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An algorithm for single channel signal separation is presented. The algorithm projects the observed

signal to given subspaces, and recovers the original sources by probabilistic weighting and recom-

bining the subspace signals. The results of separating mixtures of two different natural sounds are

reported.

Introduction: Extracting multiple source signals from a single channel mixture is a challenging re-

search field with numerous applications. Conventional methods are mostly based on splitting mix-

tures observed as a single stream into different acoustic objects, by building an active scene analysis

system for the acoustic events that occur simultaneously in the same spectro-temporal regions. Re-

cently Roweis presented a refiltering technique to estimate time-varying masking filters that localize

sound streams in a spectro-temporal region [1]. In his work, sources are supposedly disjoint in the

spectrogram and a “mask” whose value is binary, 0 or 1, exclusively divides the mixed streams

completely. Our work, while motivated by the concept of spectral masking, is free of the assump-

tion that the spectrograms should be disjoint. The main novelty of the proposed method is that the

masking filters can have any real value in[0, 1], and that the filtering is done in the more discrimi-

native, statistically independent subspaces obtained by independent component analysis (ICA). The
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algorithm recovers the original auditory streams by searching for the maximized log likelihood of

the separated signals, computed by the pdfs (probability density functions) of the projections onto

the subspaces. Empirical observations show that the projection histogram is extremely sparse, and

the use of generalized Gaussian distributions [2] yields a good approximation.

Subspace Decomposition:Let us consider a monaural separation of a mixture of two signals ob-

served in a single channel, such that the observation is given by

y(t) = x1(t) + x2(t) , ∀t ∈ [1, T ] , (1)

wherexi(t) is thetth observation of theith source. It is convenient to assume all the sources to have

zero mean and unit variance. The goal is to recover allxi(t) given only single sensor inputy(t).

The problem is too ill-conditioned to be mathematically tractable since the number of unknowns is

2×T given onlyT observations. Our approach, illustrated in fig. 1, begins with decomposing the

mixture signals intoN disjoint subspace projectionsvk(t), each filtered to contain only energy from

a small portion of the whole space:

vk(t) = P(y(t);wk, dk) =
N∑

n=1

wkny(t− dk + n) . (2)

whereP is a projection operator,N is the number of subspaces, andwkn is thenth coefficient

of the kth coordinate vectorwk whose lag isdk. Suppose the appropriate subparts of an audio

signal lie on a specific subspace over short times. The separation is then equivalent to searching for

subspaces that are close to the individual source signals. More generally,uik(t) is approximated by

modulating the mixed projectionsvk(t):

u1k(t) ∼= λkvk(t), u2k(t) ∼= (1− λk)vk(t) , (3)

where a “latent variable”λk is a weight on the projection of subspacek, which is fixed over time.

We can adapt the weights to bring projections in and out of the source as needed. The original

sourcesxi(t) are then reconstructed by recombining{uik(t)|k = 1, . . . , N} and performing the

inverse transform of the projection. Proper choices of the weightsλk enable the isolation of a single

source from the input signal and the suppression of all other sources and background noises.

A set of subspaces that effectively split independent streams is essential in the success of the separa-

tion algorithm. Fig. 2 shows an example of desired subspaces. Two ellipses represent two different

source distributions, whose energy concentrations are directed by the arrows. If we project the
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mixture onto the arrows (1-dim subspaces), the original sources can be recovered with the error

minimized by the principle of orthogonality. To obtain an optimal basis, we adopt ICA, which

estimates the inverse-translation-operator such that the resulting coordinate can be statistically as

independent as possible [3].

Estimating Source Signals:The estimation ofλk can be accomplished by simply finding the values

that maximize the probability of the subspace projections. The success of the separation algorithm

for our purpose depends highly on how closely the ICA density model captures the true source

coefficient density. The histograms of natural sounds reveal thatp(uik) is highly super-Gaussian [3].

Therefore we use a generalized Gaussian prior [2] that provides an accurate estimate for symmetric

non-Gaussian distributions in modeling the underlying distribution of the source coefficients, with

a varying degree of normality in the following general form:p(u) ∝ exp (− |u|q). We approximate

the log probability density of the projections according to eq. 3:

log p (u1k) ∝ − |u1k|q1k ∼= −λq1k
k |vk|q1k

log p (u2k) ∝ − |u2k|q2k ∼= −(1− λk)q2k |vk|q2k . (4)

We define the object functionΨk of subspacek by the sum of the joint log probability density of

u1k(t) andu2k(t), over the time axis:

Ψk
def=

∑
t log p (u1k(t), u2k(t))

∼= −λq1k
k

∑
t|vk(t)|q1k− (1−λk)q2k

∑
t|vk(t)|q2k. (5)

The problem is equivalent to constrained maximization in the closed interval[0, 1]; we can find a

unique value ofλk at either boundaries (0 or 1), or local maximum by Newton’s method.

Evaluation:We have tested the performance of the proposed method on single channel mixtures of

four different sound types; monaural signals of rock and jazz music, and male and female speech.

Audio files for all the experiments are accessible athttp://speech.kaist.ac.kr/˜jangbal/rbss1el/. We

used different sets of sound signals for generating mixtures and for learning ICA subspaces (wk),

and estimating generalized Gaussian parameters (qik, variances, etc.) to model the subspace com-

ponent pdfs. While learning the subspaces, all the training data of source 1 and source 2 are used to

reflect the statistical properties of both sound sources upon the resultant subspaces. The pdf param-

eters are estimated separately for each source. The weighting factors are computed block-wise; that

is, we chop the input signals into blocks of fixed length and assign different weighting filters for the
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individual blocks. The computation of the weighting filter at each block is done independently of

the other blocks; hence the weighting becomes more accurate as the block length shrinks. However

if the block length is too short, the computation becomes unreliable. The optimal block length was

25ms in our experiments.

From the testing data set, two sources out of the four are selected and added sample-by-sample to

generate a mixture signal. The proposed separation algorithm was applied to recover the original

sources. Table 1 reports the separation results when Fourier and the learned ICA bases are used.

The proposed method deals with binary mixtures only. The performances are measured by signal-

to-noise ratio (SNR). With learned ICA subspaces, the performances were improved more than 1dB

on the average, compared to Fourier basis. In terms of the sound source types, generally mixtures

containing music were recovered more cleanly than the male-female mixture for both bases.

Conclusion:The algorithm can separate the single channel mixture signals of two different sound

sources. The original source signals are recovered by projecting the input mixture onto the given

subspaces, modulating the projections, and recombining the projected signals. The subspaces

learned by the ICA algorithm achieve good separation performance. Experimental results showed

successful separations of the simulated mixtures of rock and jazz music, and male and female speech

signals. The proposed method has additional potential applications including suppression of envi-

ronmental noise for communication systems and hearing aids, enhancing the quality of corrupted

recordings, and preprocessing for speech recognition systems.
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Figure 1: Block diagram of subspace weighting. (A) Input signal y(t) is projected onto

N , 1-dimension subspaces. (B) The projections vk(t) are modulated by weighting factors

λk, 1 − λk ∈ [0, 1]. (C) The separation process finally terminates with summing up the N

modulated signals.
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Figure 2: Illustration of desired subspaces. The ellipses represent the distributions of

two different classes. The arrows are the 1-dimensional subspaces along the maximum

energy concentrations of the classes. Projecting the mixtures onto each subspace provides

minimum error separation.

5



Table 1:Computed SNRs of the separation results. The first row lists the two symbols of

the sources that are mixed to the input. (R, J, M, F) stand for rock, jazz music, male, and

female speech. The last column is the average SNR. Audio files for all the results are

accessible at http://speech.kaist.ac.kr/˜jangbal/rbss1el/ .

basis RJ RM RF JM JF MF Avg.

Fourier 8.3 3.4 5.3 7.3 6.4 3.8 5.74

ICA 10.2 4.6 6.1 8.2 6.7 5.1 6.82
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