
IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019 2693

Planning While Flying: A Measurement-Aided
Dynamic Planning of Drone Small Cells

Ning Lu, Member, IEEE, Yi Zhou , Member, IEEE, Chenhao Shi, Nan Cheng, Member, IEEE,
Lin Cai, Senior Member, IEEE, and Bin Li, Member, IEEE

Abstract—The deployment of drone small cells has emerged
as a promising solution to agile provisioning of Internet back-
bone access for Internet of Things devices, and many other
types of users/devices. In this paper, we consider the problem
of deploying a set of drone cells operating on multiple channels
in a target area to provide access to the backbone/core net-
work, which is formulated as a combinatorial network utility
maximization problem. Since an offline and centralized solu-
tion to such a problem is not feasible, a low-complexity and
distributed online algorithm is highly desired. Therefore, we
propose a measurement-aided dynamic planning (MAD-P) algo-
rithm, where the dispatched drones perform position and channel
configurations autonomously on the fly based on the real-time
measurement of network throughput to solve the problem in a
distributed fashion during flight with minimal centralized control.
We prove that the proposed MAD-P algorithm is asymptotically
optimal, and investigate how long it takes for the convergence
to stationarity under the MAD-P algorithm by giving a mixing
time analysis. We also derive an upper bound of the performance
gap in presence of measurement errors. Simulation results are
provided to validate our analytic results and demonstrate the
effectiveness of our algorithm.

Index Terms—Distributed algorithm, drone small cell, Internet
of Things (IoT), Markov approximation, optimal dynamic plan-
ning, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

UNMANNED Aerial Vehicles (UAVs), commonly known
as drones, have gained rapid development in both mil-

itary and civilian domains. Recently, substantial interest has
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been attracted in the development of drone-based airborne
communication networks for applications such as harvesting
data from sensors deployed in hardly accessible areas [1]–[6],
enhancing coverage of cellular networks [7], and aiding com-
munications between the reader and radio frequency identifiers
in battery-free networks [8], among others. Particularly, recent
research [9] has demonstrated the feasibility of mounting a
small cell base station (sBS) on a flying drone to extend the
last-mile connectivity to ground users/Internet of Things (IoT)
devices that require accessing the backbone/core network in a
region of interest.

Unlike deployment of fixed access infrastructure which
typically requires time-consuming network planning taking
factors, such as propagation, geographic limitations, and traf-
fic distribution (e.g., [10] and [11]) into considerations, and
is difficult to change or to optimize over time, the main
advantage of leveraging drone sBSs is that their deployment
can be agile and readily reconfigurable due to the flexible
mobility of drones. For example, a cluster of drone sBSs
can be quickly launched regardless of geographical terrain;
the position of drones can be adjusted in response to vari-
ations of wireless connectivity; and the cluster of operating
drone sBSs can scale up and down in response to the change
of network traffic demand. This has emerged as a promising
solution to agile cellular/Internet service provisioning in many
application scenarios (e.g., coverage and capacity enhance-
ment of 5G/Beyond 5G cellular networks during temporary
events [12], [13], offloading the computation-intensive tasks
onto the cloud from mobile IoT devices [14], [15], etc.).

A. Drone Small Cells Planning Problem

In this paper, we consider the deployment of a set of drone
sBSs in a target area of multiple cells and over multiple com-
munication channels to serve the data traffic demand in the
target area (i.e., a model of providing access to the back-
bone network), as shown in Fig. 1. The data traffic demand
in each cell is assumed unknown (before deployment) and
time-invariant but varies across cells.

1) Key Question to Answer: The question we would like
to answer is that what is the best deployment (configuration)
of drone sBSs such that the most data traffic demand can be
served? This is not trivial because different configurations of
drone sBSs in terms of cell placement and channel assignment
may yield different system capacity and therefore the system
throughput (i.e., the total demand being served). This is mainly
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Fig. 1. Network of drone sSBs serving a target area.

due to the mutual interference generated under a certain con-
figuration. For example, intuitively, we intend to send three
drones (all we have) to the three most demanding cells so
that we could fully utilize the capacity. However, it happens
that the three cells are very close to each other geographi-
cally and there is only one communication channel available
(in an extreme case) such that the total serving capacity might
be very limited and less that the total traffic demand of the
three cells due to the strong mutual interference. This would
lead to a suboptimal configuration, and there may exist other
configurations that can provide higher system throughput.

2) Planning Problem: The goal of the planning is to dis-
patch drone sBSs to cells and assign channels to drones such
that the maximum system throughput is achieved. It can be
seen that the planning process is essentially a joint cell place-
ment (trying to assign drones to serve the most demanding
cells) and channel assignment (trying to distribute drones
evenly over channels and cells to minimize interference so
as to maximize the total serving capacity) process given the
data traffic demand of all cells (unknown before deployment).
We further generalize the system throughput (the total demand
being served) maximization problem to a utility maximization
problem where the utility is a concave and increasing func-
tion of the throughput, representing a certain utility of interest
(e.g., service satisfaction).

3) Need of Low-Complexity Implementation: The drone
sBSs planning problem is essentially a combinatorial opti-
mization problem, i.e., finding an optimal configuration from
the set of all possible configurations. However, since the
data traffic demand is unknown before deployment (which is
often the case in real-world scenarios), an offline and central-
ized solution (e.g., exhaustive search) is not feasible, and a
low-complexity online solution is desired.

4) Need of Distributed Implementation: The desired plan-
ning algorithm should also be amenable to distributed
implementations, such that computation is distributed over
drones without having to be centralized at the backhaul

gateway. Moreover, distributed implementations tend to be
more scalable than centralized solutions. Also, due to the
flexible mobility of drone sBSs, reconfiguration (moving to
a different cell or switching to a different channel) can be
agile and autonomous.

Therefore, we aim at solving the drone sBSs planning prob-
lem in a low-complexity and distributed way. In this paper,
we propose an online measurement-aided dynamic planning
(MAD-P) algorithm, where the dispatched drones perform
self-configurations on the fly regarding the cell being located
and the channel being used, based on the real-time measure-
ment of network throughput. The proposed planning process
is autonomous, and no prior knowledge of data traffic demand
in the target area is required. The main contributions of this
paper are highlighted as follows.

1) The proposed algorithm leads to a joint planning of cell
placement and channel selection, solves the underlin-
ing utility maximization problem by using the Markov
approximation techniques, and is amenable to low-
complexity and distributed implementation. In addition,
we introduce a design parameter to control the prefer-
ence of the exploration of cells over the exploration of
channels.

2) We prove the asymptotic optimality of the proposed
algorithm. To understand how long it takes for the con-
vergence to stationarity under the MAD-P algorithm, we
derive an upper bound of the mixing time that captures
the speed of convergence of the resulting Markov chain.
We also show that the performance gap in presence of
measurement errors is upper bounded.

B. Literature Review

The deployment of drone sBSs also faces great challenges.
Key implementation issues have been investigated by recent
studies, such as: 1) due to the lack of fiber-based connectiv-
ity, a viable wireless backhauling/fronthauling solution should
be in place. The state-of-the-art solutions resort to different
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radio technologies, including millimeter wave [16]–[18], satel-
lite links [19], and free-space optics [20], each of which has its
own pros and cons and 2) due to the short endurance of drones
on a single charge, it is crucial to prolong the service dura-
tion or even provide persistent service during the mission via
advanced charging technologies. The state-of-the-art solutions
include equipping drones with solar panels [21], charging the
battery during flight by using a high energy laser beam [22],
and charging the battery by more powerful fixed-wing UAVs
via wireless power transfer [23]. Moreover, some theoretical
perspectives on efficient deployment of drone sBSs have also
been provided in the literature.

1) In [24], the optimal altitude of deployment is derived in
maximizing the ground coverage.

2) The service time maximization considering the traveling
time of mobile small cells is given in [25].

3) Dynamic repositioning of drone sBSs is considered
in [26] to improve the spectral efficiency.

4) The optimal placement of drone BSs considering energy
efficiency is given in [27].

5) Algorithms for improving the communication through-
put of a UAV network are proposed (e.g., [28] and [29]).

6) Channel assignment, or generally radio resource alloca-
tion, is considered in [30] and [31].

However, despite these advances, a joint cell placement and
channel assignment planning process toward system through-
put maximization has not been considered. Moreover, a
low-complexity and distributed online algorithm relying on
dynamic and autonomous configurations of drone sBSs should
be in place toward the optimal planning, which has not been
reported in existing research works either.

The remainder of this paper is organized as follows.
Section II introduces the system model. The problem for-
mulation is given in Section III. Section IV presents the
proposed dynamic drone cell planning algorithm, followed
by the performance analysis in Section V. In Section VI, we
provide the simulation results and Section VII concludes this
paper.

II. SYSTEM MODEL

We consider deploying a set of drone sBSs, denoted by
{1, 2, . . . ,N} � [N], to a rectangular target area consisting of
L×W square cells, each of which is r2 in size. Each square
cell, indexed by (l,w), where l ∈ {1, 2, . . . ,L} � [L] and
w ∈ {1, 2, . . . ,W} � [W], can be fully covered by a drone sBS
at a given height H. Let Q denote the set of L×W distinct cells,
i.e., Q = {(l,w) : l ∈ [L],w ∈ [W]}, and qn = (ln,wn) denote
the cell where drone sBS n is deployed, where ln ∈ [L] and
wn ∈ [W]. We consider that a cell is at most served by one
drone sBS, and hence multiple drone sBSs are not allowed
to be coexisting in one cell. All drone sBSs are assumed
directly connected to a central station via point-to-multipoint
microwave/mmWave backhauling with sufficient bandwidth.
The central station serves as a gateway to the backbone net-
work and a hub for exchanging messages among drone sBSs,
as shown in Fig. 1. For simplicity, we consider that each drone
can be replaced in time to maintain system operation. A drone

will monitor its battery status periodically. If the battery level
is lower than a preset threshold, the drone will send a mes-
sage to the control station to schedule a fully charged drone
for replacement.

A multichannel system is considered to reduce the co-
channel interference among ground-air links in different cells.
we consider that each drone sBS can select a channel to oper-
ate on from a set of M nonoverlapping channels of equal
bandwidth, denoted by {1, 2, . . . ,M} � [M]. The channel
selected by drone sBS n can be represented as cn, where
cn ∈ [M]. Moreover, we consider that the number of chan-
nels is limited and no more than the number of dispatched
drones, i.e., M < N. Since each drone sBS is functioning
in a certain cell under a certain channel at any given time,
we represent by the drone cell planning process {ψ(t)}t>0. At
any time t, ψ(t) takes a value f from a finite set F , where
f � ((qn, cn))n∈[N] represents a certain planning/configuration
of all drone sBSs in the system and F denotes the set of all
possible configurations.

We assume that a number of long-lived data flows are dis-
tributed in the target area unevenly, leading to heterogeneous
data traffic demand in cells. Each long-lived data flow is a
traffic stream that is always in the network and continually
generates bits at a certain rate. The data traffic demand in
the target area is denoted by D = (dl,w)l∈[L],w∈[W], where
dl,w is the aggregate rate generated from all data traffic flows
in cell (l,w). In this paper, the data traffic demand matrix
D is assumed time-invariant. However, as what we will dis-
cuss in detail in Section IV-D, the optimality of the proposed
algorithm remains if D changes slowly with time.

Given the drone cell planning ψ(t) at time t, a certain capac-
ity vector S(t) = (sψ(t)n )n∈[N] is obtained, where sψ(t)n is the
maximum data rate at which the data traffic demand is served
by drone sBS n, and is determined by the interference pat-
tern under ψ(t) assuming a uniform ground-air transmission
power over all cells. Therefore, the actual data demand served
by (i.e., the ground-air throughput of) drone sBS n under ψ(t)
is given by γ ψ(t)n = min{sψ(t)n , dln,wn}, i.e., the throughput of
a drone cell is the minimum of the traffic demand and ser-
vice capacity, and we denote the ground-air throughput vector
by �(t) = (γ ψ(t)n )n∈[N]. Note that the unserved traffic demand
will be either ignored or delivered by other network infras-
tructures (e.g., cellular macro cells and satellite) if available.
Also note that γ ψ(t)n can be measured by drone sBS n in real
time. That is the reason why the prior knowledge of D is not
required for our algorithm design. We will discuss the affect of
measurement errors on the proposed algorithm in Section V.

III. PROBLEM FORMULATION

The drone cell planning process {ψ(t)}t>0 is essentially a
joint cell placement and channel assignment process for all
drone sBSs over time. The object of the planning process is
to choose a configuration f from F given D such that the maxi-
mum system throughput is achieved, i.e., maximizing ‖�(t)‖1,
where ‖·‖1 stands for the l1-norm. However, we generalize the
problem to a utility maximization problem in terms of �(t).
Specifically, we consider the problem of finding the optimal
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drone cell planning ψ(t) for all t to maximize the system-wide
normalized utility, which is formulated as follows:

DDP : max
f∈F

1

N

∑

n∈[N]

�n

(
γ f

n

)

where �n(γ
f
n ) is the utility obtained with respect to throughput

γ
f
n by drone sBS n under configuration f . The utility functions
�n for all n are assumed to be twice differentiable, strictly
increasing and concave, and bounded by finite constants �min
and �max, i.e.,

�min ≤ �n

(
γ f

n

)
≤ �max ∀ n ∈ [N] and f ∈ F .

As it can be seen, a planning policy (static) that select-
ing f ∗ by solving the combinatorial problem DDP is optimal.
However, such a policy tends to be computationally prohibitive
since the size of F grows exponentially fast as the number of
dispatched drones increases. The computational complexity of
such a planning policy also depends on the number of avail-
able channels and the size of the target region. Therefore, our
goal is to design a planning policy such that: 1) the computa-
tional complexity is significantly reduced and 2) drone sBSs
make planning decisions distributedly without the centralized
coordination.

IV. DYNAMIC DRONE CELL PLANNING

In this section, we first propose a Markov approximation
to the original combinatorial optimization problem such that
a static time-sharing policy is obtained. Then, we design a
dynamic and distributed algorithm to implement the time-
sharing policy by constructing a continuous time-reversible
Markov chain over all possible configurations.

A. Markov Approximation

Considering that the original problem DDP is hard to solve,
inspired by [32], we obtain the following optimization prob-
lem by applying the Markov approximation techniques to the
original problem:

DDP−MA: max
p≥0

pf

N

∑

n∈[N]

�n

(
γ f

n

)
− 1

β

∑

f∈F
pf log pf

subject to
∑

f∈F
pf = 1

where p = (pf )f∈F and pf represents the fraction of time that
configuration f is being used in the process {ψ(t)}t>0; β is
a positive constant and will be discussed later. The optimal
solution p∗ to this problem is given by

p∗f =
exp

(
β
N

∑
n∈[N]�n

(
γ

f
n

))

∑
f ′∈F exp

(
β
N

∑
n∈[N]�n

(
γ

f ′
n

)) ∀f ∈ F . (1)

This corresponds to a time-sharing policy where each con-
figuration f is selected according to its time fraction p∗f .
Intuitively, a configuration f that leads to the maximum
system-wide normalized utility is being used most often as
it has the largest time fraction among all configurations, and

the performance gap between such a time-sharing policy and
the optimal static policy would be closed as β tends to infin-
ity. It is worth noting that solving both DDP and DDP−MA
problems require the knowledge of the throughput vector
�(f ) = (γ f

n )n∈[N] for each f , which depends on the accurate
modeling of the capacity vector S(f ) = (sf

n)n∈[N] under a cer-
tain configuration f and a prior knowledge of D. This could
be very difficult and computationally infeasible especially
when D becomes time-variant. Considering that the through-
put vector under a certain configuration can be obtained by
the real-time measurement, we design an online measurement-
based algorithm to implement the time-sharing policy given
by (1) in a distributed manner.

B. Distributed Algorithm Design in General

The idea of distributed algorithm design is that we first con-
struct a continuous time reversible Markov chain with the state
space being F and the desired stationary distribution given
by (1); second, we design a distributed algorithm to realize
the state transitions that drive the Markov Chain. Next, we
will present the proposed MAD-P algorithm.

In the proposed algorithm design, a drone sBS may change
its configuration by moving to a new cell or hopping to a new
channel. Note that we do not consider the traveling time of
drones which is negligible compared to the time scale where
reconfigurations occur (e.g., at a time scale of minutes).1

Further, we assume the channel switching time (e.g., a few mil-
liseconds) is negligible as well. Note that there is energy cost
(due to movements) and slightly performance reduction (due to
service discontinuity during cell reconfiguration) of reposition-
ing drones. That could be carefully modeled and quantified.
However, considering the cost of repositioning drones brings
an additional layer of complexity in the algorithm design. It
would be more moderate to consider it in our future works.

Since changing either the cell placement or the channel
assignment of a single drone sBS out of N is sufficient to lead
to a new configuration, with the MAD-P algorithm employed,
a configuration f of drone sBSs may change to another con-
figuration f ′ at time t by having only one of drone sBSs either
moving to a new cell or hopping to a new channel. Given an
f ∈ F , the cell placement and channel assignment of drone
sBS n can be represented as qf

n and cf
n, respectively, where

qf
n = (lfn,wf

n), lfn ∈ [L], wf
n ∈ [W], and cf

n ∈ [M]. It is
possible to change configuration f to some other configura-
tion f ′ if there exists an n1, such that regarding the following
conditions:

c1: qf
n1 = qf ′

n1 and cf
n1 
= cf ′

n1 ;
c2: qf

n1 
= qf ′
n1 and cf

n1 = cf ′
n1 ;

c3: ∀n2 ∈ [N] \ n1, qf ′
n1 
= qf

n2 ;
c4: ∀n2 ∈ [N] \ n1, qf

n2 = qf ′
n2 and cf

n2 = cf ′
n2 either c1

and c4 hold (corresponding to a single drone sBS hopping
to a new channel) or c2, c3, and c4 hold (corresponding to
a single drone sBS moving to a new cell that is not being
occupied/served).

1We consider later to limit the mobility of drones for minimizing the impact
of traveling time.
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We denote by Qf
n the set of cells that drone sBS n could

possibly move to under current configuration f , which is
dependent only on f and n. In the general design, we con-
sider an arbitrary mobility pattern, where Qf

n for each f and
each n is an arbitrary set of unoccupied cells under f as long
as the following two constraints hold:

c5: for each f and each n, ∀q′ ∈ Qf
n, if f ′ is due to that n

moves from cell q to q′, then q ∈ Qf ′
n ;

c6: Q(N) ⊂ {{qf
n}n∈[N]}f∈F , where Q(N) is the set con-

taining all N-combination sets2 of Q. c5 states that it is
always possible for each drone to move directly back to
the old cell after moving to the new cell; while c6 states
that the set of cell configurations of N drones due to some
arbitrary mobility pattern should include all possible cell
configurations, each of which is a set of N distinct cells
chosen from Q. Note that {{qf

n}n∈[N]}f∈F may contain per-
mutations of one or more N-combination sets of Q. We
consider that all permutations of the same N-combination set
of Q with exactly the same channel configuration of drones
lead to the same system utility, given that all drones are
identical.

Moreover, let Cf
n be the set of channels that are not

used by drone sBS n under current configuration f , i.e.,
Cf

n = [M] \ cf
n. With the MAD-P algorithm employed, at a

certain time instant, one of drone sBSs, say n, under config-
uration f would either move to a new cell in Qf

n or hop to
a new channel in Cf

n probabilistically, leading to a transition
from f to a new configuration, say f ′. The MAD-P algorithm
is described in Algorithm 1.

In the proposed algorithm, we introduce a fixed parameter
ζ ∈ (0, 1) to control the transitions between configurations.
Clearly, increasing ζ increases the chance of seeing a cell
reconfiguration; while decreasing ζ increases the chance of
seeing a channel hopping. Under different system settings,
we may want to choose different values of ζ . For exam-
ple, in the case where we have M ≈ N  L × W, a
value of ζ approaching one is preferable to explore the
target area as much as possible to identify the most demand-
ing cells to serve. In the extreme case where ζ = 1,
our algorithm reduces to a pure cell placement algorithm;
while in the extreme case where ζ = 0, our algorithm
reduces to a pure channel assignment algorithm. Therefore,
the MAD-P algorithm is considered as a randomized algo-
rithm unifying both cell placement and channel assignment
processes.

Proposition 1: With the MAD-P algorithm employed, the
drone cell planning process {ψ(t)}t>0 is a continuous-time
time-reversible ergodic Markov chain with the stationary
distribution given by (1).

Proof: It can be seen that {ψ(t)}t>0 is a continuous-time
homogeneous Markov chain since the amount of time the
planning process stays in configuration/state f is exponentially
distributed and dependent only on state f , and the transition
probabilities are independent of time. Moreover, {ψ(t)}t>0 is
irreducible since it is always possible to transit from state f to

2A k-combination of a set S is a subset of k distinct elements of S.

Algorithm 1 MAD-P Algorithm
Input: The set of drone sBSs [N], the set of cells

((l,w))l∈[L],w∈[W], the set of channels [M], the utility func-
tions �n for all n ∈ [N], and predefined parameters
ζ ∈ (0, 1), α > 0, β > 0, and H.

Output: Drone cell planning process {ψ(t)}t>t0 .
1: initialization:
2: At t = t0, arbitrarily dispatch N drones to N distinct

cells at the given height H and each drone randomly and
uniformly selects a channel to operate on. This leads to
an initialized configuration f0 ∈ F . Each drone sBS n
obtains its ground-air throughput γ f0

n via measurement and
informs the central station of (qf0

n , cf0
n ) and �n(γ

f0
n ). Then,

the central station broadcasts f0 and (�n(γ
f0
n ))n∈[N] to all

drone sBSs. We have {ψ(t) = f0}t0<t≤t1 , where t1 is the
time when the 1st reconfiguration occurs.

3: while i > 0 (ith reconfiguration) do
4: for n ∈ [N] do
5: As soon as drone sBS n receives fi−1 and

(�n(γ
fi−1
n ))n∈[N] from the central station, it finds

Qfi−1
n and Cfi−1

n , and counts down according to a
generated random number from an exponential dis-
tribution with mean equal to

exp
(
β
N

∑
n∈[N]�n(γ

fi−1
n )

)

α
(
ζ |Qfi−1

n | + (1− ζ )|Cfi−1
n |

) ; (2)

6: end for
7: At t = ti, the countdown of drone sBS n∗ expires

first among all drone sBSs. Drone sBS n∗ immediately
informs other drones via the central station to terminate
their countdown processes, and does the following:

8: With probability
ζ |Qfi−1

n∗ |
ζ |Qfi−1

n∗ |+(1−ζ )|C
fi−1
n∗ |

, drone n∗ randomly

and uniformly moves to one of the cells in Qfi−1
n∗ ; while

with probability
(1−ζ )|Cfi−1

n∗ |
ζ |Qfi−1

n∗ |+(1−ζ )|C
fi−1
n∗ |

, drone n∗ randomly

and uniformly switches to one of the channels in Cfi−1
n∗ .

9: for n ∈ [N] do
10: With the new configuration fi, drone sBS n obtains

its ground-air throughput γ fi
n via measurement and

informs the central station of (qfi
n, cfi

n) and �n(γ
fi
n ).

11: end for
12: The central station immediately broadcasts fi and

(�n(γ
fi
n ))n∈[N] to all drone sBSs.

13: Let i← i+ 1, and we have {ψ(t) = fi−1}ti−1<t≤ti .
14: end while

any other state f ′ in some finite time (either directly or indi-
rectly with F being finite and due to c5). Therefore, {ψ(t)}t>0
has a unique stationary distribution from [33]. Next, we will
show that {ψ(t)}t>0 is time-reversible such that according
to [34] the stationary distribution of {ψ(t)}t>0 is given by (1).

To do so, it suffices to show that for any f ∈ F and any f ′
that f could possibly transit to, under Algorithm 1, the detailed
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balance equation holds, i.e.,

p∗f λ
(
f → f ′

) = p∗f ′λ
(
f ′ → f

)
(3)

where λ(f → f ′) and λ(f ′ → f ) are positive transition rates
between state f and f ′.

In Algorithm 1, since each drone sBS n counts
down independently with a rate [(α(ζ |Qf

n| + (1 −
ζ )|Cf

n|))/(exp((β/N)
∑

n∈[N]�n(γ
f
n )))], denoted by λ

f
n, in

state f , the drone cell planning process will leave state f upon
one of countdown processes expires at a rate of

∑
n∈[N] λ

f
n.

Without loss of generality, we assume that the countdown pro-
cess of drone sBS n∗ expires first among all drone sBSs, i.e.,
the transition from f to f ′ is due to that drone sBS n∗ either
moves to a new cell or hops to a new channel. Since the length
of each countdown process follows an individual exponential
distribution, the probability that the countdown of drone sBS
n∗ expires first is given by [(λf

n∗)/(
∑

n∈[N] λ
f
n)]. Considering

the case where f and f ′ differ only on the cell configuration
of drone sBS n∗ and it can be seen from Algorithm 1 that
under f drone sBS n∗ moves to qf ′

n∗ in Qf
n∗ with probability

[(ζ |Qf
n∗ |)/(ζ |Qf

n∗ | + (1− ζ )|Cf
n∗ |)] · [1/(|Qf

n∗ |)], we have

p∗f λ
(
f → f ′

) =
exp

(
β
N

∑
n∈[N]�n

(
γ

f
n

))

∑
f ′′∈F exp

(
β
N

∑
n∈[N]�n

(
γ

f ′′
n

))

⎛

⎝
∑

n∈[N]

λf
n

⎞

⎠

×
(

λ
f
n∗∑

n∈[N] λ
f
n

)
ζ

ζ |Qf
n∗ | + (1− ζ )|Cf

n∗ |
= αζ

∑
f ′′∈F exp

(
β
N

∑
n∈[N]�n

(
γ

f ′′
n

)) . (4)

Since state f ′ transits to state f by changing qf ′
n∗ to qf

n∗ ,
similarly, we have

p∗f ′λ
(
f ′ → f

) = αζ
∑

f ′′∈F exp
(
β
N

∑
n∈[N]�n

(
γ

f ′′
n

)) . (5)

By (4) and (5), we have (3). Now consider the case where f
transits to f ′ by changing cf

n∗ to cf ′
n∗ , and f ′ transits to f by

changing cf ′
n∗ to cf

n∗ . Similarly, we can prove that

p∗f λ
(
f → f ′

) = p∗f ′λ
(
f ′ → f

)

= α(1− ζ )
∑

f ′′∈F exp
(
β
N

∑
n∈[N]�n

(
γ

f ′′
n

)) . (6)

Proposition 1 shows that with the MAD-P algorithm, we
achieve the desired stationary distribution over configura-
tions such that the time-sharing policy according to (1) is
implemented in a distributed manner where each drone sBS
makes the decision locally on activating either a channel
reconfiguration or a cell reconfiguration.

C. Two Special Designs

Next, we propose two special designs based on the MAD-P
algorithm by specifying the mobility pattern of drones when-
ever they reconfigure their cell locations.

1) Maximum Mobility: In this special design, at any time
a drone needs to change its cell placement, the drone can
reach any unserved cell in the target area. Specifically, we
consider that for each configuration f and each drone sBS n,
Qf

n contains all unoccupied cells, i.e., Qf
n = {q : q ∈ Q, q 
=

qf
n′ ,∀n′ ∈ [N]}, which leads to the MAD-P algorithm with

Maximum Mobility, called the MAD-P/MM algorithm. Note
that actually given a configuration f , all drone sBSs have the
same Qf

n, denoted by Qf , and we have |Qf | = LW − N.
2) Limited Mobility: In this special design, at any time a

drone needs to change its cell placement, the drone can only
move to one of the unoccupied adjacent cells. Specifically, we
consider that for each configuration f and each drone sBS n,
Qf

n = {q = (l,w) : |l − lfn| + |w − wf
n| = 1, q ∈ Q, q 
= qf

n′ ,∀n′ ∈ [N]}, such that each drone randomly and uniformly
walks to one of the unoccupied adjacent cells (at most four)
with a traveling distance of r. This gives us the MAD-P algo-
rithm with limited mobility, called the MAD-P/LM algorithm.
Limiting the mobility of drones is one way of minimizing
the impact of traveling time since a drone sBS only needs to
move to one of the neighboring cells (unserved) if the cell
configuration needs to be changed.

D. Discussion on Implementations

1) Exploration Versus Exploitation: In the MAD-P algo-
rithm, the time spent in a certain configuration f is exponen-
tially distributed with a rate equal to

∑

n∈[N]

λf
n =

ζ
∑

n∈[N] |Qf
n| + (1− ζ )∑n∈[N] |Cf

n|
1
α

exp
(
β
N

∑
n∈[N]�n

(
γ

f
n

)) . (7)

As it can be seen, the configuration that leads to a larger
system-wide normalized utility tends to stay longer before
it transits to other configurations. We can even prolong the
sojourn time of a configuration (on average) by decreasing α
such that we could potentially exploit a good configuration
as much as possible when it occurs. We can also increase α
to speed up the transitions among configurations. This partic-
ularly works for the scenario where the data traffic demand
varies a lot across different cells since the algorithm should
be able to identify the most demanding cells very quickly
(i.e., the more exploration, the better). It is worth noting that
tuning α does not change the stationary distribution of the
planning process, and only affects the transition rates. As dis-
cussed before, the stationary distribution can be adjusted by
changing β from (1). For example, we can simply increase the
value of β to increase the time fraction that the system spent in
the optimal configuration f ∗. However, this could slow down
the exploration over configurations according to (7). In a nut-
shell, the parameters α and β are used to tune the short-run
tradeoff between exploration and exploitation of configurations
in the planning process.

2) Message Passing: Note that the proposed algorithm
depends on message passing among drone sBSs with the cen-
tral station involved. It is associated with state transitions and
is necessary to facilitate the decision making process at each
drone sBS. The overhead of message passing will be reduced
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in terms of messages per unit time if we slow down the state
transitions in the planning process by tuning the parameters. In
real-world implementations, the overhead introduced by mes-
sage passing can be further reduced via the proper design of
communication protocols.

3) Time-Varying Traffic Demand: The data traffic demand
matrix D is assumed time-invariant. However, the optimal-
ity of the proposed algorithm can remain if D changes
slowly with time. In addition, we need to choose an
increasing function g(·) and reformulate the DDP problem
as maxf∈F g((1/N)

∑
n∈[N]�n(γ

f
n )). For example, g(·) =

log log(·). Allowing D changes slowly actually corresponds
to the relaxation of time-scale separation assumption in the
research of queue-length-based CSMA algorithm, which has
been well studied in [35].

V. PERFORMANCE ANALYSIS

In this section, we first prove that the proposed MAD-P
algorithm is asymptotically optimal to the original DDP prob-
lem. Then, we will consider the problem of bounding the
time taken by the planning process {ψ(t)}t>0 to reach the
desired stationary distribution under the MAD-P/MM algo-
rithm. We leave the mixing time analysis for the MAD-P/LM
algorithm and the general MAD-P algorithm for future works.
Finally, we will discuss the impact of measurement errors on
the algorithm performance.

A. Asymptotic Optimality

Theorem 1: The MAD-P algorithm is asymptotically
utility-optimal to the DDP problem, i.e., for any ε ∈ (0, 1),
δ ∈ (0, 1), there exists a constant C > 0, such that whenever
U(f ∗) > C, we have

Pr
{
U(f ) > (1− ε)U(

f ∗
)}
> 1− δ (8)

where U(f ) = (β/N)∑n∈[N]�n(γ
f
n ) is the weighted system-

wide normalized utility under configuration f at time t and
U(f ∗) = maxf∈F U(f ).

Proof: Let I denote the set of configurations that gen-
erate a weighted system-wide normalized utility less than
(1− ε)U(f ∗), i.e.,

I = {
f ∈ F : U(f ) < (1− ε)U(

f ∗
)}
.

Recall that p∗f is the probability that configuration f is being
used in steady state under the proposed MAD-P algorithm.
Let Z =∑

f∈F exp (U(f )). Then, we have

Pr
{
U(f ) < (1− ε)U(

f ∗
)}

=
∑

f∈I
p∗f

=
∑

f∈I

1

Z
exp(U(f ))

≤ |I|
Z

exp
(
(1− ε)U(

f ∗
))

< |I| exp
(−εU

(
f ∗
))

<
(LW)!

(LW − N)!
MN exp

(−εU
(
f ∗
))

where the last two inequities are due to the fact that
exp(U(f ∗)) < Z and I < |F | ≤ ((LW)!/(LW − N)!)MN ,

respectively. As it can be seen, if we let C = (1/ε)(N ln M +
ln ((LW)!/(LW − N)!) + ln (1/δ)), and whenever U(f ∗) > C,
we have (8). Hence, the theorem holds.

Note that in theory Theorem 1 also provides a guideline
for the design of utility functions (�n)n∈[N] for drone sBSs.
Once parameters ε and δ are fixed, the constant C can be fig-
ured out such that (�n)n∈[N] can be designed wisely to ensure
U(f ∗) > C under the optimal configuration f ∗. In practice, it
is difficult to obtain U(f ∗) before we actually run the algo-
rithm since the ground-air throughput vector �(f ) = (γ f

n )n∈[N]
needs to be measured on the go. Furthermore, we do not have
the knowledge that which configuration is optimal until all the
configurations in F have been explored. One practical strategy
is that we can run the algorithm for a short period of time T ,
find out fmax = arg maxψ(t),t∈(0,T] U(ψ(t)), adjust (�n)n∈[N] to
have U(fmax) > C, and then rerun the algorithm. As a result of
doing this, we must have U(f ∗) > C. On the other hand, since
U(f ) ≥ β�min, ∀f ∈ F , we could simply have �min > C/β
when we design (�n)n∈[N].

B. Speed of Convergence to Stationarity

The time sharing among configurations according to (1) is
achieved once the resulting Markov chain enters its steady
state (or equivalently, reaches its stationary distribution p∗).
Therefore, it is important to understand how long it takes for
the convergence to stationarity under the MAD-P/MM algo-
rithm, and how different parameters affect the convergence
behavior. Thus, we provide an upper bound of the mixing
time that captures the speed of convergence of the resulting
Markov chain {ψ(t)}t>0 under the MAD-P/MM algorithm.

The mixing time (convergence time) of {ψ(t)}t>0 is defined
as follows:

τmix(ε) � inf

{
t ≥ 0 : max

f∈F
dTV

(
Pf ,·(t), p∗

) ≤ ε
}

where dTV(·, ·) denotes the total variation distance of two
probability distributions, and Pf ,·(t) is the probability dis-
tribution of ψ(t) over F at time t given that the initial
state is f .

1) Uniformization: To facilitate the mixing time analysis,
motivated by [32], we follow the technique of uniformization
in [36] to obtain a uniformization version of the continuous-
time Markov chain {ψ(t)}t>0, which is characterized by an
embedded discrete-time Markov chain � and a Poisson pro-
cess with rate ρ. By [36, Th. 3.4], the original Markov chain
and its uniformization version have the same transition rates
between states.

We denote by Q = (Qff ′)|F |×|F |3 the transition rate matrix
of {ψ(t)}t>0. Let P̂ = (̂Pff ′)|F |×|F | denote the one-step tran-
sition matrix of �. By the uniformization technique, we
have

P̂ = I+ ρ−1Q (9)

where I is the identity matrix. Recall that the time required
to make a transition from configuration f has an exponential

3With a slight abuse of notation, we also use f to denote the index of
configuration f in the transition rate matrix.
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distribution with rate given by (7). With the MAD-P/MM algo-
rithm employed, ζ

∑
n∈[N] |Qf

n| + (1− ζ )∑n∈[N] |Cf
n| in (7) is

equal to N · R for any configuration f , where R � ζ(LW −
N)+ (1− ζ )(M − 1). Then, we choose

ρ = αNR
∑

f∈F
exp(−U(f )).

From Algorithm 1, it can be obtained that Qcell
ff ′ =

αζ exp(−U(f )), where Qcell
ff ′ denotes the transition rate from

f to some different f ′ due to one of the drone sBSs mov-
ing to a new cell; Qchannel

ff ′ = α(1 − ζ ) exp(−U(f )), where

Qchannel
ff ′ denotes the transition rate from f to some different

f ′ due to one of the drone sBSs hopping to a new chan-
nel. Accordingly, we have P̂cell

ff ′ = [(αζ exp(−U(f )))/ρ] and

P̂channel
ff ′ = [(α(1− ζ ) exp(−U(f )))/ρ] for any f ′ that f could

possibly transit to.
Next, we construct the Markov chain � as follows according

to (9). When the current state of � is f :
1) choose a drone sBS n∗ from [N] uniformly at random

[i.e., with probability (1/N)];
2) with probability [(αNR exp(−U(f )))/ρ], it is allowed to

change state; otherwise, n∗ remains its configuration;
3) when it is allowed to change state, do the following: with

probability [(ζ(LW − N))/R], drone n∗ randomly and
uniformly moves to one of the cells in Qf

n∗ ; otherwise,
drone n∗ randomly and uniformly switches to one of the
channels in Cf

n∗ .
As it can be seen, by the above process, we indeed have a

Markov chain � according to (9). Next, we bound the mixing
time of {ψ(t)}t>0 through the mixing time analysis of � given
that {ψ(t)}t>0 is represented directly as a discrete-time Markov
chain � with transitions governed by an independent Poisson
process with rate ρ.

2) Coupling: We now apply the path coupling tech-
niques [32], [37] to construct a coupling of � for the mixing
time analysis. A coupling of the Markov chain � on the state
space F is a pair process (�t, �̃t) on F×F , such that: 1) each
of (�t, ·) and (·, �̃t), viewed separately, is a faithful copy of
the Markov chain � and 2) if �t = �̃t, we have �t+1 = �̃t+1.
By the path coupling techniques in [37], we only need to con-
struct a one-step coupling starting with any two adjacent states
on a path, i.e., to construct (�0, �̃0)→ (�1, �̃1), where �0
can make a transition to �̃0 in one step.

Next, we define the Hamming distance H(f , f ′) between any
two states f and f ′ in F , which is simply the number of drone
sBSs n ∈ [N] such that (qf

n, cf
n) 
= (qf ′

n , cf ′
n ).4 Initially, we have

H(�0, �̃0) = 1, where �0 and �̃0 are two adjacent states
on a path, i.e., they only differ by the cell configurations or
the channel configurations of the same drone sBS. With path
coupling, the following lemma shows that the Hamming dis-
tance between �1 and �̃1 decreases in expectation compared
to H(�0, �̃0), i.e., E[H(�1, �̃1)|�0, �̃0] < H(�0, �̃0).

Lemma 1: With path coupling under the MAD-P/MM algo-
rithm, for any pair of �0 and �̃0 (adjacent states) on F ×F ,

4We have (qf
n, cf

n) 
= (qf ′
n , cf ′

n ) if qf
n 
= qf ′

n or cf
n 
= cf ′

n or both.

we have

E
[
H
(
�1, �̃1

)|�0, �̃0
] ≤ (1− B)H

(
�0, �̃0

)

where 0 < B < 1, specifically

B = (N − 1)
[
1+ κ − exp(2β(�max −�min))

]

N|F | exp(β(�max −�min))

given that κ = min{[(ζ(LW − 2N + 2))/((N − 1)R)], [((1 −
ζ )M)/((N−1)R)]}, 0 < β < [(ln(1+ κ))/(2(�max−�min))],
and N < (LW/2)+ 1.

Proof: See the Appendix for more details.
Theorem 2 (Rapid Mixing): Under the MAD-P/MM algo-

rithm, the mixing time of the planning process {ψ(t)}t>0 is
upper bounded as follows:

τmix(ε) ≤
1
αR exp(β(2�max −�min)) ln 2N

ε

(N − 1)
[
1+ κ − exp(2β(�max −�min))

]

given that κ = min{[(ζ(LW − 2N + 2))/((N − 1)R)], [((1 −
ζ )M)/((N−1)R)]}, 0 < β < [(ln(1+ κ))/(2(�max−�min))],
and N < (LW/2)+ 1.

Proof: For any (�t, �̃t) ∈ F × F , applying Lemma 1
iteratively, we have

Pr
{
�t 
= �̃t

} = Pr
{
H
(
�t, �̃t

) ≥ 1
}

≤ E
[
H
(
�t, �̃t

)] ≤ (1− B)t · diam(F)
where diam(F) is the diameter of F , i.e., the maximum of the
minimum number of transitions required to go from � to � ′
over all pairs of positive-recurrent states �,� ′ ∈ F . Under
the MAD-P/MM algorithm, diam(F) ≤ 2N.

Therefore, for the Markov chain � according to (9) and
followed by the coupling lemma in [37] (Lemma 1), we have

dTV
(̂
Pt(�0, ·), P̂t(�̃0, ·

)) ≤ Pr
{
�t 
= �̃t

} ≤ 2N(1− B)t

where P̂t(�0, ·) (̂Pt(�̃0, ·)) denotes the t-step transition prob-
ability distribution starting from �0 (�̃0).

Consider the Markov chain {ψ(t)}t>0. Recall that Pf ,·(t) the
probability distribution over F at time t given that the initial
state is f , and p∗ = (p∗f )f∈F given by (1). Hence,

dTV
(
Pf ,·(t), p∗

) = dTV

( ∞∑

k=0

P̂k(f , ·)exp(−ρt)(ρt)k

k!
, p∗

)

(a)≤
∞∑

k=0

exp(−ρt)(ρt)k

k!
dTV

(
P̂k(f , ·), p∗

)

≤ 2N
∞∑

k=0

exp(−ρt)(ρ(1− B)t)k

k!

= 2N exp(−ρBt)

where (a) is due to Jensen’s inequality. Therefore, we have

τmix(ε) ≤ ln 2N
ε

ρB
≤

1
αR exp(β(2�max −�min)) ln 2N

ε

(N − 1)
[
1+ κ − exp(2β(�max −�min))

]

where κ = min{[(ζ(LW − 2N + 2))/((N − 1)R)], [((1 −
ζ )M)/((N − 1)R)]}.

From Theorem 2, it can be seen that the mixing time
decreases with the increase of α. In other words, the planning
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(a) (b) (c)

Fig. 2. Impact of α and β on the algorithm performance. (a) MAD-P/MM, α = 1. (b) MAD-P/LM, α = 1. (c) MAD-P/LM, β = 15.

process {ψ(t)}t>0 rapidly converges to its stationary distribu-
tion if α goes large. This is because, as discussed before,
increasing α can speed up the transitions among configura-
tions. Note that we require N < (LW/2)+ 1 to have the rapid
mixing of {ψ(t)}t>0. Intuitively, compared to the total number
of cells LW, if N is relatively large, it typically takes longer
to transit between nonadjacent configurations since drones do
not have much freedom to move.

C. Effects of Measurement Error

In the MAD-P algorithm, the ground-air throughput (γ f
n , for

any drone sBS n under any configuration f ) should be mea-
sured in real time, based on which the transition rates that drive
the planning process can be determined [see (2)]. However,
measurements of ground-air throughput could be inaccurate
so that the algorithm would compute the planning based on a
different set of transition rates, leading to a performance gap
toward the optimal solution p∗. It is important to understand
how measurement errors affect the algorithm performance and
hence further characterize the performance gap. For simplicity,
based on the throughput measurements from all drone sBSs
under f , the broadcasted weighted system-wide normalized
utility Û(f ) by the central station undergoes random errors
in a bounded region [ − δf , δf ] compared to the true utility
U(f ), where δf is positive and dependent only on f . Hence,
we have Û(f ) ∈ [U(f ) − δf ,U(f ) + δf ]. Further, we assume
that Û(f ) takes only 2nf + 1 discrete values, i.e.,

[
U(f )− δf ,U(f )− nf − 1

nf
δf , . . . ,U(f )− 1

nf
δf ,U(f )

U(f )+ 1

nf
δf , . . . ,U(f )+ nf − 1

nf
δf ,U(f )+ δf

]

following certain probability distribution perror
f , where nf is a

positive integer only dependent on f . With the above modeling,
the performance gap in the presence of measurement errors is
bounded by the following theorem.

Theorem 3: Under the MAD-P algorithm, the performance
gap on the expected system utility in the presence of measure-
ment errors is given by

∣∣p̄UT − p∗UT
∣∣ =

∣∣∣∣∣∣

∑

f∈F

(
p̄f − p∗f

)
U(f )

∣∣∣∣∣∣
≤ 2�max(1− exp(−2βδmax))

where p̄ = (p̄f )f∈F denotes the stationary distribution
of {ψ(t)}t>0 in the present of measurement errors, U =
(U(f ))f∈F denotes the vector of weighted system-wide nor-
malized utilities, and δmax = maxf∈F δf .

The proof of Theorem 3 is omitted here since it is almost
the same to the proof given by [38]. From Theorem 3, it can
be seen that the performance gap decreases exponentially fast
as the measurement errors diminish.

VI. SIMULATION RESULTS

In this section, we present three sets of simulations to
demonstrate the performance of the proposed MAD-P algo-
rithm, and how different design parameters (ζ , α, and β) and
measurement errors affect its performance.

In the first set of simulations, we consider a target area con-
sisting of 4× 3 square cells, each of which is 100× 100 m2

in size. There are N = 4 drone sBSs dispatched to the tar-
get area with a height of 150 m, and there are three channels
available for use, each of 15 MHz bandwidth. We consider
that a fixed number of long-lived data flows are distributed in
the target area, and the data traffic demand does not change
over time but can be very different across cells. To compute
the capacity vector of drone sBSs, a uniform ground-air trans-
mission power of 20 dbm is used. In addition, we consider a
logarithmic function as the utility function, and we set ζ = 0.5.

The impact of design parameters α and β on the algo-
rithm performance is shown in Fig. 2. The performance ratio
of system utility, defined as the ratio of the running average
system-wide normalized utility under the MAD-P algorithm
and the optimal system-wide normalized utility obtained by
the exhaustive search, is plotted with respect to the number
of reconfiguration run in the simulation. As it can be seen
in Fig. 2(a) and (b), with the increase of β, the performance
ratio improves (i.e., the gap to the optimality is reduced) since
the time fraction that the system spent in the “better” config-
urations increases according to (1). In Fig. 2(c), it is shown
that under the MAD-P/LM algorithm the number of recon-
figurations required before convergence can be large when
α is small. In other words, as shown by the analytic results
(Theorem 2), the convergence of the system-wide normalized
utility speeds up as α goes large.

To see how ζ affects the algorithm performance, in the sec-
ond set of simulations, we consider a scenario where L = 6,
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(a) (b)

Fig. 3. Impact of ζ on the algorithm performance. (a) MAD-P/MM.
(b) MAD-P/LM.

(a) (b)

Fig. 4. Impact of measurement errors on the algorithm performance.
(a) MAD-P/MM. (b) MAD-P/LM.

W = 5, M = 3, N = 4, α = 1, and β = 15, with all other
parameters same to those in the first set of simulations. In
this particular scenario, since the number of dispatched drone
sBSs is close to the number of available channels, but much
less than the number of cells in the target area, it will be
more rewarding to explore the cells as much as possible so as
to identify the most demanding cells very quickly. Fig. 3(a)
and (b) shows that the convergence of the system-wide nor-
malized utility speeds up by selecting a value of ζ that is close
to one (i.e., more cell explorations).

We perform the third set of simulations to evaluate the
impact of measurement errors on the algorithm performance,
where the setting is the same to that in the first set of simu-
lations with α = 1 and β = 15. In addition, we introduce a
uniformly generated random error when the throughput vector
is measured. Fig. 4(a) and (b) shows the performance ratio of
system utility in presence of measurement errors under two
algorithms, respectively. As it can be seen, the measurement
errors lead to an increase of utility gap. However, from the
analytic results (Theorem 3), it is clear that the performance
gap is upper bounded.

VII. CONCLUSION

In this paper, we considered the problem of planning a set
of drone small cells operating on multiple channels in a target
area to provide access to the backbone/core network. We have
formulated the drone cell planning to a combinatorial network
utility maximization problem, and then proposed a MAD-P
algorithm to solve the problem in a distributed fashion dur-
ing flight with minimal centralized control. We proved that the
MAD-P algorithm is asymptotic optimal, and derived an upper
bound of the mixing time that captures the speed of conver-
gence of the dynamic planning process. We also derived an

upper bound of the performance gap in presence of measure-
ment errors. Simulation results have validated our analytical
results and demonstrated the effectiveness of our algorithm.

APPENDIX

PROOF OF LEMMA 1

Denote �0 = f 0 = (q0
n, c0

n)n∈[N] and �̃0 = f̃ 0 =
(̃q0

n, c̃0
n)n∈[N], and we first assume �0 and �̃0 (adjacent states)

only differ by the cell configurations of the same drone sBS,
say drone sBS 1 without loss of generality, we first assume �0
and �̃0 (adjacent states) only differ by the cell configurations
of drone sBS 1, i.e., (q0

n, c0
n) = (̃q0

n, c̃0
n), ∀n ∈ [2,N], q0

1 
= q̃0
1,

and c0
1 = c̃0

1.
Next, we define the coupling at state (�0, �̃0) by choosing

the next state (�1, �̃1) according to the following procedure.
Step 1: Choose drone sBS n∗ from [N] uniformly at random,

and both � and �̃ update the same n∗.
Step 2: Do the following if n∗ 
= 1, and go to step 3

otherwise.
According to the way of constructing the Markov chain �,

drone sBS n∗ may remain its configuration in the next step
or move to a new cell or hop to a new channel in the next
step. We define the decision space of n∗ conditional on f 0 is

�(n∗|f 0) = {stay,Qf 0

n∗ , Cf 0

n∗}, and the probability distribution
pn∗ = (pn∗(ω))ω∈�(n∗|f 0), where

pn∗(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1− αNR exp
(−U

(
f 0
))

ρ
, ω = stay

αζN exp
(−U

(
f 0
))

ρ
, ω ∈ Qf 0

n∗
α(1−ζ )N exp

(−U
(
f 0
))

ρ
, ω ∈ Cf 0

n∗ .

Similarly, we define the decision space of n∗ conditional on f̃ 0

is �(n∗|̃f 0) = {stay,Qf̃ 0

n∗ , C f̃ 0

n∗}, and the probability distribution
p̃n∗ = (̃pn∗(ω))ω∈�(n∗|̃f 0), where

p̃n∗(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1− αNR exp
(−U

(̃
f 0
))

ρ
, ω = stay

αζN exp
(−U

(̃
f 0
))

ρ
, ω ∈ Qf̃ 0

n∗
α(1−ζ )N exp

(−U
(̃
f 0
))

ρ
, ω ∈ C f̃ 0

n∗ .

Based on pn∗ over �(n∗|f 0) and p̃n∗ over �(n∗|̃f 0), we
define p′n∗ and p̃′n∗ over the same sample space �(n∗) =
�(n∗|f 0) ∪ �(n∗|̃f 0) = {stay,Qf 0

n∗ ∪ Qf̃ 0

n∗ , Cf 0

n∗}. Note that

Cf 0

n∗ = [M]\c0
n∗ = C f̃ 0

n∗ = [M]\̃c0
n∗ since c0

n∗ = c̃0
n∗ . Specifically,

we have

p′n∗(ω) =
{

pn∗(ω) ∀ω ∈ �
(
n∗|f 0

)

0 ∀ω ∈ �(n∗) \�(
n∗|f 0

) (10)

p̃′n∗(ω) =
{

p̃n∗(ω) ∀ω ∈ �
(
n∗|̃f 0

)

0 ∀ω ∈ �(n∗) \�(
n∗|̃f 0

)
.

(11)

We further define the following three probability distribu-
tions over the sample space �(n∗):

pmin
n∗ =

(
min

{
p′n∗(ω), p̃′n∗(ω)

})
ω∈�(n∗)

1− dTV
(
p′n∗ , p̃′n∗

) (12)

p+n∗ =
(
max

{
0, p′n∗(ω)− p̃′n∗(ω)

})
ω∈�(n∗)

dTV
(
p′n∗ , p̃′n∗

) (13)
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p̃+n∗ =
(
max

{
0, p̃′n∗(ω)− p′n∗(ω)

})
ω∈�(n∗)

dTV
(
p′n∗ , p̃′n∗

) . (14)

Recall that dTV(·, ·) denotes the total variation distance of two
probability distributions.

Now, we are ready to update drone sBSs n∗ in both Markov
chains � and �̃ for (�1, �̃1).

1) With probability 1−dTV(p′n∗ , p̃′n∗), select a configuration
ω from �(n∗) according to pmin

n∗ given in (12), and both
� and �̃ update n∗ to the new configuration ω.

2) Otherwise, � and �̃ update n∗ independently.
Specifically, � updates n∗ according to p+n∗ given in (13),
and �̃ updates n∗ according to p̃+n∗ given in (14).

Step 3: Given that n∗ = 1, q0
1 
= q̃0

1, and c0
1 = c̃0

1, we define
two probability distributions p′1 and p̃′1 over the sample space

�(1) = {(q0
1, c0

1), (̃q
0
1, c0

1),Qf 0

1 ∩Qf̃ 0

1 , Cf 0

1 }. Specifically,

p′1(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1− αNR exp
(−U

(
f 0
))

ρ
, ω = (

q0
1, c0

1

)

αζN exp
(−U

(
f 0
))

ρ
, ω = (

q̃0
1, c0

1

)

αζN exp
(−U

(
f 0
))

ρ
, ω ∈ Qf 0

1 ∩Qf̃ 0

1
α(1−ζ )N exp

(−U
(
f 0
))

ρ
, ω ∈ Cf 0

1
0, otherwise

p̃′1(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1− αNR exp
(−U

(̃
f 0
))

ρ
, ω = (

q̃0
1, c0

1

)

αζN exp
(−U

(̃
f 0
))

ρ
, ω = (

q0
1, c0

1

)

αζN exp
(−U

(̃
f 0
))

ρ
, ω ∈ Qf 0

1 ∩Qf̃ 0

1
α(1−ζ )N exp

(−U
(̃
f 0
))

ρ
, ω ∈ Cf 0

1
0, otherwise.

Similarly, we further define the following three probability
distributions over the sample space �(1):

pmin
1 =

(
min{p′1(ω), p̃′1(ω)}

)
ω∈�(1)

1− dTV
(
p′1, p̃′1

) (15)

p+1 =
(
max{0, p′1(ω)− p̃′1(ω)}

)
ω∈�(1)

dTV
(
p′1, p̃′1

) (16)

p̃+1 =
(
max

{
0, p̃′1(ω)− p′1(ω)

})
ω∈�(1)

dTV
(
p′1, p̃′1

) . (17)

Now, we are ready to update drone sBSs n∗ in both Markov
chains � and �̃ for (�1, �̃1).

1) With probability 1 − dTV(p′1, p̃′1), select a configura-
tion ω from �(1) according to pmin

1 given in (15),
and both � and �̃ update drone sBS 1 to the new
configuration ω.

2) Otherwise, � and �̃ update drone sBS 1 independently.
Specifically, � updates drone sBS 1 according to p+1
given in (16), and �̃ updates drone sBS 1 according to
p̃+1 given in (17).

It is not hard to show that the above procedure leads to a
valid coupling. Initially, we have H(�0, �̃0) = 1. With path
coupling, we next show that the Hamming distance between
�1 and �̃1 decreases in expectation compared to H(�0, �̃0),
i.e., E[H(�1, �̃1)|�0, �̃0] < H(�0, �̃0).

By the above coupling procedure, it can be seen that when
n∗ = 1, we have �1 = �̃1 if drone sBS 1 remains its con-
figuration from �0 to �1 and moves from q̃0

1 (�̃0) to q0
1

(�̃1)); or drone sBS 1 remains its configuration from �̃0
to �̃1 and moves from q0

1 (�0) to q̃0
1 (�1); or both chains

update drone sBS 1 to a new cell in Qf 0

1 ∩ Qf̃ 0

1 . Note that

|Qf 0

1 ∩Qf̃ 0

1 | = LW − N − 1. Hence, we have

E
[
H
(
�1, �̃1

)− 1|�0, �̃0, n∗ = 1
]

= −
∑

ω∈�(1)\Cf 0

1

(
1− dTV

(
p′1, p̃′1

))
pmin

1 (ω)

= −
∑

ω∈�(1)\Cf 0

1

min{p′1(ω), p̃′1(ω)}

≤ −ζ(LW − N + 1) exp(−β(�max −�min))

R|F | . (18)

When n∗ ∈ [2,N], with probability 1 − dTV(p′n∗ , p̃′n∗),
H(�1, �̃1) = 1; otherwise, H(�1, �̃1) = 2. Then, we have

E
[
H(�1, �̃1)− 1|�0, �̃0, n∗ ∈ [2,N]

]

= dTV
(
p′n∗ , p̃′n∗

) = 1−
∑

ω∈�(n∗)
min

{
p′n∗(ω), p̃′n∗(ω)

}
.

(19)
From the MAD-P/MM algorithm, it can be obtained that for

any n∗ ∈ [2,N], |Qf 0

n∗ | = |Qf̃ 0

n∗ | = LW−N, and |Qf 0

n∗ ∩Qf̃ 0

n∗ | =
LW − N − 1. Therefore,

∑

ω∈�(n∗)
min

{
p′n∗(ω), p̃′n∗(ω)

}

≥ 1− exp(β(�max −�min))

|F |
+ ζ(LW − N − 1) exp(−β(�max −�min))

R|F |
+ (1− ζ )(M − 1) exp(−β(�max −�min))

R|F |
= 1− exp(−β(�max −�min))

|F |
×

(
exp(2β(�max −�min))− R− ζ

R

)
. (20)

Here, we assume that

exp(β(�max −�min)) < |F | (21)

since 1 − [(exp(β(�max − �min)))/(|F |)] has to be a valid
probability. However, we will immediately have (21) after
we bound β shortly. By plugging (18)–(20), we bound the
conditional expected Hamming distance between �1 and �̃1

E
[
H
(
�1, �̃1

)− 1|�0, �̃0
]

=
∑

n∈[N]

1

N
E
[
H
(
�1, �̃1

)− 1|�0, �̃0, n∗ = n
]

≤ 1

N
· 1

|F | (N − 1) exp(−β(�max −�min))

×
[

exp(2β(�max −�min))−
(

1+ ζ (LW − 2N + 2)

(N − 1)R

)]
.

(22)
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We further denote the right-hand side of (22) by −B1, i.e.,

B1 �
(N − 1)

[
1+ ζ(LW−2N+2)

(N−1)R − exp(2β(�max −�min))
]

N|F | exp(β(�max −�min))

which is positive if the following two conditions hold:

N <
LW

2
+ 1 (23)

0 < β <
1

2(�max −�min)
ln

(
1+ ζ (LW − 2N + 2)

(N − 1)R

)
.

(24)

Due to (24), we certainly have (21). Therefore, for any pair
of �0 and �̃0 (adjacent states) only differing by the cell
configurations of the same drone sBS, it follows that:

E
[
H
(
�1, �̃1

)|�0, �̃0
] ≤ 1− B1 = (1− B1)H

(
�0, �̃0

)

where 0 < B1 < 1.
Follow the above analysis, similarly, for any pair of �0 and

�̃0 (adjacent states) only differing by the channel configura-
tions of the same drone sBS, we have

E
[
H
(
�1, �̃1

)|�0, �̃0
] ≤ 1− B2 = (1− B2)H

(
�0, �̃0

)

where

B2 �
(N − 1)

[
1+ (1−ζ )M

(N−1)R − exp(2β(�max −�min))
]

N|F | exp(β(�max −�min))

which is positive when

0 < β <
1

2(�max −�min)
ln

(
1+ (1− ζ )M

(N − 1)R

)
. (25)

Now, we choose any β which satisfies

0 < β <
ln(1+ κ)

2(�max −�min)
(26)

where κ � min{[(ζ(LW − 2N + 2))/((N − 1)R)], [((1 −
ζ )M)/((N−1)R)]}. We further define B � min{B1,B2}. From
the path coupling theorem in [37], for any (�0, �̃0) ∈ F×F ,
we have

E
[
H
(
�1, �̃1

)|�0, �̃0
] ≤ (1− B)H

(
�0, �̃0

)
(27)

where 0 < B < 1. Thus, Lemma 1 follows.
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