 matrix would be
sufficient to describe possible combinations. However, a full matrix presentation is preferred
for ease of reading.

Combining discrete models, even those of the same technique, is a nontrivial task due to
computability problems and thus deserves special attention. An exception is the source–filter
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technique, because it is based on unidirectional signal flow as opposed to a dual pair of
variables. It is therefore possible to combine the source–filter technique with any other
technique, although such a combination is not common in modal synthesis.

The wave-based methods are more apt to hybrid modelling, as the WDF and DWG
structures are mostly compatible. In addition, the adaptors in WDFs and the isomorphic
scattering junctions in DWGs readily eliminate the delay-free loops in LTI cases. Because of
these desirable properties, many WDF–DWG hybrids are reported in the literature (see, for
instance, the hybrid model of a wave digital piano hammer and a DWG string in section 8
and the woodwind hybrid model reported in [304]). Moreover, the generalized theory of
multivariable waveguides and scattering allows expression of DWG networks in a compact
way [218]. The time-varying and nonlinear cases require special methods, as will be outlined
in the next section.

The interconnected K-modules usually contain delay-free loops. We have already seen an
example of how a delay-free loop occurs when linking two mass elements in section 5. The
reported hybrid K-models usually restore computability by inserting a unit delay within the
delay-free loop. This additional delay usually affects the accuracy and stability of the resulting
hybrid structure, as demonstrated in a numerical model of hammer–string interaction in [33].
An exceptional case occurs when one of the interconnected K-modules has an impulse response
that satisfies h(0) = 0. The output of such a module depends only on the past values of its
inputs, which essentially means that a delay-free loop does not occur and the computability is
restored without an additional delay, as reported in [105].

In this section we focus on systematic approaches for constructing hybrid models that
inherently address the computability, accuracy, stability and efficiency of the resulting structure.
A general method for solving computability problems due to the delay-free loops, especially
those found when connecting nonlinear excitation blocks to linear resonator blocks, has been
reported in [33]. This method is called the ‘K-method’ since it operates on the K-variables
rather than the wave variables. The K-method transforms the state-variables of the linear
part of the system in order to indicate all delay-free loops involving nonlinear maps and
then operates a geometrical transformation on the nonlinearities in order to cut instantaneous
dependences. Two possibilities are available for efficient numerical implementation of the
K-method. The first is to pre-compute the new nonlinear map off-line and store it in a lookup
table. Alternatively, it can be iteratively computed using the Newton–Raphson method. The
iterative method has been used for combining two modal resonators and implementing their
nonlinear interaction in [215].

10.1. KW-hybrids

In this section, we consider the connection of the wave models with K-models. We use the
shorthand ‘KW-hybrid’ to refer to this kind of hybrid model.

The K-method can be used to form a KW-hybrid to couple a nonlinear lumped hammer
model (consisting of a mass and a nonlinear spring) to a DWG [33]. In the case of LTI
models, the K-method simplifies significantly, as the geometrical transformation can be solved
analytically. Even simpler approaches have been reported for systematically constructed
KW-hybrids.

One way of constructing KW-hybrids is to formulate a particular modular K-model
with explicit instantaneous interaction elements and then use a special KW-converter. The
KW-converter concept was developed in [80, 132] and formalized in [131]. The advantage
of this approach is that the full dynamics of the K-model are preserved and its scheduling
is made similar to that of the wave model. The disadvantage of this approach is that it is
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Figure 38. A FDTD node (left) and a DWG node (right) forming a part of a hybrid waveguide.
There is a KW-converter between K- and wave models. Yi are wave admittances of W-lines and
K-pipes. P1 and P2 are the junction pressures of the K-node and wave node, respectively.

not general, as each K-model should be formulated separately for instantaneous modular
interactions. Such a formulation is carried out in [131] for finite difference structures, as
discussed in section 4. Here, the operation of a KW-hybrid model in the acoustical domain is
outlined, as shown in figure 38.

The two-port K-node N1 on the left-hand side of the figure is a generalization of the FDTD
lattice element depicted in figure 2 of section 4.1. This K-node includes admittances Y1 and
Y2 for connections between nodes through the K-ports. The figure also illustrates how a port
of such a K-node can be terminated passively (Y1 and feedback through z−1 on the left-hand
side).

In figure 38, a K-node N1 (left) and a wave node N2 (right) are aligned with the spatial grids
i = 1 and 2, respectively. The wave nodes (scattering junctions) were previously discussed
in section 7. Note that the junction pressures are available in both types of nodes, but in the
DWG case not at the wave ports. However, the similarity of operations may be used to obtain
the following transfer matrix of the 2-port KW-converter element

[
P +

2

z−1P2

]
=

[
1 −z−2

1 1 − z−2

] [
z−1P1

P −
2

]
. (104)

The KW-converter in figure 38 essentially performs the calculations given in
equation (104) and interconnects the K-type port of an FDTD node and the wave type port of
a DWG node.

Another way of constructing KW-hybrids is to formulate the K-models within the state–
space formalism (as a black box with added ports) and choose the port resistance to break
instantaneous input–output path to avoid delay-free loops. The advantage of this approach
is its generality, as any LTI K-model can be formulated as a state-space structure [254].
The disadvantage of this approach is that the dynamics of the K-model are hidden and its
scheduling has to be separately authorized. A KW-hybrid modelling formulation based on the
state-space formalism is presented in [201]. This formulation is used in [200] to construct a 1D
KW-hybrid by mixing FDTD, FTM and WDF techniques. These techniques were discussed
in sections 4, 6.3 and 8, respectively. Other KW-hybrid modelling examples are discussed in
the next subsection.
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10.2. KW-hybrid modelling examples

A practical application utilizing a KW-hybrid model is the RoomWeaver [20]; a software
application used for building virtual 3D spaces and modelling their room impulse responses.
RoomWeaver utilizes rectangular (2D) or cubic arrays (3D) of digital waveguide meshes to
model the space with the desired geometry. Since multidimensional finite difference structures
are computationally more efficient but do not provide as good implementations for boundary
conditions as DWG schemes do, a mixed model is the proper choice for large meshes. In
RoomWeaver, a KW-hybrid model (constructed by using the KW-converters in figure 38) is
used to accomplish an efficient modelling solution. A comparison of the hybrid modelling and
the conventional approaches is performed in [20]. A fan-shaped room was simulated at the
sampling rate of 44.1 kHz using 260330 nodes in a mesh. The results showed a speed increase
of 200% and a memory usage decrease of 50% when the hybrid mesh was compared with
the standard one.

Other examples of FDTD/DWG hybrids include the string collision model of
Krishnaswamy and Smith [153] and the finite width bow/string model of Pitteroff and
Woodhouse [203–205]. These models are discussed in sections 11.1.4 and 7, respectively.

11. Modelling of nonlinear and time-varying phenomena

All musical instruments experience nonlinear behaviour. In some cases, the effect that the
nonlinearity imparts on the sound of the instrument is so small that it can be considered
negligible, and a linear synthesis model will suffice. For many instruments, however, this is
not the case. All musical instruments also possess more or less time-variant properties. This
is due to control by the player: the pitch or timbre of an instrument must usually vary in time
in order for the sound to be considered musically interesting. Modelling of the time-varying
phenomena can be achieved in two ways. The simplest choice is to use several copies of
the same synthesis engine with different parameters to produce the different tones. This is
especially well suited to the case in which the change in pitch or timbre is more instantaneous
than gradual, e.g. in the case of a piano model. For instruments that experience a gradual
change in sound characteristics, such as the slide guitar or a violin, a single synthesis model
with time-varying properties must be used.

Modelling of nonlinear and time-varying phenomena will nearly always increase the
computational complexity of the synthesis algorithm, since common simplifications, such as
commuting, are no longer theoretically valid and thus usually cannot be applied. The following
section will briefly discuss the modelling of different nonlinear phenomena in musical
instruments. For an excellent overview of nonlinearities in musical instruments, see [97] and
for the physics of musical instruments in general, see [96]. Section 11.2 will provide a more
detailed case study in modelling the spatially distributed nonlinear string using a novel energy-
preserving technique. Section 11.3 will discuss the modelling of time-varying properties of
musical instruments with a special focus on energy conservation and stability issues.

11.1. Modelling of nonlinearities in musical instruments

11.1.1. Bowed strings. The nonlinearity in bowed string instruments is one of the most
extensively studied musical instrument phenomena [68, 174, 203, 234, 236, 237, 321]. In
bowed strings, as in all sustained tone instruments, the generation of harmonic tones requires
nonlinear behaviour from the excitation mechanism [97]. In this case, the nonlinearity lies in
the stick–slip contact between the bow and the string.
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Figure 39. The reed generator (a) and the jet-flow generator (b) of wind instruments (after [96]).

Several computational algorithms for modelling the bowed string have been introduced;
see [238] for a good overview. To model the bowed string with digital waveguides, Smith [246]
used a waveguide string with a two-port scattering element representing the contact point
between the bow and the string. The scattering element contains a simple lookup table where
the appropriate string velocity can be read for a given bow velocity, force and position. Later,
several refined waveguide models were introduced [115, 257, 271]. A simple and efficient
bowed-string synthesis structure, the MSW-algorithm, is presented in [173]. It is based
on the waveguide formalism and it uses digital filters to represent reflection, dispersion,
losses and body responses. More recently, bowed string modelling has been studied in
[236, 237, 318, 321].

A mass–spring model representing the bowed string was introduced in [37]. It is
implemented using the CORDIS-ANIMA system [38] (see also section 5.2) as a series of
masses linked together with visco-elastic elements. Also, a modal synthesis model of the
nonlinear bow–string interaction was presented in [7]. A finite difference model simulating
the behaviour of the bowed string has been discussed in [190].

11.1.2. Wind instruments. In reed-excited wind instruments, such as the clarinet or
saxophone, the nonlinearity resides in the vibrational behaviour of the reed. The reed generator
usually consists of a flat tapered reed held against an aperture, with a small opening between
them. The reed generator is illustrated in figure 39(a). The aperture is connected to a resonator,
which is a tube with an adjustable acoustic length. When a pressure source, such as the player’s
mouth, is connected to the input of the reed generator, the pressure difference between the
source and the resonator tends to close the aperture. This pressure difference generates an air
flow to the resonator through the aperture. When the positive pressure wave returns to the
aperture from the resonator, the pressure difference decreases and the reed returns to near its
starting position. The relation between the pressure difference and the static volume flow can
be given as [96]

U(x(t), p(t)) = γ1|x(t)|αp(t)β, (105)

where U(x(t), p(t)) is the volume flow, γ1 is a positive constant, x(t) is the aperture opening,
t is the time, p(t) is the pressure difference and α and β are coefficients with typical values
of α ≈ 1 and β ≈ 1

2 . The relation (105) is not only nonlinear but also implicit, since the
pressure difference p(t) also actually depends on the volume flow. This implicitness clearly
poses a problem for the discrete-time implementation of the algorithm.

A few different techniques for modelling the single reed have been proposed in the
literature. In the simplest case, the reed behaviour is approximated using a simple
linear oscillator [102]. For modelling the nonlinearity, Borin et al [33] and Avanzini
and Rocchesso [11] have used the K-method approach already discussed in section 10.
The K-method has been reported to model different nonlinearities accurately, even with
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low sampling rates [15, 33]. A computationally demanding finite difference approach
for directly discretizing the nonlinear reed equations was introduced in [291]. In 1986,
Smith [246] proposed a conceptually straightforward waveguide method for synthesizing a
reed instrument. In this model, the reed has been implemented as a simple lookup table,
where the nonlinear relationship between the flow and the pressure has been stored in advance.
This computationally efficient method is able to produce relatively high-quality synthesis.
A spatially distributed reed model, that is, a model that does not consider the reed as a lumped,
pointlike element, has been discussed in [13]. Very recently, Guillemain and co-workers [105]
have shown that equation (105) can be solved explicitly in discrete time.

Modelling of the more complicated excitation mechanism, the nonlinear double reed, is
discussed, for example, in [106, 311]. The double reed is used as an excitor in the oboe and
bassoon, for example.

In brass instruments, such as the trumpet or trombone, the excitation mechanism, i.e. the
player’s lips, behaves somewhat differently from the reed. Several models for explaining
the behaviour of the lip–valve excitors have been proposed. A review paper can be found
in [40]. Sound synthesis based on such models has been discussed by several authors
[1, 76, 180, 220, 313].

In jet-flow type wind instruments, such as the flute or the recorder, the resonator is excited
by an air flow instead of a vibrating reed. When the pressure source is connected to the
generator, the air jet emerges from a flue slit, passes the embouchure hole and finally reaches
the bore edge, as illustrated in figure 39(b). The jet stream clearly generates a pressure wave
inside the bore. When the pressure maximum returns to the slit end, it pushes the jet stream
away from the bore. In other words, the moving air inside the bore modulates the transversal
displacement of the jet stream, which in turn excites the air in the bore. With suitable bore
lengths and jet velocities, this coupled air movement turns into a sustained oscillation. The air
flow into the resonator can be given as [96]

U(h(t)) = WbV

(
tanh

(h(t)

b

)
+ 1

)
, (106)

where W , b and V are parameters defining the shape of the jet stream and h(t) is the time-
varying transverse offset between the jet and the slit. As can be seen, equation (106) is also
nonlinear. The behaviour of the jet flue is studied more thoroughly, for example, in [309].
A review paper about lumped jet flue models can be found in [91].

The flute synthesis models presented in the literature are surprisingly similar in nature. In
almost all cases, digital waveguides have been used for modelling the instrument bore, while
the nonlinearity has been realized with a lookup table or a simple polynomial. A signal delay
is inserted prior to the nonlinearity for modelling the time it takes for the jet flow to travel
across the embouchure hole.

The general requirements for a computational time-domain flute model were already
discussed in [173]. The first real-time synthesis model was briefly presented by Karjalainen
et al in [135]. It implemented the nonlinearity with a sigmoid function. A refined model was
proposed in [288], where scaling coefficients for the pressure input and the feedback from
the bore were added. Soon after that another waveguide model with a simple polynomial
simulating the nonlinearity [61] and a conceptually similar model with a physically more
rigorous approach were presented [55]. Chaotic variations in the jet offset due to turbulence
have been simulated by slightly varying the coefficients of the polynomial nonlinearity with
a noise generator [44, 62]. A waveguide-based flutelike instrument model, which takes into
account the vortex shedding at the slit edge (labium) and the turbulence at the mouth of the
instrument, has been proposed in [310].
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11.1.3. The Piano. In a piano, the sound is generated when the player presses a key. The
movement is transferred via a jack into the piano hammer, which hits the piano string (there are
actually multiple strings for a hammer especially in the treble end, but here we will consider
the case of a single string for the sake of simplicity). See figure 30 in section 8.5.3 for an
illustration. For a more thorough discussion on piano acoustics, see, e.g. [96].

The piano hammer is basically a piece of wood covered with a layer of felt. The
compression characteristics of the felt are inherently nonlinear, which affects the generated
tone. This passive nonlinearity manifests itself when the piano is played with varying dynamics.
When playing with greater intensity ( fortissimo), the hammer seems harder than if the piano
were played softly ( pianissimo). This change of the effective stiffness results in greater
amplitude of the higher harmonics, i.e. the sound is brighter if the piano is played with greater
intensity.

When modelling the piano hammer, the core of the hammer is often simplified as a lumped
mass while the felt is presented as a nonlinear spring connected to this mass. The force-to-
compression relationship of this mass–spring system can be presented as [107]

F(y(t)) = C−1y(t)p, (107)

when the hammer is in contact with the string. Here, F(y(t)) denotes the force applied to
the string by the hammer, y(t) is the compression of the spring (felt) and C is its generalized
compliance. Note that with p = 1, equation (107) becomes Hooke’s law for springs (22).
Interestingly, the compression of the felt depends in turn on the hammer force, so equation (107)
is implicit.

Several synthesis models for piano hammer–string interaction have been suggested; see
[15] for a review. Chaigne and Askenfelt [46,47] have used the finite difference discretization
of equation (107) with an additional delay between the compression and force terms in order
to force the relation explicit. This artificial delay, however, makes the synthesis algorithm
potentially unstable [15]. The K method [33] discussed earlier has also been utilized in
removing the implicitness of equation (107). Very recently, Bensa and co-workers [26] have
studied the parameter fitting for the hammer–string model.

As discussed in section 8, WDFs hold special means for removing the delay-free loops and
have thus also been used in modelling the nonlinear piano hammer [23, 196, 225, 298]. Smith
and Van Duyne [258, 301] have introduced a computationally efficient commuted waveguide
model wherein the hammer is implemented as a linear filter. When the hammer hits the
string, an impulse is fed to the string through this filter. The filter parameters are read from a
pre-calculated table for a given hammer velocity.

There is also an additional physical phenomenon taking place in the compressing
felt, namely the hysteresis. During interaction with the strings, the felt compresses and
relaxes several times due to the travelling displacement wave in the string [34]. The
hysteresis takes place when the temporal derivative of the felt compression changes its
sign. In other words, when the compression of the felt starts to relax, the compression-to-
force relationship does not follow the same trajectory as it did when the compression was
increasing. In order to model the hysteresis effect also, Boutillon [34] suggested that a
model

F(y) =
{
aiyαi when y increases,
adyαd when y decreases,

(108)

be used. Here, F(y) is the force applied by the hammer to a rigid string, y is the hammer
felt deformation and a and α represent a hypothetical series of coefficients, where each a and
α must be larger than its predecessor.
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11.1.4. Plucked string instruments. Plucked string instruments experience two main types
of nonlinearities. The first is hard-limitation nonlinearity, which takes place when a freely
vibrating string hits a spatial obstacle. The obstacle obviously limits the amplitude of the
vibration, producing a nonlinear ‘clipping’ of the vibration. Usually, the obstacle is a part of
the instrument itself, such as in the case of slapbass, where the string is ‘popped’ or struck
so hard that it hits the frets on the fingerboard. A more complex manifestation of the hard-
limitation nonlinearity takes place, e.g. in the Indian sitar or the tanpura. In these cases, the
unilateral constraint caused by the curved bridge effectively shortens the string as it displaces
towards the bridge [254]. A more thorough discussion of the effect is provided in [282].

The hard-limitation nonlinearity in the case of the slapbass was first modelled by Rank
and Kubin in the late nineties [208]. They used a waveguide string model with displacement
signals as wave variables. During the vibration, the displacement of the string is probed in
certain given points on the string and then compared with the displacement limit yfret, i.e. the
distance between the string and the fret in equilibrium. If the string displacement exceeds
the limit value at some of these locations, the displacement waves are reflected (with a sign
change) into the delay line travelling in the opposite direction. When the displacement limit
value is added to this, the string vibration amplitude at any of the given points is limited to yfret.

Later, Karjalainen [127] suggested a technique where an impulse with a suitable amplitude
is fed into the string when the collision with the obstacle occurs. This operation is in fact
identical to what is described in [208], although it provides an alternative representation for
the string by using so-called FDTD waveguides, illustrated already in figure 2. Soon after,
Krishnaswamy and Smith [153] pointed out a nonphysical feature in the simulated string when
this technique is used. They observed that the string release from the obstacle happens later
than physical laws would predict, as if the string had artificial ‘stickiness’. They formulated
a refined waveguide model for the hard-limitation nonlinearity, which removed the constant
offset differences between the two waveguide segments and thus resolved the physical validity
problem. In addition to this computationally more expensive waveguide model, a FDTD/DWG
hybrid approach was introduced in [153].

The other main nonlinearity in plucked strings resides in the variation of string tension due
to transversal vibration. It has been extensively studied in the literature [6, 41, 179, 183, 184].
When a string is displaced, its tension is also increased. When the string moves near its
equilibrium position, the tension is decreased. It is easy to see that the tension variation has
twice the frequency of the transversal vibration, since both extreme displacements of the string
produce a tension maximum, and the tension minimum is obtained when the string is near its
steady-state location. With this in mind, it is also easy to understand that since a real string
vibration decays in time, the average string tension also has a decaying form. As stated in
equation (6), this tension decay leads into a decay in wave velocities and a descent in the
fundamental frequency of the string.

This phenomenon, called the initial pitch glide, is most apparent in elastic strings with
high vibrational amplitudes and relatively low nominal tension. In fact, the pitch glide is not
the only effect caused by tension modulation. As is well known, the lack of certain modes
in a plucked string vibration occurs due to the plucking location, which heavily attenuates
all harmonics that would have a node at that point. In an ideal mid-plucked string, for
example, all even modes are missing. However, the tension modulation nonlinearity does
enable an energy transfer between the vibrational modes, so that the missing harmonics can
be found in the spectrum. Typically, the missing harmonics gradually rise from the noise
floor of the spectrum just after the plucking, reach their peak amplitude and decay off, just
like all other modes. The generation of these missing harmonics is studied more thoroughly
in [162].
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Figure 40. (a) Principle of passive nonlinearity for string termination and (b) realization using
signal-dependent delay. In (a), Fr and F1 denote the force waves travelling right and left,
respectively, while y is the displacement of the nonlinear spring.

There have been several attempts to model the tension modulation nonlinearity. The first
one was introduced in the late nineties by Pierce and Van Duyne in [202], where they used
a digital waveguide terminated with a nonlinear double spring. Figure 40 characterizes the
principle by nonlinear spring in subview (a). A physically more motivated model was proposed
in [275, 296], where the double spring had been replaced by a time-varying fractional delay
filter. By varying the phase delay of the filter using the string elongation value, the initial pitch
glide effect was reproduced in the synthesized string. The generation of missing harmonics
was obtained as a by-product of the string elongation calculation. A waveguide model also
implementing the direct coupling between the longitudinal string tension variation and the
instrument body was proposed in [273].

All these nonlinear string models implement the nonlinearity as a lumped element at the
termination of the waveguide. Physically, this corresponds to having a single elastic element
at the end of an otherwise rigid string. Recently, a spatially distributed waveguide model
of a nonlinear string was suggested in [188], where the delay lines of the waveguide were
replaced by time-varying allpass filters. A finite difference model of a nonlinear string was
also presented in [188]. It used interpolation in time for varying the time step in the linear
FDTD recurrence equation (8), while the generation of missing harmonics was implemented
by adding a force signal to the string termination. At the same time, Bilbao [29] introduced
an energy-conserving finite difference model of a nonlinear string by directly discretizing the
Kirchhoff–Carrier equation [41, 146]. In the next section, we will introduce a new energy-
conserving waveguide model using power-normalized WDFs.

11.2. Case study: nonlinear string model using generalized time-varying allpass filters

In this section we propose a new hybrid modelling technique for simulating vibrating
strings with tension modulation nonlinearity. The approach replaces unit delays with
power-normalized WDFs (see section 8.5.4) in a waveguide loop in order to smoothly vary
the waveguide pitch. The model consists of an energy-preserving varying tension string,
introduced in [187], that is controlled using the string’s elongation approximation.

11.2.1. Time-varying allpass filters. As stated in [31], certain power-normalized wave digital
one-ports are realized as allpass filters, i.e. they apply a suitable phase delay for the signal
without attenuating or boosting it. One such element is illustrated in figure 41. The filter
coefficients are evaluated as [31]

a(n) = d(n) − 1

d(n) + 1
, β = ±1, φ(n) =

√
1 − a(n + 1)2

1 − a(n)2
, (109)

where d(n) is the desired phase delay as a function of time n for a single one-port.
The amount of delay this structure applies to the signal can be varied via parameter a(n).

If a(n) is constant with respect to time, the one-port element actually reduces to a first-order
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Figure 41. A signal flow diagram of a wave digital one-port implementation (left) and its abstraction
(right). The one-port acts as an energy-preserving fractional delay even when a(n) varies in time.
If a(n) is constant, the structure reduces to a first-order allpass filter. The filter coefficients are
evaluated as in equation (109).

allpass filter. Interestingly, since the wave digital one-ports are power-normalized, the signal
energy remains constant even when the phase delay (and thus the port impedance) is varied
in time. This means that we can use the power-normalized WDF as a time-varying fractional
delay which leaves the energy of the signal intact.

11.2.2. Nonlinear energy-conserving waveguide string. As shown in [187], a waveguide
string can be constructed using the power-normalized one-ports. Conceptually, this can be
done by replacing the unit delays in the waveguide loop (see figure 8) with the one-port
elements shown in figure 41. This means also that the allpass filter parameter a(n) becomes
directly related to the string tension [187]. If the phase delay value d(n) is now varied according
to the elongation of the string [275]

Ldev(n) =
L̂nom∑
m=0

√
1 + [sr(n, m) + sl(n, m)]2 − L̂nom (110)

by

d(n) = 1 +
Ddev

L̂nom

, (111)

an energy-preserving nonlinear string model is obtained. Here,

Ddev(n) ≈ 1

2

n−1∑
l=n−1−L̂nom

(
1 +

EA

K0

)
Ldev(l)

Lnom
(112)

is the total delay variation in the waveguide loop, Lnom is the nominal string length in samples,
L̂nom = floor(Lnom) and sr(n, m) and sl(n, m) are the right- and left-going slope waves,
respectively. Symbols E, A and K0 stand for the Young’s modulus, cross-sectional area and
the nominal tension of the string, respectively. This approach is similar in nature to the spatially
distributed nonlinear string case [188] already mentioned in section 11.1.4, except now the
tension variation does not alter the energy of the string.

For simulating the generation of missing harmonics, discussed in section 11.1.4, a method
proposed in [188] can be used. This approach makes use of the fact that the vertical component
of the tension is directly proportional to the string displacement near the termination. Thus,
the tension modulation driving force (TMDF) [273] can be taken as the string elongation
signal multiplied with the displacement of the string near termination, and it can be injected
to the string through an appropriate scaling coefficient. Figure 42 illustrates the novel energy-
preserving nonlinear string model.
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Figure 42. An energy-conserving digital waveguide model of a nonlinear string. Velocity waves
are used as wave variables here. The generalized allpass filters are denoted by A(z), while H(z)

stand for the loss filters. The exciting force signal (plucking) is denoted by F(n), where n is the
time index. The mechanic impedance of the string is denoted by Z, and the scaling coefficient α

can be used for controlling the amplitude of the missing harmonics.

Preliminary experiments have revealed that this model performs well, that is, it simulates
correctly the initial pitch glide phenomenon of nonlinear strings. It also seems to model the
energetic behaviour of the nonlinear string more accurately than previous waveguide models.
A proper comparison of the energetic behaviour between the nonlinear DWG string models is
left for future work.

11.3. Modelling of time-varying phenomena

As discussed above, enabling the synthesis parameter variation in time is very important if a
flexible and high quality synthesis is desired. However, when the parameter values are varied,
an additional problem emerges. The passivity of the resonator structures or even the stability of
the entire synthesis algorithm may become compromised if new parameters are suddenly used
in calculating the next output from the previous signal values. Clearly, this is not a problem with
memoryless algorithms. Another problem is whether the model behaves reasonably during
the parameter change, i.e. does it behave like the real instrument it is trying to simulate?

Since it is extremely difficult, if not impossible, to find an answer to the latter problem by
objective measurements (consider, e.g. a case where the mass density of a real string should be
accurately varied during its vibration), we will consider only the passivity and stability criteria
here. Remember that passivity always implies stability, and are both closely related to the
conservation of energy in a system. In the following, we assume that the exciter parts of the
synthesis algorithms will remain stable, i.e. that they will insert a finite amount energy into
the resonator parts.

The means of checking the passivity of a system varies among different modelling
techniques. For finite difference schemes, the Von Neumann analysis [264] has traditionally
been used. The basic idea there is to evaluate the spatial Fourier spectrum of the system at
two consecutive time steps and find an amplification function that describes how the spatial
spectrum of the algorithm evolves with time. If the absolute value of this amplification
function does not exceed unity, the system under consideration remains passive. Since this
is a frequency-domain analysis method, it generally cannot be used for analysing nonlinear
systems. For time-varying systems, the amplification function can become extremely complex
even for simple systems, thus rendering the analysis method difficult to use [188]. It is important
to note that for each system parameter varied in time, an additional degree of freedom is
introduced in the amplification function.
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For models whose implementation essentially consists of filters (modal decomposition,
wave and source filter models), time-varying filter analysis methods [53] can be used. These
methods are very similar to traditional filter analysis techniques, see, e.g. [176], except that the
time-varying filters possess an additional time variable. As a consequence, the impulse- and
frequency response functions determining the behaviour of the filter become two-dimensional.

For a linear time-varying filter to remain passive, the norm of its generalized impulse
response cannot exceed unity. In mathematical terms this can be stated as [53]

h(m, n) = 1

a0(n)

[
−

K1∑
k=1

ak(n)h(m, n − k) +
K2∑
k=0

bk(n)δ(n − k − m)

]
� 1, (113)

where h(m, n) is the output of the system measured at time instant n, when a unity impulse
is inserted at the system’s input at time instant m. Coefficients ak(n) and bk(n) correspond
to the recursive and non-recursive parts of the system. For K1 > 0, the system is said to be
an infinite impulse response (IIR) filter of order K1, while for K1 = 0 it is said to be a finite
impulse response (FIR) filter of order K2.

By taking the z-transform of equation (113), we have the generalized transfer function of
the system as

H(z, n) =
n∑

m=0

h(m, n)zm−n, (114)

which in the case of an IIR filter consists of a numerator (determined by bk(n)) and a
denominator (determined by ak(n)). For ensuring the stability of system, the poles of the
filter, i.e. the roots of the polynomial

∑K1
k=0 ak(n), must remain inside the complex unit

circle.
For a parallel filter structure, such as a modal synthesis scheme, it suffices to ensure the

stability of the individual resonators. For cascaded filter structures, such as source–filter models
or commuted waveguides, the transfer function of the whole system, i.e. the convolution of
the individual filters, must be checked. It must also be noted that since the system is not LTI,
the order of the cascaded structure cannot be changed in theory. In practice, however, the
commutation process is often carried out without notable changes in the energetic properties
(see, e.g. [250]).

If the system is both nonlinear and time-variant, the energetic analysis becomes even more
difficult. For some modelling techniques, for example WDFs with power-normalized wave
variables (see section 8.5.4), the correct energetic behaviour does not need to be addressed,
since the definition of the variables already guarantees passivity. For other systems, ad hoc
energy management methods should be used. One obvious approach is the so-called ‘energy
probing’ (see, e.g. [187]), where the signal energy of a system is observed at some location
and compared with pre-calculated limit values. The limit values can be, for example, the
maximum and minimum energy levels allowed by physical laws for such a model. When the
signal energy crosses the limit value, the signal must be attenuated or amplified so that it returns
to a suitable energy level. This energy probing can be carried out at several locations in the
model. Needless to say, energy probing can increase the computational load of the synthesis
algorithm substantially.

12. Current trends and further research

Next we look at some current trends in physical modelling. Around the mid-1990s, the
research reached the point where most Western orchestral instruments could be synthesized
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based on a physical model [251]. More recently, many papers have been published on the
modelling of ethnic and historical musical instruments. These include, for example, the Finnish
kantele [82, 130, 186], various lutes [83, 84], the bowed bar [87], ancient Chinese flutes [71],
an African flute [72], the Tibetan praying bowl [88, 89], the panpies [69] and the Japanese
sho [111, 112]. We have also recently seen applications of physical modelling techniques
to non-musical sound sources [213]. Some examples of these are physical modelling of
bird song [125, 259, 260], various everyday sounds, such as those generated by wind chimes
[63,165], footsteps [65] and beach balls [214] and friction models that can be applied in many
cases [12].

Another new direction is the subjective evaluation of perceptual features and parameter
changes in physics-based synthesis, see [122, 123, 155, 217]. This line of research provides
musically relevant information on the relation of timbre and the properties of human hearing.
These results help in reducing the complexity of synthesis models because details that are
inaudible need not be modelled.

The first attempts at audio restoration based on physical models were conducted
recently [85]. While this can be successful for single tones, the practical application of such
methods for recordings including a mix of several instruments is a challenge for future research.
The main problem is high-quality source separation, which is required before this kind of
restoration process. Sophisticated algorithms have been devised for this task, but, generally
speaking, separation of a musical signal into individual source signals is still a difficult research
problem (see, e.g. [147]).

The concept of Structured Audio introduced as part of the MPEG-4 international
multimedia standard has opened a new application field for physical models [104, 308]:
parametric coding of music, where a program for sound generation of the instruments and
control data for playing the instrument are transmitted. The practical use of this idea remains
a dream for the future.

Future work in the field includes, for example, highly accurate modelling of specific
musical instruments. Currently, physics-based synthesis models still lack the excellent sound
quality of sample-based digital instruments. A clear example of this defect in quality is seen
in digital pianos; the most popular products use a large sample database to reproduce piano
tones at all dynamic levels. Fully parametric physical models of the piano have not entered the
market yet, probably because these imitations of the piano are still insufficient for professional
players. Difficult subproblems related to this are parameter estimation and control of virtual
instruments. For best sound quality, computational methods that automatically calibrate all
the parameter values of a physical model according to the sound of a good instrument should
exist. This is very challenging and almost hopeless for some methods, and relatively easy
only for some special cases. The control, or playing, of physical models is another problem
area where general solutions are unavailable. The piano, in fact, is one of the easiest cases,
because the player only controls the fundamental frequency (which key) and dynamic level
(velocity of key press) of tones. In the cases of string and wind instruments, the control issue
requires clever technical solutions. The control of virtual musical instruments is currently a
lively research field [61, 67, 116, 121, 136, 137, 161, 191, 315].

An ultimate dream of physical modelling researchers and instrument builders is virtual
prototyping of musical instruments. This application will pre-eminently require physical
models with excellent precision in the simulation of sound production, as stressed by
Woodhouse [319]. A musical instrument designer should have the possibility to modify a
computer model of a musical instrument and then play it to verify that the design is successful.
Only after this would the designed instrument be manufactured. Naturally, fine details affecting
the timbre of the instrument should be faithfully simulated, since otherwise this chain of events
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would be fruitless. Current research is still far away from this goal. More research work is
required.

13. Conclusions

Physical modelling of musical instruments has become one of the most active fields of musical
acoustics research. There are six different main approaches to develop a computational model
for any given instrument. These approaches were briefly overviewed. The digital waveguide
method, together with its variations, is currently the most popular modelling technique,
because it leads to computationally efficient algorithms that enable real-time synthesis of
many simultaneous voices.

Some current research trends were listed, such as the modelling and synthesis of unusual
musical instruments. It can be predicted that in the near future, the physical modelling
techniques will be applied to numerous everyday sound sources in addition to synthesizing
musical sounds. This research topic has become popular only a few years ago. Non-musical
parametric sounds [66, 215] are of interest because they can be used in human–computer
interfaces, computer games, electronic toys, sound effects for film and animation and virtual
reality applications.
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Übertragungstechnik 25 78–89
[94] Fettweis A 1986 Wave digital filters: theory and practice Proc. IEEE 74 270–327
[95] Flanagan J 1972 Speech Analysis, Synthesis and Perception (Berlin: Springer)
[96] Fletcher N H and Rossing T D 1991 The Physics of Musical Instruments (New York: Springer)
[97] Fletcher N H 1999 The nonlinear physics of musical instruments Rep. Prog. Phys. 62 723–64
[98] Florens J-L and Cadoz C 1991 The physical model: modeling and simulating the instrumental universe

Representations of Musical Signals ed G De Poli et al (Cambridge: MIT Press) pp 227–68
[99] Fontana F 2003 Computation of linear filter networks containing delay-free loops, with an application to the

waveguide mesh IEEE Trans. Speech Audio Process. 11 774–82
[100] Fontana F and Rocchesso D 1998 Physical modeling of membranes for percussion instruments Acta Acust.

united Acust. 84 529–42
[101] Fontana F and Rocchesso D 2000 Online correction of dispersion error in 2D waveguide meshes Proc. Int.

Computer Music Conf. (Berlin, Germany, August 2000) pp 78–81

http://lib.tkk.fi/Diss/2002/isbn9512261901/


Discrete-time modelling of musical instruments 71

[102] Gazengel B, Gilbert J and Amir N 1995 Time domain simulation of single-reed wind instruments. From the
measured input impedance to the synthesis signal Acta Acust. 3 445–72

[103] Giordano N and Jiang M 2004 Physical modeling of the piano EURASIP J. Appl. Signal Process. 2004 926–33
Special issue on model-based sound synthesis

[104] Glass A and Fukudome K 2004 Warped linear prediction of physical model excitations with
applications in audio compression and instrument synthesis EURASIP J. Appl. Signal Pro-
cess. 2004 1036–44 Special issue on model-based sound synthesis. Available online at:
http://www.hindawi.com/journals/asp/volume-2004/S1110865704402078.html

[105] Guillemain P, Kergomard J and Voinier T 2005 Real-time synthesis of clarinet-like instruments using digital
impedance models J. Acoust. Soc. Am. 118 483–94

[106] Guillemain Ph 2004 A digital synthesis model of double-reed wind instruments EURASIP J. Appl. Signal
Process. 2004 990–1000 Special issue on model-based sound synthesis

[107] Hall D E 1992 Piano string excitation. VI: nonlinear modeling J. Acoust. Soc. Am. 92 95–105
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[121] Jordà S 2004 Instruments and players: some thoughts on digital lutherie J. New Music Res. 33 321–41
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[135] Karjalainen M, Laine U K, Laakso T I and Välimäki V 1991 Transmission-line modeling and real-time synthesis
of string and wind instruments Proc. Int. Computer Music Conf. (Montreal, Quebec, Canada, 16–20 October
1991) pp 293–6

[136] Karjalainen M and Mäki-Patola T 2004 Physics-based modeling of musical instruments for interactive
virtual reality Proc. Int. Workshop on Multimedia Signal Processing (Siena, Italy, September 2004)
pp 223–6
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[295] Välimäki V and Tolonen T 1998 Development and calibration of a guitar synthesizer J. Audio Eng. Soc 46
766–78
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