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Abstract 

Mticks' topographic component model (TCM) (MOcks, J. Topographic components model for event-related potentials and some bio- 
physical considerations. IEEE Trans. Biomed. Eng., 1988a, 35: 482-484; Mrcks, J. Decomposing event-related potentials: a new topo- 
graphic components model. Biol. Psychol., 1988b, 26:199-215) decomposes event-related potentials into components uniquely determined 
by their respective amplitude profiles across replicates, assuming a constant topography and wave shape for each component. To accom- 
modate possible changes in ~te component expression across conditions, a dynamic version of TCM is investigated which further admits 
component modulation in time scale. Twenty test problems were synthesized, incorporating two arbitrary topographies each activated with 
its own arbitrary wave shape modified, across two conditions, in amplitude, onset and duration. Seventeen problems were perfectly solved, 
with substantial success on the remaining three, confirming that component jitter or stretching can even help component identification. © 
1997 Elsevier Science Ireland Ltd. 
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1. Introduct ion 

Event-related potentials (ERPs) are often conceptualized 
as sums of components each showing (a) a characteristic 
behavior over time, (b) a topographic distribution reflecting 
the cerebral structures emitting them and, eventually, (c) 
selective reactivity to experimental conditions. Few mathe- 
matical decomposition techniques have systematically 
exploited the latter characteristic. Principal component ana- 
lysis (PCA) of ERPs (Donchin and Heffley, 1978) uses the 
experimental variability without distinguishing it from spa- 
tial variability. Similarly, multiple dipole modeling inter- 
pretations of ERPs, like results from the BESA software 
(Scherg, 1990), may require the same dipoles to explain 
the data from multiple cc,nditions, but does not generally 
use a constraint that the same component should have a 
similar behavior across conditions. Turetsky et al. (1990) 
described a model in which all components were forced to 
have the same generic time, course, a damped sinusoid, with 
different expression parameters across components or con- 
ditions, again with no constraint concerning any specific 
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similarity of response of each given component across con- 
ditions. 

A notable exception, in terms of capitalizing on a con- 
straint that each component should retain its activity pattern 
across replicated spatio-temporal ERPs (ST-ERPs), is 
Mrcks '  topographic component model (TCM) (Mrcks, 
1988a,b). TCM is analogous to PCA, although with one 
extra dimension. While PCA reproduces the cases (all the 
existing combinations of channels, subjects and conditions) 
by appropriately weighted sums of an efficient set of tem- 
poral components (i.e. basis wave shapes), TCM mathema- 
tically expresses its cases (all existing combinations of 
subjects and conditions) by appropriately weighted sums 
of a few basic spatio-temporal components, each resulting 
from crossing one appropriate topography with one appro- 
priate wave shape. Just as component wave shapes in PCA 
are model-free, in TCM both the topographies and the wave 
shapes are model-free, being algorithmically derived to 
account for as much data variance as possible for a given 
number of components. 

Contrary to PCA decomposition, TCM forces each basic 
wave shape to have the same spatial profile across the var- 
ious ST-ERPs. Conversely, just as PCA can be applied in 
the spatial domain instead of the temporal domain, one 
could say that TCM forces each basic topography to have 
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the same wave shape, except for its amplitude, across all 
cases. The restriction, imposed by TCM, that each compo- 
nent must have both a constant spatial profile and a constant 
temporal profile gives it the valuable property that the least 
squares solution is unique for a fixed number of compo- 
nents. It is typical that PCA is followed by a Varimax rota- 
tion in search of more easily interpretable components that 
would explain the same total variance, although with a dif- 
ferent partitioning across components. A TCM solution, 
however, should be directly interpretable if the number of 
components is correct. It is not subject to subsequent rota- 
tion. Indeed, forming linear combinations of TCM compo- 
nents would produce invalid TCM components, i.e. spatio- 
temporal matrices that cannot be reproduced by crossing a 
single topography with a single wave shape. 

TCM could thus become a preliminary step in multiple 
source localization on related ST-ERP data, whenever a 
source may be expected to correspond in time with an 
ERP component and in space with the topography of its 
generator. Since TCM should be able to identify uniquely 
the actual source topographies without recourse to any phy- 
sical modeling, it could eventually help circumvent the 
severe problems associated with model misspecification 
(Zhang and Jewett, 1993; Zhang et al., 1994). 

While, in principle, TCM should directly uncover the 
topography, the wave shape and the amplitude profile across 
cases of each component, it must be emphasized that this is 
strictly dependent on the condition that the assumptions of 
the model are satisfied. Firstly, the components must have a 
constant topography across conditions, which is reasonable 
in many practical situations. Secondly, they must also have 
a constant wave shape. While this is also often reasonable, it 
excludes all cases where the experimental conditions affect 
the onset latency or the duration of some components. For 
instance, in selective auditory attention studies, the proces- 
sing negativity is longest for non target stimuli most similar 
to the target. Finally, to be uniquely identifiable, the com- 
ponents must have different amplitude profiles across cases. 
An experimental manipulation that would simply decrease 
or increase the amplitude of all the components in the same 
proportion would merely provide scaled copies of the same 
ST-ERP, lacking the information required to correctly 
recover the cerebral components from which the ERPs ema- 
nate. 

Field and Graupe (1991) were the first and apparently 
only researchers to publish an application of TCM to actual 
ST-ERPs. TCM being formally equivalent to the PARAllel 
FACtors (PARAFAC) model (Harshman, 1970), they used 
the PARAFAC analysis package (Harshman and Lundy, 
1984a,b) to explore practical issues in TCM analysis. ST- 
ERP signals from checkerboard reversals were replicated 
over subjects, as in Mticks' original formulation. This 
might have poorly satisfied the third requirement above, 
with little variability across subjects in the relative ampli- 
tude among the true underlying components. Their solution 
involved three components, was obviously laborious to 

reach, and required the compromise of imposing orthogon- 
ality among the wave shapes. The three topographies were 
all very highly inter-correlated (all three sums of cross pro- 
ducts of normalized topographies were above 0.98, analo- 
gous to having a correlation above 0.98 between any pair) 
and at least one of the three wave shapes (component 2) 
showed a complex pattern (with consecutive peaks not sepa- 
rated by a zero crossing) which casts doubts on its validity. 
Component 3 was interpreted as accounting for temporal 
jitter in component 2, but it had a simpler temporal pattern, 
which makes this interpretation hard to maintain. This prac- 
tical application of TCM has not proved inspiring to other 
researchers. 

The theoretical advantages of TCM, however, call for 
further investigation. Improvement relative to the third 
requirement could be obtained by replacing the subjects 
by a set of experimental conditions known to modify the 
relative intensity of some components more than that of 
other components. But improvement of the mathematical 
model itself may also be contemplated. In particular, 
TCM could possibly be adapted relative to the second 
requirement, to allow for time scale variations in the expres- 
sion of the individual components across conditions. 
Toward this end, we investigated the possibility of solving 
ST-ERP problems that would obey the following formal 
description: (a) ST-ERPs were obtained under at least two 
conditions; (b) the ST-ERPs were produced by the same set 
of dynamic spatio-temporal components (DSTC); (c) each 
DSTC is characterized by one constant topography, one 
constant prototype wave shape, and three expression para- 
meters (amplitude, onset and duration); and (d) the analysis 
epoch includes the whole activation of each component (i.e. 
both ends of the ERPs are at base line in all channels). 

The purpose of the present work was to demonstrate that 
such problems are indeed manageable and, therefore, it is 
worth channeling R and D efforts toward more efficient and 
more general approaches. In particular, the method used 
here requires that the components differ in topographies, 
which is not a necessary requirement of TCM. Furthermore, 
the present method would not easily generalize to more than 
two conditions. These restrictions, however, should be of 
little concern at this early stage of development of analysis 
models that can recognize components even if they are 
modified in onset or duration across conditions. While 
such temporal variations are nuisances in PCA, requiring 
the inclusion of extra components, dynamic TCM models 
not only accommodate them, but they actually use them 
toward correctly identifying the contributing components. 

2. Methods 

2.1. Data generation 

Twenty data sets were synthesized, each representing two 
ST-ERPs embodying different expressions of the same two 
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components. Different topographies and associated wave 
shapes were generated for each data set, and different 
expression parameters were generated for the wave shape 
of each component in eaclh condition. Letting T(i,c) be the 
value of  the topography of  component i at channel c, P(i,r) 
be the prototype wave s]aape of  component i, with null 
values outside the range 0 < r < 1, and a U, oij and d U be 
the expressed amplitude, onset, and duration of  component 
i in condition j, then the observed spatio-temporal data for 
condition j, channel c, time t are 

D(j,  c, t) = ~i T(i, c)aijP((t--  oij)/dij ) 

For ease of  representation, the topographies corresponded 
to a single line of  electrodes, which is not restrictive since 
electrode positions are not used by the method. They were 
generated for 16 equidistant channels by assigning nor- 
mally distributed random weights to the first four powers 
of  x from -1  to +1, surmning and normalizing the ampli- 
tudes to unit sum of squares. A pair of such topographies 
constitutes the first row of  Fig. 1. The associated prototype 
wave shapes were similarly produced over 100 time points, 
but were further weighted by 1 - x 2 (a parabolic window 
reducing the amplitude 'It zero at both ends). For each 
component in each condiition, the prototype wave shape 
was shrunk, by cubic spline interpolation, between random 
onset and offset values in the ranges 0.0-0.3 and 0.5-1.0,  
respectively, and assigned a random amplitude uniformly 
distributed in the range 2.0-3.0. The second and third rows 
of  Fig. 1 show the expre.ssion of  two prototypes (rows) in 
the two conditions (columns). The last 16 rows show the 
resulting data at succes,;ive channels in each condition. 
Consecutive integers from 201 to 220 were used as seeds 
for generating the 20 test problems. Data sets with topo- 
graphies correlating above 0.95 were replaced by adding 
100 to the original seed. 

2.2. Analys is  

SVD on the two ST-ERPs end to end could confirm that 
two topographies were sttfficient to reproduce the data per- 
fectly; this follows from the fact that the data at each latency 
in each condition were generated as weighted sums of only 
two topographies. The topographies thus identified by SVD 
served as initial approxirrtations for the decomposition algo- 
rithm. The general stratelgy is (a) to use a hypothesis about 
the topographies to obtain what their activation should be in 
each condition, (b) to replace, separately for each compo- 
nent, the individual wave shapes across conditions by a 
common prototype wave shape appropriately adjusted in 
onset, duration and amplitude (this critical step is described 
below), (c) to use these reproduced wave shapes across 
conditions to obtain a better estimation of  the component 
topographies, and (d) to repeat the estimation cycle until all 
the values of  each topography and each wave shape change 
less than an arbitrarily small amount between consecutive 
evaluations. 

Fig. 1. Generating components and resulting data for test problem #12. The 
first row illustrates the two source topographies (16 aligned channel posi- 
tions, for ease of illustration) embedded between base lines indicating the 
zero level. For all following rows, the two columns correspond to two 
different experimental conditions. Rows 2 and 3 present the activation 
wave shapes respectively associated with the left and right topographies 
of the first row. The last 16 rows represent the resulting signal at each of 
the 16 consecutive channels, and constitute the data subjected to analysis. 

Technically, at each iteration, the pseudo-inverse of  the 
matrix of  topographies was applied to the data (with the two 
conditions put end to end) to obtain the corresponding best- 
fit wave shapes (BFWS) in each condition. The next step 
involved resampling, by spline interpolation, the two wave 
shapes of  a given component, using non linear optimization 
to identify the parameters that best equalize their time scales 
under parametric control. For this, only two time modula- 
tion parameters were required, i.e. their relative start time 
(RST) and relative end time (RET). They were adjusted 
such that the two time-corrected BFWS were maximally 
reproduced by projecting each on their average. Although 
two start times and two end times are required to renorma- 
lize the timing of  a component in two conditions, the 
approach adopted here requires only two parameters. If  
the RST parameter is positive, its value is used as a new 
start time for condition 1 and the data start time is used for 
condition 2. If, however, the relative onset is negative, then 
the data start time is used for condition 1 and - R S T  is used 



384 A. Achim, S. Bouchard / Electroencephalography and clinical Neurophysiology 103 (1997) 381-385 

as a new start time for condition 2. A similar approach is 
used with RET, except that the other end of each wave shape 
is considered. 

Having obtained the best RST and RET for a given com- 
ponent, the average of the corresponding time corrected 
BFWS was normalized in amplitude and became the proto- 
type estimate for that component. The amplitude with which 
it was expressed with the appropriate time correction in 
each condition was determined by linear algebra. The 
BFWS of each component were then replaced by the current 
prototype modified according to its estimated expression 
parameters, with the two conditions again put end to end 
to form a single wave shape for each component. The 
pseudo-inverse of these wave shapes was then applied to 
the two data ST-ERPs attached end to end to obtain a new 
and improved estimate of the corresponding topographies. 
The iteration process was subject to a maximum of 500 
cycles, in case the convergence criterion would fail to be 
reached (e.g. eventual alternation between the same two 
solutions). An occasional perturbation was imposed on 
the converging process, under the control of monitoring 
criteria, to prevent the solution degeneracy described by 
Field and Graupe (1991). This perturbation of the conver- 
ging sequence consisted of replacing the current two topo- 
graphies by their sum and their difference respectively, 
when the current normalized topography estimates pro- 
jected on one another with a weight above 0.95 in absolute 
value and their normalized reproduced wave shapes pro- 
jected above 0.95 in the opposite direction. The residuals 
were also monitored. When they failed to improve between 
consecutive iterations, alternate values were tried for a step 
size parameter controling the optimization of RST and RET; 
this was often successful. 

3. Results 

Fig. 2. Ideal (dashed lines) and reproduced (solid lines) topographies (top) 
and prototype wave shapes (bottom) for the data depicted in Fig. 1. This 
problem represents the worst case among the 20 test problems, in that both 
topographies and both prototype wave shapes are only approximately 
reproduced. They were essentially perfectly reproduced in 17 problems; 
in two other problems, only the topography of one source and the proto- 
type wave shape of the other source were perfectly reproduced. For this 
problem, the solution topographies projected 0.921 and 0.977, respec- 
tively, on their target topographies (equivalent to correlation coefficients, 
but without removing the means), and the solution prototype wave shapes 
projected 0.951 and 0.901, respectively, on their target wave shapes. 

problem is the one illustrated in Fig. 1. It had spatial and 
temporal correlations between its two components of 
0.8098 and -0.0018, respectively. The topographies and 
prototype wave shapes were reasonably approximated but 
were not superimposed on the original ones despite 99.98% 
of the data sum of squares being reproduced (Fig. 2). The 
cause for this is not yet diagnosed. We note that high spatial 
correlation or low temporal correlations between the two 
components are not specific predictors of imperfect solu- 
tions. Problem 17, for instance, had respective correlations 
of 0.9313 and 0.0026 and was perfectly solved. 

The correlation (projection) between the two component 
topographies ranged from 0.0033 to 0.9476 in absolute 
value, with a median of 0.6483. When the expressed com- 
ponent wave shapes over the two conditions were put end to 
end and normalized, their mutual projection ranged, over 
the 20 test problems, from 0.0018 to 0.8762 in absolute 
value, with a median of 0.5211. 

Seventeen of the 20 problems were solved essentially 
perfectly, i.e. the reproduced topography and prototype of 
each source was superimposed to the original ones on the 
computer screen and more than 99.995% of the data sum of 
squares was reproduced. In two other data sets, the topogra- 
phy of one component and the wave shape of the other were 
reproduced perfectly, which suggests that the monitoring 
criteria failed to recognize the need to impose the perturba- 
tion described above. One of them had a spatial correlation 
between components of 0.9476 and between temporal com- 
ponents (conditions end to end) of 0.5804; the other had 
respective correlations of 0.5233 and 0.5232. The remaining 

4. Discussion 

Although the data were somehow idealized, with only 
two sources and no noise, the problems solved by the 
decomposition method were extremely difficult from the 
point of view of PCA, even if followed by oblique rotation 
rather than Varimax. The high success of the procedure 
seems to confirm that substantial decomposition power 
may be derived from a formal model of ST-ERP which 
uses component variation not only in amplitude but also 
in onset and duration times. 

Before applying the method to practical problems, further 
work should extend the method to more than two replicates 
and more than two components, including some compo- 
nents that are not affected at all by experimental condition. 
Also, the robustness of the method to noise correlated in 
time and space must be established. This will likely call for 
further improvements of the algorithm. The present explora- 
tion, however, suggests that further work in this direction 
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wil l  l ike ly  lead  to a g e n e r a t i o n  o f  use fu l  new  tools  for  deci-  

p h e r i n g  the  b ra in  p rocesses  re f lec ted  in ST-ERPs .  
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