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Multiconductor Transmission-line Theory 
in the TEM  Approximation 

Abstract: Starting with Maxwell's equations,  the transmission  line equations  are  derived for a system consisting of an  arbitrary number 
of conductors.  The derivation is rigorous  for  long  lossless conductors embedded in a  uniform perfect dielectric. The presentation is es- 
sentially  tutorial,  most of the  results being well known, at  least  for two- and  three-conductor systems. The novelty lies in the point of 
view adopted in obtaining a systematic generalization  to the  case of an  arbitrary  number of conductors. Explicit expressions  are obtained 
for  the  electric and  magnetic fields in the dielectric  surrounding the  conductors,  and a rigorous  formulation is given for  the problem of 
calculating the coefficients of capacitance  and inductance. 

Introduction 
Interest in the  theory of mutually coupled, multiple con- 
ductor, parallel  transmission  lines extends  over  the  past 
forty  years. With the exception of early works by Levin 
[ 11 and  Pipes [2,3], and more recent investigations  by 
Kuznetsov and Stratonovich [4], by Amemiya [5], and 
by Matsumoto [lo],  most of the published  work has 
focused  on  the  theory of two parallel,  mutually  coupled 
transmission lines with  considerable attention given to 
the subject of directional coupling [6,9]. Papers treating 
arbitrary  numbers of conductors fall into  two  groups. 
Papers of the first group [2,5,10] take  the generalized 
transmission line equations as a starting point and assume 
the  inductance and capacitance matrices given. Papers 
of the  second  group [ 1,3,4] take Maxwell's equations 
for  the electromagnetic field as a  starting  point. This 
paper belongs to the  second group. 

The  purpose of the  present  paper  is essentially  tutorial. 
Most of the  results arrived at  are well-known, at  least  for 
two-  and three-conductor  systems,  and  can  be  found in 
the  papers cited above  as well as in the widely known 
texts of King [ 11 ] and Collin [ 121. It  is  hoped,  however, 
that some  novelty will be  found in the point of view 
adopted  here  to obtain  a systematic generalization of 
familiar results  to  systems of arbitrary  numbers of con- 
ductors. 

There  are  two motivations for  such  an investigation. 
The first of these  has  to  do with the generalization of the 
familiar two-conductor result, LC = l/d2, to multicon- 
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matrices of inductances  and  capacitances  per unit  length, 
respectively; u is the velocity of propagation,  and the 
unity  element is a unit  matrix of the  same dimensions as 
L and C. This generalization has been applied explicitly 
to multiconductor TEM propagations by several authors 
[5,10,13] and is implicit in the work of several  others 
[6-91. In  the usual  justification, stated quite nicely by 
Amemiya [5], it is shown that  the solution of the gen- 
eralized  transmission line equations  for  an N + 1 con- 
ductor  system  consists of the superposition of N inde- 
pendent modes whose propagation  velocities are  the 
square  roots of the reciprocals of the eigenvalues of the 
product of the L and C matrices. Then  an  ad  hoc assump- 
tion is  made  that  for  TEM  systems, all these propagation 
velocities  must  be  equal. It follows that  the  product of 
the L and C matrices  must be l/dL times a unit  matrix. I t  
will be  shown  that to assume  constant propagation ve- 
locities is unnecessary;  it  can instead  be  derived rigor- 
ously  from  Maxwell's  equations.  Similarly, it will be 
shown  to  be a strict  consequence of Maxwell's equations 
that  the  product of the L and C matrices is l/u2 times  a 
unit  matrix for  TEM  systems.  The main results  are con- 
tained in Eqs. (8)  and (69) - (7 1 ). 

The  second motivation for  the investigation is  to find 
an  equation for the  electric and  magnetic fields produced 
by a given  distribution of currents and  voltages on a 
multiconductor TEM transmission  line system.  The 
result is embodied  in Eqs. ( 5 )  and (6). A  typical appli- 
cation of this equation would be  to  estimate  the  stray 
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magnetic field at  an unselected  bit  position in a  thin mag- 
netic film memory  when  several adjacent lines are pulsed. 
Granted  that a  memory  plane is not  a TEM system,  the 
TEM solution nevertheless  serves as  a useful starting 
point for  the computation. 

The  subsequent discussion is limited to propagation 
on lossless systems in a uniform dielectric;  in short,  to 
TEM systems. By making such a restriction it is possible 
to  derive results  which  apply to a wide  variety of con- 
ductor geometries. To include losses  or multilayer di- 
electrics would soon  force  the analysis to a  discussion 
of a single system with fixed geometry. By way of justi- 
fication it might be  added  that practical  analysis of real 
systems  is based on  TEM assumptions. Also a  thorough 
understanding of the  properties of lossless systems  cer- 
tainly is a prerequisite for  the understanding of the more 
complicated systems  encountered in practice. 

TEM solutions of Maxwell’s equations 
The specific configuration to  be considered in this paper 
consists of N + 1 parallel, infinitely long, lossless con- 
ductors.  The  cross  sections of these  conductors may vary 
from conductor  to  conductor, but the  cross section of any 
given conductor must  be uniform over its entire length. 
It is supposed  that  the  space surrounding the  conductors 
is filled with a uniform perfect insulator of constant per- 
mittivity E and permeability p. The  system is to be  oper- 
ated so that  the sum of the  currents in the N + 1 conduc- 
tors is zero  at all times. In this case,  any  one of the con- 
ductors  can be selected  as  the common reference con- 
ductor  for  the system. 

In particular,  let the  conductor  chosen as the  reference 
conductor be called the N + 1st conductor and the re- 
maining conductors be  numbered  from 1 to N ,  in any 
order.  Throughout this paper,  the common reference 
conductor will be  referred to  as  the N + 1st conductor. 
All voltages will be  measured with respect to this  con- 
ductor. 

Since the  space outside the  conductors is assumed  to 
be  a  perfect  insulator, there can  be no flow of charge into 
or  out of this region. If this space is uncharged initially, 
it remains  uncharged. Hence, it can  be  assumed that both 
the conduction current density and charge  density vanish 
outside the  conductors.  Thus, in the  space outside the 
conductors,  the  electric and  magnetic fields satisfy  Max- 
well’s equations: 

V X H = E - ;  aE 
at 

The boundary  conditions at  the  surfaces of the con- 
ductors  are  that  the tangential component of E and  the 
normal component of B = pH must be continuous  across 
the  conductor  surfaces.  Since  the  conductors  are  as- 
sumed  lossless, both E and H vanish in their interiors. 
Thus,  the boundary  conditions reduce  to  the requirement 
that  the tangential component of E and the normal com- 
ponent of H vanish at all conductor  surfaces. 

The N + 1 conductor configuration just  described is 
capable of sustaining a TEM field, that is,  a field  in which 
the E and H vectors lie  in planes  perpendicular to  the 
direction of propagation. It is the TEM solutions of 
Maxwell’s equations  that  are of particular interest in 
transmission line theory. If one  chooses a  rectangular 
coordinate  system, with the z axis parallel to  the con- 
ductors  and  the x and y axes perpendicular to  the  con- 
ductors, and looks for solutions of Maxwell’s equations 
representing  wave  propagation in a  direction parallel 
to  the  conductors, then the requirement for a TEM solu- 
tion is that  the z component of E and H vanish every- 
where in the  space outside the  conductors.  The primary 
objective of this paper is to  demonstrate  that,  for  the 
N + 1 conductor transmission line system  described, 
such a TEM solution of Maxwell’s equations  exists in 
the form 

E =-x Vi(z , t )V$Ji(x ,y)  ; ( 5 )  

H =-x - x Lijfj( , ) z t )  k X V$Ji(x,y) ; ( 6 )  

where k is a unit vector parallel to and  directed along the 
positive z axis,  the z axis being parallel to  the  conductors 
(Fig. I ) .  

The N functions Vi(z,t) appearing in Eq. (5) are  as- 
sumed to be linearly independent,  at least once  differenti- 
able, functions of z and t as  are  the N functions I , ( z , t )  
appearing in Eq. ( 6 ) .  Both the V , ( z , t )  and I , ( z , t )  are  as- 
sumed to be independent of the variables x and y .  The 
N functions I#J~(x,Y) appearing in Eqs. ( 5 )  and (6) are 
assumed to be at least  twice differentiable functions of 
x and y but  independent of the variables z and t. The N 2  
quantities L i j  in Eq. (6) are  constants.  The following 
five requirements are  to be  placed on the fields given by 
Eqs. ( 5 )  and (6).  

I .  The tangential component of E and  normal component 

2. The function Vi(z,t) of Eq. ( 5 )  is the voltage of the 
ith conductor, with respect  to  the N + I st  (reference) 
conductor. 

3. The function I i ( z , t )  of Eq. ( 6 )  is the  current carried 
by the ith conductor. 

4. The sum of the  currents  carried by  all N + 1 conduc- 
tors must vanish for all times t and  positions z ,  and 

v 

i = l  

i = l  ( p  j = 1  

.‘, 1 

of H must  vanish at all conductor  surfaces. 

605 

NOVEMBER 1972 TRANSMISSION LINE THEORY 



t nJ 
I k 

Figure 1 Orientation of unit vectors. 

E and H must  vanish at  an infinite distance from the 
conductors. 

5. The  electric field E given by Eq. (5)  and  the magnetic 
field H given by Eq.  (6) must  satisfy  Maxwell's equa- 
tions ( I )  through (4).  

Necessary  and sufficient conditions will be obtained 
for  the fields given by Eqs. (5) and (6) to satisfy these 
five requirements. For  each of the five requirements 
there  are  five  such  necessary  and sufficient conditions: 

1. The  functions +i(x,y) assume  constant values on all 
conductor  surfaces. 

2 .  If the  constant value of &(x,y) on the  surface of the 
jth  conductor is denoted by + i ( j )  for j = 1, 2, . . ., 
N + 1, then 

+ i ( j )  = S i j  + + i ( N  + 1)  (7 )  

for i = 1 ,  2, . . ., N.  Here, S i j  = 1 if i = j  and S i j  = 0 
if i # j .  

3. The  constants L, of Eq.  (6) must be  chosen so that 
N 

ci jLj* = EPS, 3 (8)  
j = 1  

where  the  constants C i j  are defined by 

C . .  Z J  =-E ni . V+jdli, 

where ni is a unit vector normal to  the  surface  and di- 
rected  out of the ith conductor.  The path of integration 
lies in a  plane of constant z; encircles  the ith conductor 
once, in a counterclockwise  sense with respect  to  the 
positive z axis; and lies arbitrarily  close to  the con- 
ductor  surface.  The quantity  dli is  an element of arc 
length along this path. 

4 (9)  

4. F o r i = l , 2 ; . . , N  

r .V+i -+Oas  Irl - m ,  (10) 

where r = xi + yj, where i is a  unit vector parallel to 
and  directed along the positive x axis,  and j is a unit 
vector parallel and  directed along the positive y axis. 

5. For i = 1, 2, . . ., N, the functions +i(x,y) satisfy the 
606 two-dimensional Laplace  equation 

and  the functions Vi(z,t) and  Z,(z,t)  satisfy the  trans- 
mission line equations 

av, .X a l .  
az j = l  at 

" = - p i , " ;  

az, av. 
az j=l ' I  a t  

"- -x c..-. 

It will now be  shown that  the  electric field given by 
Eq. (5) and  the magnetic field given by Eq. (6) satisfy 
the five requirements if ,  and only if, the five conditions 
are satisfied. Consider  the first requirement.  Let nj be a 
unit vector normal to  the  surface of thejth  conductor and 
directed  outward from  the  conductor.  Let tj be a  unit 
vector lying in a  plane of constant z and  tangential to  the 
surface of the  jth  conductor.  Suppose tj is oriented so that 

t . = k X n j ;   n j = t j X k ,  (14) 

as shown in Fig. 1. Here, k is a unit vector parallel to, 
and  directed along, the positive z axis.  The first require- 
ment says  that E . tj and H . nj must  vanish everywhere 
on the  surface of the  jth  conductor  for j = 1, 2, . . ., 
N +  1 .  

From  Eq. (5) one  obtains 
v 

E . tj = -x V i  tj . 04, , ( 1 5 )  
i = l  

while from  Eq. (6) one finds, with the aid of Eq. (14),  
N , . .\I 

The right sides of Eqs. (15 )  and (16) must  vanish every- 
where on the  surface of the  jth  conductor.  Clearly, a 
sufficient condition is that 

tj . v+i = 0 (17)  

on  the surface of the  jth  conductor f o r j  = 1, 2 ,  . . ., N + 1 
and i = 1, 2 ,  . . ., N.  From  the linear independence of the 
functions Vi and the linear independence of the  functions 
I , ,  it follows that this is also a necessary condition. But 
Eq. (17 )  holds at  the  conductor  surfaces  for all i and j 
if, and only if, all the functions +i assume  constant values 
on  the  conductor  surfaces, which is precisely the first 
condition. 

Consider  the  second  requirement. If Vj is the voltage 
of the  jth  conductor with respect  to  the N + 1 st  (refer- 
ence)  conductor, then Vj is related to  the  electric field 
by the relation 

Vj(z,t) =-f E . & ,  
Sf 1 

where  the path of integration is any path lying in a  plane 
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of constant z which connects a  point on the  surface of the 
jth  conductor  to a point on the  surface of the N + 1st 
conductor. Putting ( 5 )  into (18) ,  one  obtains 

Y =x V j ( z , t ) [ + , ( j ) - + i ( N +  1 1 1 ,  (19)  

where + i ( j )  is the  constant value of + i  on  the surface of 
the j th conductor,  and +i(N + 1 ) is the  constant value 
of on the reference conductor. But Eq. (19) will be 
satisfied if, and  only if, 

d+( j )  = Sij + +i(N + 1 )  , (20) 

which is precisely Eq. (7) of the  second condition. 
Now consider the third requirement. If l j  is the  current 

carried by the  jth  conductor,  then f j  is related to  the mag- 
netic field by means of the relation 

Zj(z, t )  = H . t j d l j ,  

where  tj is the unit target vector of Eq. ( 14). The path of 
integration, shown in Fig. 1, lies in  a  plane of constant z: 
encircles the  jth  conductor  once, in a counterclockwise 
sense with respect to  the positive z axis: and lies arbi- 
trarily  close to  the  conductor  surface.  Note  that tj is 
tangent to  the path of integration. The  quantity dlj is an 
element of arc length along the path of integration. 

Writing rn instead o f j  for  the  second summation  index 
in Eq. (6) ,  one finds, upon  substituting (6 )  into (21) ,  

I j ( z , t )  =-c (i Limlm(z, t ) )  $ nj . V + j d l j ,  (22) 

where use has been  made of Eq. ( 14). Defining a set of 
constants Cji by 

Cji =-E nj . V+i dlj , 

one finds that  Eq. (22)  can be rewritten as 

i = l  

t (21 1 

i = l  m = l  j 

f j  
(23 1 

But equation (24) will be satisfied if, and only if, 
N 

cji Lim = EpSjm. ( 2 5 )  
i=! 

Apart from  a  renaming of indices, Eqs. ( 2 5 )  and  (23) 
are, respectively, the  same as Eqs. (8) and (9) of the 
third  condition. 

Next,  consider  the  fourth requirement. One begins by 
observing that  the sum of the currents carried by the 
N + 1 conductors can be expressed in terms of the mag- 
netic field by means of the relation 

(26)  

where  the path of integration lies in a plane of constant z 
and is a  circle of radius r = 1r1, where r = xi + yj, and 
where r is sufficiently large for  the circle to include all 
N + 1 conductors.  The  vector t is a  unit vector tangent 
to  the circle of radius r ,  and dl = rd0 is an element of arc 
length along this circle.  The direction o f t  is in the  count- 
erclockwise sense, with respect  to  the positive z axis, 
and the integration is carried  out in this direction.  It 
should  be noted that  the integral on  the right side of 
Eq. (26)  can yield only currents carried by the  con- 
ductors  because  any displacement current density  that 
might arise  from a  time varying electric field cannot have 
a z component  since  the  electric field itself has no z 
component. 

Putting Eq. (6 )  into  Eq. (26 ) ,  observing that 

and noting that dl = rd0, one  obtains 
V + 1  

Clearly, Eq. (28) must hold for all sufficiently large 
r = Irl. Particularly, it must hold in the limit as Irl + m. 

But,  according to  the  fourth  requirement,  the sum of the 
currents  on  the N + 1 conductors must  vanish. Clearly, 
a sufficient condition for this to happen is to  have 

r . v + ~  + 0 as IrI + E ,  (29 1 
for i = 1 ,  2, . . ., N .  Furthermore, if Eq. (29) is satisfied 
V + [  vanishes as lrl + 00 and,  from  Eqs. ( 5 )  and (6), E and 
H also vanish as Irl + m. To prove the necessity of 
Eq. (29) ,  one  needs  the unproved  result that all the + i  

satisfy the two-dimensional Laplace  equation, ( 11). If 
one  assumes this  result, it follows that if +i is expressed 
in polar coordinates,  then,  for sufficiently large values of 
r ,  the function +i must  be of the form 

+ i  = b,, + a,, In ( r )  + (u,rn + b , F n )  
r 

n= 1 

x ( c ,  cos ne + d, sin ne)  , 

where u,, b,, c ,  and d, are  constants.  It follows  from 
Eqs. ( 5 )  and ( 6 )  that if E and H are  to vanish as r + m, 

then a+i/ar and ( l / r )a+ i /aO must vanish as r - ~0 which, 
in turn, implies that u, = 0 for n 1 1 .  Furthermore, if the 
sum of the  currents on the N + 1 conductors is to vanish, 
it follows from Eq. (28) and the linear independence of 
lj that  for i = 1,2, . . ., N ,  
r2n 

Putting Eq. (30) into Eq. (3  1 )  and evaluating the in- 
tegrals, one finds that  (31) is satisfied if, and only if, 
u,, = 0. Hence, if Eq. ( 1  1 ) is true, then the fourth  re- 607 
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quirement implies that  for sufficiently large r,  the func- 
tion +, has  the form 

+, ( r ,O)  = bo + bnr (cn  cos n0 + d, sin no)  . (32) 

But Eq. (32) satisfies the condition of Eq. (29).  It will 
soon be  proved that all the +i must  satisfy Eq. ( 1 1 ), the 
two-dimensional Laplace  equation, and the proof will be 
completely independent of the condition expressed by 
Eq. (29).  At  the time the proof of Eq. ( I  1 ) is completed, 
the necessity of Eq. (29) will have been established,  thus 
establishing  both  the necessity  and sufficiency of the 
fourth  condition. 

x 
-n 

n = l  

Now  consider  the last  requirement. One begins by 
writing out  the  components of Eqs. ( 5 )  and (6)  and ( 1  ) 
through (4 ) .  Upon substituting Eqs. ( 5 )  and (6)  into ( 1 ) 
through (4 ) ,  one finds that ( 1 )  through (4)  are satisfied 
if, and only if, 

( 3 3 )  

(34) 

(37) 

Clearly sufficient conditions for  the satisfaction of 
Eqs. ( 3  3 ) through (38) are obtained by requiring 

a'+, at+, 
ax ay2 
,+--00; 

av, N ar. 
at 

_" - x L . .  ; 
az j = 1  

where 4, ( N  + 1) is the  constant value of +i on  the 
N + 1st  (reference)  conductor.  Equation (37) implies 
that a$/ax = 0,  and  Eq. (36) implies that a$/ay = 0. 
Hence, $ is independent of x and y .  Thus,  the  functions 
c$i (x,y) on  the right  side of Eq. (42) can be evaluated  at 
any  point (x,y) without affecting the value of $. In par- 
ticular,  evaluating +$ (x,y) for a point  on  the  surface of 
the N + 1st conductor,  one finds that $ = 0. Thus, since 
$ is independent of x and y ,  it follows from  Eq. (42) that 

for all x and y .  Evaluating Eq. (43) for a point  on  the 
surface of the mth conductor  and using Eq. (7),  one finds 
that  Eq. (43) reduces  to 

(44) 

and  that this  must be  true  for all values of m = 1 ,  2, . . ., 
N .  Hence,  Eq. (40) is necessary,  as well as sufficient, for 
the satisfaction of Eqs. (36) and (37).  The necessity of 
Eq. (4  1 ) is established  in a similar manner. 

Equations (39) and (40) areidentical  to  Eqs. ( 1 1 )  and 
(12) of the fifth condition. To  convert (41) into (13 )  of 
the  fourth condition, it is necessary only to multiply (41 ) 
by C,, and sum over i to  obtain, with the aid of Eq. (81, 

Apart  from a  renaming of indices,  Eq. (45) is  the  same  as 
Eq. ( 1 3 ) .  

It  has  been established that  the fields given by Eqs. (5 )  
and (6) satisfy the five requirements if, and only if, the 
five conditions are satisfied. At this  point,  an  observation 
is in order. It should  be  noted that  there is no loss of 
generality if the  constants &( N + 1 )  in Eq. (7)  are 
chosen so that 

(39) 

The  necessity of Eq. (39) follows  from (35) and the 
linear independence of the  functions I j ,  and  from (38) 
and  the linear independence of the  functions V i .  To 
establish the  necessity of Eq. (40), consider  the function 
$ defined by 

for i = I ,  2, . . ., N .  This is readily seen by considering 
the functions +j' (x,y) defined by 

+i' (X9Y 1 = +i (XtY 1 - 4, (N + 1 )  . (47) 

First,  observe  that (x,y) satisfies Eqs. ( I O )  and (1 1). 
Instead of Eq. (7) ,  +i' (x,y) satisfies the  boundary con- 
ditions 

+i' ( j )  = 1 (48 1 
where +i' ( j )  is the value of +' (x,y) on  the  surface of the 
j th conductor.  Furthermore 

W i '  = v+,, (49) 

W. T. WEEKS IBM J .  RES. DEVELOP. 



so that +i’ gives rise to  the  same  electric  and magnetic 
fields as +i [see  Eqs. ( 5 )  and (6) ] .  Furthermore, +i’ 

gives  rise to the same  set of constants C ,  and L,, as +, 
[see  Eqs. ( 8 )  and (9) ] .  In all subsequent calculations, 
it can be assumed without loss of generality that 
( N + l ) = O f o r i = l ; ,   . , N + 1 .  

Symmetry of the  capacitance  and inductance 
matrices 
Proofs of the symmetry of the  capacitance  and induc- 
tance matrices are given in this sectior,. The starting 
point is the identity 

v . (+i’v+j’ - +j’v+i’) = +i’vp+j’ - +jj‘vz+i) , ( 5 0 )  

where 

+i’ ( X ~ Y  = +i (X,Y 1 - +i (N + 1 )  (51 

for i = 1, 2, . . ., N.  Here, +i ( N  + 1 ) is the  constant val- 
ue of +i on  the surface of the N + 1 st  (reference)  conduc- 
tor.  It follows  from Eqs. ( 1 1 ) and ( 5  1 ) that  the right side 
of Eq. (50) vanishes everywhere in the  space  outside  the 
conductors  for all values of i and j .  Now,  suppose  one 
forms a volume  integral using the left  side of Eq. (50) as 
the integrand. The volume of integration consists of that 
part of space lying between  two planes of constant z ,  
separated by a distance Az, and inside  a  cylinder of 
radius r = Irl, where r is sufficiently large so that  the 
cylinder encloses all N + 1 conductors,  but  excludes  the 
volume  occupied  by the N + 1 conductors  themselves. 
Thus,  since  the right side of Eq. (50) vanishes,  one ob- 
tains 

///V . (+i’V+j’ - + j ’ V + i ’ )  dx  dy dz = 0 , ( 5 2 )  

where  the integration is over  the volume just described. 
The volume  integral in Eq.  (52)  can  be  converted  to a 
surface integral over  the  surface enclosing the volume by 
means of Gauss’  theorem.  Thus, noting  from ( 5  1 ) that 
V+i’ = V+i for i = 1 ,  2, . . ., N ,  one  obtains 

/ l (+i i ’V+j - c#I~’V+~) . dA = 0 ,  (53) 

where  the integration is  over  the  entire  surface  that 
bounds the volume. The  vector element of area dA is 
normal to  the  surface of integration and is directed  out of 
the volume  enclosed by the surface. Since V+i and V+j,  
for all i and j are perpendicular to dA on  the two  planes of 
constant z ,  these  two planes make  no contribution to  the 
integral. Thus, it is necessary  to  evaluate  Eq. (53) only 
over  the  curved portions of the surface. The  curved  part 
of the  surface has  N + 2 parts  as  shown in Fig. 2. First, 
there is the  surface of the cylinder of radius r = Irl, and 
then there  are N + 1 surfaces consisting of the  surfaces 
of the N + 1 conductors.  On  the  surface of the kth 
conductor, 

dA = -nkdlkdz, (54)  

NOVEMBER 1972 

Figure 2 Surface integration for energy calculation. 

where nk is a unit vector normal to  the  surface of the kth 
conductor  and  directed away from  the  conductor  into  the 
surrounding space.  (Since dA must be  directed  out of the 
volume  enclosed by the  surface of integration, its direc- 
tion must  be  into  the  conductors,  and  hence in the direc- 
tion -nk.) The  quantity dlk is an element of arc length 
along the  perimeter of the kth conductor,  the  perimeter 
lying in a plane of constant z.  On  the  surface of the cylin- 
der of radius r ,  which encloses  the N + 1 conductors, 

dA = rd0dz , ( 5 5 )  

where 0 is  the polar angle of the radius vector r. 
The z integration is trivial since  none of the integrands 

depends  on z. Thus, performing the z integration  and 
dividing by Az one  obtains,  from  Eq.  (53), 

(+i’V+j - +j’V+i) . rd0) 

= ( + i ’ V + j  - +j’V+i)  . nkdlj . 
N + l  

(56) 

The  contour integrals on  the right side go all the way 
around  the kth conductor  for  each value of k,  and the 
integral on  the left side  goes all the way around  the circle 
of radius r. The  particular value of this  radius is imma- 
terial,  provided that it is large  enough to  enclose all N + 1 
conductors.  In particular, one can let Irl -+ 00. But, from 
Eq.  (32) +i and +j are  bounded  as Irl + 00, and  from 
Eq. (10) r . -+ 0 and r . V+j + 0 as Irl + m. It 
follows that  the integrand, and  the integral on  the left 
side of (56),  vanishes in the limit as Irl -+ 00. 609 
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Combining Eq. (7) with Eq. ( 5  1 ) one  obtains 

+ i ’ ( k )  = 8, (57) 

f o r i =  1, 2, . . ., N a n d  k =  1, 2 ,  . . ., N + 1. Putting 
Eq. (57)  into  Eq.  (56)  and evaluating the sum over k ,  
one  obtains 4 ni . V+idli - nj . V+idlj = 0 .  ( 5 8 )  

Upon comparing Eq. (58) with Eq. (9),  which  defines 
the  constants C,, it  is  seen  that (58) is equivalent to the 
statement 

i 

Cji = Cij . (59) 

That  is, C, forms a symmetric matrix. Furthermore, ac- 
cording to  Eq. ( 8 ) ,  the  inductance matrix is ~p times the 
inverse of the  capacitance matrix. Since  the  inverse of a 
symmetric matrix is also  symmetric, it follows that  the 
inductance matrix is symmetric. That  is, 

Lji = L, . (60) 

With the  assumption  that +i (N + 1 ) = 0 for all i, Eqs. 
(7 )  through ( 1 1 ), for a fixed value of i, determine  the 
unique solution to  the  electrostatic potential  problem 
wherein the ith conductor is raised to a static potential 
of one volt while all other  conductors  are maintained at 
zero potential. The  electrostatic field determined by the 
potential +i is given by -V& with all field lines originating 
on  the ith condcutor  and terminating on  the remaining 
conductors.  Thus, -V+i is in the  same direction  as the 
unit vector ni at  the  surface of the ith conductor  and is in 
the  opposite direction to  the unit vectors nj on  the  surface 
of the remaining conductors.  Thus, 

- ni . V+i > 0 (61) 

on the  surface of the ith conductor and 

- ni . V+i < 0 (62) 

on  the  surface of the  jth  conductor  for j # i. From  the 
definition of the  C, given  by (9),  it follows that 

cii > 0 ; 

C, < O(i # j )  . (63) 

These relations hold for all values of i andj.  

Further properties 
Further insight into  the meaning of the  capacitance  and 
inductance  matrices can be gained from  the following 
considerations.  Let q,(z , t )  be  the  charge  per unit  length 
at position z and time t on  the ith conductor of the  trans- 
mission  line system.  The charge per unit  length is given 
in the limit as Az becomes  arbitrarily  small,  by the  equation 

(64) 61 0 q,(z,t)Az = E  1% f i  E . nidlidz, 
%+A% 

w. T. WEEKS 

where  the unit vector ni is shown in Fig. 1 and  the  inner 
integration is taken  around  the  perimeter of the ith con- 
ductor, again as  shown in Fig. 1. By substituting ( 5 )  into 
(64)  and using (9) it is found,  on dividing both  sides by 
Az and letting Az -+ 0 that 

Equation (65) thus confirms the  fact  that  the matrix Cij 
has  been  interpreted properly as  the matrix of capacitive 
coefficients. 

To  get analogous results  for  the  inductance matrix 
let Qi ( t , t  ) be the magnetic flux per unit  length linking the 
circuit  formed  by the ith conductor  and  conductor N + 1, 
the common reference  conductor.  The flux per unit  length 
is given in terms of the magnetic field by the  equation 

Qi(z , t )Az = p H . k x d r d z ,  (66) 

where  the  path of integration is  any path  starting at the 
surface of conductor i, ending at  the  surface of conductor 
N + 1, and lying in a plane of constant z .  

z+Az N + l  

By substituting (6) into (66)  and noting that 

(k x . (k x dr) = VQj . dr , 

it  is found with the aid of the boundary  condition (7 )  that 

where, again, the limit as Az + 0 has  been taken. 
Similarly,  starting  from the expression 

$ ( € E .  E + p H .  H )  

for  the energy per unit  volume stored in an electromag- 
netic field, it can  be  shown  that  the energy per unit length 
at position z and time t for  the transmission line system 
under consideration is given by 

N N  

W ( z , f )  = 3 2 2 (LijZiZj + C i j V i V j )  . (68 1 
, = l   j = 1  

The  somewhat  cumbersome proof will be  omitted. 

Computational aspects 
Computation of the fields set up by signals propagating 
on a multiconductor  transmission line system  requires 
two  separate calculations. First, it is necessary  to  solve 
the N two-dimensional electrostatic potential  problems 
defined by (7 ) ,  ( lo) ,  and ( 1 1 ) and then  calculate the 
capacitance and inductance matrix elements from (9) 
and ( 8 ) ,  respectively. Except  for a  relatively trivial class 
of problems, it is not  possible to solve the required  po- 
tential  problems by analytical means and one must resort 
to numerical methods.  An  extensive bibliography on this 
subject is given in Ref. [ 141. 
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The  second problem is, given the  capacitance and 
inductance  matrices,  to  solve ( 1 2 )  and ( 13) for  the  cur- 
rents and  voltages of the N lines. If only the  currents and 
voltages are of interest,  the potentials & ( x , y )  are not 
needed.  Only the  capacitance  and  inductance matrices 
are required. The  elements of the  capacitance matrix 
can  be  determined  approximately by numerical  compu- 
tation [ 141 or by direct  measurements [ 131 on the 
transmission line system in question. The  elements of 
the  inductance matrix can be  calculated  from ( 8 )  once 
the  capacitance matrix is known. Equation (8)  states 
that  the  capacitance matrix is e p  times the unit matrix. 
Thus,  the  inductance matrix is e p  times the  inverse of the 
capacitance matrix. This is a direct generalization of the 
familiar results  for two-wire lines. 

The solution of the transmission line equations ( 12) 
and ( 1 3 )  presents few problems. I f f i ( t )  and g , ( t )  with 
i = 1, 2, . . ., N ,  are any 2 N  at least once differentiable 
functions, then ( 12) and ( 13 ) are satisfied by 

and 

The  functions f ,  represent forward waves and the  func- 
tions gi backward  waves. The  quantity u is the propaga- 
tion velocity. Note  that all 2 N  waves propagate with the 
same velocity, u ;  it  is  unnecessary  to  assume a  common 
propagation  velocity. The matrix of coefficients Zi plays 
the  same role as the  characteristic impedance in the 
theory of the two-wire lines. This matrix properly  can  be 
called the  characteristic impedance  matrix. The functions 
f i  and gi are determined by boundary  conditions applied 
at  the  ends of each  conductor.  The  procedure is similar 
to  that used in the solution of two-wire  transmission line 
problems and will not be  discussed  here. 

Conclusions 
The relationship between Maxwell’s equations  and  the 
transmission line equations  for a  lossless,  multiconductor 
system has  been  explored in detail. In particular,  explicit 
expressions were derived  for  the electric and magnetic 
fields in the  space surrounding the  conductors.  These  ex- 
pressions  are given by Eqs. (5)  and ( 6 ) ,  respectively. A 

rigorous treatment [ (7 ) through ( 1 1 ) 3 of the calculation 
of capacitance and inductance coefficients was given. 
Equation (8)  is of particular interest.  It is the generaliza- 
tion to  the multiconductor case  from a  well-known  result 
for two-wire lines: the  product of capacitance per  unit 
length and inductance  per unit length is equal  to  the re- 
ciprocal of the  square of the velocity of propagation. 

Since  reliable methods  are available for calculating the 
coefficients of capacitance, (8) provides  a  simple way 
to  determine  the coefficients of inductance  for  systems in 
which the  assumption of TEM propagation is valid. Equa- 
tion (72) then  provides an explicit representation of the 
characteristic impedance  matrix. 
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