Network Coding and Packet Erasure Coding

By Saamaan Pourtavakoli, My presentation for ELEC619 Dec 3rd, 2009

Outline

- Network Coding(NC)
- Effect of Link Error
- Packet Erasure Coding(PEC)
- Combination of NC and PEC
- Discussion
- Q&A

Network Coding

- error free transmission usually assumed
- Packet Encoding used to reduce the number of packets sent

 You don't need to only think about butterfly networks...!

Network Coding

- Greatly enhances data throughput especially in multicast scenarios
- Has been applied ad-hoc sensor network, peer-to-peer networks, even in the area of network security

Effect of link error

 Adding a Packet Loss Rate(PLR) to point-topoint link(with same for every link):

q = (1-p) - -> is the Pr. of successfuly transmit a packet over a link

Pr(b₁ arrives at node X) = $(1-p)(1-p) = q^2$ Pr(b₂ arrives at node X) = $(1-p)(1-p).\{(1-p)(1-p)[(1-p)^3]+...$ $(1-(1-p)(1-p))[(1-p)^2]\}$ = $q^4 + q^7 - q^6$

- If p = .05, the two previous formulae will give us $Pr(b_1 \rightarrow X) = .9025$ and $Pr(b_2 \rightarrow X) = .7778$.
- Note that is we don't use network coding we get $Pr(b_2 \rightarrow X) = q^4 = .8145!!$

Packet Erasure Coding(PEC)

- Sender generates redundancy packets
- Generally accomplished by grouping "k" message packets and (n-k) redundancy packets to get "n" packets → (n, k, t)
- Recover some patterns of lost packets without any retransmission
- In real-time multimedia multicast or ad-hoc

PEC

• Simple erasure packet coding by XOR-ing (note that the code is (k+1, k, 1))

NC & PEC (recovery at every hop)

 Source does the PEC and error correction(recovery) occurs at every hop

PEC

• We have average end-to-end PLR

$$PLR_{corr} = \frac{1}{n} \sum_{i=t+1}^{n} i \binom{n}{i} PLR_{ee}^{i} (1 - PLR_{ee}^{i})$$

$$PLR_{ee} = 1 - (1 - p)^{M} \rightarrow \text{end-to-end PLR without packet erasure recovery}$$

$$M \rightarrow \text{ # of links between the source and the node where recovery occurs}$$

• With every hop packet recovery we get $Pr(b_1 \rightarrow X) = .9858$ and $Pr(b_2 \rightarrow X) = .9650$

NC & PEC(recovery at some hops)

• Combining NC and PEC

• Do recovery in nodes C, D, X, Y and we get $Pr(b_1 \rightarrow X) = .9742$ and $Pr(b_2 \rightarrow X) = .9136$

NC & PEC - Discussion

Trade-off available:

• Packet loss recovery

- Packet processing complexity at the intermediate nodes and the destinations
- Protocol overhead
- Possible delays

End of my presentation...

Thanks for your attention. Q/A?