
Egg EVIER Electroencephalography and clinical Neurophysiology 102 (1997) 240-247 

Testing topographic differences between event related brain potentials by 
using non-parametric combinations of permutation tests 

L f d i c e  G a l e n * ,  R o l a n d o  B i s c a y ,  J u a n  L u i s  R o d r f g u e z ,  M a f i a  C e c i l i a  P d r e z - A b a l o ,  R. R o d r f g u e z  

Cuban Neuroscience Center, Av. 25, Playa, Havana. Cuba 

Received 5 September 1995; revised version received I October 1996; accepted for publication: 10 October 1996 

Abstract 

MANOVA and repeated measures ANOVA approaches have provided evidence of a number of limitations in several event-related 
potential (ERP) studies due to violations of their statistical assumptions and the typically moderate size of the available sample. 
Alternative, computer-intensive methods based on permutation principles have recently been developed. Up to now this methodology 
has focused mostly on magnitude differences between scalp distributions as measured by t statistics. In this paper the scope of 
permutation techniques in ERP analysis was widened. A new statistic (D statistic) is introduced to compare the shapes of scalp 
distributions of ERPs. Additionally a general non-parametric combinatory technique is introduced to evaluate, by means of multivariate 
permutation tests, several time points and/or recording sites in ERP data. The methodology described here was used to test if two ERP 
components elicited during word-pair matching tasks to semantic or phonological incongruences had different scalp distributions. Q 
1997 Elsevier Science Ireland Ltd. 
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1. Introduction 

Event-related potential (ERP) components are usually 
identified by their polarity, latency, amplitude, and scalp 
distribution of brain electric potentials recorded under dif- 
ferent experimental conditions (Reagan, 1989). In particu- 
lar, scalp distributions are relevant for identifying ERP 
components due to the biophysical fact that different 
scalp distributions of potentials imply different underlying 
cortical current sources (Nunez, 1981). Thus, topographic 
differences between ERPs provide useful information on 
the existence of distinct neural generators involved in 
brain activity. 

Unfortunately, the appropriate statistical methodology 
for testing topographic differences between ERPs remains 
problematic (see for example the editorial policy of  the 
journal Psychophysiology on this subject published by Jen- 
ning et al., 1987). This is mainly due to the difficulties 
involved in the statistical treatment of  the complex spatio- 
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temporal structure of  the dependencies present in ERP 
data. 

Hitherto the most common approach to this testing pro- 
blem has been repeated measures analysis of variance (rm- 
ANOVA). Usually, for each recording electrode p and 
experimental condition c, the electric response of each 
subject is averaged over trials and time instants (within a 
certain time window of interest). Baseline corrections are 
made subtracting the mean amplitude of a pre-stimulus 
time window. Finally to reduce subject-dependent and 
condition-related scale factors, affecting the ERPs 
(McCarthy and Wood, 1985; Carballo et al., 1992) 
which greatly increase the variance of the data, normal- 
ization procedures such as those proposed by McCarthy 
and Wood (1985) are commonly used. The resulting vari- 
ables are then assumed to be described by a two-way rm- 
ANOVA model with two factors: experimental condition 
(which can be expanded into different effects), and loca- 
lization on the scalp. The treatment of  scalp location as a 
repeated (within) factor is an attempt to take into consid- 
eration the spatial correlation of  the data. According to this 
model, differences in the scalp distribution across experi- 
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but we applied instead the general combinatory procedures 
described above to construct the multivariate test (see Sec- 

tion 3 on non-parametric combination of permutation 

dependent tests and Appendix A). 
Permuted one-sided t statistics were calculated at Cz 

(the site of maximum negativity) across time and their 
corresponding significance values were combined sepa- 
rately for both components. This analysis was carried 
out within the time regions in which the negativities 
were visualized. Fig. 2 summarizes the results. For the 
SEM task (Fig. 2a) a significant N400 effect (P < 0.05) 
was present in a time region from 340 to 408 ms. The 
significant time region (P < 0.05) for the PHON task 
was at a later latency from 464 to 532 ms (Fig. 2b). The 

significant time regions thus selected will be used as the 
analysis windows from now onwards. 

In the following sections the topographical differences 

between N400 and N450 will be examined with different 
methods. Differences in task difficulty, which could pos- 
sibly influence the results, should be evaluated first. Thus 
behavioral data (number of errors) were analyzed for each 
subject and task. Mean error values (across sample) were 
SEM = 0.6, S.D. = 0.96 and PHON = 1.0, S.D. = 1.2. No 
significant differences were found using a non-parametric 
Wilcoxon test for matched pairs ( N =  10, T =  2.5, 
Z = 0.91, P < 0.36). 

4.4. Testing topographic differences between N400 and 
N450 with traditional methods 

In this section we follow traditional methods to evaluate 
topographical differences between two ERPs, i.e. we carry 
out a repeated measures analysis of variance (Compo- 
nent x Site). The repeated factors Component and Site 
have two and 10 levels, respectively. Differences in the 
scalp distribution between components are detected in this 
model as significant interactions between the two factors. 

In order to compare N400 and N450 topography, differ- 
ence waveforms were calculated by subtracting match and 
mismatch ERPs for each task and subject. Mean amplitude 

values were obtained for each individual difference ERP 
waveform as follows. All time points within the pre- 
selected time windows (340-408 ms for N400 and 464 -  
532 ms for N450) were averaged across time. 

Geisser-Greenhouse correction of degrees of freedom 
was used when required. The rm-ANOVA did not detect 
any difference between the topographic distributions of 
the N400 and N450 components. The only significant 
effect corresponded to the main effect SITE 
(F(9,1) =415.91,  P < 0.03). Neither the Component 

effect (F(1 ,9)= 0.03, P < 0.85) nor the interaction 
Site x Component (F(9,1) = 0.52, P < 0.79) were signif- 
icant. However, these results should be evaluated with 
caution due to the well-known drawbacks of the rm- 
ANOVA approach, especially taking into consideration 
that the sample size is not large. 
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Fig. 2. Assessment of the mismatch effect in the semantic and rhyming 
tasks with one sided permuted t tests. (a) Results of the comparison 
between the ERPs elicited by match and mismatch word pairs in the 
semantic task. The observed significance values of the t test were plotted 
for each time point within the analyzed window. Significant P values 
(less than 0.05) are those under the thick line. Note that the two ERPs 
differed significantly in a time region from 340 to 408 ms. In this region 
an N400 effect would be present. (b) Results of the comparison between 
the ERPs elicited by rhyming and non-rhyming word pairs. The curve 
shows the observed significance value of the t test calculated for each 
time point within the analyzed window. Significant P values (less than 
0.05) are those under the thick line. Note that the two ERPs differed 
significantly in a time region from 464 to 532 ms. In this region an N450 
effect would be present. 

4.5. Testing topographic differences between N400 and 
N450 with permutation techniques 

4.5.1. Statistic for testing magnitude differences 
Permutation t statistics were computed to evaluate pos- 

sible differences in magnitude between N400 and N450 
topography. Permuted t statistic between N400 and N450 
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4.2. Recording conditions 

nents will be used to demonstrate the application of the D 
statistic as well as the statistical methodology developed to 
combine permuted tests. 

4.1. Experimental procedure 

Subjects (N = 11, with ages ranging from 18 to 35 
years) performed a semantic (SEM) and a phonological 
(PHON) matching task, during which ERPs were recorded. 
The order of the tasks was counterbalanced over subjects. 
In the matching tasks, two randomized sequences of sti- 
mulus pairs were presented, one for each task. The subjects 
had to detect 50% of  the pairs in which the two stimuli 
were closely associated in meaning (in the SEM task), or 
50% of the pairs which rhymed in the PHON task. The two 
stimuli in a pair were presented sequentially and with an 
onset asynchrony of about 2 s. The inter-pair interval 
lasted for about 5 s. All words employed were content 
words in Spanish and of high frequency of use (mean 
frequency: 44 per million). Rhyme and semantic associa- 
tion pairs were obtained from a larger pool of words rated 
by a different sample of 10 subjects. N400 

The electroencephalographic (EEG) activity was 
recorded with a MEDICID III/M system from 10 sites 
(F3, P4, F7, F8, Cz, Pz, T5, T6, O1, 02)  of the interna- 
tional 1%20 system. Disk Ag/AgCI  electrodes were used 
and interelectrode impedance was kept below 5 kf~. Linked 
earlobes were used as reference and the forehead was 
grounded. Two bipolar derivations were used to monitor 
the horizontal and vertical electro-oculogram (EOG). The 
EEG after amplification and filtering from 0.05 to 30 Hz, 
was digitized with a 12 bit converter. Digitization was 
synchronized with the onset of  the second stimulus in 
each pair, with a sampling period of 4 ms, and was stored 
on a magnetic disk for off-line analysis. Epochs of 1024 
ms were selected on each trial, with a 100 ms pre-stimulus 
window. Each EEG segment was visually inspected and 
those with artifacts, eye movements, or incorrect responses 
were eliminated. For every subject, averaged ERPs were 
obtained separately for match and mismatch trials. The 
resulting vectors were baseline corrected by subtracting 
the average pre-stimulus amplitude value. When scaling 
was required, the minimum from each data point was sub- 
tracted and divided by the difference between maximum 
and minimum (where the minimum and maximum values 
are computed over all times and sites) as proposed by 
McCarthy and Wood (1985). 

mismatch trails were subtracted. The difference wave- 
forms averaged across subjects for each matching task 
are shown in Fig. 1. A late negative component can be 
visualized in both tasks (namely N400 and N450). For 
the SEM task this component occurs in a latency region 
between 284 and 428 ms and has a maximum amplitude at 
frontal and central recording sites. For the PHON task the 
negativity is at a later latency interval (420-564 ms) and 
has a central posterior scalp distribution. 

The characterization of these components cannot be 
made only by visual inspection of the waveforms. The 
presence of an N400 or N450 should be demonstrated 
statistically, as a significant difference between the mean 
amplitude (within a time window of interest) of the ERPs 
to match and mismatch trials. To narrow down the time 
window at which these components were present, permu- 
tational techniques could be useful. 

For this purpose, we followed a similar approach to 
Blair and Karniski (1993) (permuted one-sided t statistic), 
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4.3, Assessment o f  the mismatch effect in the semantic and 
rhyming tasks 

In order to visualize the negativities elicited by semantic 
or phonological incongruences, the ERPs to match and 

Fig. 1. The grand average (across subjects) difference ERPs (match- 
mismatch) were plotted at different recorded sites separately' for each 
task. At the top the negativity elicited by semantic incongruences (N40()) 
and at the bottom the rhyming incongruences (N450). Negativity was 
plotted downwards. 
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by the 10-20 international recording system). Let f(1,/z)... 
ilK, t~) be the recording sites arranged in decreasing order 
of their potential values (i.e. components of #). In a similar 
fashion, define g(1, /3) ..... g(K, [3) for the ERP vector/3. 
Then f(1,/x) and g(1,/3) are the locations on the scalp of the 
maximum values of the ERPs/~ and/3, respectively. 

Consider the hypothesis of equality of locations of the 
maximum values, i.e. Ho: i l l ,  # ) =  g(1, /3). A sensitive 
measure of deviation from this hypothesis is: 
D~,g) = d(fll,/~), g(1,/3)), where d(., .) denotes the dis- 
tance on the scalp between two sites. A simple way of 
calculating the distance d would be by means of the 
approximate representation of the head by a sphere of 
radius R = 55/27r cm. The distance on the scalp between 
two sites is thus calculated as the arc distance between two 
points on the sphere. The estimation of this measure pro- 
vides a sensitive statistic for testing this hypothesis. Spe- 
cifically, suppose that both ERPs are recorded on each 
subject of a sample of size N; then, averaging across sub- 
jects, one obtains estimates 2 and f" of their mean values IZ 
and/3, and the estimate D(J?, f') = d ( f ( l ,  X), g(1, }')) 
of D. Notice that this magnitude, which will be referred as 
the D statistic, is designed to compare a specific aspect of 
the shapes of the scalp distributions: it gives larger values 
as the distance between the locations of the maximum 
peaks of the two ERP landscapes increases. 

A permutation test can be constructed on the basis of 
this statistic by using standard permutation techniques 
(Eddington, 1987). A number n of permuted samples is 
generated (each sample is obtained by random permuta- 
tion of the two ERPs within each subject of the original 
sample), and the empirical probability distribution F* of 
the resulting values of the D statistic is calculated. Then 
the test (at the significance level c~) consists in rejecting/4o 
when 1 - F*(D(X, f')) < o~. 

This approach can be generalized for testing the hypoth- 
esis of equality of the locations of the m(l < m < K) 
largest values of two ERPs, i.e., /4o: fli, tz) = g(i, /3), 1 
_< i _< m. The generalized statistic is: 

D(X, Y) 

d( f (1 ,  .~), g(1, f')) + ... + d(f(m, X), g(m, 9)) 
m 

This type of statistic will also be referred to as the D 
statistics, and the associated tests as D tests. Notice that 
this statistic is rank-based, so it is insensitive to differences 
between ERP topographies when they have the same order 
of the potential values across electrodes. 

The shape of the potential can be assessed by the D 
statistic considering not only its most prominent peaks 
but also the valleys. In this case, in the computation of 
the D statistic the estimated mean ERP vectors )? and f" 
could be replaced by their inverted polarities - ) (  and - f'. 
Furthermore, if the D statistic is calculated with the abso- 

lute values of the mean potentials, sensitivity to both peaks 
and valleys is achieved. 

3. Non-parametric combination of permutation 
dependent tests 

Consider an experimental design in which multichannel 
ERPs (k recording sites and t time-points) are obtained 
under two different conditions (treatments) for each sub- 
ject. The hypothesis Ho of equality of the mean values of 
the two ERPs can be decomposed into the marginal 
hypotheses Hoi: ~d,~ = #at2, where ~atj denotes the mean 
value of the ERP obtained at the scalp site d at time t 
under the experimental condition j. 

Simple and consistent test statistics for the marginal 
hypotheses can be obtained by using permutation techni- 
ques (Eddington, 1987; Blair and Karniski, 1994) thus 
overcoming probability restrictions such as normal parent 
distributions and large sample sizes. 

In order to make a decision for the overall hypothesis 
Ho, a possibility would be to summarize the marginal 
statistical tests. Blair and Karniski combined marginal per- 
mutation t statistics by calculating their maximum value, 
or sum of squares (Blair and Karniski, 1993; Blair and 
Karniski, 1994). A limitation of this procedure is that it 
requires homogeneity in the probability distribution of the 
marginal statistics. This condition is difficult to guarantee 
for ERP data. 

Alternatively, we applied the general procedure for the 
non-parametric combination of marginal dependent per- 
mutation tests developed theoretically by Pesarin (1992) 
to ERP data. This procedure is not subjected to the limita- 
tion above mentioned, shows good theoretical properties, 
and under homogeneity conditions it can be reduced to the 
procedures used by Blair and Karniski. In our particular 
application with ERP data we propose to combine instead 
the observed significance values of the permuted statistic 
and not the values of the statistic. This would guard against 
possible non-homogeneities in the statistic probability dis- 
tribution. The methodology used is detailed in Appendix 
A. 

The non-parametric combination of marginal permuta- 
tion tests offers great flexibility for testing global hypoth- 
eses in ERP analysis. It can be applied for: (i) a set of 
electrodes at a fixed time instant, (ii) a set of time points 
at a given electrode, and (iii) all the electrodes and time 
points (within a time window of interest). Furthermore, 
marginal tests based on any kind of statistics can be com- 
bined (t tests, D tests, etc.). 

4. Application in a psychophysiological experiment 

Two ERP components have been described during 
printed word-pair matching tasks to semantic (N400, 
Kutas and Hillyard, 1983) and rhyming incongruences 
(N450, Rugg, 1984). Experimental data on these compo- 
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mental conditions are interpreted as significant interac- 
tions of the two factors. 

However, the rm-ANOVA approach has some well- 
known limitations. It assumes that error vectors have a 
multivariate normal distribution with a particular structure 
of covariance, namely the Huynh-Feldt structure (Huynh 
and Feldt, 1970). In general this structure is not present in 
spatial data where correlations decrease as the distances 
between the measurement points increase. Brain topo- 
graphic data typically show complex spatial characteris- 
tics, which makes the Huynh-Feldt structure a 
questionable assumption (Vasey and Thayer, 1987; Val- 
des et al., 1992). Furthermore, the use of normalization 
procedures can make the assumption of normal distribu- 
tion less justifiable. For example, subtracting the minimum 
value and dividing by the difference between the maxi- 
mum and minimum values of the recording (a normaliza- 
tion procedure proposed by McCarthy and Wood, 1985) 
yields variables within the range (0-1), which obviously 
cannot have a normal distribution. The consequence of the 
violation of such assumptions are biased test levels; in 
other words, lack of control of Type I error probability 
(alpha level). 

Two main approaches have been advocated to guard 
against such bias. One is the use of the general MANOVA 
(Vasey and Thayer, 1987). But this has the disadvantage 
that the tests for localization effects and for localization- 
by-experimental condition interactions are undefined 
when the number of recording electrodes exceeds the num- 
ber of subjects, as is the case in many ERP studies. The 
other approach is the use of degrees of freedom corrections 
in the rm-ANOVA F tests (Greenhouse and Geisser, 1959; 
Huynh and Feldt, 1976). But such corrections should be 
used with caution because they only guarantee approxi- 
mate F tests (Vasey and Thayer, 1987; Raz, 1989). 

Recently, computer-intensive methods based on permu- 
tation principles (Eddington, 1987) have been proposed as 
an alternative statistical methodology for testing differ- 
ences between ERPs waveforms and maps (Raz, 1989; 
Blair and Karniski, 1993; Blair and Karniski, 1994). The 
methodology has a number of advantages: the tests are 
distribution free, no assumptions of an underlying correla- 
tion structure are required, and it provides exact P values 
for any number of subjects, time points and recording sites. 

However, up to now permutation tests to evaluate dif- 
ferences in ERP topography have been exclusively based 
on t statistics. The morphological aspects of the complex 
spatio-temporal structure of ERP differences, which are 
not captured by t statistics, have not been specifically 
addressed. Furthermore, the combination of permutation 
t tests corresponding to different time points and/or record- 
ing sites have been based only upon symmetric functions 
of t values, such as the maximum value or the sum of 
squares (Blair and Karniski, 1993; Blair and Karniski, 
1994). This way of combining the marginal statistics 
deals with all the variables in an homogeneous fashion, 

thus it should be applied with caution to situations in 
which the marginal t statistics show different probability 
distributions. 

In the present paper the use of permutation tests in ERP 
analysis was further developed to overcome some of the 
limitations above mentioned. First a new statistic (D sta- 
tistic) was introduced for testing shape differences 
between ERPs maps. This statistic is defined as the sum 
of the distances between two ERPs, rank-ordered across 
derivations. Thus it is selectively sensitive to differences in 
the relative peaks and valleys of ERP landscapes. Using 
shape information to interpret brain maps in terms of elec- 
tric sources have been advocated by Lehmann and Skran- 
dies (1984). This information though would be poorly 
reflected by t statistics. 

A second aspect addressed in this paper refers to the 
application of the general non-parametric methodology, 
described theoretically by Pesarin (1992) for combining 
permutation tests. The methodology was applied here for 
the first time to ERP data. Also instead of combining the 
permuted values of the statistic, we combined their 
observed significance values in several time points and/ 
or electrodes. This way of making multivariate extensions 
would guard against the effects of non-homogeneities in 
the statistic probability distribution. 

Finally, the main features of the statistical methodology 
described here are demonstrated with ERP data obtained in 
a psychophysiological experiment. The experiment 
addressed the question of whether the negative compo- 
nents elicited during word-pair matching tasks to semantic 
(Kutas and Hillyard, 1983. N400) or phonological (Rugg, 
1984, N450) incongruences have different topographical 
distributions. 

2. The D statistic: a permutation test for shape 
comparison of ERPs maps 

Any ERP can be characterized as a two-dimensional 
matrix (time points by scalp recording sites) of amplitude 
(voltage) values. The most common approach to evaluate 
the topography of an ERP component is to average across 
time (within a window of interest), thus reducing this 
matrix to a vector (mean amplitude values at the different 
recording sites). However, useful information on ERP 
topography could be also extracted for each time point 
within a pre-selected window of interest (sometimes called 
the instantaneous landscape of the ERP, see Lehmann and 
Skrandies, 1984). The permutation test described below 
was designed for testing topographical differences 
between ERP vectors defined either as the voltage map 
at a single time or the mean voltage map within a window 
of interest. (The generalization of this test to include multi- 
ple times will be considered in Section 3) 

Let ~ = (ktl... ~x) and/3 = (/~1 . . . .  ~ K )  denote two ERP 
vectors (at a fixed time t) recorded under two different 
experimental conditions at K scalp sites (e.g., sites given 
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These apparent differences could be statistically evalu- 
ated with the permutation D statistic (calculated from the 
inverted polarity potentials). The value of the D statistic 
was 7.015 cm corresponding to a probabili ty P < 0.02. 
Thus, with this methodology we were able to demonstrate 
significantly different shapes for N400 and N450 mean 
amplitude scalp distributions. This could suggest distinct 
spatial patterns of activation for the two components.  

A second way of using D statistic could be to evaluate 
the changes in shape occurring through time between two 
ERPs scalp distributions (namely the changes between 
N400 and N450 topographies across time). For this pur- 
pose, permutation marginal D statistics were calculated for 
each time point within a selected time window (340-408 
ms for N400 and 464-532  ms for N450). The hypothesis 
(Ho) evaluated was the equality of the first 3 location 
values (see definition of  the D statistic above). The statistic 

Fig. 3. Testing differences in topography between N400 and N450 with 
the t statistic. (a) Observed significance levels of permuted t tests (com- 
bined across recording sites) plotted for each time point within the pre- 
selected window. No significant values (P < 0.05) were obtained. (b) 
Observed significance levels of permuted t tests (combined across time) 
plotted for each recorded site. No significant values (P < 0.05) were 
obtained. 

difference ERPs was calculated for each time point and all 
recorded sites. Results are summarized in Fig. 3. Signifi- 
cance values were plotted either as a function of time 
(combining for each time point across sites) (Fig. 3a) or 
recorded sites (combining for each site across time points) 
(Fig. 3b). Note that no significant differences were found 
between N400 and N450 with this methodology. These 
results are in agreement with those previously obtained 
with rm-ANOVA.  No overall differences in magnitude 
between N400 and N450 scalp distributions were evi- 
denced either with the more traditional approach (rm- 
ANOVA)  or with permutational t test. 

4.5.2. D Statistic f o r  testing shape differences 
To evaluate possible differences in the shape of  the 

N400 and N450 scalp distributions, permuted D statistics 
were calculated. 

First, in order to facilitate the comparison with results 
previously obtained by rm ANOVA,  the ERP amplitude 
vector of  sites was constructed in a similar way, i.e., aver- 
aging the amplitude value within the pre-selected time 
windows. Notice that scaling is irrelevant here, since the 
D statistic is not affected by scale factors. 

To illustrate the scalp distribution of the two ERP vec- 
tors, their mean amplitude values were plotted superim- 
posed at each of  the ten recorded sites (Fig. 4). 

Even though, there are no appreciable changes in the 
overall magnitude of  their scalp distribution, the local val- 
leys of  the negativities are clearly differentiable. For  N400 
the maximal  negativity (in decreasing order of magnitude) 
is reached at F4, F3 and Cz, whereas for N450 the more 
negative sites were O1, 0 2  and Cz. 
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Fig. 4. Scalp distribution of N400 and N450. The vector across sites of 
mean amplitude values (calculated upon difference ERPs) was plotted 
superimposed for both tasks. Each curve represents the mean amplitude 
value calculated across time within a pre-selected window (340-408 ms 
for N400 and 464-532 ms for N450) for each of the l0 recorded sites. A 
continuous trace denotes the N400 and dashed lines were used for the 
N450. Note that N400 has a slightly more anterior scalp distribution than 
N450. This latter component has its maximum negativity at Cz, 02 and 
Ol while the N400 peaks at F3, F4, and Cz. 



246 L. Galgm et al. /Electroencephalography and clinical Neurophysiology 102 (1997) 240-247 

0 

-2 

-3 

/; 

/ : 

~ ¢  , 

Mean Amplitude of the NegativitJes 
', t 

,, \ 
/ 

-4 1 ~ I 
F3 F4 01 02 F7 F8 T5 T6 CZ PZ 

Derivations 
"- n400 

n450 

Fig. 5. Testing differences in topography between N400 and N450 with 
the D statistic. Observed significance levels of permutation D tests were 
plotted for each time point within the pre-selected window. Note that 
N40 and N450 differed significantly (P < 0.05) in the shape of their 
scalp distribution in a region from time point 8 to 19. 

was combined across time to construct a multivariate test 
(using the maximum value as the combining function, see 
details in Appendix A). 

The observed significance values of the univariate D 
statistic corresponding to each time point within the ana- 
lyzed time window are shown in Fig. 5. Note that there is a 
region of significance extending from the 8 to the 19 time 
point. This suggests that there are also dynamic changes in 
the shape of  the scalp topography or landscape of these 
components. Notice that the D statistic detected significant 
shape differences in their scalp distributions while no mag- 
nitude difference was detected by rm-ANOVA and permu- 
tation t tests. 

The differences in topography evidenced with the D 
statistic suggest that  the two components  under study 
(N400 and N450) could reflect different underlying 
brain processes. Fur ther  studies should be undertaken 
to confirm the validity and consistency of  this prelimin- 
ary conclusion. The methods introduced and demon- 
strated in this paper  may  be used for this purpose. 

5. Conclusions 

A statistical methodology was described to evaluate 
relevant aspects in the complex spatio-temporal structure 
of ERPs. The introduced D statistic has all the well-known 
advantages of permutation techniques and is selectively 
sensitive to shape differences between ERP scalp distribu- 
tions. Additionally, non-parametric combinations of uni- 
variate tests were further developed. 

The analysis of  ERP data with this methodology showed 
significant differences in the shape of N400 and N450 
amplitude distributions. These results suggest that the 
two components could reflect different brain processes. 
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Appendix A Non-parametric combination of 
dependent permutation tests 

An overall hypothesis can be decomposed into a num* 
bet of sub-hypotheses, or marginal hypotheses. We will 
describe here the specific algorithm developed for con- 
structing a multivariate statistical test for the overall 
hypothesis. 

This procedure is valid in the following general situa- 
tion. The objective is to make a decision about the 
hypothesis Ho that states the interchangeabilty of two 
(in general, dependent) random vectors X = (X, .... XD 
and Y = (gt ..... Yk), on the basis of  a sample Z of N inde- 
pendent observations of  the whole vector of variables (X, 
Y). Two random vectors X and Y are regarded exchange- 
able if (X,)I) and (K X) have the same probability dis- 
tribution. The exchangeability of X and Y implies that X 
has the same distribution as Y. It is assumed that the over- 
all hypothesis/4o can be decomposed into the sub-hypoth- 
eses Hoi each stating the equality in distribution of  the 
variables X and Y which form the vectors. Thus, Ho is true 
if and only if all the Ho, are true. 

Under this situation it is usually easy to construct sui- 
table univariate statistics to test the marginal hypotheses 
Hc~j. Then the procedure combines these (possibly depen- 
dent) marginal tests to make a decision about the overall 
hypothesis Ho according to the following steps: 

1. Generate S randomly permuted sample of size N. each 
one obtained by means of a random permutation of the 
vectors X and Y within each observation of the original 
data. 

2. Calculate the marginal statistics di*(Z*) for each per- 
muted sample Z*, and calculate the empirical distribu- 
tion function F,* of the obtained values for each 
statistic. 

3. For each permuted sample Z*, calculate the combined 
statistic T* = T(Fs* (d~(Z*))), and calculate the empiri- 
cal distribution function F* of the resulting values. 
Here T is a suitable function, called a combining func- 
tion (Pesarin, 1992). 

4. Calculate the observed value of the combined statistic 
on the original sample, T = T(F*(di(Z))  

5. Reject Ho if 1 - F * ( T )  < o~, where o~ is the signifi- 
cance level specified in advance. Reject Ho, if 
I - F*(Ti)  < o~, where T, = Fi*(di(Z)) .  

The resulting multivariate test converges in distribution 
to an exact permutation test as the number S of simula- 
tions increases. Thus, it shows the well-known advantages 
of permutation tests. Under general conditions, the result- 
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ing tes t  is cons i s t en t  (i.e., the  p robab i l i ty  o f  de tec t ing  

dev ia t ions  f rom the nul l  hypo thes i s  t ends  to 1 as the sam-  

ple size increases )  i f  the m a r g i n a l  tests  are cons i s t en t .The  

func t ion  T a l lows  one  to c o m b i n e  any  s imple  marg ina l  

tests,  r egard less  of  the n o n - p a r a m e t r i c  d e p e n d e n c i e s  

b e t w e e n  them,  to ob ta in  an overa l l  test. T he  T ippe t  func-  

t ion  T(.) = Max( . ) ,  def ined  as the  m a x i m u m  va lue  o f  its 

a rgumen t s ,  wil l  be  adopted .  Thus ,  the  o b s e r v e d  overa l l  

s tat is t ic  T is s igni f icant  w h e n  at least  one  o f  the marg ina l  

tests  Fi*(di (Z))  has  a s igni f icant  (i.e., large)  va lue  accord-  

ing to the  p e r m u t e d  d i s t r ibu t ion  F* of  the i r  m a x i m u m  

T = max(Fi*(T)) .  Th i s  has  the  advan t age  of  s h o w i n g  

w h i c h  m a r g i n a l  h y p o t h e s e s  are re jec ted  w h e n  the overa l l  

hypo thes i s  is re jected.  
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