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The Theory of the Propagation of Plane Sound Waves in Tubes 

BY D. E. WESTON” 
Physics Department, Imperial College, London 

Communicated by R .  W. B. Stephens ; MS. received 26th March 1953 

Abstract. The propagation of plane sound waves in gases in tubes can be divided 
into three main types, depending on the radius and frequency involved. These 
types are described as ‘narrow’ tube, ‘wide’ tube and ‘very wide’ tube 
propagation. The phase velocity, attenuation and cross section profile of particle 
relocity etc. are investigated theoretically, and their inter-relation pointed out. 
The factors affecting the validity of Kirchhoff’s formulae are considered, and 
the theory is applied to some recent work. 

0 1. INTRODUCTION 
HIS paper is concerned with the theory for the propagation of sound 
waves of the principal mode in gases contained in cylindrical tubes of a T large range of diameters. I n  particular the manner in which viscosity and 

thermal conductivity affect the motion is discussed for continuous waves. 
Helmholtz (1863) was the first to investigate the problem, and quoted the 

formula for the velocity decrease due to viscosity. In  his dust-tube experiment 
Kundt (1868) obtained fair agreement with the Helmholtz formula, but found 
the effect larger than predicted. He suggested heat conduction as a further 
cause, stimulating Kirchhoff (1868) to present the complete theory for the 
‘wide’ tube, which is the most important case. 

Kirchhoff’s formulae are : 
Phase velocity of sound : 

Amplitude attenuation constant : 
c’=c[l - y ’ / ~ , ~ ( Z u ) ’ / ~ ]  =3.434 x 104(1 -0.162/(rW~’f)}cm sec-l. .. (1) 

m‘ = ( y ’ / c ~ , ~ ) ( u / Z ) ~ / ~  = 2.964 x 10-51/flY,v cm-l. . . . . . . (2) 
The numerical values here and elsewhere are for air at 2 0 ” ~  and 76 cm Hg;  

IS the pulsatance, f the frequency, r,” the tube radius and Y the general radius 
rector, and the following refer to the gaseous medium: 

c = Laplacian adiabatic velocity of sound, 1 

i 
1 . . . . . . (3) 

I 

y’ = 4~ + (y  - l ) ( ~ ’ / y ) ~ ‘ ~  = 0.574 c.g.s. units = Kirchhoff’s 

y = ratio of the principal specific heats, 
v = p / p  = kinematic viscosity, 
U’ = K/pc, =thermal diffusivity or thermometric 

conductivity, 
p =shear viscosity coefficient, 
k =thermal conductivity, 
p = density, 

c, = specific heat at constant volume. 

constant, 

* Now at the Admiralty Research Laboratory, Teddington. 
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The author has made a critical examination of Kirchhoff’s formulae in an 
effort to settle the controversy arising from the disagreement of many 
experimental results with theory. Using some results of Kirchhoff it may be 
shown that there are three main types of motion, the conditions for which are 
defined later (see table 1 and fig. 1): 

( a )  ‘Narrow’ tube. At very small radii and low frequencies the motion is 
isothermal and governed largely by viscous forces. 

(a) ‘Wide’ tube. The sound energy is diffused evenly over the tube cross 
section, and the adiabatic motion approximates to that in an unbounded gas. 
There is, however, a narrow boundary layer at the wall, analogous to the Prandtl 
layer in continuous flow, where viscous and heat conduction processes lead to an 
energy loss. 

(c )  ‘Very wide’ tube. This differs from the ‘wide’ tube mainly in that the 
sound energy is concentrated near the walls. 

Before giving the more formal analysis it is desirable to consider tW0 

alternative approaches to the problem-the resistance concept for ‘ narrow’ 
tubes and the boundary layer idea for ‘ wide’ tubes. Besides affording a clearer 
physical picture, these cover aspects additional to the main theory. 

§ 2. THE RESISTANCE CONCEPT FOR NARROW TUBES 
When the tube radius is much less than the boundary layer thickness a simple 

approach due to Lamb (1898) is valid. The motion is isothermal and viscous 
forces predominate over inertial forces. If U is the mean velocity over the cross 

where R is a coefficient of resistance and apjax the pressure gradient along the 
tube axis. This equation leads to the result 

section R~ = - apjax . . . . . .(  4) 

m2 = iwR/P . . . * . . (5) 
where m is the complex propagation constant and P the ambient pressure. 

applicable, viz. R = 8p/rw3. 
Thus for air, velocity c‘ = J c ~ , , , ( c o / p ) l / ~  = 9,364 x 1O4r,,.Z/f cm s e c 1  

attenuation m‘ = ~ ( ~ V U ) ~ / ~ / C T , ~  = 6.701 x lO-jy‘flr,,, cm-1. 

The value of R is usually calculated assuming that Poiseuille’s law 1s 

. . . . . . (6) 

. , . . . . (7) 

. . . . . . (8) 
For the narrower tubes R may be modified for the effect of slip, and for very 

narrow tubes it may be found from Knudsen’s formula for molecular streaming 
(see eqn. (72)). 

D 3. THE BOUNDARY LAYER CONCEPT FOR WIDE TUBES 
(i) Viscosity and Temperature Waves 

When a fluid is vibrating parallel to a plane solid surface the particle velocity U 

where U = ( ~ / 2 v ) ’ / ~  is the viscous ‘wave Constant’, and b is a coordinate measured 
normal to the solid surface. The first term represents the acoustic wave and the 
second term a ‘ viscous ’ wave. 

I t  may easily be shown that (see e.g. Sex1 1930) the amplitude uo of the 
particle velocity has a principal maximum equal to 1.067A at a distance from 

is given by (Stokes 1851) u = ~  e ~ w t [ l  -e-aa( i+t)  1 . . . . . . (9) 
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the surface A, = 2*2838(2~/w)l/~ = 0*5OO/y‘f cm for air, ...... (10) 
which is here defined as the boundary layer thickness. 

Rayleigh 1896, p. 322, Ballantine 1932) 

,&re /3 = (wy/2~’)’/~ is the thermal ‘ wave constant ’. 
of 8, occurs at 

Similarly it may be shown that the excess temperature (cf. Kirchhoff 1868, 

0 = B  etmt[ 1 - e-Bb(l+i)] 

A, = 2*2838(2~’/wy)~’~ = 0*596/y‘f cm for air. 

...... (11) 

...... (12) 

The principal maximum 

It may be noted that Ap N A, - (AA’)l/z, the geometric mean of the wavelength 

The shape of the wave front may also be calculated from eqn. (9). Thus 
and mean free path. 

where 
U = uo cos (wt  - m“x + 4)  ......( 13) 

tan+ =e-absinab/(l -e-abcosab) ...... (14) 
4 has a maximum of n-12 at the wall and a principal minimum of + = - 0*00438n-, 
corresponding to an appreciable forward displacement (about 0.2% wavelength) 

Figure 3 shows the velocity amplitude and wave front when the above theory 
IS applied to a tube. The maxima due to viscous waves have been found 
experimentally by Richardson (1928), Carriere (1929)) Richardson and Tyler 
(1929), and others. 

(ii) Velocity and Attenuation 

at b = 3 . 9 4 0 8 ( 2 ~ / ~ ) ~ / ~ .  ...... (15) 

Let the perimeter and cross-sectional area of the tube be E and S, and the 
excess pressure outside the layer 

The variable component of the particle velocity near the wall is 

From Newton’s law the force on a cylindrical gas column of length Sx is 

p =p, exp (iwt - mx). 

U = - (cp,,/yP) exp { - o.b( 1 + i )  + iwt - mx}.  

...... (16) 

...... (17) 

ESxp(g )  b=O = E~(~)1’2(l+i)exp(iwt-mx). ......( 18) 

The associated pressure is found to be 
(EIS)( ~ / 2 w ) l / ~ ( i  - 1)p. ......( 19) 

The variable component of the temperature excess near the wall is 

where 0 is the ambient temperature. The pressure arising is 

This corresponds to a pressure, averaged over the cross section, 

0 = - {po(y- l)@/yP}exp { -/3b(l + i ) + i w t - m x }  

- {$,(y - l)/y} exp { - fib( 1 + i )  + iwt - mx}.  

...... (20) 

....... (21) 

E y - 1  (&)“‘(i- 1)p. ’) exp { - Pb(l + i )  + i d -  mx)db = y314 
co 
- 

3 0  Y ...... (22) 
If the total fractional change in p due to heat conduction is E there will be a 
corresponding fractional change E in the temperature excess in the bulk of the 

PROC. PHYS. SOC. LXVI, 8-B 3 A  
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tube. This produces part of the change ~ ( y  - l)/y inp,  from the constant volume 
relation. Thus E has two components : 

Solving egn. (23) 

The extra pressure due to both viscosity and heat conduction is 

and the wave equation is modified to 
{Eyf/S(2w)1/2}(i - l)p 

The phase velocity and attenuation become 
c' = c{ 1 - Ey'/2S(2w)1'23 
m' = (Ey'/2S~)(w/2)~/~.  

...... (23) 

...... (24) 

...... (25) 

...... (26) 

...... (27) 

...... (28) 
These reduce to (1) and (2) for the circular tube. 

A version of the above theory for the effect of viscosity has been given by 
Rayleigh (1896) and others, but the heat conduction layer has not received such 
full attention (see however Ballantine 1932, Nielsen 1949 a, b, Konstantinov 
1939, Cremer 1948). 

0 4. THE MORE COMPLETE THEORY 
(i) General Equations 

Kirchhoff (1868, see alternatively Rayleigh 1896), when analysing propagation 
in a tube, started from differential equations modified for both viscosity and 
thermal conduction. He derived expressions showing the variations across the 
tube of the particle velocity U parallel to the axis, the radial particle velocity q, 
and temperature excess 8. These, however, involve constants A, A,, A, of values 
to be determined by the boundary conditions. 

U =A& - A,m(h/A, - v')Q, - A,m(h/A, - v')Q2 1 
-Am dQ -Al($ - d ) g - A 2 ( 1 ; ; - v ' ) %  I ......( 29) q = w z  

8' = AiQi + 4 Q z  J 
where 6' = e/(y - 1)0, h = i w  and 
Q =Jo{r(m2 -h/v)l/'} Q, =Jo{r(m2 - A l ) l / 2 }  Qa =Jo{r(m2 - h2)lirj ...... (30) 
A, and A, are the small and large roots of 

V" is a constani which according to Stokes equals v/3. 
h2 - {c2 + h(v + v"+ .')}A + (v'/h){c'/y + h(v + v"))P = O ...... (31) 

At the walls of a rigid conducting tube, where Y = Y , ,  

=q  = 6' = 0. ...... (32) 
The vanishing of the determinant (29) gives an equation for the propagation 
constant m used by Kirchhoff, 



Theoretical Sound Propagation in Tubes 699 

The profiles, i.e. distributions of particle velocity etc. across the tube, may 
The suffix w to a be expressed conveniently in terms of another constant B. 

quantity denotes its value at the wall. 

The form of solution depends on whether the moduli of Q, Ql, Q2 are smalI 
or large (see table 1 and fig. l), and the various regions are now considered. 

Table 1. The Various Propagation Regions (at 2O"c and 76 cm Hg) 
' Very small ' implies one term, and ' small ' several terms in eqn. (38) ; ' large' 

implies several terms, and ' very large ' one term in eqn. (43). 

Discriminant Magnitude of modulus 
Q Q, Q, Type of propagation 

Sarrow tube very small very small very small 
Transition, narrow-wide small very small small 
Transition, wide-narrow large 
Wide tube very large very small very large 
Transition, wide-very wide very large small 
Transition, very wide-wide very large large very large 
Very wide tube very large very large very large 

Frequency (c/s) 

Fig. 1. The varlous propagation regions in air a t  2 0 " ~  and 76 cm H g  showing where the 
Reported correction terms in the formulae for the attenuation are less than 1%. 

experimental work lies within the dotted line. 
3 A--2 
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(ii) The Narrow Tube 
Cross section profiles of particle velocity etc. 

(1896). First approximations from ( 3  1 )  are 

An approximation valid at all but the highest frequencies is hv/c2<1, and for 
the narrow tube (y’/rWZ/h 9 1) 

Retaining only the leading terms the profiles may be calculated from (34) 

The original treatment for waves in a narrow tube was given by Raylei& 

A, = h2/c2, A, = hy/v’. ...... (35) 

m2 = 8vyh/c2r,vz. ...... (36) 

...... (37) 1 U = ( B c / r ~ , ) ( ~ h / 2 ~ ) ” ~ ( ( . , 2  - r2) 
4 = - (Bh7/Yw2)(2y - - 7’) 

0’ = - (Bhy/4v‘)(rw2 - 7”. J 

The axial distribution is parabolic, as for continuous flow in tubes. Sex1 (1928, 
1930) also finds that his general expression, allowing for viscosity only, reduces 
to a Poiseuille type flow for narrow tubes. Note that q/u - (wv)l12/c, i.e. the radial 
is much less than the axial particle velocity. Compared with propagation in an 
unbounded gas &/u is multiplied by the small factor Y ~ ( W / V ) ~ ’ ~ ,  so the flow may 
be called isothermal. 

Transition to the wide tube. 
Starting from the two extremes it is possible to derive expressions applicable 

to the transition region between the narrow and wide tube. For the narrow 
tube approach, it may be shown, on developing the power expansion of a zero 
order Bessel function for small X, that 

48 3072.. . . . . . . . . .  ( 3 3 )  1 dlnJ0(*) = - ; [ I +  - + - + - x? x4 11x6 
dx 

By making approximations in eqn. ( 3 3 )  as in table 1 ,  but otherwise following 
Rayleigh, it is found that for air: 
velocity c’ = ( c r , $ ) ( w / ~ y ) ~ / ~ [ 1 -  y l r w z ~  + (yz + y12)7w4w2] 

attenuation m’ = ( 2 / ~ ~ , ~ ) ( 2 v y w ) ~ ~ ~ C l -  y l r w z ~  -y2r,v4w21 

=9-364 x 1O4r,,,y‘f[l - 2-95rw2f+ 1.60rw4f2] cmsec-l 

=6.701 x 10-5(Z/’/rw)[l - 2.95rw2f+7.11r,4f2] cm-l 

.... (39)  

.... (40) 
where y1 = {A - sl} = 0.470 c.g.s. 

...... (41) 
Kosten (1949) and Crandall (1927) have previously obtained a part of the 
correction term expressed in (40). 

(iii) The Wide Tube 
Transition to the narrow tube. 

When the boundary layer thickness A becomes comparable with the tube 
radius Kirchhoff’s assumptions begin to break down : in particular the moduli 
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of Q and Qz are no longer large. The discriminant between the two cases of 
adiabatic and isothermal flow is thus 

rv(w/v)112 a rw/A a moduli of Q, Q2 -rv2/f. . . . . . . (42) 
For x large 

1 1  . . . . . . (43) d In J,(x) 1 25 
dX 

&ere for the conditions considered it has been possible to approximate 
tan(x-$r)=i.  By solving eqn. (33) with approximations as in table 1, but 
otherwise following Kirchhoff, it is found that for air: 

velocity C' = C  

cm sec-1 . . . (44) 1 0.162 0.0262 0.0124 +--- = 3.434 104 [ 1 - r,2/f .,2f r,"f"" 

. .  

. . . . . (45) 

The two sets of approximate expressions for velocity and attenuation, 
approaching from the wide and narrow tube limiting cases, have been plotted 
together in fig. 2. This transition region has also been investigated, using 
different methods, by Nielsen (1949 a), Golay (1947), Daniels (1947, 1950), 
Zwikker and Kosten (1949), and Iberall (1950). 

For the 
narrow tube the amplitude falls to lie of its initial value after a phase advance 
of one radian. For the wide tube the fractional decrease in velocity is equal 
to the fractional decrease in amplitude after one radian. Bradfield (1951) has 
pointed out that a similar relation to the latter applies to other propagation 
processes. 

The first order correction to Kirchhoff's expression for the attenuation 
1s 1 + O.l6O/~,,.df, and his expression for the velocity decrease involves 
1 - 0.162/r,, 4'. It is a coincidence that these two corrections are numerically 
close, so that they approximately cancel, and the attenuation per wavelength 
just inside the transition region is predicted correctly by the simple formula. 

Cross section profiles of particle velocity etc. 

on developing the exact equations (34). 
and those of Q and Qz large, and the relation 

The relations between velocity and attenuation are of interest. 

The boundary layer theory predicts certain profiles, which are confirmed 
The modulus of Q1 is assumed small 

m2 = (h2/c2)( 1 + 2yt/r,,.2/h) . . . . . . (47) 
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is used. 
when near the wall : 

Introducing a new constant B‘ the following expressions are obtained 

U = B’[ 1 - ( r / ~ - , + . ) ~ ’ ~  exp { - ab( 1 + i)}] 1 
B ’ ~ w  e-23rr/4 [ r , ( Y ) 1 / 2  

exp { - ab( 1 + i)} 4= C < y -  y,” ! , .. 

J 8’ = (B’/c)[ 1 - ( Y / Y . , , , ) ~ ’ ~  exp { - Bb( 1 + i)}] 
The amplitudes of these quantities are plotted in fig. 3. It may be emphasized 
here that the enhanced particle velocity in the annulus shown in fig. 3 is a 

Fig 2. Theoretical velocity c‘ and attenuation 
m‘ in a tube as a function of r ,df  for air at 
20°c, 76 cm Hg. 

Fig. 3. Cross section profiles 
in a wide tube. (a) ampli- 
tude of axial particle 
velocity or temperature 
fluctuation, (b)  amplitude 
of radial particle velocity, 
(c) wave front or equiphase 
surface. 

consequence of Kirchhoff’s theory, and cannot be used to explain an experimental 
attenuation greater than the theoretical. The radial velocity has two components 
of the same order of magnitude travelling inwards from the wall, one with the 
velocity of viscosity waves and one with that of temperature waves. For 
continuous laminar flow it may be shown (Goldstein 1938, p. 51) that there is 
a velocity q in the layer normal to the surface such that q/u -All where 1 is the 
distance traversed from the leading edge of a plate. I t  may be seen from (48) 
that this is also true for the acoustic layer, when I is the wavelength in the gas. 
There is not always a motion normal to the surface: for example q is zero in 
continuous or oscillatory rotational motion of a cylinder about its axis, since the 
phase does not vary over the surface. I t  may be inferred from an expression 
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due to Kirchhoff (see Rayleigh 1896, p. 322) that there is a particle velocity 
accompanying a temperature wave such that 

agreeing with (48). Also u/e‘ = c outside the layer, which is the normal adiabatic 
relation. 

Near the axis where the moduli of Q and Qz are small the above analysis is 
not applicable. Modifying the analysis, only the first terms in (48) remain; 
this leads for example to the expression which satisfies the condition that the 
radial velocity falls to zero at the axis: 

q = B ’ d w  e-@‘i4y’r/cr,,,. 

pie’ = (y - l ) ( ~ v ’ / y ) l / ~  exp ( - i 3 4 4 )  . . . . . . (49) 

. . . . . . (50) 

The significance of the radial particle velocity. 
In the boundary layer theory for the velocity and attenuation the radial 

velocity was not considered, and this was permissible because the integral over 
the cross section of the pressure due to the velocity q must vanish. 

Rewriting the temperature wave term in q from (48) 

= -{~,(y-l)(~v‘~~~~/Py~~~}exp{-i3~/4-~b(l+i)+iwt-mx}. 
q = (y  - l ) ( ~ v ’ / y ) ~ / ~  e-*m!48‘ 

.. . .. .(51) 
The corresponding pressure excess 

P - q dt =p,{(y - 1 ) / y }  exp { - /3b( 1 + i) + iwt - mx}. . . . . . . (52) db d l  
This is equal in magnitude and opposite in sign to (21) so that altogether the 
temperature wave produces no pressure in the boundary layer. Similarly no 
pressure is developed in the layer by the viscosity wave. It should therefore be 
possible to calculate the extra pressure due to viscosity and heat conduction 
from the behaviour of q outside the layer, where from (50) 

and the corresponding displacement 

The corresponding pressure may be found using the adiabatic relation, since 
outside the layer q is associated with what is, essentially, an ordinary sound wave. 
The extra pressure is 

which agrees with (25). Thus the radial particle velocity has the effect of cancelling 
the extra forces at the boundary and distributing them evenly over the cross 
section. 

Tmzsition to the very wide tube. 
When the tube is so wide that the free gas attenuation begins to become 

comparable with the tube attenuation, Kirchhoff’s assumption that the modulus 
of Q1 1s very small breaks down. Substituting in (33) as did Kirchhoff, but 
without developing Q1, we find 

Using the first two terms of (38), (see table 1) 

q = (py’r/ Pyr,) ~ U I  e-13n/4, 

6 = (py’r/iw 4~ ezni4. 

. . . . . . (53) 

. . . . . . (54) 

- yP[a [ /ar  + (1.1 = {2y‘/r,,,(2~)l\~}(i- 1)p . . . . . . (55) 

d In Ql/drw = - h3/2y ’ /~2 .  . . . . . . (56) 

- (rw/2)(m2 - A,)[ 1 + rW2(m2 - A,)/8! = - hs”y‘/CZ. . . . . . . (57) 
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Hence 
A second approximation to A, is, from (31) ,  

The velocity and attenuation may be found from the complex propagation constant 
as before. The velocity is still predicted correctly by Kirchhoff’s formula (I), 
but the attenuation is 

m2 -Al = (2h3/2~’ /~ ,y)  - (h3yf2/2~). . . . . . . (58) 

A1=(h2/c2)[1 - (h /c2){v+v”+((y-  l)v’/y}I. . . . . . . (59) 

”= i (y + g{v+v!t+ Y- - 1 .,} I wiz3’* 
YWC Y 

=2-964 x 10-5,V‘j/r,+ 1.403 x lO-l3f2 +0-806 x 1 O - l y  cm-l for air. . . . (60) 
The first term is the ordinary tube absorption, the second the ordinary free gas 
attenuation, and the third arises because the sound energy is not uniformly 
distributed over the tube but tends to concentrate near the walls. Bogert (1950) 
considering viscosity only and using an approximate method, obtained a similar 
result as far as the second term. 

The profiles outside the boundary layer are 

q = ( B ’ y ’ d w  

U = B’[ 1 + w3/2 e-zn/4 r2/2c2 r,] 

8’ = (B’/c)[  1 + w3lz e-’*/4 r2/2c2 r,] 
r/crw)[ 1 + w3jn e-Ln/4 Y , ~ / ~ C * ]  . . . . . . . (61) I 

The axial velocity and temperature excess profiles have a parabolic curvature, 
being a minimum at the axis. The wave front is also parabolic, and convex 
towards +x. 

Velocity and attenuation. 

formula (43) must be used, and (56) becomes 

This leads to 

(iv) The Very Wide Tube 

In  the limit as the radius increases the modulus of Q1 becomes large SO that 

(Al - m2)1/2 - 4/27,” = - h3/2y’/c*. . . . . . . (62) 

=3.434 x 104 { 1 - - o):,} cm sec-1 for air . . . . . { 2rw(2w)1/L Y r  1 c ’ = c  1 -  

Y 
= 1.482 x l@6,V‘j/r, + 1.403 x 1 0 - 1 3 f 2  + 1.612 x 10-1sfZ cm-1 for air. . . . (64) 

The velocity change and first absorption term have half their wide tube values. 
The boundary layer derivation given above is not valid because phase and intensity 
vary considerably over the cross section. The first attenuation term is now 
only a minor correction, the second is unchanged, and the last is doubled in 
comparison with (60). 

Cross section profiles of particle velocity etc. 

from the axis are (written in terms of a new constant B”) 
The principal terms in the profiles (34) outside the boundary layer and away 

q = ( B ” y ’ ~ / w / 2 c Z / r ) e x p ( - i 3 . r r / 4 + r ( l  -i)y’w312/~/2c2} 
U = ( B ” / d r )  exp ( ~ ( 1 -  i ) y ‘ ~ ~ / ~ / 2 / 2 ~ ~ }  

8’ = (B”/cZ/r) exp (r( 1 - i )~’w3/2 /2 /2~~}  
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These are illustrated in fig. 4. 
wall to a very small value near the axis. 
measured to a point where the real part of the exponent is unity, is 

The amplitude falls from a large value near the 
The thickness of the ‘ clinging’ layer, 

S = 2 / 2 ~ ~ / y ’ w ~ / ~  = 1.84 x lO8f-312 cm for air. . . . . . . (66) 
The discriminant between the wide and very wide tube types of propagation is 

thus 
,,w312y‘ y, free gas absorption 

cz 6 tube absorption cc - ot modulus of Q1 cc 4 0 - * ~ , f 3 / 2 .  . . . . . . (67) 

At a frequency of 100c/s 6 is over a mile in thickness. Thus to make measure- 
ments in the wide to very wide tube transition region, tubes of the order of a 
centimetre radius and frequencies of the order of 10 kc/s are suitable. T o  keep 
below the cut-off frequency of the higher-order modes and also inside the transition 
region it would be useful to work at low pressures. 

Fig. 1. Cross sectlon profiles in a very wide tube, (a) amplitude of axial particle velocity 
or temperature fluctuation, (b) wave front or equiphase surface. 

The wave front is inclined to the normal to the wall at an angle (y’/~)(~/2)’/* 
which is very small, and it is convex towards + x showing that the wave is divergent. 
The last term in m’ is equal to the product of the ‘ attenuation’ constant in the 
‘clinglng ’ layer and the inclination of the wave front : 

y’2w2/2c3 = y’w3/2/2/2C2 x (y‘/c)(w/2)1/2 
SO that this extra attenuation corresponds to an enhanced energy transfer to the 
walls. 

Rayleigh (1896, p. 327, 1901) has shown that there is a similar type of pro- 
pagation between parallel rigid conducting plane walls, and obtains a term 
equivalent to the last in (64)’ but leaves out the second. 

(v) Other Solutions of the General Equation (33) 

. . . . . . (68) 

For very narrow tubes it is no longer permissible to neglect m2 in comparison 
If we follow in other respects the narrow tube development we find with hlv. 

(rW2c2/8yh2)m4 - (rW2c2/8yvh)m2 + 1 = 0. 
There are three limiting cases, one expressed by (36), and the others 

. . . . . . (70) 
Equation (36) is Rayleigh‘s narrow tube solution, which passes over into (70) as 
the radius approaches the mean free path A’. The classical continuum theory is 

. . . . . . (69) 

. . . . . . (71) m2 = 240(2y)l/~/cr, m2 = h/v. 
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able to predict a correction at the radius (about 10-5cm) where its foundations 
begin to break down because the numerical value of v has been used, and this 
depends on A’. There is a similar prediction when the wavelength approaches 
the mean free path. Using the resistance concept, and applying Knudsen’s 
formula to ( S ) ,  we find 

which is very similar to (70). The solution expressed by (71) suggests that 
viscosity waves propagating along the tube axis can co-exist with acoustic waves, 
There are also other solutions corresponding to temperature waves and to higher 
order modes in the tube. 

m2 = 3h(2ny)1/2/8~~,v . . . . . . (72) 

5 5. THE VALIDITY OF KIRCHHOFF’S FORMULAE 
The assumptions which Kirchhoff made in deriving the wide tube formulae 

(1) and (2), in addition to those noted in table 1, are briefly stated here. 
( U )  Kirchhoff assumes a homogeneous medium, and only considers the extra 

effects due to viscosity and heat conduction. 
(b )  The sound amplitude is assumed small, so that there is no circulation or 

turbulence etc. (see Binder 1943). 
(c) All the parameters are assumed to vary as eZot-l’t”, so that the formulae 

do not apply to pulses. Henry (1931) has pointed out that for a wave train the 
tube correction for the group velocity is only half that for the phase velocity. 
Boussinesq (1891) has applied boundary layer theory to give a comprehensive 
account of the propagation of pulses in tubes. 

( d )  The theory is for an indefinitely long tube, and it may take some distance 
for the velocity profile etc. to become stable. Thiesen (1907) has investigated 
the extra heat conduction effects at the end of a tube. Schweikert (1915, 1917) 
has considered the positions of the nodes in a Kundt’s tube, and predicts in some 
circumstances an apparent velocity reduction due to absorption and proportional 
tof-3/2. This agrees with the experiments of Schneebeli (1869) and Seebeck 
(1870), which have long been difficult to interpret. 

(e )  Circular symmetry is assumed, so that the wall surface is given by r = r W ,  
the surface must also be perfectly smooth, impervious and rigid. Fissures 
parallel to the axis will increase the tube effect by increasing the ratio EIS (see 
eqn. (28)), and corrugations may cause an irregular gas motion at the wall. An 
imperfect wall surface is a frequent cause of experimental disagreement with 
Kirchhoff’s formulae. 

The effect of non-rigid 
walls has been investigated by many workers (e.g. Korteweg 1878), and may be 
large at resonance or for a rubber-like tube. Henry (193 1) considers the effect of a 
relative normal motion of tube and gas at the wall, such as might occur for a 
porous material etc. He concludes that this will lead to only a small velocity 
change, but may cause appreciable extra absorption. Henry also allows for 
molecular slip by modifying the last part of Kirchhoff’s analysis, and his result 
together with that for the temperature discontinuity effect (paragraph (g)) may be 
written 

(f) The motion is assumed to vanish at the walls. 

+ 
0.162 6.5 x 10-6 2 -,r 4.4 x 10-6 2 -g’ =3.434x104{1- - + + T }  cm sec+ for air 

YW yw f’ Y W V Y  . . . . * . (73) 
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where according to Knudsen the thermal permeability 

and A’ is the gaseous mean free path, f’ and g‘ the coefficients of slip and accom- 
modation. The correction terms in the attenuation formula due to slip, temper- 
ature discontinuity, and a cross-product term are all found to contain W V / C ~ ,  and 
are therefore negligible at normal frequencies. 

The corresponding expressions for a narrow tube are given by eqn. (5) using 
a value of R modified for slip : 

5 -@/1*9V(2g’ / (2  -g’))  . . . . . . (74)  

=9.346 x 104r ,y ‘ f ( l+(13  x 10-6/r,v)(2-f’)lf’)cmsec-1 for air . . . . . . (75)  
2( 2nyvf)li” 1/2 p 2 -f’ 

111’ = cy, { I - & )  ,f-> 
=6.701 x 10-5(y‘f/r,5.){l - (13  x 10-6/r,)(2-f’)/f’}cm-1 for air. 

The correction term due to slip is twice as great in (75) as in (73) .  
(g) The gas temperature is assumed constant at-the walls. Henry takes into 

account the finite temperature discontinuity, but makes some errors in an algebraic 
transformation. Thus the predicted effect on the attenuation is too large by 
several orders of magnitude, and the corrected velocity may be written as in (73).  
Zwikker (1941) also performs part of this calculation but it is not clear where he 
obtains the low value for 1, which invalidates his conclusions. 

Since it 
has a finite thermal conductivity R ,  and finite volume specific heat pwcw, rapidly 
damped temperature waves are propagated into the wall thickness. Henry (193 1 )  
and Nielsen (1949 a)  have shown independently that for both attenuation and 
velocity y’ is changed very slightly 

. . . . . . (76)  

There is also a small temperature variation in the wall at its surface. 

Y’ = d v  + (Y - 1)(v’/Y)1’2{1 - (KPc,/R,,,~,”c,”)1i2). . . . . . . (77)  
(h) Kirchhoff assumes that the velocity of propagation of viscous effects 

( ~ V W ) ~ / ~  or of temperature waves (2v’w/y)lj2 is much less than the velocity of sound 
c; i.e. ov/c2 < 1 and wv’/yc2 This is again equivalent to the sound wavelength 
being much greater than the mean free path, which approximation breaks down at 
about lO$c/s for normal pressures. 

Rayleigh 
(1896, p. 161) has shown that a wave must eventually become plane if the frequency 
be lower than the lowest naturai transverse frequency, so for a circular tube it is 
desirable that h>3*413r,. . . . . . . (78) 

1 .  

(i) Kirchhoff’s formulae only apply to waves of the principal mode. 

$6.  APPLICATION OF THE THEORY TO LAWLEY’S RESULTS 
The application of the theory to the recent work of Lawley (1952) is of interest, 

especially to the part with varying pressure. He measures the attenuation in 
Oxygen at 120kc/s, in a tube of diameter 1*5mm,  and at pressures from 5 to 
130cmHg. That part of the absorption proportional to P-l12 (tube absorption, 
ET) can be separated from that proportional to P-l (free gas absorption, KG) by 
plotting m ’ ~ l 1 2  against ~ - 1 1 2 .  

Examination of eqns. (45)  and (60) shows that although the tube is ‘ wide’ all 
the time, the corrections arising because of the transition to both the narrow and 
%’wide tube types are of a magnitude comparable with the free gas absorption. 
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The complete expression is 

or m’PllZ = K,  + KGP1lz 
= 1.25 + (0.068 + 0.175 + 0.101)P-1~2 . . . . . . (80) 

for oxygen at 27”c, where P is in cm Hg. 

figure (table 2). 
It is now found that the theoretical value for KG isgreater than the experimental 

Probably the main effect, as yet unconsidered, is the molecular 

Table 2. Values of Constants in equation (80) 
K T  Kc: 

Experimental (Lawley) 1.38 0.246 
Theoretical 1.25 0.344 

absorption, in particular the manner in which it varies with pressure. 
depends on the relaxation frequency at atmospheric pressure. 

The latter 
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