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The Schur Algorithm and its Applications 
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Abstract. The Schur algorithm and its time-domain counterpart, the fast Cholseky recursions, are some 
efficient signal processing algorithms which are well adapted to the study of inverse scattering problems. 
These algorithms use a layer stripping approach to reconstruct a lossless scattering medium described by 
symmetric two-component wave equations which model the interaction of right and left propagating waves. 
In this paper, the Schur and fast Cholesky recursions are presented and are used to study several inverse 
problems such as the reconstruction of nonuniform lossless transmission lines, the inverse problem for a 
layered acoustic medium, and the linear least-squares estimation of stationary stochastic processes. The 
inverse scattering problem for asymmetric two-component wave equations corresponding to lossy media 
is also examined and solved by using two coupled sets of Schur recursions. This procedure is then applied 
to the inverse problem for lossy transmission lines. 
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I. Introduction 

The Schur algorithm [ 1, 2] is a fast algorithm well-suited to high-speed data processing. 
This algorithm is obtained by using a layer stripping procedure to reconstruct a lossless 
scattering medium described by symmetric two-component wave equations. Two-com- 
ponent wave equations describe many real-world physical phenomena, and the purpose 
of this paper is to examine several inverse problems which can be solved efficiently by 
using the Schur algorithm. The problems that we will consider include the reconstruction 
of nonuniform lossless transmission lines, the inverse problem for an acoustic layered 
medium and the linear least-squares estimation of stationary stochastic processes. 

In addition, we will consider the case when the scattering medium that we want to 
reconstruct is lossy and is described by asymmetric two-component wave equations. It 
will be shown that in this case the medium can be reconstructed by using coupled Schur 
recursions, and this procedure will be illustrated for the case of nonuniform lossy 
transmission lines. 

The Schur algorithm has a breadth of applications which is nothing short of aston- 
ishing. It is used for example in the Schur-Cohn test [3] for checking the stability of 
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discrete-time polynomials, and in the Darlington procedure [3, 4] for synthesizing an 
impedance function by a cascade of elementary lossless sections of degree one termi- 
nated by a resistor. The fast Cholesky recursions, which constitute the time-domain 
version of the Schur algorithm, may be used to obtain a lower triangular-diagonal-upper 
triangular (LDU) factorization of a Toeplitz matrix [5-7]. The continuous parameter 
version of this algorithm, which will be employed throughout this paper, similarly 
performs a causal-anticausal factorization of a Toeplitz operator [8]. 

This paper is organized as follows. In Section 2, we consider the problem of 
reconstructing a lossless scattering medium described by symmetric two-component 
wave equations and we show that the medium can be reconstructed layer by layer, by 
using the fast Cholesky recursions or the Schur algorithm. This procedure is then used 
in Section 3 to solve the inverse problem for nonuniform lossless transmission lines, and 
scattering concepts such as those of impedance, reflection coefficient, right and left 
propagating waves are illustrated. In Section 4 the inverse problem for an acoustic 
layered medium is examined, and the Schur algorithm (which is known in this context 
as the dynamic deconvolution algorithm [9]) is used to reconstruct the medium 
parameters from scattering data. The data are obtained by probing the medium with 
plane waves, first at normal incidence and then at oblique incidence. In Section 5, the 
problem of linear least-squares estimation of a stationary stochastic process in white 
noise is discussed. It is shown that the forwards and backwards estimation residuals 
satisfy two component wave equations and that the lattice estimation filter obtained by 
discretizing these equations can be constructed from the spectral function of the 
observed process by using the Schur algorithm. In Section 6, the inverse problem for 
a lossy scattering medium is considered, and is solved by using two coupled Schur 
recursions. As an example of this result, the inverse problem for lossy nonuniform 
transmission lines is examined. Section 7 contains some conclusions and suggests 
topics for future research. 

NOTATION 

Unless specifically identified otherwise, all variables are scalar. Fourier transforms will 
be designated by a carat, e.g., ~, and partial derivatives by subscripts: 02f/Ox Ot = f~t .  

Dependent variables will generally be omitted for brevity. 

2. The Continuous-Time Sehur and Fast Cholesky Algorithms 

In this section, we quickly review the continuous-time Schur and fast Cholesky algo- 
rithms. No derivations will be attempted since all results can be found in the given 
references. We consider a lossless 
two-component wave equations 

Px + P, = - r ( x )q (x ,  t), 

qx - q t  - -  - r (x )p (x ,  t) 

scattering medium described by the symmetric 

(la) 

(lb) 
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which constitute a special case of the equations discussed in [10, 11]. Here r(x) is the 
reflectivity function and p(x,  t) and q(x,  t) are the rightward and leftward propagating 
waves in the medium at point x and time t. Note that i f r (x )  - 0 over some interval, then 

p = p ( x  - t), q = q(x  + t) (2) 

over the interval, so that p and q correspond effectively to waves propagating rightward 
and leftward with unit velocity. 

In the following, it will be assumed that r(x)  - 0 for x < 0 and that re  L~[O, oo), so 
that for x < 0 and as x ~ oo, p(x,  t) and q(x,  t) have the form (2). 

2.1. THE SCATTERING MATRIX 

By taking the Fourier transform of (1), we obtain 

~x[~] = [ -j~° - r ( x '  1 
- r (x)  j ~  _1 

(3) 

and a simple discretization of x in (3) gives the elementary scattering section described 
in Figure 1. This figure shows that r(x)A is the fraction of the rightgoing wave p which 

Fig. 1. 

I'(x)~ I~x)A 
~(x +Z~,,,,,) 

q(x+A,w) 
Elementary scattering sections obtained by discretizing the two-component wave equations. 

is reflected by a section of thickness A at depth x inside the medium. The discrete ladder 
structure displayed by Figure 1 has been used to design signal processing architectures 
for speech processing [ 12], digital wave-filter synthesis [ 13], spectral estimation [ 14] 
and linear estimation [4, 15, 16]. 

The elementary scattering layers of Figure 1 can be composed by using the rules of 
composition for scattering layers described in Redheffer [ 17]. The resulting aggregate 
medium is described by the scattering matrix 

LKL(~o) ie~(og)J (4) 

which relates the incoming and outgoing waves appearing in Figures 2a and 2b. In 
Figure 2a, the medium is probed from the left by a rightward propagating wave e-jo~x, 
and gL(Og) e j~°x and 7~L(o~) e -~,ox are respectively the reflected and transmitted waves. 
Figure 2b corresponds to the case when the medium is probed from the right. More 
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-j=x 
e (incident) 

^ j~X 
RL(+) e (reflected) - 

Scat ter ing (w)e (transmitted) 

Medium 

(o) 

TR(~) e ( t ransmi t ted)+-- {  

Scattering 

Medium ~ IR R (~)e -j'+x (reflected) 

e j ,a  + (incident) 

(b) 
(a) Scattering for an impulsive wave incident from the left, and (b) from the right. 

generally, for arbitrary waves p(x,  o9) and ~(x, 09) 

p(x,  o9) = PL(O9) e-i° 'x,  (t(x, o9) = (tL(og) eJ~°x 

for x < 0, and 

p(x,  o )  = pR(aO e-J°'x, gl(X, o9) = (IR(O) e j ' ' '  

and x-~ or, and 

(5a) 

(5b) 

4L(o~)] Lq~(o)_l (6) 

expresses the outgoing waves (P8, ~L) in function of the incoming waves (PL, ~k)" 
If 

Lqg(x, 

are two arbitrary solutions of(3), and ifY. ~ diag(1, - 1), the system (3) has the property 
that 

and 

d (a~/(x, 09) Xaz(x, to)) 0 
dx 

(8) 

d 
- -  W(a,(x,  o9), a2(x, 09)) = O, (9) 
dx  
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where H denotes the Hermifian transpose, and where 

W(a, ,  a2) =~ Plq2 - ~02 (10) 

is the Wronskian of al and a z. The  relation (8) expresses the fact that the medium is 
lossless and it can be used to show that the matrix S(co) is unitary, i.e., 

Sn(oo)S(co) = L (11) 

This property is valid only when the two component system (3) is symmetric, whereas 
the identity (9) holds even for asymmetric two-component systems of the type that will 
be considered in Section 6. 

A consequence of (9) is that 

= ( 1 2 )  

Physically, this means that the transmission loss through the system is the same going 
in either direction. It can also be shown (see [ 10]) that the assumption that r ~ L~[0, oo) 
implies that TL(O~) has no poles in the lower half-plane, so that the system (3) has no 
bound states. By combining this observation with (11) and (12), we can conclude 
[ 18, 19] that the entries of S(o9) can all be computed from either/~L(~o) or/~R(og). This 
property is very important, since in some inverse scattering applications such as the 
inverse seismic problem, we have access to only one side of the scattering medium. Note 
that our sign convention for the Fourier transform is the opposite of that of [ 18, 19], 
which explains why we use the lower half-plane to study the properties of S(o9), instead 
of the upper half-plane in [ 18, 19]. 

2.2. FAST CHOLESKY RECURSIONS 

To obtain the fast Cholesky recursions, we assume that the medium is quiescent at t = 0, 
and that is probed from the left by a known rightward propagating wave 

p(0, t) = ~(t) +/~(0, t)u(t) (13) 

which is incident on the medium at t = 0. Here b(. ) denotes the Dirac delta function 
and 

u(t)={10 fort~>0fort<0 (14) 

is the unit step function. Note that the main feature of p(0, t) is that it contains a leading 
impulse which is used as a tag indicating the wavefront of the probing wave. The 
measured data is the reflected wave 

q(0, t) = ~(0, t)u(t) (15) 

recorded at x = 0. In the special case when p(0, t) = 0, ~(0, t) = RL(t ) is the impulse 
response of the scattering medium and its Fourier transform/~L(~o) is the left reflection 
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coefficient. Note that/~c(Og) Can also be measured by sending into the medium sinus- 
oidal waveforrns at various frequencies and measuring the magnitude and phase shift 
of the reflected sinusoidal wave. In the following, for convenience we will omit the 
subscript L of RL(t ) and/~L(Og). 

Since the medium is causal and originally at rest, the waves p(x, t) and q(x, t) inside 
the medium must have the form 

p(x, t) = b(t - x) + p(x,  t)u(t - x), 

q(x, t) = gl(X, t)u(t - x), (16) 

where p(x,  t) and O(x, t) are smooth functions. By substituting (16) inside (1), and 
identifying coefficients of the impulse ~5(t - x) on both sides of (lb), we find that 

r(x) = 20(x, x) (17) 

and 

Px + P,  -~ - r (x )g t (x ,  t), 

~ - C~, : - r ( x ) p ( x ,  t) .  

(18a) 

(18b) 

The recursions (17), (18) constitute the fast  Cholesky recursions [20], and have also been 
called the downward continuation reeursions by Bube and Burridge [21]. 

The initial data for these recursions are the measured waves p(0, t) and 0(0, t). The 
algorithm (17), (18) can be viewed as using a layer stripping principle to identify the 
parameters of the scattering medium. Thus, assume that the waves p(x, t) and O(x, t) 
at depth x have been computed. The reflectivity function r(x) is obtained from (17) and 
is used in (18) to compute the waves p(x  + A, t) and O(x + A, t) at depth x + A. The 
effect of the recursions (17), (18) is therefore to identify and then strip away the layer 
[x, x + A). 

2.3. THE SCHUR RECURSIONS 

The medium can also be reconstructed by using the recursions (3) for the transformed 
waves p(x, co) and ~(x, o )  with the expression 

r(x) = 2~/(x, x) = l i r n  2j~o e a~'x ~(x, 09) (19) 

where we have assumed that the waves p and q have the form (16). The recursions (3), 
(19) constitute the frequency domain counterpart of the time-domain recursions (17), 
(18). 

An alternative method is to consider the left reflection coefficient 

~ ( x ,  co) = ~ ( x ,  co) /~(x ,  co) (20) 

which is associated to the section of the scattering medium extending over [x, ~) .  The 
expression (20) assumes that the medium is probed from the left and that no wave is 
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incident from the right. By using the recursions (3) for p and 0, we find that/~(x, co) 
satisfies the Riccati equation 

1~ x = 2jo;l~ + r(x)( /~2 _ 1) (21) 

and the initial value theorem can be used (see [20]) to show that 

r(x) = limo~ 2jcol~(x, o~). (22) 

When (22) is substituted in (21), the Riccati equation (21) can be propagated auto- 
nomously and provides a way of reconstructing the reflectivity function r. The initial 
condition for these recursions is 

/~(0, o;) =/~(~). (23) 

and is obtained from the measured waves/~(0, o9) and ~(0, ~o), or from direct frequency- 
domain measurements of the reflection coefficient/~(~). 

It should be emphasized that (17), (18), (3) and (19), and (21), (22) are all just different 
versions of the same algorithm and are thus interchangeable. In this paper, we will refer 
to (17), (18) as the fast Cholesky recursions, and to (3) and (19) or to (21), (22) as the 
Schur algorithm, but all of these are just different forms of the Schur algorithm. Note 
that the Riccati equation (21) for the reflection coefficient g is well-known in scattering 
theory [22] and is direct consequence of the rules of composition of scattering layers 
[ 17]. This equation was in fact used by Gjevick et aL [23] to develop an iterative method 
for reconstructing the reftectivity function r(x). What distinguishes the Schur algorithm 
from these results is the observation that the relation (22) can be used to compute 
/~(x, 09) recursively for increasing values of x. 

The recursions (21), (22) are the continuous version of an algorithm obtained by 
Schur [ 1, 2] for testing the boundedness of a function R (z) which is analytic outside the 
unit disk. Given R(z),  Schur showed that IR(z)l ~< 1 outside the unit disk if and only 
if the reflection coefficients r n obtained from the recursions 

g . ( z )  - r .  

R . +  ,(z) = z(1 - r . g . ( z ) ) '  Ro(z) = g ( z ) ,  

rn = l ina R,,(z), 

(24a) 

(24b) 

are such that ]rnF ~< 1. Some recursions similar to (24) can in fact be obtained by 
performing a backwards-difference discretization of the Riccati equation (21). Similarly 
the fast Cholesky recursions (17), (18) were used in [8] to perform the causal-anticausal 
factorization of a Toeplitz operator and constitute the continuous counterpart of a 
discrete algorithm which was obtained in [5-7] to construct the L DU factorization of 
a Toeplitz matrix. 

Finally, it is worth noting that the layer stripping principle which was used here to 
solve the inverse scattering problem for the two-component wave system (1) can also 
be used for other physical models of scattering media. Some inverse scattering techni- 
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ques based on a layer stripping principle were in fact developed in [24, 25] for the 
telegrapher's equation, and in [26] for the Schrodinger equation (see also [20]). 
However, instead of considering separately the inverse scattering problem for a Schro- 
dinger equation, we can use the results developed above for two-component wave 
equations. 

2.4. THE SCHR()DINGER EQUATION 

Consider the equation 

yxx  - y .  = V ( x ) y ( x ,  t)  (25) 

which is associated to an elastically braced string [27], where y(x, t) denotes the 
displacement of the string at point x and time t, and V(x) is the elasticity constant at 
x. We assume that V(x) is localized, i.e., V(x) = 0 for x < 0 and 

fo ~ (1 + V(x)l dx x)] < o0, 

so that as x < 0 and x-* oo 

y(x, t) = Y l ( X  - t )  + Y2(X  + t) (26) 

is the superposition of rightward and leftward propagating waves. Taking the Fourier 
transform of (25) yields the SchrOdinger equation 

`oxx + ( °92 - V(x))`O(x, co) = 0. (27) 

Then, the inverse scattering problem for this equation is expressed in terms of the 
solution `OL(x, co) and 0R(x, co) such that 

~e-J~x +/~L(o9) ea,ox 
`OL(x, o9) = tT~ (o9) e - J ~  

for x < O  
(28) 

as  X --~ O0 

and 

`OR(x, o9) = f¢'U "(o9) 
ea~,x 

( ej~°x +/~R(og) e j~o_~ 
for x < 0 (29) 
as x ~ o o  

which define the scattering matrix S(o9) associated to V(x). These solutions correspond 
to the case when the string is probed from the left or from the right by an impulsive wave. 
The problem is to determine V(x) given the reflection coefficient function/~L(o9) or 
/~R(o9)" 

Several solutions of this problem based on the Gelfand-Levitan procedure 
[ 18, 19, 28] or on trace formulas [29] have been proposed. We will now show that the 
Schur algorithm provides a solution which is computationally quicker. To see this, note 
that by taking the derivative of the two-component system (3) with respect to x, we 
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obtain the matrix SchrOdinger equation 

( (~ -x2+0)Z l z ) - [ - : i - :~ ] )  [~O(x'og,l=O'L~(x, og)J (30, 

where 12 denotes the 2 x 2 identity matrix. By making the change of variable 

Pl(x, 0)) = p(x, 0)) + O(x, o9), (31a) 

Y2(x, 0)) = p ( x ,  0)) - O(x, o9), 

this equation can be decoupled into two scalar SchrOdinger equation 

.~lxx + ( °)2 -- Vl(X))f)l(X, 0)) = O, 

; ' ~ x  + (0)2 _ V2(x)) i '2(x ,  0)) = O, 

where 

Vl(X ) = r2(x) - (~(x), 

V2(x) = r2(x) + rx(x). 

(31b) 

(32a) 

(32b) 

(33a) 

(33b) 

In addition, we observe from (31) and from the definition of the scattering matrix S(0)) 
of the two-component system (3) that the scattering matrix associated to Vt(x) is 
identical to that of (3), and that the scattering matrix $2(0) ) associated to V2(x ) is given 
by 

L - £L(0)) 7~.(~o)d 
(34) 

i.e., it is obtained by changing the sign of the reflection coefficients/~L and/~n of (3). 
Consequently, given a potential V(x), we can always view its left reflection coefficient 

/~L(og) as arising from a two-component system such as (3). Then, given/~/~(0)) or the 
impulse response Rr(t), we can use the Schur or fast Cholesky recursions to reconstruct 
the reflectivity function r(x), which in turn can be used to recover V(x) from the relation 
(33a). The relation (33a) is known in soliton theory as the Miura transformation [ 10, 27], 
and it maps solutions of the modified Korteweg-de Vries equation into solutions of the 
Korteweg-de Vries equation. 

If the potential V(- ) extends only over a t'mite interval [0, L], the interval [0, L] may 
be divided into N subintervals of length A = L/N, and the Schur and fast Cholesky 
recursions may be discretized accordingly. It is shown in [20, 21] that the resulting 
procedure requires only O(N 2) operations to recover r(. ) and V(. ), instead of O(N 3) 
if we discretize the Gelfand-Levitan equation and solve the resulting system of linear 
equations. The Schur and fast Cholesky algorithms are therefore quite efficient. Note, 
however, that if we exploit the structure of the Gelfand-Levitan equation and use the 
Levinson recursions to solve this equation [20], we obtain a reconstruction procedure 
which is as efficient as the Schur algorithm. 
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3. The Lossless Non-uniform Transmission Line 

In this section we study the inverse problem for the lossless nonuniform transmission 
line, and show that its solution is given by the Schur or fast Cholesky algorithms (see 
[30] for an earlier solution of this problem). In the process, we give a scattering 
interpretation of transmission line phenomena such as waves, reflections, impedances. 

Consider an infinitesimal section of length A of a lossless non-uniform transmission 
line. Such a section is illustrated in Figure 3. Note that L(x )  and C(x)  represent 

Fig. 3. 

i(x,t) L(x)A i(x+/N,t) 
+0 ~ I O+ 

I v(x,t) T C(x)L~ v(x+A,t) 

- - C  O--  

Infinitesimal section of a lossless nonuniform transmission line. 

inductance and capacitance per unit length, i.e., they are distributed quantities. Writing 
equations for Figure 3, we have 

v(x, t) = L6A + v(x + A, t), (35a) 

i(x, t) = CvtA + i(x + A, t). (35b) 

Dividing by A and letting A ~ 0, we obtain the telegrapher's equations 

vx + L(x)i ,  = 0, (36a) 

ix + C(x)v,  = 0. (36b) 

which also arise in acoustics [24] and in studies of the human vocal tract [25, 31] under 
the assumption of losslessness. 

For a uniform line, it is well known (see [32]) that (36) admits wave solutions, and 
that for such waves the reatio of the amplitudes of the voltage and current is the 
characteristics impedance Z o = (L/C) 1/2. Since the quantities p and q appearing in the 
two-component wave equations must be dimensionally equivalent, this suggests defining 
for the non-uniform line the dimensionally equivalent variables 

V(x,  t) = Z o l/2v(x, t), I (x ,  t) = Z~/2i(x ,  t) (37) 

where Zo(x  ) = (L(x) /C(x) )  ~/2. Substituting (37) in (36) yields 

Vx + (LC)'I2It = - 2 d x  In Z o V(x ,  t), (38a) 

,(a ) Ix + (LC)1/2 Vt = 2 dxx In Z o I (x ,  t). (38b) 
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In order to make the dependent variables x and t dimensionally equivalent, we replace 

x with the travel time z defined by 

z (x )=f i~(L(u)C(u) ) ' /Rdu .  (39) 

Since (L(x)C(x))-  ~/2 is the local wave speed at x, z(x) is the time required for a wave, 
starting at x =- 0, to reach position x. Making the additional change of variables 

p(z, t) = ½(V(z, t) + I(z, t)) (40a) 

q(z, t) = ½(V(z, t) - I(z, t)), (40b) 

and defining the reflectivity function 

r(z) -- ~ In Zo(z) (41) 

we obtain the two-component wave equations (1). The relations (40) provide an inter- 
pretation of the right and left propagating waves in terms of the normalized voltage and 
current. 

3.1. INTERPRETATION OF THE REFLECTION COEFFICIENT 

Suppose a uniform transmission line is terminated with a load ZL. Then a wave 
travelling down the line will be reflected back by the load. Define/?(~), the reflection 
coefficient for the load, to be the ratio of the Fourier transforms of the primary and 
reflected voltage waves, at the frequency co. It is easy to show (see [32]) that 

R(~) - V--REFL(CO) -- ZL(CO) -- Zo • (42) 

vp~M(0~) ZL(O~) + Zo 

For the nonuniform transmission line considered here, since there is a one-to-one 
correspondence between position x and travel time z, we will use x instead of z in the 
qualitative analysis to follow. Then, at point x on the line, the load perceived due to all 
of the line to the right of x is (see Figure 4) 

~(x, ~) 
ZL(x, 09) - f(x, co)" (43) 

A 

i (x ,~)  

- - 0  

Transmission 
Line over (x,co) 

A 

i(x,w) 
-I.-C 

I 

- o  I 

Fig. 4. The perceived load to the right of x. 
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By substituting this expression in (42), we find that for the nonuniform transmission line, 
the reflection coefficient at point x is 

~/~- Zo(x) _ 9 / [ -  1 .~(x, co) - 

elf + Zo(x) 91i + 1 

= gl(X, o9)/13(x, co) (44) 

This is precisely the expression (20) for the left reflection coefficient of the section of 
the two-component system (1) extending over [x, oc). 

We see, therefore, the meaning of/~(z, co). For a given point x on the line, and any 
given frequency co, it is the ratio of the reflected and primary voltage waves, with the 
reflection due to the inhomogeneity of the line at x. From Section 2, we know that 
/~(z, co) satisfies the Riccati equation (21), and that r(x) may be found from/~(x, e)) by 
using (22). Also note that if the line is locally uniform at point Xo, dZo/dx (Xo) = 0, hence 
r(xo) = 0 and no reflection occurs. Reflections occur only where the line is inhomo- 
geneous. 

3.2. INVERSE PROBLEM 

Suppose now that the line characteristics L(x) and C(x) are unknown and that we want 
to determine them from the measured impedance Z(co) = ZL(0, CO). This problem arises 
not only when we want to find the characteristics of an existing transmission line, but 
also if we want to synthesize a transmission line with prescribed impedance Z(co). It 
is assumed here that we have access to only one end of the line. The line characteristics 
can be partially reconstructed as follows. First, set Zo(0 ) = 1 and consider the reflection 
coefficient 

/~(o9) - Z(co) - 1 (45) 
z(co) + 1" 

Then, run the Schur recursions (21), (22), using/~(co) as initial condition, to obtain r(z). 
Alternatively, we may compute the inverse Fourier transform R(t) of/~(o)), and use the 
fast Cholesky recursions (17), (18) to obtain r(z). Given r(z), the expression 

Zo(z)=exp2Ior(u)du (46) 

enables us to recover the characteristic impedance Zo(z ) = (L(z)/C(z)) 1/2 as a function 
of the travel time z. However, we cannot reconstruct L(x) and C(x) separately as 
functions of the position x. 

The same difficulty will appear in Section 4 for the inverse seismic problem of 
geophysics, except that in this case we will be able to use an additional degree of 
freedom, the angle of incidence of the probing waves, in order to reconstruct the medium 
completely. 
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4. The Inverse Seismic Problem 

In this section we examine and solve, using the Schur algorithm, the inverse problem 
for a one-dimensional acoustic medium probed with plane waves. We will consider first 
the case of plane waves at normal incidence, and then the offset problem in which the 
probing waves come in at an angle, as shown in Figure 5. 

Fig. 5. 

Incidentwave ~ Reflectedwave 

0 

/ / / / / / / / / / /  

Homogenous region 
(air or ocean) 

=y 
Inhomogeneous 
medium to be probed 

p(x), c(x) 

' / / I / / I / / I I I I I I I /  

Homogenous region 
x (bedrock) 

Inverse Problem for a layered acoustic medium. 

For the normal incidence case, the equations we will obtain are almost identical to 
those of last section, and even though the physical situations are quite different, the 
inverse problem is the same as for the lossless nonuniform transmission line. 

A simple transformation will allow the offset problem to be solved by using the same 
procedure as for the normal incidence problem. By probing the medium at two different 
angles, it will be shown that the medium density and velocity profiles can be recon- 
structed separately as functions of depth. The use of the Schur algorithm to solve the 
offset problem has not to our knowledge appeared in the literature. 

4.1. THE NORMAL INCIDENCE PROBLEM 

The problem to be considered in this section corresponds to the case when the angle 
of incidence 0--- 0 in Figure 5. The acoustic medium that we want to reconstruct is 
constituted of a homogeneous half-space with known density Po and sound speed c o 
extending over x < 0, and of an inhomogeneous half-space with unknown density p(x) 
and unknown local sound speed c(x) extending over x >~ 0. For convenience, we assume 
that inhomogeneities are localized, so that for x > L the density Pl and sound speed c 1 
are constant. Physically, the region x < 0 corresponds to the air or ocean located above 
the medium to be probed, and the region x > L corresponds to the substrate or bedrock 
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located below it. An impulsive plane pressure wave, propagating downwards, is incident 
upon the inhomogeneous region at t = 0, and the reflections or reverberations making 
their way back to the surface of the inhomogeneous medium are measured either at the 
surface of this medium (land case) or above the surface (marine case). Our goal is to 
obtain profiles ofp(x) and c(x)  as functions of depth. The presentation will follow that 
of [33]-[36]. 

The two basic equations we start with are the acoustic equation [33, 35] 

Dwtt = - e x  (47)  

and the stress-strain equation 

e = - pc2wx, (48) 

where w(x,  t) and P(x ,  t) denote, respectively, the displacement and pressure (negative 
stress) at depth x. 

The first step is to change variables from depth x to travel-time z(x) ,  which is the time 
it takes for a wave starting at the surface of the inhomogeneous medium to reach depth 
x. (Recall a similar definition in the last section.) Thus we have 

z(x)  = fXodu/c(u ). (49) 

By substituting (49) inside (47) and (48), and defining 

Z(z  ) = p(z)c(z ) = characteristic impedance, (50a) 

v(z, t) = wt(z, t) = particle velocity, (50b) 

we obtain the system 

P~ = - Z(z)v , ,  v: = - Z -  l(z)P, (51) 

which in the Fourier domain takes the form 

P. = - j coZ(z )~ ,  ~: = - j c o Z -  l(z)P. (52) 

Then, if 

q'(z, t) = Z -  ~/2(z) P(z, t) = normalized pressure, (53a) 

(a(z, t) = ZI/2(z)  v(z, t) = normalized velocity (53b) 

and if we make the change of variables 

p(z, t) = ½(~P + cp), q(z, t) = ½(qJ - tp), (54) 

the system (51) can be transformed into the two-component wave system 

p~ + p, = - r(z)q(z, t), qz - q, = - r(z)p(z, t) (55) 
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where the reflectivity function r(z) is given by 

d 
= ½ in z (z ) .  (56) 

The definition of the normalized variables V(z, t) and (~(z, t) and of the waves p(z, t) 
and q(z, t) is identical to the one we used in last section for the normalized voltage and 
current V(z, t) and I(z, t) and the associated right and left going waves. The inversion 
problem for the 1-D acoustic medium probed by plane waves at normal incidence is 
therefore the same as that for the nonuniform lossless transmission line. 

The data which is used in the inversion is obtained by sending a downward impulsive 
plane pressure wave which is normally incident upon the inhomogeneous half-space at 
t = 0. Then, for the land case, we measure the particle velocity v(0, t) at the Earth's 
surface as a function of time. Since the difference in density between the air and the 
Earth is very large, the Earth's surface acts like a free surface, i.e., the pressure on it 
is zero for positive times. We can therefore express the pressure and velocity on the 
surface as 

P(0, t) = Pod(t) (57a) 

v(O, t) = Vo(~(t ) + 2h(t)u(t)) (57b) 

where Po/vo = Z(0). After normalization, the downgoing and upgoing wavesp(0, t) and 
q(0, t) take the form 

p(0, t) = (~(t) + h(t)u(t), q(O, t) = - h(t)u(t), (58) 

and the fast Cholesky recursions (17), (18) or the Schur recursions (3) and (22) can be 
applied to these waves to reconstruct the reflectivity function r(z). 

For the case of a marine seismogram, the reflected pressure wave R(- )  is measured 
at some point inside the homogeneous half-space x < 0. The pressure and velocity in 
this half-space are 

P(x, t) = Po(~(t - X/Co) + R(t  + X/Co) u(t + x/co)), (59a) 

v(x, t) = Vo(6(t - X/Co) - R( t  + X/Co) u(t + X/Co) ) (59b) 

so that at the surface of the inhomogeneous medium (the ocean floor), the downgoing 
and upgoing waves are given by 

p(O, t) = ~(t), q(O, t) -- R(t)u(t).  (60) 

These can then be used to reconstruct the reflectivity function r(z). 
Given r(z), the impedance Z(z)  can be obtained by using (46). Thus, as in the case 

of the nonuniform lossless transmission line, the best we can do is to reconstruct 
Z(z)  -- pc as a function of the travel time z. We cannot recover p(x) and c(x) separately 
as functions of depth. The procedure consisting of using the Schur recursions to 
reconstruct the impedance Z(z)  is commonly called dynamic deconvolution. It was 
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developed first, using the discrete Schur algorithm, for the case of a layered medium 
divided up into homogeneous layers of equal travel-time (the so-called GoupiUaud 
model) and it is described in [9]. 

Another feature of this reconstruction method is that the quantities p(x, t) and q(x, t) 
represent respectively downgoing and upgoing waves. So when we run the fast Cholesky 
or Schur recursions on the experimental data, we are decomposing the pressure and 
particle velocity at each depth into a superposition of upgoing and downgoing waves. 
Thus, we gain not only information about the medium parameters, but also information 
about what is happening to the medium. This could prove useful in evaluating how 
realistic the model is. 

4.2. THE OFFSET PROBLEM 

We now consider the problem in which an impulsive plane pressure wave is obliquely 
incident on the medium at an angle 0 to the vertical, as shown in Figure 5. In this case, 
the impulse response R (t, y; 0) is a function of the horizontal coordinate y (in the normal 
incidence case there is of course no horizontal variation). We will once again obtain a 
dynamic deconvolution procedure that uses the Schur algorithm to recover an impe- 
dance as a function of travel time, although this impedance differs slightly from (50a). 
However, running the offset experiment twice for two different angles of incidence 
0 = 01, 02 will allow us to recover p(x) and c(x) separately, as functions of depth, a 
significant improvement over the normal incidence experiment. The problem is set-up 
as in [37-39]. 

An impulsive plane pressure wave Po ~(t - (x cos 0 + y sin O)/co) is incident at an 
angle 0 from the vertical, where x and y are as in Figure 5. The Fourier transform of 
this wave is Po e --j(kxx+kyy), where k:~ = co cos O/c o and ky = 09 sin O/c o are the vertical 
and lateral wavenumbers in the upper homogeneous half-space. For the case of a marine 
seismogram, the pressure field for x < 0 is therefore 

P(x,y, co; O) = Po e-JkyY( e-jkxx + /~(~0; 0) e ikxx) (61) 

(compare this to the SchrOdinger equation boundary condition (28)). This shows that 
in the time domain the impulse response R(t, y; O) has the form 

R(t, y; O) = R(t - y sin O/co; O) (62) 

where R(t; O) is the inverse Fourier transform of the reflection coefficient R(co; 0). This 
form is also valid for the case of a land seismogram. Thus, in theory it should only be 
necessary to measure R(t,y; O) at a single surface point (e.g., y = 0). However, in 
practice we need to take data for a range ofy  and filter or stack it to the form (62). This 
is because any real-world impulsive wave can only be locally planar, while the form (61) 
of the pressure field assumes an incident plane wave of infinite extent. 

With y dependence added, the acoustic and stress-strain equations (47), (48) become 

pWtt = - VP(x, y, t), (63a) 

P(x, y, t) = - pc2V • w(x, y, t) (63b) 
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where the displacement w(x, y, t) is now a vector. Then, ifv = w, is the particle velocity, 
and if v x and v y are its vertical and lateral components, by taking Fourier transforms 

we obtain 

P~ = - j cop(x )~  ~, (64a) 

Py = - j cop (x )~ ,  (64b) 

p ( x ) e 2 ( x ) ( ~  + ~)y) = - jo ) f i .  (64c) 

Since the medium properties vary only with depth x, the horizontal wavenumber ky 
is preserved, and we may write, as in [37] 

/6(x, y, co) = ~(x, co) e-Jk, Y. (65) 

Substituting this expression in (64b) yields 

= (sin O/p(X)Co)P, (66) 

and by inserting (66) in (64c) and using Snell's law 

sin O(x)/c(x) = sin O/c o -- ray parameter (constant) (67) 

where O(x) is the local angle that a ray path makes with the vertical, we get 

p(x)c2(x)~;~ = - j c o  cos z O(x)P. (68) 

Now, define 

c ' (x)  = c (x ) /cos  O(x) = local vertical wave speed, (69) 

z (x )  = f o  du/c ' (u)  = vertical travel time to depth x, (70) 

Z ( z )  = p(z)c '(z)  = effective impedance. (71) 

Using (69)-(71) in (64a) and (68) gives 

fiz = - J c o Z ( z )  ~;x, (72a) 

~ : - j c o Z -  l(z)P, (72b) 

and once again defining the downgoing and upgoing waves as 

p(z,  y, co) = ½ ( Z - r a f t ( z ,  y, co) + Z1 /2~(z ,  y, co)) (73a) 

(l(z, y, co) = ½ ( Z -  l/2P(z, y, co) - Z m ~ X ( z ,  y, co)), (73b) 

we obtain the two-component wave system 

p~ = - j cop  - r(z)O, (74a) 

qz = - r(z)l~ + Jcogl (74b) 

where the reflectivity function r(z) is given by (56). Here y is f'~ed at whatever value of 
y we measure R (t, y; 0) (e.g.,y = 0), and 0 is a parameter on which all quantities depend. 
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Note that once again the quantities in the wave system (74) are the Fourier transform 
of the downgoing and upgoing waves, so that the vertical motion of the medium is again 
decomposed into upgoing and downgoing waves. Furthermore, for both the case of a 
land and marine seismogram, these waves have the form (16), so that we can use the 

fast Cholesky or Schur recursions to reconstruct the effective impedance Z(z) given by 
(71). 

Now, suppose that the offset experiment is run twice, for two angles of incidence 

0 = 01, 02. Two different impedances ZI(ZI) and Z2(Z2) are obtained, which are 
functions of two different travel times z~ and z 2. From (69)-(71), we get 

dz 1 cos Ol(X) Z2(z2) 

dz 2 cos 02(x ) Zl(z,) 
(75) 

which can be solved or integrated numerically to obtain the monotone increasing 
function z 1 = z~(z2). This unables us to express Z~ and Z z as functions of the same travel 
time z 2. Then, using (67) and (69)-(71), we can reconstruct p(z2) and c(z2) separately 
as functions of the known impedances Z~ and Z 2 . Finally, inverting (70) and using (69) 

gives the effective travel time z2(x), yielding p(x) and c(x) separately, as functions of 

depth. 
This reconstruction procedure has only been sketched, since it has nothing to do with 

the Schur algorithm; it is presented in more detail in [38]. Note however that the 
dynamic deconvolution method described above to compute the impedances Zi(zi) 
i = 1, 2 is new. An alternate reconstruction procedure was described in [39] which 
recovers p(x) and c(x) recursively by operating directly on the need to compute the 
impedances Zi(zi) i = 1, 2 as a preliminary step. 

The reason that the profiles p(x) and c(x) recursively by operating directly on the 
waves associated to 01 and 02, thereby obviating the need to compute the impedances 
Z~(zi) i = 1, 2 as a preliminary step. 

The reason that the profiles p(x) and c(x) can be recovered separately for the oblique 
incidence problem, but not for the normal incidence problem, is that by running the 
oblique experiment twice information has been gained along two different ray paths. This 
option is not available for the normal incidence problem. 

Note that along any given ray path the ray parameter (67) is constant, so that unless 
the angle of incidence 0 is less than the critical angle sin- 1 (co/ma x c(x)), the angle O(x) 
will become imaginary at some depth. Physically, this situation results in evanescent 
waves, in which the pressure field decays exponentially with depth. This causes no 
difficulty in the Schur algorithm until the ray path becomes horizontal, prior to turning 
back up. When this turning point is reached, Ir(x)l ~ ~ .  However, since no new 
information can be gained beyond the turning point, the Schur algorithm can be 
terminated when I r(x)l  exceeds a pre-set value. For the reconstruction procedure 
described above, this means that we can recover p(x) and c(x) only until a turning point 
occurs in either of the two oblique incidence experiments. 
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5. Linear Estimation of a Stationary Stochastic Process 

In this section the problem of finding the linear least-squares estimate of a stationary 
stochastic process given some observations of this process over a finite interval is posed 
as an inverse scattering problem, and solved using the Schur algorithm. This formulation 
of the estimation problem for a stationary stochastic process is due to Dewilde and his 
coworkers [4, 15, 16, 40]. 

The basic problem to be considered is as follows. Let 

y ( t )  = z( t )  + v(t)  (76) 

be some observations of a zero-mean stationary stochastic process z(. ) with covariance 

E[z(t)z(s)] = k(It- sl), (77a) 

where v(. ) is a white noise process with unit intensity, i.e., 

E[v( t ) v ( s ) ]  = b(t - s). (77b) 

We assume that z(. ) and v(. ) are uncorrelated and that k(. ) 6 LI[0, ~) ,  so that its 
Fourier transform 

~:(~o) = k( t )  e-j~o, dt (78) 

exists. In this case, the spectral density of y( .  ) is ~,(co) = 1 + ~:(~o) + ~:( - •). 
Given the Hilbert space 

Y(t; x) = H ( y ( t  + s), - x <~ s <~ x)  (79) 

spanned by the observations over the interval [t - x,  t + x],  our objective is to compute 
the forwards and backwards linear least-squares estimates of z at the endpoints of this 
interval. These estimates can be denoted as 

e(t  + x l Y ( t ; x ) ) =  f x  A ( x ; u ) y ( t  + u) du, (80a) 
J -  X 

e(t- xlY(t;x)): f x  B(x;u)y ( t  + u) du, (80b) 
d -  x 

where A ( x ;  • ) and B ( x ;  • ) are the optimal forwards and backwards prediction filters, 
respectively. Note that since the process z(. ) is stationary the filters A ( x ;  . ) and  B ( x ;  • ) 

do not depend on t, the center of the interval [t - x, t + x]. Then, if the forwards and 
backwards residuals are defined as 

e(t, x )  = y ( t  + x )  - 2(t + x] Y( t ;  x)) ,  (81a) 

b(t, x )  = y ( t  - x )  - ~.(t - xl  Y( t ;  x)),  (81b) 

by using the orthogonality property 

e(t, x), b(t, x )  2_ Y( t ;  x)  (82) 
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of linear least-squares estimates, we find that the filters A(x; • ) and B(x; • ) satisfy the 
Wiener-Hopf equations 

i x A(x; s) + A(x; u)k(lu - sl) du = k(x - s), (83a) 
- - x  

f:x ,X; B(x; s) + u)k(lu - s]) du = k(x + s) (83b) 

with - x ~< s ~< x. 
Applying the operators O/Ox + ~/~s and O/Ox - 3/Os to (83a) and (83b) respectively, 

and using the linearity of the resulting equations yields the Krein-Levinson recursions 
[15,41] 

+ A(x;s)  = -r (x )B(x;s ) ,  
Os] 

(84a) 

0 _ = - r(x)A(x;,) 
~x Os/ 

(84b) 

with - x ~< s ~< x, and where 

r(x) = 2 a ( x ;  - x)  = 2/~(x; x)  (85) 

is the reflectivity function. The last identity in (85) is obtained by noting from a 
time-reversal argument that B(x; s)=-A(x; -s) .  The Krein-Levinson recursions (84) 
have the same form as the fast Cholesky recursions. However, as noted in [20], these 
two sets ofrecursions differ by the fact that the Krein-Levinson recursions correspond 
to a boundary value problem where r(x) is computed at every step from 

r(x) = 2(k(2x)  - f ~xA(x; u)k(x + u) du ) ,  (86) 

whereas the fast Cholesky recursions give rise to an initial value problem. 
The recursions (84), (86) can be used to compute efficiently the filters A(x; .) and 

B(x; .). Furthermore, if we apply the operators O/Ox -T- O/Ot to the definition (81) of the 
forwards and backwards residuals e(t, x) and b(t, x) and use the Krein-Levisnon 
recursions (84), we obtain 

( O - fft)e(t, x) = - r(x)b(t, x), (87a) 

+ b(t, x) = - r(x)e(t, x). (87b) 

This shows that the residuals satisfy a two-component wave system, where e(t, x) and 
b(t, x) propagate respectively leftward and rightward, and where the waves at x = 0 are 
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given by 

e(t, O) = b(t, O) = y(t). (88) 

As a consequence of this observation, the process y(t) can be viewed as the output of 
a modeling filter driven by e(t, x) as shown in Figure 6a. This modeling filter is obtained 
by aggregating infinitesimal ladder sections of the type described in Figure 6b. 

y(t}: e(t,x} 

=b(t,x) 

Co) 

e(t,x) ~---1_ e-JW~ 

b(t,x) =f[ e-J=Z~ 
x)A J r_(x)A 

j = '+~, ,  b{t, x+ A) 

(b) 
Fig. 6. (a) Aggregate modeling filter for y(. ), and (b) infinitesimal ladder sections associated to the 
Krein-Levinson recursions. 

The scattering matrix associated to the two-component wave system (87) can be 
identified by noting that as x ~ 

e(t, x) = vF(t + x), b(t, x) = vB(t - x) (89) 

where vF(. ) and vB(-) denote respectively the forwards and backwards innovations 
processes associated to y ( . )  [41]. The processes VF(') and vn( . )  are white noise 
processes and are related to the observations y(- ) through the identities 

)3(0~) = F(o~) 9F(O~), (90a) 

)3(09) = F( - 09) 9B(~o) (90b) 

where)3(og), ~r(co) and ~B(og) denote formally the Fourier transforms of y(.  ), re(" ) and 
vB(" ), and where the shaping filter F(o 0 is the outer spectral factor of }~(o9), i.e., 

~,(to)---[F(og)l 2 (91) 
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on the real axis, and F(co) and F-  l(o~) are analytic in the lower half-plane. 
The relations (88) and (89) imply that the scattering matrix S(o9) satisfies 

(09) J LgFt~O)A 

and by substituting (90) inside this relation, we obtain the identity 

1 
IF -  1(- °9)~ = [/~T~ 1 J /~27~] IF_ 1(o9) ] (93) 

for the entries of S(~o). By using the properties (11) and (12) of the scattering matrix, 
this gives after some algebra 

RL(~o) - k(~) (94a) 
1 + Ic(o9) ' 

f.L(co ) = 7~R(co ) _- F(o~) (94b) 
1 + k(og) '  

/~R(~o ) = - k( - 09) F(~o) (94c) 
i + 

where the left reflection coefficient/~L(co) depends only on the covariance data given 
by k(co). 

Then, we observe that the Krein-Levinson recursions (84) and the system (87) for 
the residuals e(t, x) and b(t, x) are parametrized entirely by the reflectivity function r(x). 
Consequently, the linear least-squares estimation problem over an arbitrary finite 
interval wilt be solved completely once we reconstruct r(. ). This problem can be 
formulated as an inverse scattering problem where RL(co) is given in the form (94a), and 
where we want to recover r(x). 

To do so, one method is to apply the Sehur or fast Cholesky recursions directly to 
/~L(o~) or its inverse Fourier transform RL(t). However, the special form of (94a) can 
be exploited by selecting 

p(O, t) = b(t) + k(t)u(t), q(O, t) = k(t)u(t) (95) 

as probing waves (see [ 8, 40]), to which we can then apply the fast Cholesky recursions. 
In this case, as a byproduct of the fast Cholesky algorithm, we obtain a factorization 
of the covariance operator w ( t -  s) = b ( t -  s) + k ( I t -  sl)in terms of causal times anti- 
causal Volterra operators [8]. Furthermore, by noting that 

I F(m)] = S(co)[ 1 + ~(~°) 1 (96) 

we see that as x ~ ~ ,  the rightward propagating wave/~(x, co) corresponding to the 
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probing waves (95) takes the form 

p(x ,  ~o) = F(Og) e-J'°x,  (97) 

so that the Cholesky recursions provide an approximation of the spectral factor F(og) 
of ff(og). 

The inverse scattering formulation of the linear least-squares estimation problem that 
we have described above can also be used to study the properties of orthogonal ladder 
filters of the type described in Figure 6b. For example, the stability and lack of sensitivity 
of these filters to roundoff errors are a direct consequence of the losslessness property 
of the scattering medium [4, 42]. These properties, as well as the modularity and 
pipelinability of ladder filters have motivated their widespread use for adaptive equali- 
zation [43], speech processing [12, 44], and spectral estimation [14, 45]. 

6. Inverse Scattering for Asymmetric Two-Component Wave Systems 

In this section, the inverse scattering problem for asymmetric two-component wave 
equations is examined, and solved by using two coupled sets of Schur recursions. The 
systems which are described by asymmetric two-component wave equations are not 

necessarily lossless, and we can therefore use these equations to describe a larger class 
of physical phenomena than those that we have studied in the previous sections. Our 
results will be illustrated by considering the inverse problem for a nonuniform trans- 
mission line with losses. It is worth noting that a solution of the inverse scattering 
problem for asymmetric two-component wave equations was presented in [ 10] and was 
used by Jaulent [46] to solve the inverse problem for lossy transmission lines. However, 
this method relied on the solution of two coupled Marchenko equations, whereas the 
solution that we present here is differential, and uses the layer stripping principle that 
we have been advocating throughout this paper. 

The system that we consider is described by the asymmetric two-component wave 
equations 

d I ~ ]  = [-Jc°- r(x) - s (x ) ]  [ ~ l j o 9  A (98) 

which, in the time-domain correspond to 

Px + P, = - s ( x )q ( x ,  t), (99a) 

qx - qt = - r (x )p(x ,  t) (99b) 

It is assumed that r(x)  = s (x )  = 0 for x < 0, and that r, s e  LI[0, oo), so that r(x)  and 
s (x )  are localized, i.e., they go to zero as x ~ oo. 

Then, the scattering matrix S(og) can be defined as in Section 2 by relating the 
outgoing and incoming waves appearing in Figure 2. In addition, the property (9) for 
the Wronskian of two independent solutions a f ( x ,  o9) = (ffi(x, o9), Oi(x, o9)) i = 1, 2 of 
(98) remains valid, and by applying it to the waves a l (x  , o9) and a2(x, co) appearing in 
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Figures 2a and 2b respectively, we obtain the reciprocity relation 

~ ( ~ )  = 7"~(09). (lOO) 

However, if a t ( x ,  09) = (fi(x, co), t](x, co)) is an arbitrary solution of (98), we have 

d (1:12 _ 1912 ) = 2(r(x) - s ( x ) ) R e ( p ( x ,  og)O*(x, 09)) (101) 
dx 

so that the scattering medium associated to (98) is not lossless unless r ( x )  = s ( x )  which 
corresponds to the case when the two-component wave equations are symmetric. This 
implies that S(09) is not a unitary matrix, and c o n s e q u e n t l y  we c a n n o t  recover S(09) from 
the knowledge of the left reflection coefficient/~L(09) only. 

6.1. INVERSE SCATTERING PROCEDURE 

The inverse scattering method that we develop here relies on the observation that if time 
is reversed (i.e., t is changed to - t in (99), or co is changed to - co in (98)), and if the 
waves p and q are interchanged, we obtain an asymmetric two-component wave system 

P~ + l~t = - r ( x ) q a (  x,  t), (102a) 

- ~ -= - ~ ( x ) F ' ( ~ ,  t) O 0 2 b )  

where r ( x )  replaces s ( x )  and vice-versa. The scattering matrix associated to this system 

is 

-- ( s % o ) ) - ' ,  (103) 

where to obtain (103) we have used the reciprocity relation (100). The system (102) is 
a f a k e  sys tem,  which does not exist really, but its scattering matrix, is entirely specified 

by the knowledge of S(09). 
Then, in order to reconstruct r ( x )  a n d  s (x ) ,  we assume that the true system (98) and 

the fake system (102) are probed s imul taneously  by some waves which have the form 

and 

p ( x ,  t)  = 6(t - x )  + p(x, t ) u ( t  - x), 

p a ( x ,  t) = b(t - x )  + l ~ ( X ,  t ) u ( t  - x) ,  

q (x ,  t)  = ~t(x, t ) u ( t -  x )  (104) 

q~(x ,  t)  = ~ ( x ,  t ) u ( t  - x).  (105) 

By substituting these waves in (98) and (102), we obtain the system of coupled fast 
Cholesky recursions 

Px + 17, = - s (x )~ t (x ,  t), gtx - ~t, = - r ( x ) p ( x ,  t)  (106a) 
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and 

+ ~ = - r ( x ) ~ ( x ,  t), ~ - ~ = - s(x)fr4(x,  t) (106b) 

with 

r(x)  = 2q(x, x), s (x)  = 2~(x, x) (106c) 

which can be propagated recursively for increasing values of x, starting from x = 0. The 
specification of the initial conditions for these recursions is very important, since as 
noted above, the system (102) does not exist really and cannot be relied upon to provide 
some experimental waves pa(0, t) and ~(0,  t). 

The initial conditions that we select are 

p(0, t) =/~(0, t) = 0 

7t(0, t) = RL(t) ,  qn(O, t) = R~( t )  

(107a) 

(107b) 

where RL(t ) and R~(t)  denote the inverse Fourier transforms of the left reflection 
coefficients/~L(CO) and/~(co). RL(09) Can be measured directly, and from (103) 

R~(09) : (S-  n(o9))2 , , (108) 

i.e.,/~(w) is the (2, 1) entry of the inverse of S~'(co), Thus,/~.(co) can be expressed as 
a function of the whole scattering matrix S(c0), and it will be specified provided that we 
can measure all the entries of S(co). This implies that we must have access to both ends 
of the scattering medium. In some cases, such as for the inverse problem of geophysics, 
this is impossible; but for some other problems, such as for the reconstruction of 
nonuniform transmission lines, the medium can be probed from both sides, and all the 
entries of S(co) can be measured. 

Instead of expressing our reconstruction procedure in terms of the coupled fast 
Cholesky recursions described above, we can use a set of coupled Schur recursions. Let 

l~(x, o9) = q(x, co) and t~A(x, CO) = qa(X~' CO) (109) 
p(X, 09) F(X, ~) 

be the left reflection coefficients for the true and fake systems over the interval [x, oo), 
where the waves p, 9,/~,  qA in the definition (109) are assumed to have the form 
(104)-(105). Then,/~(x, w) and RA(x ,  Co) satisfy the Riccati equations 

l~x = 2j09I~ + s ( x ) l ~  2 - r ( x ) ,  

~q~ = 2joJ~q A + r(x)~q ~2  - s ( x ) ,  

with initial conditions 

(llOa) 

(1105) 

~q(0, 09) = RA09), ~q"(0, 09) = K~(09). (111) 

By using the initial value theorem for the reflection coefficient (109), and taking into 
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account the form of the waves (104)-(105), we get 

(loim ~ 2j~ol~(x, ~o) = r(x), 

l i m  2jooI~A(X, o9) = s(x), 
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(112a) 

(112b) 

which can be combined with (ll0a) and (ll0b) to propagate/~(x, a~) and RA(x, CO) 
recursively, and to reconstruct r(x) and s(x) for all x. This algorithm constitutes the 
generalization of the Schur algorithm (21)-(22). 

6.2. RECONSTRUCTION OF NONUNIFORM TRANSMISSION LINES WITH LOSSES 

In Section 3, the reconstruction problem for a nonuniform lossless transmission line was 
solved using the Schur algorithm. We now consider the more general case where some 
losses, in the form of series and shunt resistances per unit length have been added to 
the transmission line. This reconstruction problem is then solved as an asymmetric 
two-component inverse scattering problem, using the method obtained at the beginning 
of this section. The problem is set up as in [46]. 

An infinitesimal section of the line is shown in Figure 7. R(x)  is the nonuniform series 

Fig. 7. 

i(x,t) L(x)A R(x)A 
+ o  = ( "v -Y 'Y~ ,  

v(x,t) 

- 0  

i(x+A,t) 

C(x)A G(×)A v(x+A,t) 

O -  

Infinitesimal section of a lossy nonuniform transmission line. 

resistance per unit length, representing the finite resistance of the wires, and G(x) is the 
shunt conductance per unit length, representing leakage current between the wires. The 
circuit equations are 

v(x, t) = (Li, + Ri)A + v(x + A, t), (l13a) 

i(x, t) = (Cv, + Gv)A + i(x + A, t). (113b) 

Dividing by A, and letting A --, 0 yields the transmission line equations 

v x + L i , + R i = O ,  i x + C v , + G v = O .  (114) 

As in Section 3, we replace the position x by the travel time z(x) given by (39), and 
we introduce the dimensionally equivalent variables 

V(z, t) = Z-]/Zv(z,  t), I(z, t) = Z]/Zi(x, t) (115) 

where Z(z)  = (L(z)/C(z)) 1/2 is the characteristic impedance. Then, Equations (114) take 
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the form 

V. + I, = - R I  - m(z)V, 
L 

where 

m(z) = ½ d In Z(z).  

Making the change of variables 
p(z, t) = ½(V + I), q(z, t) = ½ ( V -  I) 

gives 

p~ + p, = - a(z)p(z, t) - (m(z) + b(z))q(z, t), 

q~ - q, = - (re(z) - b(z))p(z, t) + a(z)q(z, t) 

which is almost in the desired form, and where 

a(z) = ½(G + R), b(z) = ½(G - R). 

Considering the scaled variables 

p ' ( z , t ) = p ( z , t ) e x p f f a ( u ) d u ,  

ql(z, t) = q(z, t) exp - I z a(u) du, 
do  

281 

(116) G 
Iz + Vt = m ( z ) I -  ---V 

C 

(117) 

(118) 

(l19a) 

(l19b) 

(120) 

and taking Fourier transforms yields the asymmetric two-component wave equations 
p~ = -jo9ff(z ,  co) - s(z)ql(z, co), (122a) 

(11 = -r(z)fil(z, o9) + jogql(z, co), (122b) 
where 

r(z) = (m - b) exp - 2 j f  a(u) du 

= ( ¼ d ( l n c ) - ½ ( G - R ) ) e x p - f ; ( R + G ) d u  (123a) 

s(z) = (m + b) exp 2 y f  a(u) du 

: (1 ~z (In L )_  ½(G_ R))exp fo z (R+ G)du. (123b) 

(121b) 

(121a) 
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Thus, if we are given the scattering matrix S(~)  associated to system (122), the 
coupled fast Cholesky or Schur recursions (106) and (110)-(112) may be used to 
reconstruct the rather bizarre quantities r(z) and s(z). Further, these two quantities are 
the most information about the line that can be obtained from this data. Although r(z) 
and s(z) may seem to be peculiar quantities, this result is in agreement with [46]. 

Note that in the event 

R ( z ) / L ( z )  = (124) 

we may recover Z(z) and R(z)/L(z) by multiplying and dividing r(z) and s(z), and then 
solving two differential equations. Thus, in this case it is possible to recover R(z), L(z), 
C(z), and G(z) is various ratios quite easily. This case is referred to as the Heaviside 
condition for a distortionless line [32], since if (124) holds then the true characteristic 
impedance ((R + jogL)/(G + j~oC)) 1/2 which relates the current and voltage for a wave 
travelling down the line, is real. Thus, the current and voltage for such a wave are in 
phase, just as in the lossless line, and it is not surprising that ratios of various line 
parameters can be recovered, as in the lossless case. 

7. Conclusion 

In this paper, the widespread applicability of the fast Cholesky and Schur recursions 
for the study of inverse scattering problems has been demonstrated. These algorithms 
were derived by using a layer stripping principle to reconstruct a scattering medium 
described by symmetric two-component wave equations, for the case when the medium 
is probed by impulsive waves. The applicability of these algorithms to the reconstruction 
of a nonuniform lossless transmission line, and to the inverse problem for a one- 
dimensional layered acoustic medium was demonstrated. In addition, it was shown that 
the linear least-squares estimation problem for a stationary process could be posed as 
an inverse scattering problem, and solved by the Schur algorithm. 

Next, an asymmetric two-component inverse scattering problem was considered and 
solved by using a coupled set of fast Cholesky or Schur recursions. This was then 
applied to the inverse problem for nonuniform transmission lines with losses. 

There are several topics which have not been discussed in this paper and which 
deserve further investigation. One of them is the study of the numerical properties of 
the Schur algorithm in the presence of noise or modelling uncertainties. The discrete- 
parameter Schur algorithm was recently shown to be numerically stable by Bultheel 
[47]. However, a numerically stable algorithm can perform poorly if it operates on ill 
conditioned data, which could happen for several of the physical problems that we have 
examined in this paper. This issue deserves therefore to be addressed. An additional 
feature of the layer stripping principle that we have used here to derive the fast Cholesky 
and Schur recursions is that it is quite general, and it is applicable to more general 
physical systems than those described by second-order differential equations. For 
example, in [48, 49] it is shown that this principle can be applied to the reconstruction 
of a one-dimensional elastic medium described by four coupled first-order differential 
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equa t ions .  A na tura l  ex tens ion  o f  this resul t  w o u l d  be to  the  s tudy o f  genera l  H a m i l t o n i a n  

sys tems.  
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