
Department of Electrical and Computer Engineering

Laboratory Manual

for

ECE363 Communications Networks

By

Lin Cai, Ruonan Zhang, Emad Shihab, Zhe Yang, Xuan Wang,
Lei Zheng, and Hamed Mosavat

Copyright 2024 University of Victoria. All rights reserved.

The knowledge acquired in the ECE363 course and the labs should NOT
be misused under any circumstances. Please carefully read and follow the
Policy on “Responsible Use for Information Technology Services” (available
at “http://www.uvic.ca/6030”) for using Information technology services at
the University of Victoria.

Please refer to the ECE363 lab web page for supplementary lab information.

This lab manual has adopted several contents from the labs suggested in [1,
3, 4, 5].

Special thanks to the feedback from the previous lab TAs, including but not
limited to Yue Li and Salahuddin Jokhio.

Contents

1 Lab 1: Introduction to WireShark and Layered Protocol 2
1.1 Overview . 3

1.1.1 WireShark . 3
1.1.2 Layered Protocol . 4
1.1.3 Networking Tools . 4

1.2 Procedures . 5
1.2.1 Installation . 5
1.2.2 Getting familiar with WireShark 6
1.2.3 Layered Protocol . 10

1.3 Discussion . 11
1.3.1 Running WireShark . 11
1.3.2 Layered Protocol . 11
1.3.3 Networking Tools . 12

2 Lab 2: Ethernet and IEEE 802.11 13
2.1 Objective . 13
2.2 Introduction . 13

2.2.1 Ethernet . 13
2.2.2 IEEE 802.11 . 14

2.3 Procedures and Discussions, Ethernet 15
2.4 Procedures and Discussions, IEEE 802.11 15

2.4.1 Discussion . 16

3 Lab 3: ARP, IP, and ICMP 17
3.1 Objective . 17
3.2 Introduction . 17

3.2.1 Address Resolution Protocol (ARP) 17
3.2.2 Internet Protocol (IP) 18

i

3.2.3 Internet Control Message Protocol (ICMP) 18
3.3 Procedures and Discussions, ARP 19

3.3.1 Exploring ARP Functions 19
3.3.2 Discussions . 19

3.4 Procedures and Discussions, IP 20
3.4.1 Analyzing IP frames 20
3.4.2 Discussions . 21

3.5 Procedures and Discussions, ICMP 21
3.5.1 Exploring ICMP Functions 21
3.5.2 Discussions . 23

4 Lab 4: TCP 24
4.1 Objective . 24
4.2 Introduction . 24

4.2.1 TCP Header Format 26
4.2.2 TCP Connection Setup 26
4.2.3 TCP Data Flow . 27
4.2.4 TCP Connection Release 27
4.2.5 TCP Congestion Control 28
4.2.6 TCP Flow Control . 28
4.2.7 Retransmission in TCP 29

4.3 Procedures and Discussions 30
4.3.1 TCP Header Format 30
4.3.2 TCP Connection Setup 31
4.3.3 TCP Data Flow . 32
4.3.4 TCP Connection Release 34
4.3.5 TCP Congestion Control 35
4.3.6 TCP Flow Control . 36
4.3.7 Retransmission in TCP (Optional) 36

1

Chapter 1

Lab 1: Introduction to
WireShark and Layered
Protocol

The labs for this course are designed to help students better understand the
ideas learned in the classes through hands-on experiments.
A helpful way to understand network protocols is to observe how they ac-
tually work. A basic tool for observation of exchanged messages between
executing protocol entities is packet sniffer software which is an essential
part of network protocol analysis. WireShark is a free and open-source
network protocol analyzer that runs on various operating systems including
Linux, Unix, Mac, and Windows. In the following section, a brief overview
of this software will be given.
This lab has three parts. The first part includes simple tasks that let you
get familiar with the basic operations of WireShark. The second part will
focus on how protocols and layering are represented in packets by exploring
the sniffed packet traces. The last one will introduce some handy networking
tools, which will be used in the following labs.

2

1.1 Overview

1.1.1 WireShark

WireShark (previously called Ethereal) is one of the most widely used net-
work protocol analyzers. It passively sniffs packets that are sent from or
received by a designated network interface, but never sends packets itself. It
receives a copy of sent packets from or received by applications and proto-
cols executing on end systems (e.g., your computer). WireShark also has a
graphical front-end to display the packets it sniffs.

Figure 1.1: Network protocol analyzer structure

Fig. 1.1 [1] shows the structure of a network protocol analyzer. The right
of the figure shows the protocol stack and application layer (such as a web
browser or an FTP client) that normally runs on your computer.
The network protocol analyzer, shown within the dashed rectangle, has two
parts, packet capture and packet analyzer. The packet capture library re-
ceives a copy of every link-layer frame that is sent from or received by a des-
ignated network interface. Recall that messages exchanged by upper layer
protocols such as HTTP, FTP, TCP, UDP, DNS, or IP all are eventually
encapsulated in link-layer frames that are sent over physical media such as
an Ethernet cable.
In Fig. 1.1, the assumed physical media is an Ethernet, and so all upper layer
protocols’ headers are eventually encapsulated within an Ethernet frame.
Capturing all link-layer frames thus gives you all messages sent from or re-
ceived by all protocols and applications executing on your computer.

3

The second component is the packet analyzer, which displays contents of
all fields within a link-layer frame. In order to do so, the packet analyzer
must understand the messages’ structure exchanged by the protocols. For
example, we are interested in displaying various fields in messages exchanged
by HTTP protocol in Fig. 1.1. The packet analyzer understands format
of Ethernet frames, and therefore, it can identify IP datagram within the
Ethernet frame. It also understands the IP datagram’s format, the TCP
segment within it and consequently, the HTTP message contained in the
TCP segment. Finally, it extracts the HTTP protocol which may contain
“GET”, “POST”, or “HEAD” strings.

1.1.2 Layered Protocol

Two reference models are used to describe the network architecture, OSI/ISO
and TCP/IP reference models. The OSI/ISO model divides the network into
seven layers, while the TCP/IP one divides it into four layers. No matter
which model is used, the basic principle of the layered architecture is that
each layer performs some services for the above layer.

1.1.3 Networking Tools

Please note that due to security reasons, our department computer
admin has disabled the following commands on the lab’s computers.
Therefore, you need to try them on your own laptops or comput-
ers. The examples listed in this subsection are for Linux operating
system. If you use other operating systems, using “man ***” or
“*** --help” to find out their usages may be helpful. Some tools
are not available for non-Linux operating systems. For example,
MAC may not support “wget”.

ping

The ping command in a source host sends a packet to a target IP address. If
the target is alive, the ping command in the target host responds by sending
a packet back to the source host. Both of these ping packets carry ICMP
messages. Try “man ping” or “ping --help” to find out its usage.
Example: To ping the “google.ca” server five times (using -c 5):
ping -c 5 google.ca

4

ifconfig

ifconfig is a tool to configure a network interface, for instance, setting an
interface’s IP address and netmask, disabling or enabling a given interface.
Try “man ifconfig” or “ifconfig --help” to find out its usage.
Example: Take a look at the network interface(s) of your computer:
ifconfig -a

netstat

netstat is a tool that displays network connections, routing tables, and net-
work interface statistics. It is used for finding problems in a network and to
determine the amount of traffic on the network as a performance measure-
ment. Try “man netstat” or “netstat --help” to find its usage.
Example: Show the kernel routing tables of your computer:
netstat -rn

wget

wget is a command-line program that let you fetch a URL. Unlike a web
browser, which fetches and executes the entire webpages, wget gives you
freedom to control which URLs you fetch and when you fetch them. Although
wget has many options (try “wget --help” to see them), a URL can be fetched
simply with “wget URL”.
Example: Download the webpage of google.ca/index.html:
wget google.ca/index.html

1.2 Procedures

1.2.1 Installation

WireShark is free to download at http://www.wireshark.org/. How to build
and install WireShark onto your machines with different operating systems
can be found on http://wiki.wireshark.org/BuildingAndInstalling.

5

Figure 1.2: WireShark graphical user interface

1.2.2 Getting familiar with WireShark

A. Starting WireShark

When you run WireShark, you will see the graphical user interface (GUI) as
shown in Fig. 1.21. There are four main fields as follows.

• Filter field: It is used to filter out uninterested packets with the
entered specifications, so you can choose which packets should (not) be
shown on the screen.

• Captured packets: It lists the packets captured by the selected in-
terface.

• Details of the selected packet: It lists the information related to
the selected packet.

• Content of the packet in hex/ASCII: It displays the content of
the captured packet, in hex and ASCII.

1Note that due to different versions of WireShark installed in the lab computers, the
software’s display may have minor differences.

6

Figure 1.3: wget

B. Capture Trace

Use the following procedure to capture a trace.

• Pick a URL and fetch it by wget. For example, open a console,
type “wget http://www.google.ca”, and you will obtain the fetched
resource written in a file. A successful example is shown in Fig. 1.3.
The expected response is “200 OK”.

• Close web browser(s). Closing the browser(s) can stop your computer
from fetching unnecessary web content, and avoid incidental traffic in
the trace.

• Launch WireShark. Choose a network interface that we would like to
capture the packets on. To do this, select “Capture ⇒ Options” from
the command menu. A window similar to the one shown in Fig. 1.4
should pop up. Select the interface you are using. Uncheck “Capture
packets in promiscuous mode”. This mode is useful to overhear packets
sent to/from other computers on broadcast networks. We only want
to record packets sent to/from your computer. Use capture filter “tcp

7

Figure 1.4: Capture options window

8

port 80”. This filter will only record standard web traffic and not other
kinds of packets your computer may send. Click “Start” to start the
packet capture process.

• When the capture process is started, repeat the web fetch procedure
using wget above. This time, the packets will be recorded by WireShark
as the content is transferred.

• After a successful fetch, return to WireShark and use the menus or
buttons to stop the trace (“Capture ⇒ Stop”). If you have succeeded,
the upper WireShark window will show multiple packets. How many
packets being captured will depend on the size of the web page going
to be fetched, but there should be at least 8 packets in the trace. An
example is shown in Fig. 1.5.

Figure 1.5: Packet trace

9

Figure 1.6: Protocol stack for a web fetch

1.2.3 Layered Protocol

Inspect the captured trace or the provided trace (lab1-wget-trace.pacp)
to understand the layered protocol.

• Select an HTTP GET packet. This packet carries the HTTP request
sent from your computer to the server.

• The protocol layers being used in web fetching are shown in Fig. 1.6.
HTTP is an application layer web protocol used to fetch URLs. It runs
on the top of the TCP/IP transport and network layers protocols. The
link-layer protocol shown in the figure is Ethernet. It may be other
protocols depending on your network.

• Click on an HTTP packet. The middle panel shows the details of the
packet. The first block is “Frame”. This is a record describing the
overall information about the packet, including when it was captured
and how many bits it has. The second block is “Ethernet” (You may
have taken trace in a computer with 802.11 protocol, but still you will
see an Ethernet block. This is because WireShark captures traffic in

10

Ethernet format. See Link-layer header type.). Then we can see IP,
TCP, and HTTP. This is in a bottom-up order, because as packets are
passed down the protocol stack, the header of the lower layer protocol
is added to the front of the data coming from the higher layer protocol.
That is, the header from the lower layer protocols comes earlier in the
packet.

• When an Ethernet frame arrives at a computer, the Ethernet layer
must hand in the packet to the next layer to be processed. In order
to do this, the protocol uses the information in the packet’s header to
determine the higher layer data unit. Which field is used here?

• Draw a figure of an HTTP GET packet showing the location and size
(in bytes) of the TCP, IP, and Ethernet protocols’ headers. On this
drawing, show the range of header and payload of each layer.

1.3 Discussion

1.3.1 Running WireShark

1. Capture a trace without any filters.

2. List at least 3 different protocols that appear in the protocol column
of the unfiltered packet-listing window.

3. How long did it take from the HTTP GET message being sent to the
HTTP OK reply being received?

1.3.2 Layered Protocol

1. Draw the structure of an HTTP GET packet.

2. In the provided trace (lab1-wget-trace.pacp), calculate the average
overhead of all of the packets from the server to the client (in
percentage). (Hint: For a packet, the overhead is the size of all headers
over the packet’s total size. The average overhead is the ratio of the
sum of the headers’ size over the sum of the packets’ size).

3. Which bytes in the Ethernet header field tell that the next higher layer
protocol is IP? What is its hexadecimal value?

11

4. Which bytes in the IP header field tell that the next higher layer pro-
tocol is TCP? What is its hexadecimal value?

1.3.3 Networking Tools

Explore the usage of “ifconfig”, “ping”, “netstat”, and answer the following
questions. (Hint: If you are not sure about how to use these commands,
please refer to “Sec. 1.1.3 Networking Tools”.)

1. How many Ethernet interfaces are in your computer, and how to de-
termine it?

2. How to turn down/up an Ethernet interface?

3. Ping 10 packets to two websites. Compare the statistic results (i.e., the
packet loss rate and average round-trip time).

12

Chapter 2

Lab 2: Ethernet and IEEE
802.11

2.1 Objective

In this lab, we investigate link-layer protocols, including those for Ethernet
and IEEE 802.11 networks. The first part of this lab is mainly about Ethernet
frames, and the second part focuses on analyzing IEEE 802.11 frames.

2.2 Introduction

2.2.1 Ethernet

Ethernet stations communicate with each other by sending out data frames.
Just like IEEE 802 LANs, each Ethernet station is given a single 48-bit MAC
address, which is used for the destination or the source of each data frame.
Network interface cards (NICs) normally do not accept frames addressed to
other Ethernet stations. Adapters are generally programmed with a globally
unique MAC address. (Note that this can be overridden, either to avoid an
address change when an adapter is replaced, or to use locally administered
addresses.)

All generations of Ethernet (except the very early experimental versions)
share the same frame formats (and hence, the same interface for higher lay-
ers), and can be readily (and in most cases, cheaply) interconnected.

13

Due to the ubiquity of Ethernet and its ever-decreasing hardware cost, most
newer computers have a network interface built into the PC’s motherboard,
eliminating the need for installing a separate network card.

2.2.2 IEEE 802.11

In this part, we are going to explore the link-layer and management functions
of the IEEE 802.11 standard, widely used in wireless local area networks
(WLANs). Generally speaking, there are three types of frames in the IEEE
802.11, Data frame (Type 2), Control frame (Type 1), and Management
frame (Type 0). For each type of the frames, there are also different subtypes.
Typically, the data frames are the largest, which can be up-to 1500 bytes.
While the Management and Control frames are much smaller. As the Data
and Control frames have been illustrated in the textbook, here we introduce
some important types of the Management frames.

• Beacon frame: Beacon frames are sent out periodically by an Access
Point (AP) to advertise its existence and capabilities to nearby wireless
stations (e.g., laptops, PCs, or handheld devices). Beacon is an IEEE
802.11 WLAN Management frame. In a Beacon frame, there are a
series of parameters, including SSID name of the AP, data rates it
supports, and the channel on which it is operating.

• Association: Before a wireless station can send to or receive data
from the AP, it has to associate with the AP after it learns the AP via
a Beacon frame. Possibly, an authentication process will be involved
during the association. If the Association Request is successfully re-
ceived by the AP, it will return an Association Response, and then,
the station will acknowledge the association response. The Association
Request and Response carry information which describes the station
or the AP’s capabilities.

• Probe Request/Response: In addition to finding an AP by waiting
for Beacon frames, a station may also probe for specific APs. A Probe
Request is sent by a station to test whether an AP with a specific SSID
is nearby. If the AP is nearby, it will reply with a Probe Response.
Similar to the Beacon and Association frames, each of these frames
carries information describing capabilities of the station or the AP.

14

2.3 Procedures and Discussions, Ethernet

• Download and open the file named “ethernet-trace-1” in WireShark.

• Find the HTTP GET message that was sent from the web browser
to gaia.cs.umass.edu (should be packet No. 10) and answer the
following questions.

1. What is the 48-bit destination MAC address in this Ethernet
frame? Is this the MAC address of gaia.cs.umass.edu? Which
device has this MAC address?

2. Give the hexadecimal value corresponding to the two-byte Frame
type field.

3. What is the value of the source MAC address? Which device has
this MAC address?

• Find the Ethernet frame containing the first byte of the HTTP response
message and answer the following questions.

4. What is the destination MAC address in the Ethernet frame?
Which device has this MAC address?

5. Find the hexadecimal value corresponding to the two-byte Frame
type field.

2.4 Procedures and Discussions, IEEE 802.11

• Download and open the trace named “wlan-trace-1” [4] using Wire-
Shark. (Note that it may be difficult to collect your own trace using
Windows system. The main issue is that Windows system makes the
802.11 frames appear to come via a wired Ethernet. However, it is
possible to use Mac or Linux to collect 802.11 frames directly.)

• Select a Data packet. The packet’s details can show four types of in-
formation: 1) Frame, which is a record added by Wireshark containing
information about time and the frame’s length; 2) Radiotap, which is
also a record of physical layer parameters, such as signal strength and
modulation; 3) IEEE 802.11, which contains bits of the 802.11 Data
frame; 4) Data, which is a record containing the frame payload data.

15

• Inspect different packets to see the values corresponding to different
types of frames. You can use filter to see only one type of frames by
entering the expression wlan.fc.type==2 (or 1, 0) into the Filter
box located above the list of frames in the top panel. In the filtering
command, 2, 1, and 0 stand for Data frames, Control frames, and
Management frames, respectively.

• Inspect the packet transmission reliability. Use appropriate filter ex-
pressions to find the number of original Data frames and retransmitted
ones. For example, wlan.fc.type==2 && wlan.fc.retry==0 will
find the original Data frames.

• Inspect the Management frame. Use appropriate filter to help you find
these frames.

2.4.1 Discussion

Answer the following questions according to the trace file “wlan-trace-1”.

6. Which AP is the most active one (i.e., the one sent most Beacon mes-
sages)? What is its BSS ID?

7. How many Data frames are there in the trace, how many subtypes do
they have, and what is the most frequently appeared subtype of these
Data frames?

8. How many subtypes of Control frames are there in the trace, what are
they, and what is the most frequently appeared subtype?

9. How many subtypes of Management frames are there in the trace, what
are they, and what is the most frequently appeared subtype?

10. Calculate the ratio of the number of retransmissions (the total number
of transmissions minus the total number of original transmissions) over
the number of original transmissions. Show your calculation.

11. What are the Type and Subtype values corresponding to the Associa-
tion Request/Association Response frames, and Probe Request/Probe
Response frames, respectively?

16

Chapter 3

Lab 3: ARP, IP, and ICMP

3.1 Objective

In this lab, we investigate Address Resolution Protocol (ARP), Internet Pro-
tocol (IP), and Internet Control Message Protocol (ICMP). The first part
of this lab is mainly about the ARP. We study its operation based on the
header fields in the Ethernet frames which contain the ARP message. The
second part of the lab focuses on analyzing IP frames, by observation and
interpretation of different fields in the IP header. The last part of this lab
focuses on format and content of ICMP messages.

3.2 Introduction

3.2.1 Address Resolution Protocol (ARP)

ARP is a standard method to find a host’s hardware address when only its
network layer address is known. It can be used to resolve mapping between
network layer protocol and the hardware addresses. Due to popularity of
IPv4 and Ethernet, ARP is mostly used to translate IP addresses to Ethernet
MAC addresses. ARP is used in the following four cases when two hosts
communicate.

1. Two hosts are on the same network and one desires to send a packet
to the other.

17

2. Two hosts are on different networks and one must use a gateway/router
to reach the other host.

3. A router needs to forward a packet for one host through another router.

4. A router needs to forward a packet from one host to a destination host
in the same network.

The first case is used when two hosts are on the same physical network (that
is, they can directly communicate without going through a router). The
other three cases are the most widely used ones, as two computers in the
Internet are typically separated by several hops.

3.2.2 Internet Protocol (IP)

Network layer is responsible for relaying packets over multiple hops from a
source to a destination. The network layer protocol used in the Internet is
called Internet Protocol, or more commonly, IP Protocol. The IP protocol
performs two basic functions, addressing (with IP address) and routing. Note
that the IP protocol does not distinguish the operations of various transport
layer protocols and applications. Thus, it can carry data for a variety of
upper layer protocols, such as TCP, UDP and ICMP.

Currently, there are two versions of IP protocols, IPv4 and IPv6. In this
section, we examine IPv4, the most widely used version. With the given
trace files, we learn the details of IP packets.

3.2.3 Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) is a core protocol for network
management in the Internet. It is mainly used by the network devices’ oper-
ating systems to send error messages indicating, for instance, that a requested
service is not available, or a host or router could not be reached. It has been
used in network troubleshooting and analyzer applications such as ping and
traceroute.

ICMP uses the basic support of IP to deliver messages as if it were a higher
level protocol; however, ICMP is actually an integral part of the network
layer, and must be implemented by every IP module. ICMP messages are

18

sent in several situations: for example, when a datagram cannot reach its
destination, the gateway does not have the buffering capacity to forward
a datagram, or the gateway can lead the host to send traffic on a shorter
route [RFC792].

In this part of the lab, we use two network tools. One is ping, which is used
to test whether or not a particular host is reachable across an IP network, to
self-test the network interface card of the computer, or to measure latency.
The other one is traceroute, used to determine the route taken by packets
across an IP network. We can understand the functions of ICMP by using
these tools.

3.3 Procedures and Discussions, ARP

3.3.1 Exploring ARP Functions

• Download and open the trace named “ethernet-trace-1”.

• This trace was captured when a host retrieved a long document.

• The ARP protocol typically maintains a cache of IP-to-Ethernet ad-
dress translation pairs.

• Find the ARP request message and answer questions 1-5 in Section 3.3.2.

• Find the ARP reply that was sent in response to the ARP request and
answer questions 6-10 in Section 3.3.2.

3.3.2 Discussions

Answer the following questions based on the trace file “ethernet-trace-1”.

1. What are the hexadecimal values corresponding to the source and des-
tination addresses in the Ethernet frame containing the ARP request
message?

2. Find the hexadecimal value corresponding to the two-byte Ethernet
Frame type field.

19

3. Where is the ARP opcode (operation code) field located, i.e., how many
bytes are there between the first bit of the opcode and the first bit of
the ARP message?

4. What is the value of the opcode field within the ARP-payload part of
the Ethernet frame, in which an ARP request is made?

5. Does the ARP message contain the IP address of the sender?

6. Where is the ARP opcode field located, i.e., how many bytes are there
between the first bit of the opcode and the first bit of the ARP message?

7. What is the value of the opcode field within the ARP-payload part of
the Ethernet frame in which an ARP response is made?

8. What is the MAC address answered to the earlier ARP query?

9. What are the hexadecimal values for the source and destination ad-
dresses in the Ethernet frame containing the ARP reply message?

10. Why are not there any ARP replies for the second ARP query (in
packet No. 6)?

3.4 Procedures and Discussions, IP

3.4.1 Analyzing IP frames

• Use the same trace file as above.

• Select any packets with the HTTP GET message in the trace and
expand the IP header fields (using the expander or icon) to see the
details. You can simply click on a packet to select it (in the top panel),
and see the details of its structure (in the middle panel) and the bytes
that make the packet (in the bottom panel). Here, we focus on the IP
header, and you may ignore the other higher and lower layer protocol
headers.

• Select the packet with HTTP GET message (packet No.10) and answer
questions 1-2 in Section 3.4.2.

• Observe all the packets and answer questions 3-4 in Section 3.4.2.

20

3.4.2 Discussions

Answer the following questions based on “ethernet-trace-1”.

1. Sketch a figure of the packet you selected to show the location and
size (in bytes) of the IP header fields, as well as their hexadecimal
values.

2. What are the IP and MAC addresses of the source and the destination,
respectively?

3. How does the value of the Identification field change or stay the same
for different packets? Is there any pattern if the value changes?

4. How to judge whether a packet has been fragmented or not?

3.5 Procedures and Discussions, ICMP

3.5.1 Exploring ICMP Functions

Ping

ping program in the source host sends a packet to the target IP address. If
the target is alive, the ping program in the target host responds by sending
a packet back to the source host. Both of these ping packets carry ICMP
messages.

The following procedures describe how to capture ping message’s traces.

• Start up WireShark and start capturing process.

• Open a console and type the command “ping www.engr.uvic.ca -c 10” 1

in the command line. The argument “-c 10” indicates that ten ping
messages should be sent.

• When the ping program terminates, stop capturing in WireShark.

Download and open “ping-trace-1” in WireShark. Use an appropriate filter
to list the ICMP messages only, as shown in Figure 3.1 and answer ques-
tions 1-4 in Section 3.5.2.

1The ping command here is different in Linux and Windows operating system. If you’re
working in Windows system, the command here should be ping www.engr.uvic.ca -n 10

21

Figure 3.1: Capture of ping packet with ICMP display filter

Traceroute

traceroute program is used to figure out the path that a packet takes from
a source to a destination. The following procedures describe how to capture
the packets of traceroute messages.

• Start up WireShark and start capturing process.

• Open a console and type the command “traceroute www.engr.uvic.ca”
the in command line.

• When the traceroute program terminates, stop capturing in WireShark.

Download and open “tracert-trace-2” in WireShark, and set the display
filter as icmp. Then answer the questions 5-8 in Section 3.5.2 based on the
trace.

22

3.5.2 Discussions

Answer the following questions based on “ping-trace-1” and “tracert-
trace-2”, respectively.

1. What is the IP address of the source host (client)? What is the IP
address of the destination host (server)?

2. How long is the average Round-Trip Time (RTT)?

3. Examine one of the ping request packets. What are the ICMP type and
code numbers? What other fields does this ICMP packet have? How
many bytes are there in the checksum, sequence number, and identifier
fields?

4. Examine the corresponding ping reply packet. What are the ICMP
type and code numbers? What other fields does this ICMP packet
have? How many bytes are there in the checksum, sequence number,
and identifier fields?

5. Examine the ICMP error packet, which could be found in the packets
from tracert-trace-2. It has more fields than the ICMP echo packet.
What are included in those fields? Find the TTL field, and explain
what it is.

6. How many routers are there between the source and the destination
(www.engr.uvic.ca) according to the trace file? Please draw a figure to
show the sequences of these routers.

Source ⇒ first router ⇒ · · · ⇒ last router ⇒ Destination.

7. How long are the average RTTs between the source host and each
router? (Recommend you to use a script language or other program-
ming language to calculate it.)

23

Chapter 4

Lab 4: TCP

4.1 Objective

In this lab, we first get familiar with the TCP header’s format, then study the
TCP 3-way handshake and reliable data transfer, followed by the congestion
control algorithm and retransmission scheme.

4.2 Introduction

TCP is the dominant transport layer protocol in the Internet. It provides
a reliable and in-order streaming service between two end-points, even if
they reside in a network that may drop, re-order, or corrupt packets. TCP
provides the reliable data streaming service by detecting if packets are lost,
delayed, or corrupted during transmission.
In this lab, we investigate the behaviour of TCP in detail, by analyzing
the trace of TCP segments sent and received in transferring a 300 KB file
from a local computer (the client, IP address: 10.0.1.5) to a remote web
server (http://gaia.cs.umass.edu/, IP address: 128.119.245.12). The file,
named “alice.txt” (which contains two copies of Alice in Wonderland) is
stored on the client computer and is uploaded to the server using the HTTP
POST method. Here the POST method is used in order to transfer a large
amount of data from a computer to another computer.
The procedure to transfer this file is as follows:

• Start up Web browser on the client computer and go to http://gaia.

24

cs.umass.edu/ethereal-labs/TCP-ethereal-file1.html. The screen
looks like Figure 4.1.

Figure 4.1: Upload page

• Use the Browse button to enter the full path name of “alice.txt” on
the client computer, and then press the Upload “alice.txt” file button
to upload the file to the server “gaia.cs.umass.edu”.

• Once the file has been uploaded, a new web page, which is a short
congratulation message, will be transferred from the Web server to the
client and displayed in the web browser, as shown in Figure 4.2.

To transfer “alice.txt” and the congratulation page without any error, a TCP
connection between the client and the server is established. The TCP con-
nection completes four operations in this real-world application as follows:

• Setup a TCP connection.

• Transfer the HTTP POST command and the file “alice.txt”, from the
client computer to the server “gaia.cs.umass.edu”.

• Transfer the congratulation page from the server to the client.

• Release the TCP connection.

25

Figure 4.2: Congratulation Page

WireShark is run on the client computer to capture the trace of the TCP
segments sent/received to/from the client computer while the file is being
transferred. The trace from the TCP stream is saved in the file “tcp-trace-
1.cap”. The trace tracked all of the above TCP’s four actions. We use this
trace to study the TCP behaviours.

4.2.1 TCP Header Format

Every TCP segment consists of a header followed by an optional data portion.
The format of the header is defined in RFC 793, including Source Port (16
bits), Destination Port (16 bits), Sequence Number (32 bits), ACK (32 bits),
etc.

4.2.2 TCP Connection Setup

Before transferring data, a TCP connection is established between the two
end systems, typically with three messages, called the three-way handshake:
SYN→ SYN/ACK→ ACK. The handshake is also used to negotiate certain
properties of the connection, e.g., the Maximum Segment Size (MSS) that
the client and server can accept, and whether the Selective Acknowledgement

26

(SACK) option is acceptable by both sides. In this lab, we will see the three-
way handshake procedure in the trace “tcp-trace-1.cap”.

4.2.3 TCP Data Flow

Once the connection is established, the TCP sender partitions the message
from the application into segments. The MSS is used to determine how to
partition the single message so that the underlying network can encapsulate
each segment into a packet to avoid further fragmentation. The sequence
and ACK numbers are used to detect packet loss, duplication, re-order in
transmission, and also, to deliver the segments correctly and in-order to the
application in the destination host.
In this real-world application, after the connection was established, the client
computer wrote about 300KB into the data stream using the HTTP POST
command. From the application’s perspective, this was sent as one unit, or
one message. However, the underlying network cannot support packets large
enough to hold all 300KB of data. We will see that TCP broke this single
message into multiple segments according to MSS.
In the trace file “tcp-trace-1.cap”, the first three segments are used to es-
tablish the connection. Starting from the No.4 TCP segment, the client be-
gan to transfer the application layer message to the server. The 4th segment
contains the HTTP POST command (we will dig into the packet content field
and see this HTTP command). This segment is actually used to transfer this
HTTP command. The text file is transferred by the following TCP segments.
Here we regard both the HTTP POST command and the file (“alice.txt”)
together as a whole message. Therefore, we consider the 4th TCP segment
as the first segment in the TCP connection to transfer the message from the
client to the server.

4.2.4 TCP Connection Release

The TCP connection is closed when the two end systems exchange TCP
segments with FIN bit set and ACKed by the other side. The FIN bit
literally means that no additional new data will be sent on that side of the
connection.
The sequence of two FINs and their corresponding ACKs are the preferred
way to gracefully terminate a TCP connection. However, TCP connections
can also be terminated by setting the RESET bit. Although the RESET bit

27

was designed to be used for unrecoverable errors, it is often used in practice
for fast termination that avoids the formalities of the FIN-ACK exchanges.
In the trace file “tcp-trace-1.cap”, after the client acknowledged the data
of the congratulation page, the server sent a FIN indicating that it would
not be sending any additional data. The client acknowledged this FIN by
sending back the ACK. Therefore, the flow in the direction from the server
to the client is closed. The client computer could also terminate its flow to
the server by sending the FIN segments. Alternatively, the client computer
sent a RESET segment to the server to release the connection.

4.2.5 TCP Congestion Control

In TCP, congestion control provides the ability to limit the sending rate
in response to signals of network congestion. Congestion control helps the
network to recover from congestion by shrinking sender’s outgoing traffic and
therefore, avoids network congestion collapse, and at the same time tries to
achieve throughput as high as possible.
Congestion control is realized by setting the size of congestion window, ac-
cording to two strategies, i.e., slow start and congestion avoidance. During
the slow start phase, the congestion window increases one MSS with each ac-
knowledgement, and subsequently, the window size is doubled in every RTT.
During congestion avoidance, each acknowledgement increases the congestion
window by MSS2/congestion window size (if the receiver sends ACK for
each received packet without delay), and subsequently, the congestion win-
dow size is increased by one MSS in every RTT. Slow start phase changes to
congestion avoidance phase when congestion window exceeds the slow-start
threshold.
We use the TCP segment trace file, “tcp-trace-1.cap”, to investigate TCP
congestion control. In particular, we look at how the congestion window
evolved from the beginning of transferring the HTTP POST command to
the end of the “alice.txt” file’s download.

4.2.6 TCP Flow Control

TCP also provides flow control or the ability to limit the sending rate to
avoid a fast sender over-running a slow receiver. To provide a reliable ser-
vice, a TCP receiver cannot deliver data that it received out of order to the
waiting applications. Therefore, the TCP receiver typically allocates a fixed

28

amount of buffer space to store both out-of-order data and data waiting for
the application to fetch. If the TCP receiver runs out of buffer space to hold
the incoming data, then it has no choice but to drop the out-of-order data
packet even if it is error-free.
The receiver advertises its available buffer in each acknowledgement. The
receiver’s advertised window field is used to inform the sender how much
room is left for the incoming data. Then in the sliding-window based flow
control, the sender chooses the minimum of the receiver window and the
congestion window to be the size of the sliding window in order to make sure
that the receiver will not run out of buffer space.
We still use the TCP segment trace file, “tcp-trace-1.cap”, to exam TCP
flow control. We observe how the receiver window takes effect and throttles
the sender even though the congestion window continues to grow.

4.2.7 Retransmission in TCP

We learned that TCP provides a reliable data transmission over an unreliable
network by relying on feedback from the receiver to detect loss, and respond-
ing to packets loss with retransmissions. TCP uses two kinds of indications
of packet losses, i.e., time-out and duplicated acknowledgement (which is re-
garded as an early indication of packet loss and causes the fast retransmission
instead of waiting until timeout). The TCP sender must maintain a copy of
the data it sent in case that a retransmission is needed. Therefore, it must
store the data until the corresponding acknowledgement is received.
However, in the trace “tcp-trace-1.cap”, all the packets were received cor-
rectly the first time and thus there were no retransmissions. In order to
investigate the TCP retransmission scheme, we analyze another trace, “tcp-
trace-retransmission.cap” [3], in which retransmissions did occur.
The trace, “tcp-trace-retransmission.cap”, was taken on a private net-
work [3]. A desktop PC and a laptop were connected via a wireless router.
The laptop was connected via a wireless interface and specifically placed so as
to suffer from strong interferences. The IP addresses of the desktop and the
laptop are, “192.168.0.100” and “192.168.0.102”, respectively. The desktop
sent a file (about 40K bytes) to the laptop using TCP. The TCP port num-
ber for the desktop is “4480”, and “5001” for the laptop. The experiment
configuration is shown in Figure 4.3. WireShark was run on the sender, i.e.,
the desktop, while the file was being transferred to capture the TCP seg-
ments exchanged. The TCP connection trace was saved in the file named

29

“tcp-trace-retransmission.cap”.

Figure 4.3: Network Configuration

In this lab, we will take a look at both fast retransmission and time out
retransmission using this trace file.

4.3 Procedures and Discussions

Note: Answer a set of questions by exploring the trace file “tcp-trace-
1.cap” and “tcp.analysis.retransmission.cap”. When answering a ques-
tion, you should provide the information of the packet(s) within the trace
that you used to answer the question asked if possible. The information in-
cludes the Packet No., the name(s) and value(s) of the packet field(s) that
you use to answer the questions.

4.3.1 TCP Header Format

• Download the traces folder from the lab website.

• Open the captured trace file named “tcp-trace-1.cap” with Wire-
Shark. Now what you should see is a series of TCP segments sent
between the client and the server “gaia.cs.umass.edu”.

• Since this lab is about TCP rather than HTTP, change WireShark’s
Packet List Pane window so that it shows information about the TCP

30

segments containing the HTTP messages. To do this, in WireShark,
select Analyze ⇒ Enabled Protocols. Then uncheck the HTTP box and
select OK.

• Select the first packet and explore the details of the TCP segment using
the packet details pane and the packet bytes pane.

• Select the Transmission Control Protocol item in the Packet Details
Pane then the content of the header is highlighted in the Packet Bytes
Pane.

• Answer the questions below.

Discussions

1. Write down the TCP header content in hexadecimal format (in the
packet bytes pane). Inspect the TCP header and indicate the value of
each field in the header. Annotate the hexadecimal content to explain
your answer.

2. What are TCP port numbers used by the client computer (source) and
the server (destination) when transferring the file to “gaia.cs.umass.
edu”? How did the client computer determine the port numbers when
it wanted to set up a TCP connection to the server?

3. What is the maximum header length? Given the value of the Header
Length field, how to calculate the length of the header in the unit of
bytes? Verify your answer using the first TCP segment in the trace
file.

4. (Optional) How does TCP calculate the Checksum field? What is the
pseudo-header format? Write down the pseudo-header of the flow from
the client to the server in hexadecimal format. Verify the Checksum
value in the first TCP segment in the trace file.

4.3.2 TCP Connection Setup

• Find the initial three-way handshake in the trace file. (Hint: You
should see the SYN segment sent from the client to “gaia.cs.umass.
edu”, and also the SYN/ACK segment being returned.)

31

• Answer the questions below.

Discussions

1. Which segments are the initial three-way handshake in the trace file?
How do you find them?

2. What is the actual initial sequence number in each direction (in hex-
adecimal format)?

Note: WireShark displays the relative sequence number. You should
select the Sequence Number field in the header, the actual value is
highlighted in the Packet Bytes Pane.

3. What is the value of the acknowledgement number in the SYN/ACK
segment? How did “gaia.cs.umass.edu” determine that value?

4. What are the values of the sequence number and the acknowledgement
number in the third ACK segments in the three-way handshake? How
did the client determine these values?

5. How did the client and the server announce the maximum TCP payload
size that they were willing to accept? What are the values and why
did they choose these values?

6. Is there any data sent in the SYN, SYN/ACK, and ACK segments?

4.3.3 TCP Data Flow

• Check the HTTP POST command. Select the 4th segment in the
Packet List Pane. Select the Data item in the Packet Details Pane
and the content of the data carried by this segment is highlighted in
the Packet Bytes Pane. You should find a POST and other HTTP
command information within its Data field.

• Set time reference. In order to make the following analysis easier, set
time reference to the 4th packet. Choose the Time Reference items in
the Edit menu, or from the pop-up menu of the Packet List Pane.

Note: Now the 4th packet becomes the starting point for all subse-
quent packets. The time values of all the following packets are calcu-
lated relative to the time of this packet.

32

• Set the time display format as microseconds. Choose the Time Display
Format in the View menu. Then select Seconds Since Beginning of
Capture and Microseconds.

• Answer the questions below.

Discussions

1. Beginning with the 4th segment, what are the sequence number, ac-
knowledgement number, data length, and the time of the segment
sent/received from/to the client computer of the 4th, 5th, 6th, ..., 15th
segments in the TCP connection? Fill out Table 4.1 for the data flow
from the client computer to the server. (Note: list both the actual
value and the relative value of the sequence number and acknowledge-
ment number.)

Data Segments

10.0.1.5 --> 128.119.245.12

ACK Segments

128.119.245.12 --> 10.0.1.5 Packet

No.
Seq. No./

Relative Seq. No.

Data

Length Time (s)
Ack. No./

Relative Ack. No.
Data

Length
Time (s)

4

5

6

7

8

9

10

11

12

13

14

15

Table 4.1: TCP segment exchange table (Please show the segment and its
acknowledgement in the same row.)

2. What are the segments acknowledged by packet 6, 9, 12, and 15, respec-
tively? (Hint: acknowledgement number is the next byte expected, so
it actually acknowledges the byte before the acknowledgement number.)

33

3. Given the difference between the time each TCP segment was sent and
the time its acknowledgement was received, what is the RTT value for
each of the segments which have been acknowledged before the 15th
segment?

4. (Optional) What is the Estimated RTT value after the receipt of each
ACK? Assume that the value of the Estimated RTT is equal to the
measured RTT for the first segment, and then is computed using the
Estimated RTT equation for all subsequent segments. (Hint: Com-
pare your calculation with the statistics analysis of TCP stream by
WireShark.).

5. In the trace file, how did the sequence number of the packets from
the server to the client change? Why? (Hint: When transferring the
“alice.txt” file, the server was only a receiver and did not send any data
to the client.)

6. (Optional) At the end of the trace file, find the TCP segments used
by the server to transfer the congratulation web page to the client
computer. How do you determine this?

7. (Optional) Are there any retransmitted segments in the trace file?
What do you check (in the trace) in order to answer this question?

4.3.4 TCP Connection Release

• Find the segments used to release the connection between the client
and the server.

• Answer the questions below.

Discussions

1. Which packets were used to close the data flow from the server to the
client? How do you determine this? (Hint: two segments are involved
in the FIN-ACK sequence.)

2. Which packets were used to close the data flow from the client to the
server? How do you determine this?

34

3. (Optional) In the FIN segment, what is the sequence number? In the
corresponding ACK segment, what is the acknowledgement number?
How did the client determine this number?

4.3.5 TCP Congestion Control

• Download the HTTP traces folder from the lab website.

• Open the captured trace file named “tcp-trace-1.cap” with Wire-
Shark.

• Since this lab is about TCP rather than HTTP, change WireShark’s
Packet List Pane window so that it shows information about the TCP
segments containing the HTTP messages. To do so, select Analyze ⇒
Enabled Protocols. Then uncheck the HTTP box and select OK.

• Set time reference. In order to make the following analysis easier, set
time reference to the 4th packet. Choose the Time Reference items in
the Edit menu, or from the pop-up menu of the Packet List Pane.

• Answer the questions below.

Discussions

1. Examine the 4th to 15th TCP segments and take a reference to the
Table in Question 1 of Section 4.3.3. Can you find a pattern of the
number of segments sent from the client and from the server “gaia.
cs.umass.edu”? Why did the TCP data flow have such a pattern?

2. What is the initial size of the congestion window? How do you deter-
mine this? What is the size of the congestion window when segment 5,
8, 11, and 14 were sent out?

3. In the lecture, we have learned that the congestion window doubles
its size in every RTT in the slow start phase. Beginning with the 4th
packet, what is the size of the congestion window, and which packets are
inside the congestion window (i.e., these packets could be sent) during
the first RTT? What is the size of the congestion window, and which
packets are inside the congestion window during the second RTT? How
about the third RTT? Give the segment numbers.

35

4. When did the sender’s congestion control change from the slow start
phase to the congestion avoidance phase? Give the segment number
and its time. How do you determine this?

4.3.6 TCP Flow Control

• Open the captured trace file named “tcp-trace-1.cap” with Wire-
Shark.

• Answer the questions below.

Discussions, TCP Flow Control

1. Examine the 179th segment in the trace file, why did the sender stop
sending more segments? What is the size of the receiver’s window
advertised by the receiver at this moment? How do you determine
this?

4.3.7 Retransmission in TCP (Optional)

• Open the captured trace file named “tcp-trace-retransmission.cap”
with WireShark.

• List retransmissions. Search for retransmissions with the display fil-
ter tcp.analysis.retransmission. Applying this filter, you should see 9
retransmissions in the trace.

• Answer the questions below.

Discussions

1. Segment 12 is the first retransmission. What is in the segment that
identifies the segment as a retransmission? (Hint: the sequence number
has been used by a previous packet.) For which segment was segment
12 retransmitted?

2. Segment 12 is a fast retransmission, which should be triggered by triple-
duplicated-acknowledgment. Find the three acknowledgments which
triggered the fast retransmission of segment 12. (Hint: in order to
trigger a fast retransmission, the duplicated acknowledgments should

36

acknowledge the same acknowledgment number, which is the sequence
number of the fast retransmission.)

3. Is segment 44 a fast retransmission or timeout retransmission? How do
you determine this? (Hint: Check whether the sequence number in the
segment has been acknowledged for three times or not.)

37

Bibliography

[1] Ethereal Labs, http://www-net.cs.umass.edu/ethereal-labs

[2] Wikipedia.org, http://en.wikipedia.org/wiki/HTTP

[3] Jeanna Matthews, Computer Networking: Internet Protocols in Action,
John Wiley & Sons, Inc., Dec. 2004.

[4] Andrew Tanenbaum and David Wetherall, Computer Networks 5/E,
Prentice Hall, Oct. 2010

[5] James F. Kurose and Keith W. Ross. 2009. Computer Networking: A
Top-Down Approach (5th ed.). Addison-Wesley Publishing Company,
USA.

38

