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Learning-Based Cooperative Content Caching and
Sharing for Multi-layer Vehicular Networks

Jun Shi, Yuanzhi Ni, Lin Cai, and Zhuocheng Du

Abstract—Caching and sharing the content files is critical and
fundamental for various future vehicular applications. However,
how to satisfy the content demands in a timely manner with
limited storage is an open issue owing to the high mobility of
vehicles and the unpredictable distribution of dynamic requests.
To better serve the requests from the vehicles, a cache-enabled
multi-layer architecture, consisting of a Micro Base Station
(MBS) and several Small Base Stations (SBSs), is proposed in
this paper. Considering that vehicles usually travel through the
coverage of multiple SBSs in a short time period, the cooperative
caching and sharing strategy is introduced, which can provide
comprehensive and stable cache services to vehicles. In addition,
since the content popularity profile is unknown, we model the
content caching problems in a Multi-Armed Bandit (MAB)
perspective to minimize the total delay while gradually estimating
the popularity of content files. The reinforcement learning-based
algorithms with a novel Q-value updating module are employed
to update the caching files in different timescales for MBS
and SBSs, respectively. Simulation results show the proposed
algorithm outperforms benchmark algorithms with static or
varying content popularity. In the high-speed environment, the
cooperation between SBSs effectively improves the cache hit rate
and further improves service performance.

Index Terms—Cooperative content caching, MAB, reinforce-
ment learning, multi-layer vehicular networks, high-speed envi-
ronment.

I. INTRODUCTION

N recent decades, the tremendous growth of mobile devices

and Internet applications brings great convenience to daily
travel. In the future, the demand for delay-stringent services
with high data rates, e.g., multimedia streaming, edge com-
puting and mobile crowdsensing, are expected to increase and
impose pressure on vehicular networks with limited capacity.
Caching content files in a distributed storage-enabled vehicular
network, makes it easier for the users to acquire the content
files for further application, computing and sharing. Storage
entities in vehicular networks refer to the Base Station (BS),
equipped with a reliable backhaul link to the core network,
which could help to reduce traffic congestion and alleviate
transmission pressure. It is believed that caching popular
content files in the BS will lead to significant reductions in
energy consumption, bandwidth usage, and costs, while also
enhancing user satisfaction [1]-[3].

However, some bottleneck problems significantly affect the
content caching efficiency and the implementation of the
service network. To begin with, the BS relies on lots of
observations to learn when and which content file to cache
in order to find the optimal caching strategy. In the second
place, how to deploy and manage the BS to facilitate caching

and updating in a highly dynamic environment is also a
critical issue. At last, since the vehicle may travel through the
coverage of multiple SBSs, the total downloading delay under
the proper scheduling is the key metric which is determined by
the source and routes together. Therefore, an adaptive caching
and sharing strategy based on the cooperation between the
heterogeneous BSs is significant to improve the Quality of
Service (QoS) of the vehicles.

Many recent works are devoted to addressing the above
issues. Artificial intelligence are employed to equip the net-
work entities with smart caching units, which could learn,
track, and adjust to unknown dynamic environments [4]-[10].
A hierarchical architecture of cache-enabled networks can
provide comprehensive and low latency cache services, which
can store more abundant content files and improve the QoS
of vehicles [11]-[14]. On the other hand, cooperation between
SBSs can also provide more content files for vehicles, reduce
the requests served directly by the MBS or the cloud [4],
[15]-[17]. However, in a high-speed environment, the current
technologies may fail to satisfy some requests due to long
downloading delay, even with the optimal caching strategy.
This paper utilizes the cooperation between SBSs, i.e., the SBS
relays the requests with long downloading delay to another
SBS on the route of the vehicle. When the vehicle enters the
latter SBS’s coverage, it will acquire the requested content
file quickly. In this paper, we study the content caching and
sharing optimization problem in the finite area deployed with
several SBSs and an MBS by minimizing the delivery delay of
the requested content files in storage-enabled network entities.
With the help of learning-based intelligence, the caching
strategies of BSs could be optimized collaboratively in each
time period. Due to the variability of the environment, BSs
tend to learn and optimize the caching strategy online in the
MAB framework gradually. Besides, the MBS helps to store
more content files and regulate the SBS caching strategies
in real-time, coordinated with several SBSs to form a cache-
enabled multi-layer network. In the high-speed environment,
if the MBS knows the caching strategies of SBSs and the
route of the vehicles, cooperative service between SBSs would
be possible to improve the QoS and also alleviate the traffic
pressure. The main contributions are summarized as follows.

o A cache-enabled multi-layer architecture, consisting of
the cloud, an MBS and several SBSs, is proposed to
handle the dynamic and unpredictable requests of the
vehicular networks. In addition, based on the proposed
architecture and different caching timescales, the content
caching problems aiming at minimizing the total down-
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loading delay are formulated for both the SBSs and the
MBS from an MAB perspective.

o Considering the different capabilities and caching
timescales of SBS and MBS, the learning-based algo-
rithm MCUCB is proposed to adapt to the unknown and
varying popularity of the content files, and cache the most
suitable files in the SBS and MBS, which can provide
comprehensive and stable cache services.

o To further improve the caching efficiency in the high-
speed environment, for the requests that could not be
served locally, cooperative MCUCB algorithm is intro-
duced to utilize the traffic information and the coopera-
tion between the deployed infrastructures, which further
improves the QoS.

The remainder of this paper is organized as follows. Sec-
tion II reviews the existing work. Section III introduces the
proposed system model and the caching and sharing opti-
mization problem is formulated in Section IV. Section V
presents the details of the proposed reinforcement learning-
based caching policy. Section VI introduces the simulation
results followed by the conclusions and the future work in
Section VIL

II. RELATED WORK

Caching content files in the BS to increase the QoS of
vehicles has attracted great attention from both the industry
and academia. In this section, recent research will be reviewed
and classified into those with known content popularity profile
and those without.

A. Caching strategies for known content popularity profile

Extensive works have studied the content caching problem
with the known content popularity profile. In [18], BS coop-
eration in the radio access is considered and a low-complexity
algorithm for the content caching problem is proposed to
minimize the average downloading delay over user requests.
In [19], comparing the uncoded case and the coded case of
the video files, the uncoded case is proved to be NP-hard,
and authors develop a greedy strategy for the coded optimum
cache assignment problem. In [20], SBS is considered always
active or activated on demand of mobile users, and the authors
investigate the probabilistic small-cell caching strategy of the
above cases. In [21], in the context of wireless networks with
varying link rates, a new network coding scheme called nested
coded modulation is utilized for the delivery phase, and for
the placement phase, a novel file partition scheme is proposed,
which is based on the allocation of unequal cache sizes.

B. Caching strategies for unknown content popularity profile

Practically, the content popularity profile is usually un-
known in real life, thus more related works are devoted to
addressing the content caching problem without the knowledge
of content popularity.

Previous works addressed the content caching problem with
the least frequently used (LFU), least recently used (LRU), first
in first out (FIFO), random replacement (RR), and myopic

algorithms, which are usually ineffective to cope with the
dynamics of content popularity. Recent works tend to develop
learning and optimization-based algorithms that can learn to
cache content files. In [22], the content caching problem is
modeled as an MAB problem, and then an approximation
solution is proposed to solve the knapsack problem. In [23],
from an MAB perspective, the authors study the content
caching problem by jointly optimizing content caching in
cooperative BSs, and propose a centralized algorithm and a
distributed algorithm for the content caching problem.

However, in real life, the content popularity exhibits dy-
namics, and reinforcement learning has advantages in dealing
with the dynamics of the content caching problem. In [4], both
global and local popularity are considered, and the authors
propose a Q-learning algorithm to learn the caching strategies
and adapt the dynamics of content popularity. In [5], the
simple but flexible generic time-varying fetching and caching
costs are introduced to minimize aggregate cost across files
and time, and the Q-learning algorithm is employed to find
the optimal fetch-cache decisions. DRL algorithms have been
applied for content caching in, e.g., [6]-[10]. In [6], to solve
the content caching problem in a timely and efficient manner,
a pre-trained Deep Neural Network (DNN) is used to train
the optimization algorithm, which can reduce the complexity
in the delay-sensitive operation phase. In [8], to adapt to
the dynamics of the content cache, based on the Actor-Critic
framework, the authors propose a novel size adaptive content
caching algorithm.

Furthermore, a hierarchical architecture to provide content
files could also help to improve the QoS of vehicles, which
has become a common practice in recent works [11]-[14].
In [11], a parent node is connected to multiple leaf nodes to
serve user requests for content files, and the authors propose a
reinforcement learning framework to model the bidirectional
impact between caching decisions made at parent and leaf
nodes. In [13], the cloud servers are deployed at the network
edge and the edge cloud is designed as a tree hierarchy of
geo-distributed servers, to better satisfy the peak loads from
the mobile users.

Nevertheless, related works above tend to cache the most
popular content files, which usually ignores those relatively
unpopular content files and reduces the hit rate. In addition, all
requests to be served locally is not always the optimal choice
considering the different delay requirements and priorities. In
this paper, the most popular content files are cached in the local
SBS, and the cooperative service between SBSs is introduced
to serve the requests for the relatively unpopular content
files. A cache-enabled multi-layer architecture is expected to
serve the most requests from vehicles, and the cooperative
service between SBSs can ensure that vehicles can acquire
the requested content files eventually.

III. SYSTEM MODEL
A. Network Model

The system model of the content caching network is il-
lustrated in Fig. 1. We consider a two-layer interconnected
caching network, where the MBS is connected to U SBSs.
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An MBS associates with several cache-enabled SBSs in its
coverage, denoted as U = {1,2,...,U}. It is assumed that the
SBS u has a limited communication range [,,, which means
that the vehicle can communicate with the SBSs when the
distance [, ,, between the SBS w and vehicle v is less than
l,,.. In this paper, in the finite area, the MBS can communicate
with all the SBSs in this area, but not directly with vehicles.

TABLE I
SYSTEM PARAMETERS

Notation Definition

u SBSs set

Ly Communication range of SBS

luw Communication distance between the SBS w and vehicle v
lm,u Communication distance between the MBS and SBS u
F Files set

sy Size of content file f

0f Popularity of content file f

¥ Parameter of the Zipf distribution

Ay Cache matrix of SBS u

Am Cache matrix of the MBS

Su Cache size of SBS u

Sm Cache size of the MBS

Psgs Transmission power of SBS

Puss Transmission power of MBS

Bu,w Bandwidth of SBS-vehicle links

Bm.u Bandwidth of MBS-SBS links

Tu,v Transmission delay from the SBS u to the vehicle v
Tm,u Transmission delay from the MBS to the SBS u
Te,m Transmission delay from the cloud to the MBS

B. Service Model

An MBS and several SBSs in this network store content
files to serve requests from vehicles. When the vehicle enters
the SBS’s coverage and requires a content file from this SBS,
the SBS serves the request if it has cached the content file.
Otherwise, the SBS will appeal to the MBS for the requested
content file and then return it to the vehicle. In case the MBS
has not cached the requested content file, the MBS has to
communicate with the cloud to acquire the content file, which
will be relayed to the MBS and SBS before arriving at the
corresponding vehicle.

The service time is split into several periods, and each
period consists of a user request phase followed by a cache
replacement phase. During the user request phase, we use
d!, ; to represent the number of times vehicles request content
file f from SBS wu within period ¢, which is assumed to be
an independent identically distributed (i.i.d.) random variable
with a mean value of 0,y = E(d], ;). It is assumed that
in each time period, the SBS’s requests received from the
vehicles occur independently following the Poisson process
with an average rate of N{. In addition, it is assumed that
the popularity of the files follows a Zipf distribution with
parameter v, 0y = ﬁ and the popularity set of all
files is denoted as © = 1(911:...,0p), which usually reflects
the frequency distribution of word occurrences in textual data.
Hence, the popularity of content file f, which is the expected
number of requests for content file f, can be described as
bus = prsot—r u €U, f € F, where F = {1,2,..., F}
is the content file set. Notice that the parameter -y describes

SBS, (‘A’)Q8
> Vs

LN ] SBS" ((A))Eé
/4 ®

””” ~

Fig. 1. system model

the skewness of the popularity distribution. When v = 0, the
popularity is evenly distributed across files, and as «y increases,
the skewness of the popularity intensifies.

C. Cache Model

Each content file is of size sy, f € F, which follows a
power-law distribution. Each SBS is equipped with a local
cache size of S, and the caching strategy of the SBS is de-
noted as A, = {(@u,1,0u,2;---,aur)|aus € {0,1}, f € F},
which should fulfill the cache size constraint ) Fe1Ou,fSf <
Su, Yu e U.

Different from the SBS, the MBS m has a much bigger
local cache size S,, so that the MBS can cache more files.
As with SBS, the caching strategy of the MBS is denoted as
Am = {(a’m;lv aAm2; .-+, amA,F)|am:f € {07 1}7 Zf:lam-,f :
sp < Sm, f € F}.

D. Transmission Model

In this paper, the total transmission delay of acquiring the
content file is employed as the performance metric. When
the vehicle requires a content file from its nearby SBS, it
will get the content file after a transmission delay 7, , if the
SBS caches the requested content file. In the noise-limited
network, we model the transmission delay neglecting the inter-
ference and considering only the large-scale fading. Applying
the signal-to-noise ratio (SNR) to estimate the transmission
rate, the SNR of SBS-vehicle communication links can be
given as SNR, ., = Psps - 1,,%/0%, where o3 is the white
Gaussian noise power, « is the path loss exponent, Pspg
denotes the transmission power of SBS, and [, , represents
the communication distance from the SBS u to the vehi-
cle v. Therefore, the transmission delay for transmitting a
content file with unit size from SBS to the vehicle can be
computed as 7, , = 1/[By, logy (1 + SNR,, ,,)]. Similarly, the
SNR of MBS-SBS communication links can be expressed as
SNR o, = Pugs - 1,2,/ 012\,, where Pyps denote the transmis-
sion power of MBS, and ., represents the communication
distance from the MBS m to the SBS w, and the transmission
delay for transmitting a unit-size content file from the MBS
to the SBS is given by 7y, = 1/[Bm 108y (1 + SNR )]
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Furthermore, the transmission delay between the cloud and the
MBS would be considered as 7., > T u-

E. Caching Refreshing Model

To better serve the requests from vehicles, the SBS refreshes
its caching queue in terms of the “considered” locally popular
content files, and the MBS caches the content files that are not
locally cached in the SBS. Since the SBSs are closer to the
vehicles, they receive requests frequently which exhibit rapid
temporal evolution at a short timescale. On the other hand,
the MBS observes requests from several SBSs, which exhibit
smaller fluctuations and experience the evolution at a longer
timescale.

We adopt a two-timescale approach to manage the network
model consisting of multiple SBSs and an MBS. The long
timescale is denoted as 7" = 1,2, ..., each of which could be
divided into n short time periods ¢ = 1,2,...,n. The short
time period is assumed to be 1 to 2 minutes based on the
dynamics of requests, while the long time interval is 8 to 10
minutes depending on the dynamics of the requests from the
SBSs. It is assumed that the network model will not change
during the short time period ¢, but change between ¢ and ¢+ 1.

IV. PROBLEM FORMULATION

In this section, we model the SBS caching problem and
the MBS caching problem as the MAB problem. Specifi-
cally, learning from the requests received and the historical
downloading delay for the vehicles, the caching strategy for
the SBSs and the MBS is adjusted to minimize the total
downloading delay for the vehicles over a long time period.

A. Non-Cooperative Service for SBS Caching

For a vehicle v entering the SBS’s coverage, it may require
content file f from the SBS, and the requests will be satisfied
by the nearby SBS, the MBS, or the cloud. If the nearby SBS
has cached the requested file f, the vehicle will be served
by the nearby SBS with the downloading delay 7, . If the
nearby SBS has not cached the requested file f, the SBS will
request the MBS for the file f, and then the total downloading
delay will be 7y, f + Tm,u,s if the MBS has cached the
requested file f. At last, if neither the nearby SBS nor the MBS
has cached the requested file f, the MBS will request the file
f from the cloud, which will experience a much longer delay
Te,m, f» and then the total downloading delay will be given as
Tu,v,f + Tm,u,f + Te,m,f- It is assumed that the downloading
delay from the cloud will be lower than that from the other
SBSs, thus the case that the vehicle requests the local SBS
for the content file relayed from the other SBSs will not be
considered in this paper.

Thus, the downloading delay of SBS w for content file f is

Du,f = Tu,v,f+(1 - (lu,f) [Tu,m.,f + (1 - C’fm,f) Tc,m,f} (D

In time period ¢, dfh s represents the number of requests
SBS wu received for content file f, Thus the total downloading

delay of SBS w in period ¢ can be computed as the sum of all
individual delays D, ¢ for each content file f.

F
D, = Z dtu,f {ruws + (1= auy) [fumg + (1 = am, ) Tem s]} -

f=1

2
In this section, the objective of the content caching problem
is to minimize the total downloading delay of the SBS over
a long time period N by learning and finding the optimal
caching strategy when the preference for the content file is
unknown in advance. The SBS caching optimization problem

can be expressed as follows:

N
P1:min Y D! (3a)
{Au} ;
st ay,r € {0,1}, Vf € F, (3b)
F
Zauyf'sf <8, uel. (3¢)

f=1

The optimization problem P1 is a classical caching opti-
mization problem. In the real world, we usually cannot obtain
the popularity information in advance and cache the content
files accordingly. Several previous work took the approach
to estimate the popularity profile, ® = (6,...,0F), and
then optimize the caching strategy. In this paper, instead,
we directly learn the caching strategy with a low-complexity
algorithm to make sequential caching decisions. In this sec-
tion, the reinforcement learning-based method is employed to
solve the sequential decision-making problem from an MAB
perspective.

In the formulated SBS caching problem, the cache server
is considered as a gaming machine, which is a collection of
M “‘arms”, and the agent chooses which arm to pull, that
is, the cache server chooses which content file to cache. The
strategy aims to find the optimal choice which maximizes the
cumulative reward among multiple choices in a limited number
of times. Since over a period of time, the SBS will cache
several content files instead of only one, we choose to apply
the variant of the classical MAB model, i.e., the combinatorial
MAB (CMAB), where we can pull m < M arms over a period
of time [24].

At first, the reward for caching content file f in the SBS
is defined as the reduction in downloading delay compared to
the case without caching. If the SBS w does not cache the
content file f, the downloading delay is described as

D’u.,f/ = Tu,v,f + Tu,m,f + (1 - a'm,f) Te,m, f+ (4)

Then we can get the reward for caching content file f in the
SBS as

Yus=Dujs — Dy )

After defining the reward, P1 is reformulated as a CMAB
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problem P2.
P2 : max Z Z dt Yy (6a)
{Au} t=1 f=1
st ay s €{0,1}, Vf € F, (6b)
F
Zau’f - Sf < S,. (6¢)
f=1

In the formulated model, we mainly focus on how to place
the most popular content file in the BS. The cost of replacing
content files with new required files is not directly included
in the objective function for the following two reasons. First,
the cost for replacing the content files is a necessary overhead
to maintain the content sharing efficiency regardless which
strategy is employed. Even the cost is relatively large in
certain situations, the facilities including the MBS and SBS
will always update the cache to avoid more cost in case the file
cannot be obtained directly. Therefore, the cache replacing cost
is not the main concern in the formulated problem. Second,
the cost for replacing cached files is mainly correlated with
the size of files. As described in problem P2, considering the
storage limitation of BSs, the reward per unit size has already
been considered as the performance indicator for the caching
strategy to incline those files with smaller sizes. Thus, the
proposed caching policy in Section V also favors the solutions
with lower replacing cost during the optimization process.

B. Cooperative Service for SBS Caching

Considering the high speed of vehicle movement, vehicles
usually move out of the transmission range of the local SBS
that received its request before acquiring the desired content
file. Many situations may result in content files failing to be
returned to the vehicles, e.g., the size of the content file is too
large to be returned in the limited time period or the content
file is in the MBS or the cloud leading to a long downloading
delay. Therefore, we prefer to cache these content files in the
SBS in advance to serve the corresponding requests. However,
the fact is that we cannot cache all the content files in the SBS
before it receives the requests. In this section, based on the
non-cooperative service for SBS caching, cooperative service
for SBS caching is proposed to address the above concerns
and improve the QoS of serving requests from vehicles.

As illustrated in Fig. 2, to serve these requests fail to be
satisfied in the local SBS 4, the collaboration between SBSs
could be employed to solve this problem. When the request is
relayed to the MBS, the MBS could compute the downloading
delay in order to determine whether the request should be
relayed to other SBSs. It is assumed that the MBS knows the
locations of all the SBSs and the route plan in this area. If the
vehicles fully trust the MBS, which means the vehicles will
not hide their driving routes from the MBS, the MBS could
assign these requests to the corresponding SBS on the route
of the vehicles. More precisely, according to the instruction
of the MBS, SBS j could cache the corresponding content
file in the previous time period. Several time periods later, the
vehicle v will receive the desired content file from SBS j.

“A”

Several time
periods later

-y SBS; (¢ ))@e

Fig. 2. Cooperative service for SBS caching

In the user request phase, the SBS could receive requests
from the vehicles in this area and the vehicles moving from
other areas. According to the local cache in the SBS, SBS
will return the content file to the vehicles, and the remain-
ing requests will be relayed to the MBS. After computing
the downloading delay of the requests, MBS will serve the
requests that could be satisfied in this SBS, and relay the
other requests to the corresponding SBSs in the following time
period. In the cache replacement phase, the SBS would refresh
its content file based on the requests in this time period and
the requests from other areas.

The reward for caching content file f is defined in (5), and
the local SBS u should pay a part of reward Y,, ; to the SBS
w who fulfills the request for content file f. Therefore, the
reward of SBS u will be (1 —7)-Y,, ¢, and the reward of SBS
w will be 7-Y,, s, where 0 < r < 1 is the proportional factor.

In time period ¢, for SBS u, we use d, to denote the
number of requests satisfied in the SBS w 1tself dt, w,f O
denote the number of requests which could not be satlsﬁed in
the SBS u and be relayed to the SBS w € U, w # u, and
d., .  to denote the number of requests relayed to the SBS u
from SBS w € U, w # u. Thus, the reward SBS w receives in
time period ¢ can be given by

Ry =dyy Yus+ Z A RS Z Aoy f(1=7)Yo 5
weld weld
w#u w#u
7
After introducing the cooperative service for SBS caching,
the SBS caching problem can be given as

N F
P3:?}€3§ZZRLJ

(8a)
t=1 f=1
st. ay,r €4{0,1}, Vf € F, (8b)
F
Zamf csp < Su- (8c)
=1

The optimization problem P3 is a CMAB problem, which is
challenging to solve. First, the popularity profile is unknown
in advance, thus this problem cannot be directly solved by
optimization or game theory. In addition, the selection of
action is difficult due to the uncertainty about the expected
reward associated with various actions. Second, with the
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introduction of cooperative service, the SBS selection and the
action selection are coupled with each other and the feasible
solution domain increases exponentially. Thus, the traditional
searching algorithms cannot be directly applied to solve the
formulated problem while maintaining a high efficiency.

C. Problem Formulation for MBS Caching

In this section, the MBS caching problem is also modeled
as an MAB problem with a longer cache refreshing timescale.
It is worth noted that since the SBS keeps learning and
optimizing the caching strategies, the requests for the MBS
also evolves accordingly and constantly. Therefore, the MBS
caching encounters a more complicated and dynamic problem.
At the start of each time interval 7', the MBS refreshes its
cache queue, and then the MBS serves the requests from
SBSs to help the content file delivery. Different from SBSs,
MBS receives requests from the SBSs and decides its caching
strategy based on the historical requests from the SBSs, to
reduce the requests served by the cloud.

First, for the requests from the SBS u, the downloading
delay of MBS m of content file f is

Dinu,f = Tuw,g + Tugmeg + (1= @m,f) Teomg, (9

which is the same as equation (4) and the downloading delay
if MBS does not cache the content file f is described as

Dm,mf/ = Tu,v,f + Tu,m,f + Te,m, fy (10)

which is actually the downloading delay from the cloud to the
corresponding vehicle.

The number of the requests for content file f from SBS w
in time interval 1" is denoted as d;;l’u,f, then the reward of
MBS for serving the content file f requests from the SBS «
in time interval 71" can be described as,

Rﬁ/u‘,f = dz,u,f(DT’lauﬁf, - D’"quaf)' (11)

In the end, with the reward for the requests from each SBS,
the MBS caching problem can be expressed as:

co F U
Pd:max > S S RL (12a)
{Am} T=1f=1u=1 '
st. am,r € {0,1}, Vf € F, (12b)
F
> .5t < Sm. (12¢)
f=1

V. REINFORCEMENT LEARNING-BASED CACHING POLICY
A. Cooperative SBS Caching Strategy

Reinforcement learning is applied by agents to learn and
optimize their actions in the SBS caching optimization prob-
lem. The SBS caching policy is designed based on Q-learning,
an effective reinforcement learning algorithm. The main idea
of Q-learning is to use Q-value to represent the expected
cumulative reward that agents receive for taking a specific
action in a given state. However, the environment cannot
always be represented by states and only the action space is
taken into consideration. In such cases, the standard Q-learning

method is simplified to its stateless version [25]. In this
paper, it is obvious that we cannot describe the environment
in terms of finite states, and then the stateless Q-learning
is considered. Therefore, the reinforcement model comprises
three components, i.e., agent, action, and reward. Here, the
agent is the SBS, actions are its caching decisions and the
rewards are reductions of the downloading delay. For SBS wu,
the Q-value @, (a,,) is defined to estimate the effectiveness
of executing action a,, in the next time period, and can be
updated after receiving the reward of the execution.

For SBS wu, the caching decision employed at each time
period ¢ can be considered as the super action. First, we can
treat the super action as an action, and then simply use the
traditional Q-learning to solve the optimization problem P2.
In the stateless setting, Q,, (@), a, € A, is denoted as the
estimated reward of executing super action a,, in the next time
period ¢. At each time period ¢, SBS w updates Qy, (ay), ay €
A, with the reward of executing super action a,,. The update
equation for Q-value in time period ¢ is defined as [26]:

Qu (au) + Qu (ay) + o' (RL = Qu (au)) s

where R! is the reward associated with the super action
executed in time period ¢, which can be computed by equation
(5). o' € {0,1} is the learning rate, which is used to control
the effect of reward on current Q-value.

However, the traditional Q-learning algorithm raises two
issues in solving the formulated problem. Firstly, if the super
action a,, is treated as an action, we need to decide whether
to cache each content file f or not, which will lead to a large
action space of 2. Owing to the combinatorial explosion, 2%
is exponential to the number of content files F, thus it takes
a long time to traverse the entire action space. Secondly, the
reward R!, can be shared by several super actions. This is due
to that when the content file f is requested in time period
t, part of the reward R!, will be shared by the super actions
which contain a,, y = 1. In other words, the outcome of super
action a, is the sum of underlying actions a,r, f € F,
and we cannot distinguish the content file with high rewards.
Therefore, it is ineffective to employ the traditional Q-learning
algorithm to solve P2.

For the MAB problem, the upper confidence bound (UCB)
algorithm balances exploration and exploitation, and can
achieve relatively good performance. Specifically, this algo-
rithm selects actions by balancing the potential to exploit
known actions with high payoffs and the potential to explore
unknown actions. Firstly, the counter and cumulative reward
are initialized for each action to 0. Secondly, in time period
t, for each action 4, its upper bound value is calculated as

i = fli + lej . [1; is the average reward, and \/fl‘j is the
upper confidence interval where ¢ is the time period number
and n; is the number of times the action 7 is selected. After
calculating the upper bound, we select the action with the
maximum upper bound value and execute the action for the
current time period ¢. At last, according to the reward in the
time period ¢, counters and cumulative rewards for selected
actions are updated. In summary, the UCB algorithm ranks
actions by calculating the upper bound value where actions

(13)
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with higher average rewards and fewer selections have a larger
upper bound value and are more likely to be selected, and it
converges to the optimal action over time.

In this paper, we consider the CMAB framework where a
super action a, is a vector comprised of underlying actions
.. In time period ¢, a super action a,, is selected and the
rewards of underlying actions a,,, s in the super action a,, could
be observed. Therefore, the combinatorial upper confidence
bound (CUCB) algorithm is proposed to utilize the expected
rewards of underlying actions instead of the rewards of the
super actions. As a result, by employing the CUCB algorithm,
we could reduce the action space from the number of super
actions 2% to the number of underlying actions 2F. However,
the reduction of action space is at the cost that the optimal
super action cannot be obtained directly and we have to
compute the optimal super action or sub-optimal super action.
The CUCB algorithm relies on a computation oracle, which
computes the optimal or sub-optimal super action based on the
expected rewards of the underlying actions and the problem
instance.

Different from the UCB algorithm, the CUCB algorithm
maintains an empirical mean reward /iy for each action a,, s.

The CUCB algorithm is described as pif = fif + 1,1;—: The
difference between the CUCB and UCB is that the CUCB
algorithm focuses on the rewards of the underlying actions
a,,s instead of the super action a,. Given the rewards of
underlying actions, we could use the computation oracle to
get the super action, and update ny and /iy accordingly.

Hence, we further propose a learning-based CUCB algo-
rithm as follows. Instead of @, (a,) in the traditional Q-
learning algorithm, this algorithm employs Q¢ (Gu,f), Which
is the average reward of action a,, s selected by SBS u. Let
Nu,f (au,r) represent the number of times that SBSu has
selected the action a, 5 € {0,1}. In time period t, if action
@y, 5 is selected by SBS wu, the Q-value @y, f(a.,r) is updated
as:

Qu.f (au,f) < Qu.y (au,r)

+ m (sz - Qu,f (au,f)> ) (14)
where th s can be calculated by equation (7).

The CUCB algorithm updates the Q-values based on the re-
ward R, ¢ in time period ¢ and the number of times action a,, s
has been selected. Improving the CUCB algorithm, we add a
weight parameter to the upper confidence interval to speed

up the convergence and promote exploitation-exploration. The
algorithm is described as uf = fiy + c\/%,
the modified combinatorial upper confidence bound (MCUCB)
algorithm. Due to the Zipf-like distribution of the content
popularity and the specific structure of the problem, we can

define the weight parameter and update the Q-value as

= 14-N,-s5 | 3logt
Qu,f - Qu,‘f + l- v 2N11,7f(1)7 (15)

where Qo f = Qu,r (1) —Qu,s (0), 1 = max Qu,i/si. F is the
’ ’ i€
number of files, and parameter « is the shape factor of Zipf

which is called

distribution. The weight parameter [ - N}'ff balances exploita-

tion and exploration as follows. When the Zipf distribution
is skewed, characterized by a large v value and few popular
content files, the factor % promotes exploitation. Though
we know none about the content popularity distribution in
advance, we can empirically approximate the parameter -~y
as in [27]. The exploration is promoted when the parameter
N, is large, since N, independent realizations of the reward
distribution can be observed.

After computing the adjusted Q-value @, for each content
file f, the single period problem (SPO) problem can be written
as follows.

F
P5 :maXZauyf - Qu.f

(16a)
f=1
F
LY aypsp < S, (16b)
f=1
au,s €{0,1}. (16¢)

Let af = (a9 ,,aQ,, ..., af i) denote the optimal solution
of the SPO problem. The SPO problem P3 for finding the
optimal super action ag is the 0-1 knapsack problem, where
the value is Qu, ¢ and the weight is s; for each content file
f. Knapsack problems known as NP-hard [28], can be solved
by algorithms such as the Dynamic Programming Algorithm,
Greedy Algorithm, Branch and Bound Algorithm, etc. In this
paper, we study content caching in vehicular networks, so
we need to obtain the super action promptly to adapt to
the high dynamics. However, through these algorithms we
cannot calculate the super action easily and these algorithms
may involve randomness with a low probability of failure.
Therefore, an algorithm converges to the sub-optimal solution
ag with a short computation time is preferred.

We employ an approximation oracle to solve P3, which is
a (a, B)-solver. The («, B)-solver is defined as: the algorithm
can output a super action whose expected reward is at least
proportion of the optimal expected reward, with a probability
of 8 when o, 8 < 1. To solve the 0-1 knapsack problem, a
greedy algorithm is employed as the approximation oracle. In
this algorithm, the reward per unit of weight is used as the
performance indicator, and content files with a higher reward
per unit of weight would be cached. At first, the performance
indicator can be described as Y, 5 = Q.. f/ss, f € F. After
that, Y.,  is arranged in a descending order. The super action
is initialized as a}, = (0,0,...,0), and a; I3 with the current
maximum ¢ in each iteration is set to 1 until the last ay, ;.
which means we cannot cache any more content files because
of the SBS cache size constraint S,. At last, assuming a;fl =
1, fori =1,2,..., F, the elements aj:’fk of the super action
a; is obtained as follows.

k-1
L > aj 85+ 55 < Su

N

a7

ERY

a”'iyfi =
0, Z (L;ijfJ + sy > Su-
Jj=1

However, after introducing the cooperative service for SBS
caching, the SBS has to cache the content files for the requests
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Algorithm 1 The Learning-Based Algorithm of Cooperative
Service for SBS Caching
1: Step 1. Initialize:
2 uf(auf)*o Quf(auf)*o er]:
3: Cache all the content files once, observe the rewards R
and then update Ny f(ay,r) and Qu f(au f), Vf € F.
: Sett <+ F+ 1.
: Step 2. observe (user request phase in period t):
. for f € F do
Observe the reward R!,
Update Qu flauf) 0. g ) +1/(Nu,p(au,r)+1)-
(R, s = Qu.s(au,s)) and Ny g(au,s) < Nu,f(au,s) +
1, Vay,; selected in time period t.

9:  Compute Qu, 5 = Qu,f (1) — Qu,s (0).
10: end for _
11: Compute [ = mag_(Qw-/si and Q.5 Quy +1-
S
14-Noy - logt -
N sf Nui’(l)’vfe}—'

12: Step 3. optimize (cache replacement in time periot ?):

13: Observe the relayed requests F!*1 = {fy, fo,..., f} in
the next time period ¢ + 1.

14: Compute Y, 5 = Qu,f/sf for the remaining content files,
and arrange Y, ; in a descending order: Y, y,, fi € F,
it=r+1,r+2,...,F.

15: Assign a,, f, to 1 for content files in F'™! and compute
., for the remaining content files according to equation
(17), then get super action a,,.

16: Cache the content files according to a,,.

17: Set t <t + 1.

18: Go to Step 2.

relayed from other SBSs the next time period ¢+ 1 to guarantee
the relayed requests could be served in this SBS. Therefore, the
solution of finding the optimal super action has to be modified,
i.e., the SBS should cache the content files to serve the
relayed requests in the next time period t+1 first. Specifically,
assuming the relayed requests in the next time period ¢ + 1 is

F'*Y = {fi, fo,..., f}, arrange the remaining content files
as Yo > Yug o > -0 > Yy g, fi € F. Initializing
the super action as a, = (0,0,...,0), the optimal super

action of cooperative service for SBS caching can be given
as ay r =1,7=1,2,...,r, and the remaining elements are
updated according to equatlon 7).

We define ¢ as the ratio between the optimal solution and
the prol}osed appr0x1mat10n oracle, which can be estimated as
b= Zf 1auf Qu. f/zz 1 @ s “Qu,1; < 2 [28]. Therefore,
the expected reward of the proposed approximation oracle is
at least 1/2 proportion of the optimal expected reward with
probability 1. Then we can derive the proposed algorithm as
an (a, B)-solver with @ = 1/2 and 8 = 1. The learning-based
algorithm for SBS caching is detailed in Algorithm 1.

As described in Algorithm 1, the computational complexity
for computing the Q-values for content files is O(F'), and
that for finding the optimal super action by the approximation
oracle is also O(F'). This means that the computational
complexity for Algorithm 1 is O(F).

B. MBS Caching Strategy

The MBS caching problem is modeled as a CMAB problem
as described in equation (12). The objective of the MBS
caching problem is to cache the content files with more
expected rewards in the MBS in order to reduce the requests
relayed to the cloud, which is similar to the SBS caching
problem. Thus, the proposed learning-based CUCB algorithm
can be employed to solve the MBS caching problem from
a greater timescale. In addition, rather than the greedy-based
(1/2, 1)-solver, the dynamic programming algorithm is applied
to solve the knapsack problem in the MBS caching.

In the MBS caching problem, the super action is the caching
strategy of the MBS, A, = {(am,1,0m 2, m,F)|Gm,f €
{0,1}, Zf;lam,f < Sm. f € F}. In the CMAB framework,
we consider the action a,,. ¢, f € F to reduce the action
space. In the stateless setting, Q.. f(am,f), f € F denotes
the estimated reward of executing action a,, s in the next time
interval. The learning rate is defined as the reciprocal of the
number of times action a,,, s selected by the MBS in the past,
thus in time interval 7" the Q-value Q. ¢ (@, f)

1
Non,g(am,r)+1°
is updated by

Qm,f (am,f) < Qm.,f (am,f)

U
1
R RY = Qm.y(amys) ], (18)
N (Qp) +1 (1; . f 7 ( ,f))

where R} s is given by equation (11).

To promote the exploitation-exploration, the MCUCB algo-
rithm is employed to adjust the Q-values based on the content
popularity and the particular structure of the problem, and the

adjusted Q-value will be given by

2-U-Ny-sy 3logT
F 2Ny, £ (1)’

where Qm,f = Qm,f (1) - Qm,f (0), U= Izréaﬁ'( Qm,i/si- For
the MBS caching problem, we modify the weight parameter
by multiplying it by the number of SBSs U to further promote
the exploitation-exploration.

Therefore, the SPO problem for the MBS caching problem
could be described as follows,

Qm,f = Q'm,f + l/ . (19)

F
P6 : max Z Qm,f vaf, (20a)
f=1
F
SUY amygsp < S, (20b)
f=1
am.s € {0,1}. (20c)

The optimization problem P6 is also a 0-1 knapsack prob-
lem. Different from the SBS caching problem, in time interval
T, the MBS has a relatively long time to get the solution
of P6, and the dynamic programming algorithm is chosen to
find a better solution. The detailed MBS caching strategy is
shown in Algorithm 2, where V (f,.S) denotes the maximum
value obtained by caching the first ¢ content files in the MBS
with the capacity of S. Initializing the boundary conditions by
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Algorithm 2 The Learning-Based Algorithm for MBS
Caching
1: Step 1. Initialize:

2 N, f(am,f) =0, Qm,f(am,s) =0, Vf € F.
3: Cache all the content files once, observe the rewards

Rﬁ_’u‘f, and then update Ny, r(ap, ) and Qo r(am, ),
VfeF.

4: Initial the MBS cache queue according to the Q-value
Qm,f(@m,r)-

50 Set T < F + 1.

6: Step 2. observe (SBS request phase in interval 7):

7. for f € F do

8:  Observe the reward R;‘CL.u,f’ Yu € U.

9: Update Qm,f (am,f) — Qm,f (a'm,f) +

U
1/ (N g (@m,f) +1) - (Zpey By g — Qg (am,y))
and Ny, f(am, 1) < N f(@m,f) + 1, Va,, s selected
in time interval 7.
10 Compute Q. = Quur (1) — Qum. s (0).
11: end for

12: Compute I’ = rirg?_(Q,,,L,i/si and Qs = Qmys +1 -

L [T I € F.

13: Step 3. optimize (cache replacement in time interval
T):

14: Create a table V(f,S), f = 0,1,2,...,F, § =
0,1,2,...,S5,,, and initial the boundary conditions,
V(0,58)=V(f,0)=0.

15: Set the state transition equation as, V(f,S) =
mazx(V(f — 1,5),V(f — 1,5 — sf) + Qm,s), thus fill
the table V'(f,S).

16: According to the result V(F, S,,), compute the optimal
solution a};, and Cache the content files according to ay,,.

17: Set T+ T + 1.

18: Go to Step 2.

V(0,5) = V(f,0) = 0, the state transition equation is found
other words, the first case is the MBS cannot cache the content
file f, V(f,S) =V (f—1,5), and if the MBS is able to cache
the content file f, V(f,9) = V(f—1,S—5;)+Qm.s). After
filling the table, the result V' (F’, S,,,) will be the solution to find
the optimal super action a;,. For the dynamic programming
algorithm, we create a table of V(f,S), from which the
complexity is derived as O(S,, - F).

VI. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed MCUCB algorithm for SBS caching and MBS caching.
The performance metrics include: 1) the downloading delay, 2)
the instantaneous reward, 3) the percentage of the local cache
hit rate, 4) the percentage of the local SBS cache hit rate, 5)
the MBS cache hit rate, and 6) the total cache hit rate (the sum
of the SBS cache hit rate and the MBS cache hit rate). It is
noted that the downloading delay is calculated by the models
in Section III-D, including the total downloading delay of all
requests during a time period. The instantaneous reward is the
reduction of downloading delay compared to the case without

caching for all the content files in the SBS. The percentage
of local cache hit rate is the part of the requests that could be
served by the local SBS, which is the sum of the percentage
of the local SBS cache hit rate, the MBS cache hit rate, and
the cloud cache hit rate. Moreover, due to the dynamics of
the environment, the average of the performance metrics from
the start to the current period is chosen to better display the
performance of the algorithm.

TABLE II
SIMULATION PARAMETERS

Parameters Values
Transmission range of SBS 100m
Transmission range of MBS 200m
Transmission power of SBS (Psps) 1w
Transmission power of MBS (Pysps) 40W
Gaussian white noise power (c%,) 1w

Path loss exponent (<) 4

Bandwidth of SBS-vehicle links (By,v) 10MHz
Bandwidth of MBS-SBS links (B, w) 10MHz
Number of SBSs (U) 10
Number of content files (F') 50
Poisson distribution parameter (\) 5

Size of content files (sy) [1,9]
Cache size of SBSs (Sy) 25
Cache size of MBS (S),) 125

Parameter of Zipf distribution (y) 1
Maximum local downloading delay (Dqz)  25s
Proportion factor of payment (r) 0.5

To evaluate the performance of the algorithm proposed in
this paper, the following benchmark algorithms are selected
for comparison.

o Informed Upper Bound (IUB) Algorithm: The popu-
larity profile © is known in advance, which provides an
upper bound on the performance of any MAB algorithm.
Since the size of the content file is not evenly distributed,
instead of the popularity, popularity per unit size is
sorted to improve the caching strategy. Moreover, if the
remaining cache size is inefficient to cache the most
popular content file, the less popular content file with
smaller size will be cached. Therefore, the IUB algorithm
actually provides the relatively better caching strategy for
comparison.

« Context-Aware Proactive Caching (CAC) Algorithm
[29]: The caching strategy is divided into two phases:
exploration and exploitation. In the exploration phase,
the under-explored content files will be cached first. In
the exploitation phase, the content caching problem is
modeled as an MAB problem, and the popular content
files are cached.

o Least Frequently Used (LFU) Algorithm [30]: The
least requested content file is replaced with the requested
content file which is unavailable in the local cache in
the current time period. The LFU algorithm measures
the popularity of the content file to cache the content file
receiving more requests.

« Least Recently Used (LRU) Algorithm [31]: The least
recently requested content file is replaced with the re-
quested content file which is unavailable in the local
cache in the current time period. For simplicity, in each



JOURNAL OF I5TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

downloading delay(s)
instantaneous reward

601 —— mcucs
[}
—e— Myopic
—=— LFU
—— LRU
—— CAC

] e —

SBS cache hit (%)

o 100 200 300 400 500 0 100 200
period

(a) Downloading delay

(b) Instantaneous reward

300 400 500 0 100 200 300 400 500

period period

(c) SBS cache hit rate

Fig. 3. The downloading delay, instantaneous reward and SBS cache hit rate for SBS caching with the stationary content popularity

time period, the most popular content files during the
recent time interval are kept.

o Myopic Algorithm [22]: The requested content files in
the last time period are kept and the rest of the content
files are replaced randomly.

In this paper, the requests for content follow the independent

Zipf distribution, 0y = ﬁ, where the Zipf parameter

v is set to 1. Unless otherwise é?ated, the number of content
files F' is 50, and the size of content files follows the power-
law distribution, P(s; = z) = c- 2~ % 1 < sp < 10,
sy € Z, where c is the normalization constant and the
power-law index « is set to 1. The number of requests SBS
u received in time period t, i.e., Nf; follows the Poisson
distribution, and the distribution parameter A\ = 5. Both the
SBSs and the MBS are uniformly distributed in a square area
of 500 x 500 m?2, and the transmission range of the SBS and
the MBS will be 100 m and 200 m, respectively. The local
cache size of the SBSs and the MBS are set as S, = 25 and
Sm = 125. The transmission power of the SBS and MBS
are Psps = 1 W, Pyps = 40 W, respectively. The path
loss exponent o = 4, Gaussian white noise 012\, =1 W, and
the bandwidth of the SBS and MBS are B, , = By, =
10 M H z, respectively. Furthermore, the transmission delay
between the MBS and the cloud is set as twice the maximum
value of that between the SBS and the MBS, ie., 7., =
max 2/[Bm,ulogy (1 4+ SNR,, ,)]. Specifically, considering
the cooperative service for SBS caching, the maximum local
downloading delay is reduced to a constant, D4, = 25 s. The
default system parameters are shown in TABLE II. In addition,
for the cooperative service for SBS caching, the relayed SBS
selection is modeled as the random selection of the SBSs that
the vehicle may encounter on its route.

A. SBS caching with the stationary content popularity

First, as shown in Fig. 3, with stationary content popularity
v = 1, We compare the performance of SBS caching algo-
rithms by analyzing downloading delay, instantaneous reward
and SBS cache hit rate. To simplify, the IUB algorithm will
be employed to solve the MBS caching problem, and we will
only consider the single SBS in this simulation. In Fig. 3a,
Fig. 3b and Fig. 3c, we could observe that the downloading

delay, the instantaneous reward, and the SBS cache hit rate
will be relatively random in the beginning and finally converge,
which is due to the dynamics of the environment. Additionally,
due to the large number of content files, the performance of
algorithms varies with the random requests even under the
stationary popularity distribution. Due to the fixed content pop-
ularity, LFU and LRU algorithms achieve similar performance.
The Myopic algorithm achieves the worst performance due to
that the Myopic algorithm learns only from the recent time
period and random cache content files. Moreover, the SBS
cache hit rate for the IUB algorithm is significantly more than
other algorithms, while for the other two performance metrics,
the IUB algorithm performs similarly to and even worse than
other algorithms. Since the IUB algorithm will cache the most
popular content file, content files in the SBS and MBS will
have many duplicates, which increases the downloading delay
and decreases the instantaneous reward. The CAC algorithm
balances the exploration and the exploitation, then obtains
a relatively poor performance. In Fig. 3a, the downloading
delay for the MCUCB algorithm is about 61s, similar to other
benchmark algorithms. In Fig. 3b, the instantaneous reward
for the MCUCB algorithm is approximately 22, which is more
than other benchmark algorithms. In Fig. 3c, since the content
popularity is known in advance, the SBS cache hit rate for
the TUB algorithm is about 56%, and those for the MCUCB,
CAC, LFU and LRU algorithms are close to 45%. For the SBS
caching problem, with the stationary content popularity, the
MCUCB algorithm achieves the relatively better performance.

B. SBS caching with the non-stationary content popularity

In Fig. 4, with the non-stationary content popularity, the
downloading delay, instantaneous reward, and the SBS cache
hit rate are compared with the benchmark algorithms. Simi-
larly, the IUB algorithm will be employed to solve the MBS
caching problem, and only consider the single SBS. For the
non-stationary content popularity, the parameter + is initialized
as 0.5, and changed to 1.5 and 1.0 in time period 1000 and
3000, respectively. Ignore the fluctuation at the beginning,
we will focus on the following performance. In Fig. 4a, we
observe that the MCUCB algorithm acquires the least down-
loading delay of about 40s, similar to that of other benchmark
algorithms. In Fig. 4b, the figure shows that the instantaneous
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Fig. 5. The downloading delay, instantaneous reward and total cache hit rate for MBS caching with non-stationary content popularity

reward for the MCUCB algorithm is about 21, similar to that
of the IUB algorithm. Fig. 4c indicates that the SBS cache
hit for the MCUCB is close to 69%, slightly less than the
IUB algorithm. We could observe that when the parameter y
increases, the performance of the algorithms improves. when
the parameter <y is large, most content requests concentrate on
a small number of content files, and caching the most popular
content files could serve more requests, that is, decrease the
downloading delay, and increase the instantaneous reward and
SBS cache hit. Comparing Fig. 3 and Fig. 4, it is indicated that
the MCUCB acquires a similar performance, in other words,
it adapts to the variation of parameter v and still offers a
promising performance.

C. MBS caching with non-stationary content popularity

In Fig. 5, for the non-stationary content popularity, we
study the performance of the proposed algorithm in the MBS
caching problem, compared with the benchmark algorithms.
In this simulation, the IUB algorithm will be employed to
solve the SBS caching problem for the benchmark algorithms,
and the MCUCB algorithm will be employed to solve both
the MBS caching problem and the SBS caching problem
for the proposed algorithm. Instead of the time period t,
the long timescale interval 7" composed of 10 time periods
will used in this simulation. For the non-stationary popularity,
the parameter + is initiated as 0.5, and changed to 1.5 and
1.0 in time interval 100 and 300, respectively. Therefore, the

downloading delay is the sum of the downloading delay for
the requests in this interval, the instantaneous reward is the
reduction of the downloading delay in this interval, and the
total cache hit rate is the sum of the SBS cache hit rate and
the MBS cache hit rate. In Fig. 5a, the Myopic algorithm
get the worst performance, and the proposed algorithm gets
the best performance, where the downloading delay is about
4000s in the interval, with the improvement on the percentage
is approximately 30% compared with the IUB algorithm.
In Fig. 5b, the instantaneous rewards of IUB, LFU, LRU,
CAC and Myopic algorithms increase with time while that
of the MCUCB algorithm decreases. In Fig. 5c, the proposed
algorithm gets the maximum total cache hit rate, more than
that of the IUB algorithm, and the Myopic algorithm gets the
minimum total cache hit rate. For the non-stationary content
popularity, the LRU and LFU algorithm cache the content files
which is requested most, but due to the size of the content
files being unfixed, the higher cache hit rate does not mean
a lower downloading delay and higher instantaneous reward.
For the CAC algorithm, after the algorithm converges, some
unpopular content files will also be cached in the exploration
phase, worsening the performance. Fig. 5 demonstrates that
when the content popularity changes, the proposed algorithm
outperforms other algorithms for the MBS caching problem.
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Fig. 6. The downloading delay, instantaneous reward and total cache hit rate for MBS caching with different SBS cache sizes

D. MBS caching with different SBS cache sizes

Fig. 6 shows the performance of the algorithms when
the cache size of SBS varies from 5 to 45. The setting in
this simulation is similar to the simulation in Fig. 5. The
performance metrics in this simulation will be the average
during 200 intervals. In Fig. 6a, for these algorithms, the
downloading delay decreases with the increase in cache size of
the SBS. When the cache size of SBS increases, more content
files could be cached in the SBS, thus these content files could
be acquired with a lower downloading delay. In Fig. 6b, the
instantaneous reward for the benchmark algorithms increases
with the increase of the cache size of the SBS, and that of the
proposed algorithm decreases. In Fig. 6c, the total cache hit
rate for the IUB, CAC, Myopic, LFU, and LRU algorithms
increases with the increase of cache size of SBS, and the
total cache hit rate for the MCUCB algorithm remains almost
100%. For the benchmark algorithms, when the cache size
of SBS increases, the SBS cache hit rate increases, so more
requests can be served in the SBS. Therefore, the total cache
hit rate and instantaneous reward increases with the increase
of cache size. However, when the cache size of SBS increases,
the total cache hit rate remains the same, where the SBS
cache hit rate increases and the MBS cache hit rate decreases.
As illustrated in (5), the instantaneous reward for serving the
requests in the MBS is more than that in the SBS. When the
cache size of SBS increases, more requests will be served in
the SBS, thus the instantaneous reward decreases. As shown
in Fig. 6, regardless of the cache size of SBS, the proposed
MCUCB algorithm maintain a good performance, better than
other benchmark algorithms.

E. MBS caching with different content popularity

Fig. 7 shows the performance of the algorithms when the
Zipf parameter «y varies from 0.2 to 1.4. The parameter setting
is similar to the simulation in Fig. 6. In Fig. 7a, when v in-
creases, the downloading delay for these algorithms decreases.
In Fig. 7b, for the benchmark algorithms, the instantaneous re-
ward increases and that of the MCUCB algorithm decreases. In
Fig. 7c, total cache hit rate for the MCUCB algorithm slightly
increases and that of other benchmark algorithms increases.
As v increases, the popular content files are more likely to

be requested by users and the popularity difference between
popular files and unpopular files will be larger. Therefore,
more requests will focus on a small portion of content files
with highest popularity. Total cache hit rate increases with
the increase of . As more requests are served in SBSs, the
downloading delay decreases with the increase of ~y. For the
benchmark algorithms, the instantaneous reward increases due
to that more requests are served. However, for the MCUCB
algorithm, more requests are served in SBSs and less requests
are served in the MBS, thus the instantaneous reward for the
MCUCB algorithm decreases with the increase of ~. Fig. 7
verifies that the MCUCB algorithm adapts to the changes in
the content popularity compared with benchmark algorithms.

FE Cooperative MBS caching for different vehicle speeds

Finally, to verify the performance of the proposed coop-
erative MCUCB algorithm in a high-speed environment, we
compare the performance between the MCUCB algorithm and
the cooperative MCUCB algorithm for different vehicle speeds
in Fig. 8. In this simulation, the maximum local downloading
delay D, 4, is computed by D,y,q, = 2-1,,/v. For the MCUCB
algorithm, if the downloading delay for the content file is
higher than D,,,;, the content file will fail to be returned
to the vehicle, while for the cooperative MCUCB algorithm,
the request will be relayed to another SBS on the route of the
vehicle. The downloading delay and instantaneous reward in
this simulation are those of a single request, to better show the
performance. Fig. 8a and Fig. 8b shows that the downloading
delay and instantaneous reward for the cooperative MCUCB
algorithm are higher than that of MCUCB algorithm, which
is because for the cooperative MCUCB algorithm, the last
SBS in this area cannot relay the request to another SBS, thus
increasing the downloading delay and instantaneous reward.
In Fig. 8c, for the MCUCB algorithm, when the vehicle speed
increases and the maximum local downloading delay D4,
decreases, the SBS cache hit rate almost keeps the same. Due
to the limit of the maximum local downloading delay, fewer
requests can be served by the MBS, so the MBS cache hit
rate and local cache hit rate decrease. For the cooperative
MCUCB algorithm, with the increase of vehicle speed, more
requests are relayed to other SBSs, thus the MBS cache hit
rate decreases, SBS cache hit rate and the relayed SBS cache



JOURNAL OF I5TEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

10000

9000

8000

7000

6000

downloading delay(s)

5000

4000

3000

instantaneous reward

11000

10000

9000

8000

7000

total cache hit (%)

—— McucB
[0
—e— Myopic
- LFU
~4+— LRU
—— CAC

(a) Downloading delay

(b) Instantaneous reward

0.2 0.4 0.6 0.8 1.0 1.2 14

(c) Total cache hit rate

Fig.

7. The downloading delay, instantaneous reward and total cache hit rate for MBS caching with different content popularity

10 —%— cooperative MCUCB
MCUCB

o N ®

«

downloading delay (s)
instantaneous reward
-
4

I

w
s

—%— cooperative MCUCB 100
MCcucB

cache hit rate (%)

—— SBS cache hit (cooperative MCUCB)
MBS cache hit (cooperative MCUCB)
x relayed SBS cache hit (cooperative MCU!
—x- local cache hit (cooperative MCUCB)
—+— SBS cache hit (MCUCB)

5 10 15 20 25 30 H 10 15
vehicle speed (m/s)

(a) Downloading delay

vehicle speed (m/s)

(b) Instantaneous reward

20 25 30 S 10 15 -*- MBS cache hit (MCUCB)
vehicle local cache hit (MCUCB)

(c) Cache hit rate

Fig. 8. The downloading delay, instantaneous reward and cache hit rate of the MCUCB and cooperative MCUCB algorithms for MBS caching

hit rate increases. Fig. 8c indicates that the higher the vehicle
speed is, the higher the importance of cooperative service is.
In conclusion, the cooperative MCUCB algorithm can adapt
to the high-speed environment well.

VII. CONCLUSION AND FUTURE WORK

Caching the popular content files in the distributed storage-
enabled network entities can alleviate the pressure on the
backhaul links with limited capacity in the vehicular networks.
This paper considers a cache-enabled multi-layer architec-
ture, comprising several SBSs and an MBS. A two-timescale
approach is proposed for cache refreshing, where the SBSs
refresh the content files in a short timescale because they are
closer to the vehicles, while the MBS refreshes the content in
a long timescale as it receives requests from the SBSs with
a lower frequency. The content caching problem is modeled
from an MAB perspective, and the learning-based algorithm
MCUCSB is proposed for the SBSs and the MBS. Additionally,
to guarantee that the vehicles can get the requested content
files in the high-speed environment, cooperative service was
introduced to further improve the QoS of vehicles. Simulation
results show the impressive performance of the proposed
algorithms and prove that the proposed approach successfully
adapts to the dynamics of content file popularity.

There are some challenges in the cooperative caching prob-
lems that are worth further exploration. For example, the
relaying SBSs should be carefully selected to improve content

delivery efficiency and reduce the redundant transmission. In
addition, how to handle the requests from the vehicles with a
stringent time requirement is also a challenging problem.
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