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Algebraic expressions are given (in FORT•aAN format for convenient use) that accurately 
approximate the value of the per unit-length acoustic impedance of small tubes (radii less than 
• acoustic wavelength) including isothermal and viscous effects. Their accuracy of typically 
3% or better was obtained as a result of adding a shunt conductance term to the traditional 
approximations and including frequency-dependent multiplicative factors. The multiplieative 
factors are simple expressions for the real or imaginary terms, providing a factor of 40 increase 
in calculational speed over the full Bessel-function solution. Experimental verification is 
presented for various combinations of small tubes and cavities relevant to hearing aid 
applications, and the differences between the present approximations and previous 
approximations are illustrated using a 1-mm-diam tube as an example. Normalized complex 
series impedance and shunt admittance, characteristic impedance, time delay, and attenuation 
constant plots are provided as a reference utilizing the more nearly exact Bessel solution. 

PACS numbers: 43.85.Bh, 43.20.Mv 

INTRODUCTION 

A. Background 

If an acoustic tube is connected between a source of 

pressure P 1 and an acoustic load (which may be another 
I 

tube) of complex acoustic input impedance Z2, it will pres- 
ent to the source an input impedance of Z 1 and produce a 
(complex) pressure P2 across the load (see Fig. I). The 
relationships between these quantities are given by the trans- 
mission line equations (see, e.g., Flanaganl), which can be 
expressed as 

Z 1 = Z 2*COSH (LENGTH *GAMMA ) + Z 0* SINH (LENGTH*GAMMA) 
Z0 Z0*COSH(LENGTH*GAMMA) + Z2*SINH(LENGTH*GAMMA) ' 

P lIP 2 = COSH (LENGTH*GAMMA) + (Z O/Z 2 }*SINH (LENGTH*GAMMA), 

where LENGTH is the length of the tube, Z 0 is its character- 
istic impedance, and GAMMA is its complex propagation 
constant. (Here and throughout the text, we will use spelled- 
out symbols and designate multiplication by "*"and expo- 
nentiation by "**," following the conventions of popular 
computer languages such as FORTRAN. 2 RADIUS is de- 
noted by "a" in the figures themselves, however. ) 

The characteristic impedance Z 0, and propagation con- 
stant GAMMA, of a small tube can be expressed in terms of 
the series impedance per unit-length ZT and the shunt ad- 
mittance per unit-length YTof the tube 

ZO = SQRT(ZT/YT), (3) 

GAMMA = SQRT ( ZT* YT). (4) 

The exact solution for the complex quantities ZT and 
Fir (in cgs acoustical ohms and mhos, respectively) was 
given more than a century ago by Helmholtz 3 and Kirch- 
hoff, a and more recently for the low-frequency case by Iber- 
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I 
all 5 and Zwikker and Kosten, 6 but involves the calculation of 
a sufficient number of terms in the integral representation of 
the complex Bessel functions J0 and J 1 to insure sufficient 
accuracy in the answer, a tedious process at best. For this 
reason, approximations to the exact solution have been com- 
monly used for engineering purposes. Olson ? (pp. 89 and 
91 ), for example, gives the following approximations (given 
here on a per unit-length basis): 

ZT = [ I/AREA]* [ 8* U/RADIUS**2 

+ J* (4/3)'* W*RHO], (5) 
YT = J, W *AREA/ ( RHO*C ** 2 ), (6) 

'Z 1 TUBE ( ZO, GAMMA ) 

P2 

FIG. 1. Definition of input ( ! ) and output (2) impedance and pressure for 
an acoustic tube treated as a transmission line. 
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where the RADIUS and cross-sectional AREA of the tube 

are given in cm and cm 2, respectively, the angular frequency 
W= 2.PI.FREQ, the complex unit J = SQRT( - 1 ), and 
U, RHO, and Care the viscosity, density, and speed of sound 
of air, respectively. 

While the traditional approximations such as (5) and 
(6) are often adequate, in certain frequency ranges they can 
produce relatively large errors: up to 40% in compliance, 
33% in inertartec, and even larger discrepancies in resis- 
tance. [Indeed, the shunt conductance term, which can 
amount to 10% or more of the shunt admittance in the iso- 
thermal-adiabatic transition region, is ignored entirely in 
(6).1 

Flanagan • derived algebraic approximations, treating 
the shunt conductance term separately, in better agreement 
with the full Bessel-function solutions. Flanagan was pri- 
marily interested in vocal-tract-size tubes, however, and as- 
sumed adiabatic conditions for the volume compliance at all 
frequencies and used a series resistance approximation that 
goes toward zer6 at low (in the case of vocal-tract-size tubes, 
subaudible) frequencies. For the smaller tubes of primary 
interest to us, the increased volume compliance in the adia- 
batic-to-isothermal transition region is often of critical im- 
portance, and the actual series resistance (which does not 
tend toward zero but becomes constant at low frequencies) 
is often an important part of the total impedance. 

Most recently, Keefe s has provided separate algebraic 
approximations for small and large diameter tubes with an 
improvement to less than 10% error in the overlapping tran- 
sition region. Unfortunately, in the case of the hearing aid 
tubes of primary interest to us, that transition region often 
occurs at frequencies where the performance of the hearing 
aid is of most interest. 

The main purpose of this article is to describe improved 
approximations for the series impedance per unit-length ZT 
and the shunt admittance per unit-length YTof small acous- 
tic tubes, specifically including those important to hearing 
aid applications. Discrepancies in using the new approxima- 
tions compared to the Bessel theory are usually less than 3% 
at any frequency for which the radius is less than • of a 
wavelength, except in the case of the shunt conductance 
term, where larger discrepancies occur at frequencies remote 
from the isOthermal-to-adiabatic transition region. In the 
latter case, however, the discrepancy in phase angle of the 
shunt admittance (compliance and conductance) is held 
within less than 1 ø of the Bessel theory. 

B. The new approximation 

The new approximations are 

ZT = [ 1/AREA] * [ (8. U/RADIUS**2)*M 1 

+ J./•'.RHO.M 2], (7) 

YT = [AREA/(RHO*C **2) ] 

ß [ ( 1/RADIUS**2)*M 3 +J.W.M4]. (8) 

The dimensionless multipliers M 1-M 4 used in Eqs. (7) 
and (8) are given in closed form by the algebraic expressions 

M 1 = [SQRT( 1 + 0.214. [FN) ]/[ 1 + 0.24 

*/b'N/(2.2 + WN**2) 

-- 2.2* WN/(625 + WN**2) ], (9) 

M2 = SQRT[ ( 1.69 + 0.05* WN)/( 1 + 0.05* WN) ], (10) 

M3 = 0.303. WN *. 2/{ ( 1 + 0.3* WN*.1.6)*.0.33 

*[1 + I, VN**2/(1 + 0.3. WN*.1.6)*.0.66]}, (11) 

M4 = 1 + 0.4/{1 + [WN/ 

(0.61 + 0.79, WN,,0.75) ] **2}, (12) 
where I, FN = W,RADIUS**2 is taken as a normalized an- 

gular frequency 9 when calculating the values for M 1-M 4. 
Note that the traditional approximations given in (5) and 
(6) can be obtained from Eqs. (7) and (8) by setting 
MI =M4 = 1, M2 =4/3, andM3 = 0. 

C. Evolution of the new approximations 

The form of Eq. (8) for the shunt admittance per unit- 
length was chosen based on the similarity of the calculated 
admittance (see Fig. 8) with that of a simple R-C circuit. 
Such a simple approximation has been used before to repre- 
sent isothermal effects (Hueter and Boltre). 

An initial approximation for the shunt admittance was 
obtained directly from multisection R-C networks by man- 
ual curve fitting. Unfortunately, this method invariably led 
to lumpy fits. A major refinement came when slowly chang- 
ing functions were constructed from algebraic expressions 
using fractional exponents (note the equations for M 3 and 
M4) to define a frequency mapping to transform the 
network response so that it matched the Bessel response 
(shown later in Fig. 8). Encouraged by this success using 
simple algebraic expressions, the series mass reactance fac- 
tor was approximated with an expression (/}/2) involving a 
square root of the ratio of two first-order polynomials. The 
series resistance factor (M 1) required more complicated 
polynomials, arrived at in an intuitive fashion after intuition 
had been trained by observation, comparing (computer 
plots of) many trial expressions to the Bessel solution. 

Benade • had previously given an improved set of ap- 
proximations in the form of asymptotic equations, but a ta- 
ble of"look-up" values (provided) was required to cover the 
important transition region between asymptotes. Thus the 
present approximations can also be considered as an exten- 
sion of Benade's work with Eqs. (9)-(11) providing the 
functional equivalent of his look-up table. 

The time to calculate expressions (7)-(12) on a Hon- 
eywell 1648 digital computer using FORTRAN IV is about 
0.024 s, compared to 1.0 s to calculate sufficient terms in the 
Bessel-function solutions to evaluate the same quantities to 
the same accuracy, an increase in computational speed of 
about 40 times. (These benchmarks were performed in 1976, 
when the 1648 was a popular time-sharing mainframe com- 
puter. ) Even a pocket calculator such as the hp 41CV can 
calculate expressions (7)-(12) in roughly 15 s. One of the 
reasons for this improved computational efficiency is the 
fact that M 1-M 4 are calculated using real-number arithme- 
tic. For the above time comparisons, the computationally 
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efficient Bessel's integral representation n as given in Eq. 
(18), below, was used to evaluate the Besscl functions in the 

complex domain. A truncated infinite series representation 
would have required even more computer time. (Using an 
infinite series would have taken forever, of course.) 

D. Relevance to traditional approximations 

Figure 2 illustrates the region of applicability of the new 
approzirdntions in comparison to previous approximations. 
The low-frequency values for tube resistance and inertanco 
as quoted by Olson 7 were based on Poissell's equation 
(Lamb is) and the definition of inertia. This is shown as 
model (a) in Fig. 2. A common "high"-frequency approxi- 
mation is shown in Fig. 1 (b) representing Morse and In- 
gard's •4 calculations. Both can be compared with model (c) 
that represents the present approximations. The stated (fre- 
quency) ranges of applicability are also indicated in the fig- 
ure. The transition frequency (F= 0.16/RADIUS**2) for 
the impedances in (c) lies outside the regions of applicability 
of either (a) or (b). 

Oolay •z and Daniels 16 have found it expedient to con- 
sider the tube as an enclosure only (and not as a transmission 
line). Biagi and Cook Iv and Bruel •s have been interested in 
the total magnitude of compliance. Crandal119 was more 
concerned with transmission through a tube (viscoinertial 
effects). Although any of these simplifications can be justi- 
fied for the specific application in mind, they do not simulta- 
neously account for viscosity, inertia, compressibility, and 
the existence of an isothermal boundary over the entire fre- 
quency range from dc up to the frequency at which the RA- 
DIUS becomes • of a wavelength, as does the present model 
(c). For example, neither (a) nor (b) explicitly accounts for 
the low-frequency increase in compliance due to isothermal 
effects. Model (b) lumps the isothermal and viscous losses 
into one series resistance, which adequately accounts for the 
damping in standing wave tube resonances; however, if the 
series inertance of the tube resonates with an external lead 

compliance, only the viscous loss affects the actual response, 
so that model (b) provides too much damping. 

I. EXPERIMENTAL DATA 

The approximate model presented hcrc has been suc- 
cessfully used (in essentially the present form) for well over 
a decade as part of a complete program for the modeling of 
hearing aid transducers, car simulators, and other systems. 
In nearly all cases, the agreement between calculated and 
experimental results had been within the range of experi- 
mental error (see, for example, the comparisons shown by 
Carlson and Killion 2ø obtained with an earlier approxima- 
tion), but a careful comparison between the various models 
and experimental results was lacking. The following series of 
experiments was designed to fulfill that need. In most cases, 
the attenuation of sound transmitted through a tube termin- 
ated in a rigid cavity was measured. 

A. Tube terminated in a cavity 

Figure 3 shows the experimental setup used. The quanti- 
ty measured was the ratio of the pressure developed at the 
microphone in the cavity (P2) to that at the tube entrance 
(P 1), and is termed "ATTENUATION." A calibration 

curve was run on a miniature sensing microphone placed just 
in front of the reference microphone to establish the frequen- 
cy dependence of its sensitivity. Various volumes were at- 
tached to a 5-cm tube of radius 0.079 cm. The computer 
predictions based on various models are shown, terminated 
in two different load volumes, along with the measured data 
(dashed) in Figs. 4 and 5. The first peak on each curve is 
primarily due to the resonance of the tube inertance with the 
cavity volume (a Helmholtz resonator); subsequent peaks 
are due to standing waves in the tube. As can be seen, too 
much damping and too little incrtance are present in the 
high-frequency model (b) at the tube-cavity resonance. The 
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I 

INDICATES CH.• 
WTTH FREQUENCY •' (I 2 / 

•b-•-o ( I '-•'.714) 
APPROXIMATION 
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•A• 
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o 
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FIG. 2. Circuit representation of 
various models of per unit-length 
tube impedance, and stated ranges 
of applicability. The parenthetical 
term for each element gives the 
low- and high-frequency asympto- 
tic values, with the arrow pointing 
to the high-frequency value. Re- 
gion (a) refers to Lamb, •3 and (b) 
to Morse and !ngard? 

FREQUENCY 
IN Hz 

1655 J. Acoust. Sec. Am.. Vol. 83. No. 4. April 1988 Zuercher ota/.: Small acoustic tubes 1655 



•- REFERENCE LEADS / MICROPHONE ELECTRICAL ---7 

TUBE I 

SOUND 

WAVE 

FIG. 3. Sketch of experimental setup used to measure response (pressure 
ratio P2/P 1 ) of tube connected to a load volume. 

low-frequency model (a) coincides with (c) in its limited 
range of applicability (below 6 kHz). Other data (not pre- 
sented here) were taken on tubes of a variety of diameters 
and lengths that generally agreed with a computer predic- 
tion using the present model (c). 

B. Tube terminated in a microphone 

In this case, the miniature sensing microphone formed 
the entire load; i.e., a tube was attached directly to the inlet of 
a hearing aid type microphone. First, an analog equivalent 
circuit was determined that correctly described the micro- 
phone. This circuit was then added to the model for a 5-cm 
tube, with the results shown in Fig. 6. As in the previous 
examples, the high-frequency model (b), where it applies, 
predicts less inertance and more damping than the proposed 
approximation (c). Stewart and Lindsay 2t suggested an ad- 
ditional correction term for inertante that would extend the 

region of applicability of model (b) down to the transition 
frequency. However, no correction for loss was included. 

EgoIf 22 used a four-terminal network solution of a 
probe-tube microphone system incorporating a Bessel-func- 
tion approximation for the tube impedance. Although his 
approach represented a general description of a tube, the 
particular probe-tube microphone system selected, because 
of the heavily damped resonance, did not show a material 
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FIG. 4. Calculated response of 5-cm tube of 1.6-mm inner diameter 
(a = 0.08 cm) terminated in a 2-cm 3 cavity. Measured data are shown 
dashed. 
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FIG. 5. Calculated response of same tube (5 cm of 1.6-mm diameter) ter- 
minated in a 3.4-cc cavity. Measured data are shown dashed. 
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FIG. 6. Calculated response of a 3-cm tube of 0.64-ram inncr diameter 
(a = 0.032 cm) terminated in a miniature microphone. Measured dabs arc 
shown dashed. 
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FIG. 7. Calculated impedance magnitude ofa lO-cm tube of 0.84-mm inner 
diameter (a = 0.042 cm). Measured data are shown as circled. 
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•%• PLOT OF NORMALIZED SHUNT ADMITTANCE 
kp o Jo(kp o 
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FIG. 8. Plot of normalized shunt adrait- 

tance versus normalized frequency 
( = a•.a 2) calculated using the full Bessel- 
function solution. 

difference between the more exact Bessel approximation (c) 
and the high-frequency model (b). 

C. Tube impedance data 

In order to demonstrate the effect of a low-frequency 
compliance increase due to heat flow, the impedance of a 
tube was measured using a substitution method. The results 
are shown in Fig. 7. To acquire the experimental impedance 
data, the response of a blocked calibrated volume was com- 
pared to the response of the same volume with the acoustic 
tube attached. Corrections due to phase shift were applied to 
these data based on the effects of the first-tube resonance. 

The entire frequency range is adequately described by 
the present model (c), removing the limitations in magni- 

tude and range of the adiabatic model (a) or the high-fre- 
quency model (b). 

II. DATA FROM THE EXACT BESSEL-FUNCTION 
SOLUTION 

A. Tube theory development 

A general review of tube theories and approximations is 
given by Tijdman. 23 Attention is restricted here to the case of 
small amplitude waves for which the acoustic wavelength is 
much larger than the tube radius. At 10 kHz, this limits tube 
diameters to less than about 4 mm( Beranek 24). Moreover, it 
is assumed that molecular dissipation losses (in air about 
2* l0 --4 Np/em) are small compared to viscous and isother- 
mal losses (Kinsler and Frey•S). 

I00 

PLOT OF NORMALIZED SERIES IMPEDANCE 

y( 2J! (k 8 a ) 
VS. NORMALIZED FREQUENCY L/a 2 

z bJ 

I- z 

IO 

I 

.I 
.01 .I I0 I00 lOO0 

FIG. 9. Plot ofnormalized series imped- 
ance versus normalized frequency 
( = (•*a •) calculated using the full Bes- 
sel-function solution. 

G/o 2(S-ICM2) 
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FIG. 10. Characteristic impedance 
of a circular tube with diameter as 

parameter calculated using the full 
Bessel-function solution. 

The characteristic impedance of a tube depends solely 
on the tube per unit4ength series impedance and shunt ad- 
mittance. The series impedance was originally derived by 
Helmholtz, a who assumed a simple adiabatic volume in 
shunt. KirchhotP added isothermal effects to this model to 

properly explain other losses noted experimentally by 
Kundt. 26 

In the long-wave limit, the resulting equations are 
equivalent to those determined by Iberall • or Zwikker and 
Koston 6 in their low-reduced-frequency solutions, given 
here in a form similar to that used by Keefea: 

ZT = J, W* (RHO/AREA) / 

{1 -- 2*J 1 (KS*RADIUS)/ 

[KS*RADIUS*JO(K$*RADIUS) ] }, (13) 

YT : J* W* ( VO/PO )*(I -- 0.286 

*{ 1 -- 2*J 1 (KP*RADIUS)/ 

[KP *RADIUS*JO(KP *RADIUS) ] }), (14) 
where J0 and J 1 are the zero- and first-order Bessel func- 

tions, k'0 and P0 are the tube volume and atmospheric pres- 
sure, respectively, and KS and KP are the series and shunt 
wavenumbers given by 

KS: SQRT( - J* W*RHO/U), (15) 

KP = SQRT( -- J* W/H**2), { 16) 

where J, W, RHO, U, and RADIUS are as defined above 
with Eqs. ( 5 ) and (6), and H ** 2 is the thermal diffusivity of 
air approximated by 

H**2 = KAPPA/(RHO*CP) (17) 

120 
i I I ,I I I I I I I I I I I I I •y I I I I i i I I I 

/ -- ATTE.UAT,O. / 
•' ...... TIME DELAY --I10 
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0 .8 ' .05cm 80 z= 03 '• ' ' ..05 
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ß ... -. '"':: , •, .4 ......... z' - -- ;;•;:-',,',,. '••;• •o 
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•.--L--- 0 
I00 I000 100(30 20000 
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FIG. 11. Attenuation and time delay 
of a circular tube with diameter as 

parameter calculated using the full 
Bessel-function solution. 

1658 J. Acoust. Soc. Am., Vol. 83, No. 4, April 1988 Zuercher oral.: Small acoustic tubes 1658 



I0 tOO IOO0 JOICO 

I0 I00 It•O I01•0 

I1• I0 I[•0. IOaO I0(•0 
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FIG. 12. Per unit-length cgs acoustical series resistance in ohms (a), series 
inetrance in henries (b), shunt compliance in farads (c), and shunt condue- 
lance in mhos (d), calculated for a l-ram-i.d. tube (a = 0.05 cm) using 
several approaches:--: Full Bessell-function solution, --: Present approxi- 
mation,- - -: Flanagan, •- - -: Keefe, s small R, - - - -: Keefe, s large R. 

for air having thermal conductivity KAPPA and specific 
heat CP. 

Finally, the Bessel integrals are given by 

JN(Z) = L-•ll)*Jo cos[Z,sin(x} -- N*x]dx, 
(18) 

where Z is the complex argument and N is the order of the 
Bessel function of the first kind. 1 • 

B. Calculated tube data 

Figure 8 shows a plot of the real and imaginary parts of 
the shunt admittance per unit-length of an acoustic tube, 
calculated with sufficient terms in the integral representa- 
tion of the Bessel functions to ensure 0.1% accuracy. The 
admittance is plotted for convenience in terms of the shunt 
compliance (parallel circuit representation) C= YT/ 
(J* W) that has been normalized by dividing by the equiva- 
lent compliance a tube of that volume would exhibit per unit 
length if only isothermal compression occurred. Thus the 
(complex) quantity plotted in Fig. 7 is CN = C/(F'O/PO). 

Figure 9 shows the normalized series impedance per 
unit length (real and imaginary parts) obtained from the 
same Bessel solution. In this case, the normalization is con- 
veniently realized by dividing the series impedance by 
RHO/(PI*RADIUS**4) (high-frequency inertance divid- 
ed by the radius squared). These novel normalizations were 
chosen to provide "universal" plots of the exact Bessel-func- 
tion solution, an advantage we felt outweighed the unintui- 
tire nature of the normalizations themselves. 

The functions in Figs. 8 and 9 undergo a transition near 
[F.RADIUS**2 = 1, although it should be noted that 
asymptotic values are not realized even for frequencies that 
are two or three orders of magnitude away from this "transi- 
tion" frequency. 

C. Circuit parameters 

The characteristic impedance Z 0 of a tube expresses the 
impedance one would see into an infinitely long tube of con- 
stant diameter. The Bessel solutions for the real and imagi- 
nary parts of Z 0 as a function of frequency, calculated ac- 
cording to Eq. (3) for various tube diameters, are plotted in 
Fig. 10. 

The propagation constant GAMMA expresses the per 
unit-length attenuation in Np/cm (1 Np = 8.686 dB) and 
phase shift in tad/cm. Those values, calculated according to 
Eq. (4) using the Bessel solution, are shown in Fig. 11.. 

III. COMPARISON TO OTHER RECENT 
APPROXIMATIONS 

Figures 2-9 of Benade's article ll are a presentation of 
what is ostensibly the same data as given here in Figs. 8-11. 
Although we have chosen a somewhat different normaliza- 
tion procedure, the results are (much to our satisfaction) 
nearly identical. 

White et al. 27 showed good agreement, for tubes of 1-, 
2-, and 7.48-mm internal diameter, between calculations 
based on Flanagan's • approximations and a more exact solu- 
tion they derived based on similar assumptions. At the sug- 
gestion of one of the reviewers, we are including a compari- 
son between Flanagan's• approximations, our 
approximations, and the Bessel-function solution. For this 
purpose, we assumed a 1-mm-i.d. tube, one of the diameters 
for which the White et al. comparison was available. (We 
believe the ordinate in Fig. 11 in White et al. is mislabeled 
and should be in units of 10 -4 mhos rather than 10 -3 mhos, 
incidentally. 2a) This comparison is shown in Fig. 12. For the 
small tubes of primary interest to us, it appears that the pres- 
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ent approximations are more appropriate. This conclusion is 
supported by the experimental findings described earlier. 

Also shown in Fig. 12 is a comparison of Keefe's g "small 
R" and "large R" approximations that, as expected, agree 
quite well with the full Bessel-function solution in their re- 
specfive regions of applicability but not as well in the transi- 
tion region. [In a recent verbal communication, Keefe con- 
firmed our belief that his Eq. ( 1 lb) (Ref. 8) has an as term 
that should be an a 2 term, and his Eq. ( 1 lc) has an a 2 term 
that should be an a s tenn. The comparisons in Fig. 12 were 
made using these corrections, which yield the correct phys- 
ical units for inductance and conductance per unit length 
and eliminate a two-order-of-magnitude discrepancy in the 
calculated values. ] 

The constants used for all comparisons (for air at 21 øC 
and a barometric pressure of 760 mm Hg) are given as fol- 
lows: 

U= 0.000 184 dyn s cm -•, 

RHO = 0.0012 g½m -3, 
C= 34400 cm s -•, 

P0 = 1 001 600 dyn cm -2, 

KAPPA = 0.000 61 cal s -• *C -1 g-l, 

CP = 0.24 eal *C 
A similar set of self-consistent values for these con- 

stants, along with their temperature eoettieients, is given in 
Table II of Benade's•ø article, to which the reader is referred. 
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