Identification algorithm of NLOS ——review & analysis

Congzhi Liu

Outline

- Channel models
- Identification algorithm
 - The kurtosis
 - Mean excess delay
 - RMS delay
- Likelyhood- ratio test
- Mitigation
- Future work

Channel model

- Identification and mitigation of non-line-ofsight (NLOS) effects
 - One of the major challenges for localization systems
 - Happened when a fixed terminal(FT) is obstructed from the mobile terminal(MT)
 - Different characteristics between LOS/NLOS
 - Amplitude
 - Multipath
 - Delay spread

Channel model

• Channel impulse response (CIR) of the received signal

$$h(t) = \sum_{l=1}^{L} \alpha_l \delta(t - \tau_l)$$

where L is the total number of multipath components(MPCs), and α_l and τ_l are the amplitude and delay of the *l*th MPC

- Here, the IEEE 802.15.4a standard ultrawideband(UWB) channel models are used as examples.
- There are 8 channel models in this standard. Representing different situations.

The kurtosis

- The ratio of the fourth-order moment of the data to the square of the second-order moment (variance).
 - a) Characterize how peaky a sample data is
 - b) A CIR with higher kurtosis, more likely is LOS
 - c) Only amplitude statistics, no delay properties

$$\kappa = \frac{E\left[\left(|h(t)| - \mu_{|h|}\right)^{4}\right]}{E\left[\left(|h(t)| - \mu_{|h|}\right)^{2}\right]^{2}} = \frac{E\left[\left(|h(t)| - \mu_{|h|}\right)^{4}\right]}{\sigma_{_{|h|}}^{4}}$$

where $\mu_{|h|}$ and $\sigma_{|h|}$ are the mean and standard deviation of the |h(t)|, respectively

PDFs of the kurtosis for CM1 to CM8

The kurtosis

- have high value for LOS comdition, due to
 - a) Few peaks
 - b) Distinguishable from natural noise
- have low value for NLOS condition
 - a) Signal is more noise-like
- Exception: standard outdoor situation
 - a) Might due to the highly dispersive characteristics of the outdoor environments
 - b) The delay statistics must be taken into consideration

November 26, 2009

Mean excess delay and RMS delay

- These two statistics can provide delay information of the multipath channel
- Mean excess delay

$$\tau_m = \frac{\int_{-\infty}^{\infty} t \left| h(t) \right|^2 dt}{\int_{-\infty}^{\infty} \left| h(t) \right|^2 dt}$$

• Root mean square delay(RMS)

$$\tau_{rms} = \frac{\int_{-\infty}^{\infty} (t - \tau_m)^2 \left| h(t) \right|^2 dt}{\int_{-\infty}^{\infty} \left| h(t) \right|^2 dt}$$

Mean excess delay

Likelyhood-ratio test

• Kurtosis test $\frac{P_{los}^{kurt}(\kappa)}{P_{clos}^{kurt}(\kappa)} \underset{H_{1}}{\overset{H_{0}}{\gtrless}} 1$

- Mean excess delay test $\frac{P_{los}^{med}(\tau_m)}{P_{mlas}^{med}(\tau_m)} \gtrsim 1$
- RMS delay test $\frac{P_{los}^{rms}(\tau_{rms})}{P_{rlos}^{rms}(\tau_{rms})} \underset{H_{1}}{\overset{H_{0}}{\gtrless}} 1$
- Where, if the likelyhood ratio is larger than 1, we choose the LOS hypothesis(H_0), otherwise choose the NLOS hypothesis(H_1). November 26, 2009

Joint likelyhood- ratio test

 Rather than using only the PDFs of individual parameters, a better approach would be the joint PDF

$$\frac{P_{los}^{joint}\left(\kappa,\tau_{m},\tau_{rms}\right)}{P_{nlos}^{joint}\left(\kappa,\tau_{m},\tau_{rms}\right)} \underset{H_{1}}{\overset{H_{0}}{\gtrless}} 1$$

- Very difficult to obtain
- Sub-optimal approach

Assuming κ, τ_m and τ_{rms} as independent

$$J\left(\kappa,\tau_{m},\tau_{rms}\right) = \frac{P_{los}^{kurt}\left(\kappa\right)}{P_{nlos}^{kurt}\left(\kappa\right)} \times \frac{P_{los}^{med}\left(\tau_{m}\right)}{P_{nlos}^{med}\left(\tau_{m}\right)} \times \frac{P_{los}^{rms}\left(\tau_{rms}\right)}{P_{nlos}^{rms}\left(\tau_{rms}\right)}$$

LOS/NLOS Identification Percentages

Channel Model	Kurtosis	MED	RMS	Joint
CM1	78.6%	74.3%	61.7%	81.8%
CM2	83.2%	77.9%	76.1%	84.3%
CM3	99.0%	88.5%	73.6%	97.9%
CM4	96.7%	86.3%	89.0%	95.9%
CM5	66.3%	98.2%	93.9%	98.9%
CM6	71.4%	95.2%	92.7%	97.8%
CM7	98.3%	88.3%	98.3%	88.2%
CM8	98.4%	100%	100%	99.9%

Mitigation

Identify-and-discard

$$\beta_{i}^{(IAD)} = \begin{cases} 0 & if \log_{10} \left(J_{i} \left(\kappa, \tau_{m}, \tau_{rms} \right) \right) \leq 0 \\ 1 & if \log_{10} \left(J_{i} \left(\kappa, \tau_{m}, \tau_{rms} \right) \right) > 0 \end{cases}$$

- The drawback
 - Misidentification
 - Insufficient number of LOS FTs, eg. two

Mitigation

Weighted selection

$$\beta_{i}^{(weight)} = \begin{cases} k_{1} & if \log_{10} \left(J_{i} \left(\kappa, \tau_{m}, \tau_{rms} \right) \right) \leq 0 \\ k_{2} & if \log_{10} \left(J_{i} \left(\kappa, \tau_{m}, \tau_{rms} \right) \right) > 0 \end{cases}$$

Where k₁<k₂, the identified NLOS has limited impact

further work

- Other methods for NLOS identification and mitigation
 - A modified biased Kalman filter and a sliding window
 - Energy-based TOA estimation(EBE) algorithm
- Compare different algorithms
 - Complexity
 - Accuracy

References

- [1] İ. Güvenç, C. Chong, F. Watanabe, and H. Inamura, "NLOS Identification and Weighted Least-Squares Localization for UWB Systems Using Multipath Channel Statistics," EURASIP Journal on Advances in Signal *Processing*, vol. 2008, 2008, pp. 1-15.
- [2] A. Maali, H. Mimoun, G. Baudoin, and A. Ouldali, "A new low complexity NLOS identification approach based on UWB energy detection," 2009 IEEE Radio and Wireless Symposium, vol. 1, 2009, pp. 675-678.
- [3] L. Mucchi and P. Marcocci, "A new UWB indoor channel identification method," 2007 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2007, pp. 58-62.
- [4] S. Venkatesh and R. Buehrer, "Non-line-of-sight identification in ultrawideband systems based on received signal statistics," IET Microwaves A
- [5] C. Wann and C. Hsueh, "NLOS mitigation with biased Kalman filters for range estimation in UWB systems," TENCON 2007 - 2007 IEEE Region 10 Conference, 2007, pp. 1-4. ntennas and Propagation, vol. 1, 2007, p. 1120-**1130.** November 26, 2009

Q&A