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Abstract—In the realm of healthcare data analysis, privacy
concerns have been tackled by the Federated Learning (FL)
framework. However, in the situation that heterogeneous health-
care Internet of Things (IoT) devices collect different types of
data, applying FL becomes difficult. To train a model leveraging
diverse healthcare IoT devices, we propose an advanced collab-
orative learning framework to fill the gap. With the proposed
collaborative learning framework, individual IoT devices project
their sensed features into a carefully developed latent space,
which are transmitted to a central server. For privacy preser-
vation, the latent local features are encoded within this space,
while the samples’ labels remain securely stored in the individual
IoT devices. Collaboratively, the deep neural network model is
trained by both the central server and the diverse IoT devices.
The central server handles the computationally intensive training
processes, while the individual IoT devices evaluate the model’s
performance and initiate back-propagation based on their locally
stored labels. Experimental results demonstrate that the proposed
collaborative learning framework achieves performance similar
to centralized training and significantly outperforms individual
training while preserving data privacy.

Index Terms—Collaborative Learning, Heterogeneous Health-
care Informatics, Latent Features.

I. INTRODUCTION

The rapid proliferation of Internet of Things (IoT) devices
in healthcare has resulted in the collection of vast volumes
of data, fueling a wide range of medical applications such as
remote health monitoring, fitness programs, disease detection,
and elderly care [1] [2]. However, individual healthcare IoT
devices often face limitations in terms of data capacity and
computing resources [3], making it arduous to train deep
learning models to yield meaningful insights. Consequently,
many smart healthcare applications have turned to the cloud-
based approach for machine learning model training [4].
Nevertheless, cloud solutions raise valid concerns regarding
data privacy and escalating maintenance costs [5]. The po-
tential compromise of sensitive private healthcare information
remains a pressing issue [6] [7]. Furthermore, the investments
required to maintain a cloud data center and the challenges as-
sociated with obtaining permissions for storing and processing
healthcare data add further complexity to the situation.

Federated Learning (FL) has emerged as an attractive ap-
proach for healthcare data thanks to its ability to facilitate
collaboration among data holders while keeping sensitive
information locally [8] [9]. By employing the FL framework,
individual devices can perform local processing, while the
central server handles coordination and aggregation [10].
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Extensive research has focused on developing advanced FL
algorithms to enhance learning performance, with emphasis
on privacy preservation [11] [12] and learning efficiency [13].

However, the existing FL approaches predominantly re-
volve around scenarios where the same type of local data
is used to train a unified global model. In healthcare, the
integration of heterogeneous data from diverse devices, such
as medical imaging equipment, wearable sensors, electronic
health records, genomics data, and precision medicine in-
terventions, is essential for training comprehensive models
that enable accurate diagnosis, personalized treatment, and
improved healthcare outcomes [14]. Consequently, the conven-
tional FL framework encounters challenges when attempting to
facilitate collaborative learning with heterogeneous healthcare
IoT device data. Furthermore, the computational demands
imposed on individual IoT devices during the training process
may prove impractical, particularly given the limited capacity
of wearable healthcare IoT devices. Therefore, minimizing
the computational loads on healthcare IoT devices becomes
imperative to ensure the feasibility of collaborative learning
scenarios.

In this work, we present a collaborative learning framework
that harnesses the capabilities of heterogeneous healthcare
IoT devices effectively. Our approach focuses on developing
unified latent features for diverse local data from various IoT
devices. Ensuring privacy is of utmost importance, and thus,
we keep the generation of local latent features on the respective
devices, preventing the reverse engineering of the original data.
To further enhance privacy, we preserve the sample labels
locally within the proposed collaborative learning framework,
safeguarding sensitive information. At the central server, a
deep neural network model is trained collaboratively with the
individual IoT devices, leveraging the locally preserved labels
and transformed representations of the local samples.

The significance of our proposed collaborative learning
framework lies in its ability to effectively collect diverse
healthcare IoT devices with heterogeneous local data sets.
This capability is crucial, given the challenges of conducting
collaborative training with varied local samples. Moreover,
the framework offers a compelling advantage by substantially
reducing the local computation burden, which is vital for
resource-limited healthcare IoT devices. By generating lower-
dimensional local latent features from the original data, our
framework also alleviates the communication burden, pro-
moting seamless collaboration among different healthcare IoT
devices. These extracted essential local information not only
facilitates collaboration but also enhances training efficiency
and scalability. We leverage latent features to share valuable
information while concealing sensitive details from the origi-
nal data. The local generation of latent features represents data
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in a more abstract and concise manner, effectively filtering out
noise and irrelevant information, resulting in a more robust and
accurate shared model. The shared model, trained on these
latent features, demonstrates heightened resilience to small
changes in the input data, offering significant benefits for
healthcare applications dealing with noisy or incomplete data.

To comprehensively evaluate the performance of our col-
laborative learning framework, we conducted extensive simu-
lations. The numerical results demonstrate that our proposed
approach achieves performance comparable to centralized
training methods while significantly outperforming individual
training. Through our research, we aim to revolutionize the
healthcare landscape by harnessing the collective potential
of heterogeneous IoT devices. By embracing a unified latent
feature space and prioritizing data privacy, our approach
opens new avenues for intelligent healthcare applications that
effectively utilize the rich and diverse data sources provided
by healthcare IoT devices.

The rest of this paper is organized as follows. In Sec-
tion II, we provide an overview of related works in the field.
Section III presents the system model and formulates the
collaborative training problem. In Section IV, we elaborate
on our proposed collaborative learning framework with an
adaptive local feature space. Theoretical analysis is provided
in Section V to support the effectiveness of our approach. To
demonstrate the training efficiency under various settings, we
present the simulation results in Section VI, followed by the
concluding remarks in Section VII.

II. RELATED WORKS

IoT devices have become prevalent tools for collecting
data in intelligent healthcare applications [15]. However, due
to privacy concerns surrounding healthcare data, uploading
such data to cloud data centers for model training is un-
desirable [16] [17]. Preserving data locally is particularly
favored, especially in healthcare applications where privacy is
of utmost importance. However, resource-limited IoT devices
face significant challenges in processing data locally. The
constrained computing power and memory capacity of these
devices can hinder their ability to handle large volumes of
data efficiently. In additional, the diversity in local data sam-
ples presents substantial challenges for effective collaboration.
Integrating data from various sources, each with its unique
characteristics, can complicate the collaboration process and
hinder the seamless sharing of information among IoT devices.
Overcoming these challenges is essential to harnessing the full
potential of IoT devices in data processing and collaboration.

Numerous research works have embraced FL framework
to train global models by utilizing decentralized data from
multiple clients [3]. Within the healthcare domain, diverse
approaches have been employed to address various challenges.
Some works have specifically focused on using FL to en-
sure privacy and security in collaborations among medical
institutions. For example, references [18] and [19] adopted
FL to address privacy concerns by avoiding the sharing of
raw data or model details [20] [21]. These efforts primarily
focus on extracting knowledge from electronic health records.

One notable approach is seen in [22], where tensor factoriza-
tion models were employed to convert vast electronic health
records into meaningful phenotypes for data analysis. Ad-
ditionally, a two-stage federated natural language processing
method [23] facilitates the utilization of clinical notes from
different hospitals or clinics. Moreover, [24] introduced a
community-based FL algorithm that accommodates the decen-
tralized non-IID (Independent and Identically Distributed) and
privacy-sensitive characteristics of electronic medical records.
This work clusters distributed data into clinically meaningful
communities to learn one model capturing similar diagnoses
and geographical locations. While these methods have demon-
strated efficacy in natural language processing tasks and with
specific healthcare data from electronic medical records, they
may not be directly suitable for healthcare IoT devices due to
their distinct characteristics and limitations.

Other works focus on specific healthcare data, such as [25],
which investigated brain structural relationships across dis-
eases and clinical cohorts using FL. A general decentralized
optimization framework [26] was developed to collaboratively
train sparse support vector machines to perform binary classi-
fication on the diagnosis of heart failure among multiple data
holders. How to decompose the approximated neural network
function to enable collaboration among IoT devices over the
first shallow components was proposed in [27] [28]. However,
the diversity of the training data has not been fully explored
in the above works, as their training data typically follow the
same structure.

Conventional FL framework faces significant challenges in
handling heterogeneous local data sets [29] [9]. All FL clients
are required to share the same global model [30] and perform
multiple local model updates before communicating with the
central server [31]. However, this approach is not suitable
for serving multiple types of IoT devices with varying local
sample dimensions, which is crucial in healthcare IoT appli-
cations. Each healthcare IoT device serves unique functions,
and collaboration among different types of devices is essential
to generate useful services. Hence, there is a pressing need
to develop an innovative framework that enables seamless
collaboration among diverse healthcare IoT devices.

Moreover, traditional FL framework often assume that in-
dividual devices are capable of conducting local updates of
deep neural network models, which may not be feasible in
healthcare IoT applications [32] [33] [10]. The resource capac-
ity of individual IoT devices is often limited and varies from
device to device, so multiple local updates can lead to severe
delay variance, causing convergence difficulties with non-IID
local data distributions with heterogeneous devices [24] [34]
[35]. Existing improvements to the FL framework, such as
FedProx [9], introduced a proximal term to local objective
functions, and other works employed variance reduction to
correct client drift in local updates [33] to address challenges
from the biased estimate of the global gradient. However, these
approaches cannot well address the complexities of collaborat-
ing heterogeneous healthcare IoT devices. To overcome these
challenges and foster effective collaboration among diverse
healthcare IoT devices, a novel framework that accounts for
feature space diversity, varying device capacities, and non-
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IID data distributions is required. By addressing these critical
issues, we can unlock the potential of collaborative learning
in healthcare IoT applications.

In this paper, we develop a novel collaborative learning
framework designed specifically for addressing the challenges
posed by the diverse local feature spaces of heterogeneous
healthcare IoT devices. By leveraging this framework, we
substantially reduce the work loads for individual IoT devices
during the collaborative training procedure. Our proposed
collaborative learning framework effectively tackles the issue
of diverse local feature spaces, which makes our approach
promising for a wide range of practical healthcare applications,
where the efficient utilization of heterogeneous IoT devices is
important. Simulation results show that the proposed collabo-
rative learning process is efficient and feasible.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this section, we propose a collaborative learning frame-
work as shown in Fig. 1 specifically designed to address
the challenges posed by the diversified local feature space
in healthcare IoT intelligence. With the widespread use of
IoT devices, including wearable devices in smart healthcare,
a massive volume of data is collected. However, individual
healthcare IoT devices have inherent limitations, such as con-
strained processing, storage, and power capacities. Therefore,
it is crucial to simplify the training tasks on each individual
device.

To tackle these challenges, our framework emphasizes col-
laboration among healthcare IoT devices to achieve robust
performance in supporting AI applications. This collaborative
approach enables the creation of a unified latent feature
space that captures the combined knowledge from multiple
devices, resulting in improved learning capabilities and en-
hanced performance. We aim to unlock the full potential of
healthcare IoT intelligence while effectively addressing the
constraints imposed by the diversified local feature space.
Through collaboration, we pave the way for harnessing the
rich and diverse data sources provided by IoT devices.

Fig. 1. Collaborative learning framework for healthcare IoT intelligence.

In the proposed framework, each healthcare IoT device
performs a few training steps on its local feature adaptive
encoder parameters and then transmits the encoded latent
features to a central server. The central server aggregates the
locally encoded latent features in each round and performs
a forward computation using the shared deep neural network
parameters. The resulting outputs of the shared neural network
model are then distributed to the individual IoT devices. At
this stage, each IoT device computes the local gradients of
the cross-entropy loss based on the received outputs from the
neural network model and their local labels.

By employing this training framework, the deep neural
network model is collaboratively trained with the central server
and the various healthcare IoT devices. The intensive training
computations are handled by the central server, while the
individual IoT devices evaluate the model and initiate back-
propagation based on their respective local labels. Addition-
ally, the framework ensures enhanced privacy of local data
by utilizing encoded latent local features, while the samples’
labels are securely retained by the individual IoT devices.

B. Problem Setup

There are E healthcare IoT devices denoted as {si, i =
1, 2, · · · , E}. The healthcare IoT devices maintain local data
sets to train their local encoder model parameters. The shared
deep neural network model parameters are denoted by w
which is tuned in the central server. The IoT device si
maintains the local model parameter Wi which constructs a
latent space for the local sample features.

The data sample collected by healthcare IoT device si is
denoted by xp ∈ Rdi×1 and the local data set is Di ∈ Rdi×ni ,
where there are ni local training samples and the overall sam-
ple number n =

∑E
i=1 ni. There is no overlap among different

local data sets. All data samples in the local data set Di of
healthcare IoT device si construct the local objective function
fi(w,Wi,xp). The optimization problem in a collaborative
objective is formulated as

minimize
w

f(w) =

E∑
i=1

ni
n

∑
xp∈Di

fi(w,Wi,xp). (1)

However, for the local training procedure in healthcare IoT
device si, it tries to minimize its own objective function which
leads to a local optimal solution. Due to the heterogeneity of
the local training data sets, local objective functions are dif-
ferent from each other. The local training procedures provide
different directions to update the model which causes difficulty
to converge from the global view.

More importantly, the local feature space is different,
namely {di}Ei=1 are different leading to varying input dimen-
sion of the local models. Therefore, minimizing the local ob-
jective function and average the results as shown in traditional
FL framework is not feasible in this case with different types
of local healthcare data sets.

Furthermore, the target to minimize the local objective
function may not be practical by the healthcare IoT device
si itself if the model w becomes too complex. Collaborative
learning framework is proposed in following to address the
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TABLE I
DESCRIPTION OF NOTATION

NOTATION DESCRIPTION
E The total number of IoT devices
Di The local data set of IoT device si
xp The original feature sample vector with index p
n The overall sample number
ni The sample number possessed by IoT device si
w The overall parameters in the shared NN model
f(w) The collaborative objective function
fi(w,Wi,xp) The local objective function of IoT device si
q The unified latent feature dimension
Wi The local model parameters tuned by IoT device si
Vi The latent local data set of samples of IoT device si
vp The latent feature sample vector with index p
Φ(·) Activation function in neurons
Ψ(·) Normalization function among hidden

layers of the shared NN model
di The original feature space with IoT device si
D̂i The reconstructed local data set of IoT device si
Xi The covariance matrix w.r.t. the local data set Di

λj The j-th eigenvalue of Xi

m The number of hidden layers in the shared NN model
pl The number of neurons in the l-th hidden layer

of the shared NN model
W̃l The weights between the l-th hidden layer and

the (l + 1)-th hidden layer of the shared NN model
B The latent sample batch size
Ṽ One batch of latent samples
Al The pre-activation values w.r.t. the l-th

hidden layer of shared model over Ṽ
µl, σl The mean and standard deviation w.r.t. columns of Al

Ψl The normalization function among hidden layers
γl, ζl Two parameter vectors in Ψl

op The output vector of the forward computation w.r.t. vp

αk Learning rate for shared NN model
φ(·) Quadratic auxiliary function
g(wk) The gradient information w.r.t. the parameters in

shared NN model in the k-th round

limited capacities of individual healthcare IoT devices and the
diversified local sample features.

IV. COLLABORATIVE LEARNING WITH ADAPTIVE LOCAL
FEATURE SPACE

A. Adaptive Latent Local Feature Design

The local adaptive latent feature design plays a crucial role
in enabling the collaboration of heterogeneous healthcare IoT
devices. The local adaptive latent feature design aims to cap-
ture the unique characteristics of each individual IoT device’s
data. It involves the development of a customized encoder
architecture that transforms the local features into a latent
space representation. By leveraging this adaptive latent local
feature design, our framework enables collaborative training
with the central server and various IoT devices. Moreover, the
local adaptive latent feature design also contributes to privacy
preservation. By operating in the latent space, sensitive in-
formation is inherently abstracted and protected. This ensures
that the privacy of healthcare data is maintained throughout
the collaboration and training process.

The unified latent feature dimension is denoted by q. The
local model Wi of IoT si extracts the local data sample
features from di dimension to q dimension which is defined
as Wi =

[
c1 · · · cq

]
di×q

. The local model parameter
matrix Wi can span a q-dimensional latent space. The pro-
jection of the ni local data samples on the q-dimensional

space spanned by the columns in Wi are represented by
Vi =

[
v1 · · · vni

]
q×ni

, which are the latent features. Each
vi is the linear combination of the q picked out basis vectors
in Wi, and the scalar for each basis vectors is the associated
component in vi, i.e., vi =

∑q
j=1 v

j
i cj .

We apply a neural architecture to tune the local model
parameters needed for adaptive latent feature learning. For the
local data set Di as the input to the neural network (NN),
the post-activation of the hidden layer is the q-dimensional
representations of the ni data samples, i.e., the columns of
Vi. For simplicity representation, we consider an example with
one hidden layer and linear activation functions, to generate
the unified latent feature in q-dimensional space, the hidden
layer should contain q neurons.

The local model parameter matrix Wi contains all the
weights connecting the units in the input layer and the units
in the hidden layer which transforms the data sample in IoT
si from the di-dimensional space to the q-dimensional latent
space which is represented by the post-activation value of the
hidden layer as Vi = Φ(W T

i Di). Then, the weights of the
links connecting the hidden layer units and the output layer is
denoted by Ŵi ∈ Rq×di .

To ensure that there is no information loss when the original
local features are transformed into the latent features, the latent
representation Vi must be able to be transformed back into the
original di-dimensional space. The reconstructed local data set
of IoT device si is formulated as D̂i = Φ(Ŵ TVi), which
should be pushed towards the original local data set Di, i.e.,
IoT device si targets to minimize the Frobenius norm of the
residual matrix ∥ Di−D̂i ∥2F . With identity activation function
assumption, we design the local parameter matrix Wi as one
orthogonal matrix to be able to expand the latent space without
information loss with its column vectors where W−1

i = W T
i .

The latent feature transformation is denoted by

W−1
i Di = W−1

i WiVi = Vi, (2)

and then transform Vi back to the d-dimensional space is
denoted by

Di = WiVi = WiW
−1
i Di. (3)

Following the idea in (2) and (3), we design Ŵi = W T
i and

D̂i is connected to the original local data set Di by

D̂i = Ŵ T
i Vi = Wi(W

T
i Wi)

−1W T
i Di. (4)

Then, the objective function for the local training task of
IoT device si to generate the unified latent features is defined
as

minimize
Wi

1

ni

∑
xp∈Di

||WiW
T
i xp − xp||22

subject to W T
i Wi = I.

(5)

Since

||WiW
T
i xp − xp||22 = −xT

p WiW
T
i xp + xT

p xp, (6)

then, the local learning objective is given by

− 1

ni

∑
xp∈Di

xT
p WiW

T
i xp +

1

ni

∑
xp∈Di

||xp||22. (7)
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The second term is constant w.r.t. Wi, we can focus on the
first term to minimize the objective function, i.e.,

xT
p WiW

T
i xp = trace(WiW

T
i xpx

T
p ). (8)

The original objective can be transformed into

minimize
Wi

− trace

WiW
T
i

1

ni

∑
xp∈Di

xpx
T
p

 ,

subject to W T
i Wi = I.

(9)

The eigen-decomposition of the covariance matrix w.r.t. the
local data set Di is defined as

Xi =
1

ni

∑
xp∈Di

xpx
T
p = UΛUT , (10)

which leads to

−trace
(
WiW

T
i Xi

)
= −trace

(
W T

i UΛUTWi

)
. (11)

We choose q eigenvectors from U as the q columns in the
local model parameter matrix Wi, then,

−trace
(
W T

i UΛUTWi

)
= −

q∑
j=1

λj , (12)

where {λj}qj=1 are the q corresponding eigenvalues. The
objective becomes to

minimize
λ

−
q∑

j=1

λj

subject to Xi = UΛUT .

(13)

The proposed collaborative learning framework harnesses the
capabilities of heterogeneous healthcare IoT devices by uti-
lizing local models {Wi}Ei=1 as code books which is kept
locally.

Privacy Preservation: By adopting the local adaptive latent
feature approach, this framework ensures data privacy as the
local models {Wi}Ei=1 are not shared, thereby preventing the
reconstruction of the original features from the latent features
in the absence of local model information. Healthcare IoT
devices can leverage their unique data characteristics and
mitigate privacy risks by reducing the direct exposure of
sensitive data. This process effectively obfuscates and conceals
sensitive details in the local data.

Latent features represent a more abstract and condensed
form of the original data, capturing essential patterns and re-
lationships without divulging specific details about individual
data samples. This abstraction adds an extra layer of privacy
protection and allows devices to collaborate securely without
compromising sensitive information. By embracing this local
adaptive latent feature approach, the framework facilitates
efficient collaboration among healthcare IoT devices, fostering
a collaborative ecosystem where devices can collectively im-
prove the quality of trained models. This advancement lays the
groundwork for the development of advanced and intelligent
healthcare applications, benefiting patients and practitioners
alike.

While achieving absolute robustness against malicious in-
puts is challenging, our goal is to make it significantly

more difficult and costly for attackers to compromise the
shared model. The proposed collaboration framework greatly
enhances the model’s resistance to adversarial attacks during
training. In our proposed framework, each IoT device con-
structs its own latent feature space, designed to focus on the
most critical information from the original samples. The use
of latent features aids in reducing the impact of adversarial
perturbations and improves the model’s generalization, making
it harder for attackers to identify vulnerabilities in the collabo-
rative process. Moreover, when transmitting obfuscated latent
features to train the shared model, the original information
is concealed from potential attackers, further increasing the
difficulty for malicious users to craft effective adversarial
examples. By combining these strategies, our collaborative
framework establishes a stronger defense against adversarial
attacks and provides a more secure and robust environment
for collaborative machine learning among IoT devices.

B. Global Shared Neural Network Function

For generality, we assume the global shared neural network
function is formulated by one m layer neural network. The
latent features of the data samples are transmitted to multiple
neurons by linearly combining the link weights that connect
each input node and the neurons to obtain their pre-activation
value and compute the post-activation value by the activation
function in each neuron. Then the successive neuron layers
feed the post-activation value into one another until the output
layer. We define each layer contains p1, p2, · · · , pm neurons.
The post-activation outputs of hidden layers are denoted by
m vectors h1,h2, · · · ,hm with dimension p1, p2, · · · , pm,
respectively. The weights between the l-th hidden layer and
the (l+1)-th hidden layer are denoted by a connection matrix
W̃l ∈ Rpl×pl+1 .

To perform the normalization and scaling for the inputs to
each hidden layer in the shared NN model, we apply the batch
normalization on the pre-activation values for each hidden
layer. We define the batch size as B and one latent sample
batch is denoted by Ṽ = [v1, · · · ,vB ]. The pre-activation
values of the given batch Ṽ in the first hidden layer are
denoted by

A0 = W̃ T
0 Ṽ = [a1

0,a
2
0, · · · ,aB

0 ]. (14)

The mean of the pre-activation values over the given batch
is denoted by µ0 and the corresponding standard deviation is
denoted by σ0 for the first hidden layer are given by

µ0 =
1

B

B∑
i=1

ai
0, σ2

0 =
1

B

B∑
i=1

(ai
0 − µ0)

2 + ϵ, (15)

where the operation is piece-wise and ϵ is a small value to
avoid the zero variance. After computing the first and second
order momentum of the pre-activation values in the first hidden
layer, the normalization procedure is defined as

Ψ0(W̃
T
0 vp) =

γ0

σ0
· (ap

0 − µ0) + ζ0, (16)

where γ0 and ζ0 are two parameter vectors which need to be
tuned during the back-propagation.
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We use Φl(·) to represent the activation function in the
neurons in the l-th hidden layer and ∀l ∈ {1, · · · ,m − 1}.
For simplicity, we apply w to represent overall parameters
in the shared NN model. The latent feature vp ∈ Rq×1 is
fed into the shared NN model at the input layer, where the
connection matrix W̃0 ∈ Rq×p1 linearly combining the input
features and deliver the result through the activation function
to the first hidden layer formulated as h1 = Φ0(Ψ0(W̃

T
0 vp)).

We define the connection matrix W̃m+1 ∈ Rpm×K connect-
ing the m-th hidden layer and the output layer, the forward
computation is formulated as

op = Φm+1(Ψm+1(W̃
T
m+1Φm(Ψm(· · ·Φ0(Ψ0(W̃

T
0 vp)))))),

(17)
where op ∈ RK×1 denotes the output vector in the output
layer.

Since the K outputs in vector op could be any number,
we need to control the magnitude and the sign of the output
value for any possible input data sample. Each output in op

represents the score of a given data sample that belongs to
one category. The category with highest score is the class the
model has predicted for the given data sample. The original
goal is to pick up the index with the largest output number
from op = [o1, · · · , oK ], i.e.,

j∗ = argmax
1≤j≤K

{o1, o2, · · · , oK}. (18)

Then, based on the idea that

argmax
1≤j≤K

{o1, o2, · · · , oK} = argmax
1≤j≤K

{eo1 , eo2 , · · · , eoK}, (19)

the output number oj can be replaced by eoj . Furthermore,
the logarithm of the sum of all {eoj}Kj=1 approximates to the
largest number of all numbers in op as

log(

K∑
j=1

eoj ) ≈ max
1≤j≤k

{o1, o2, · · · , oK}. (20)

We use ŷi to represent the probability that the given data
sample belongs to category i, i.e., P (yp|oi), which interprets
the outputs of the shared NN model as probabilities of the
input data sample belonging to the corresponding category.
To formulate all the outputs of the shared NN model to be
non-negative and sum to 1, ŷi is designed as

ŷi = P (yp|oi) =
eoi∑K
j=1 e

oj
, (21)

where yp is the one-hot vector to indicate the true category
that the given data sample belongs to. And we use vector ŷp

to represent the estimated probability results for the given data
sample where ŷi is its i-th component, which is denoted as

ŷp = P (yp|op) =

{
eoi∑K
j=1 e

oj

}K

i=1

. (22)

C. Initiation of Back-propagation by Local Loss

Then, the central server sends the estimated results ŷp to
the corresponding IoT device which has the true label yp.
We compare the estimated ŷp with the reality yp by checking
how probable yp is. Maximizing this conditional probability

P (yp|op) is equivalent to minimize the negative logarithm of
this conditional probability − log (P (yp|op)).

This formulation is purely from the idea that try to maximize
the estimated probability of the ground truth. This idea can be
connected with the cross-entropy loss function by the ground
truth one-hot vector yp as

− log(P (yp|op)) = −
K∑
j=1

yj log(P (yp|oj))

= −
K∑
j=1

yj log(ŷj).

(23)

This expectation concept can be interpreted as picking up the
negative logarithm of the ground truth probability − log(ŷj∗)
where only j∗-th component of the one-hot vector yp equals
to 1, the rest part of yp are 0. The loss w.r.t. latent sample vp

is defined as

f(w,vp) = −
K∑
j=1

yj log

(
eoj∑K
i=1 e

oi

)

= log(

K∑
i=1

eoi)−
K∑
j=1

yjoj

= log(

K∑
i=1

eoi)− oj∗ .

(24)

Then, the IoT device evaluates the local gradients based on its
local labels and the outputs of the shared NN function as

{∂oif(w,vp)}Ki=1 =

{
eoi∑K
j=1 e

oj
− yi

}K

i=1

. (25)

Then, the local gradients are transmitted to the central server
to update the parameters in the shared NN model.

D. Backward Computation in Shared Neural Network

The back-propagation for the shared NN model parameters
tuning in the central server initiated by {∂oif(w,vp)}Ki=1

provided by the IoT devices. Following the chain rule, we
define the back-propagated value at the output of the activation
function of the l-th hidden layer as ▽▽▽Φl

f , and the back-
propagated value at the output of Ψi is given by ▽▽▽Ψl

(▽▽▽Φl
f).

There are two parameters defined normalization function
Ψl(·), i.e., γl and ζl. The gradients with respect to the two
parameters over the given batch with size B are computed as

▽▽▽ζl
(▽▽▽Ψl

(▽▽▽Φl
f)) =

{
B∑

p=1

∂Φl
f

∂Ψi
l,p

·
∂Ψi

l,p

∂ζi
l

}pl

i=1

,

▽▽▽γl
(▽▽▽Ψl

(▽▽▽Φl
f)) =

{
B∑

p=1

∂Φl
f

∂Ψi
l,p

·
∂Ψi

l,p

∂γil

}pl

i=1

.

(26)

We define
âl,p =

1

σl
· (al,p − µl), (27)

and we obtain that

âl,p =

{
B∑

p=1

∂Ψi
l,p

∂γil

}pl

i=1

. (28)
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To continue back-propagate in the l-th hidden layer w.r.t.
function Ψl(·), we compute the gradient w.r.t. âl,p denoted
by

▽▽▽âl,p
(▽▽▽Ψl) =

{
∂Ψi

l,p

∂âil,p

}pl

i=1

. (29)

Then, from the definition in (15) and (27), the back-
propagation passes to al which is formulated by

▽▽▽al
(▽▽▽Ψl

(▽▽▽Φl
f))

=

{
1

σi

∂Φl
f

∂âil,p
+

1

m

∂Φl
f

∂µi
l

+ 2 ·
(ail,p − µi

l)

m

∂Φl
f

∂σi2
l

}pl

i=1

.
(30)

Then, based on the already-executed ▽▽▽Ψl
(▽▽▽Φl

f), we obtain

▽▽▽âl,p
(▽▽▽Ψl

(▽▽▽Φl
f)) =

{
γil
∂Φl

f

∂Ψi
l,p

}pl

i=1

. (31)

Then, the back-propagation has been updated to âl,p which is
directly associated with µl,σ

2
l as shown in (27). Since µl,σ

2
l

come from one batch of the passing pre-activation values, we
obtain

▽▽▽σ2
l
▽▽▽âl

(▽▽▽Ψl
(▽▽▽Φl

f)) =

{
B∑

p=1

∂Φl
f

∂Ψi
l,p

∂Ψi
l,p

∂âil,p

∂âil,p
∂σi2

l

}pl

i=1

.

(32)
Because ▽▽▽σl

âl = −1/σ2
l and ▽▽▽σl

σ2
l = 2σl, we get ▽▽▽σ2

l
âl =

−1/2σ3
l , which leads to

▽▽▽σ2
l
▽▽▽âl

Ψl = −

{
1

2σi3
l

B∑
p=1

γil · (ail,p − µi
l)

}pl

i=1

. (33)

The gradient with respect to µl is given by

▽▽▽µl
▽▽▽âl

(▽▽▽Ψl
(▽▽▽Φl

f))

=

{(
B∑

p=1

∂Φl
f

∂âil,p

∂âil,p
∂µi

l

)
+
∂Φl

f

∂σi2
l

∂σi2
l

∂µi
l

}pl

i=1

.
(34)

Since ▽▽▽µl
âl = −1/σl and

▽▽▽µl
σ2
l = − 2

B

B∑
p=1

(al,p − µl), (35)

combining (31) and (33), we get

▽▽▽µl
▽▽▽âl

(▽▽▽Ψl
(▽▽▽Φl

f))

= −
B∑

p=1

γl · ▽▽▽Ψl
(▽▽▽Φl

f)

σl

+
γl

σ3
l B

(

B∑
p=1

▽▽▽Ψl
(▽▽▽Φl

f) · (al,p − µl)) · (
B∑

p=1

(al,p − µl)).

(36)

Therefore, the back-propagation updated on the pre-activation
output al,p is connected to ▽▽▽Ψl

(▽▽▽Φl
f) as

▽▽▽al
(▽▽▽Ψl

(▽▽▽Φl
f))

=
γl(▽▽▽Ψl

(▽▽▽Φl
f))

σl
− γl

σlB

B∑
p=1

(▽▽▽Ψl
(▽▽▽Φl

f))

+
γl

σ3
l B

2
(

B∑
p=1

(▽▽▽Ψl
(▽▽▽Φl

f)) · (al,p − µl)) ·
B∑

p=1

(al,p − µl)

− (al,p − µl)

σ3
l B

B∑
p=1

γl(▽▽▽Ψl
(▽▽▽Φl

f)) · (al,p − µl).

(37)
As we apply wk to denote all the parameters in the shared

NN model in the k-th round, g(wk) refers to the gradients
information w.r.t. the parameters in the shared NN model in
the k-th round. We use αk to denote the step length parameter
along the search direction and the current shared NN model
updating is wk+1 = wk −αkg(wk). And we applied detailed
analysis to justify the learning rate αk and convergence in
Section V.

V. CONVERGENCE ANALYSIS

Optimization techniques invest substantial effort in under-
standing and improving the region near the optimizers. This
region holds paramount importance as it determines conver-
gence and influences the overall performance of optimization
algorithms. By focusing on this critical area, we strive to gain
a comprehensive understanding of optimization dynamics and
devise effective strategies to enhance convergence efficiency
and optimize overall algorithm performance.

A. Quadratic Auxiliary Function

We design a perfect symmetric quadratic function, i.e.,
the condition number of this designed quadratic function’s
Hession is 1. The learning rate for updating the shared NN
model αk is used to control the curvature in every dimension
where the larger the αk, the wider the associated quadratic
becomes. We define the quadratic function as

φαk
(wk+1) =

1

2αk
∥wk+1 −wk∥2

+ g(wk)
T (wk+1 −wk) + f(wk).

(38)

A large αk that the quadratic approximation φαk
(wk) will be

flat enough which lies completely above the f(w) everywhere
except at its point of tangency with f(w). In this case, the
minimum of φαk

(wk) definitely lies above f(w) and the
negative gradient direction leads to a smaller evaluation of
f(w).

We set the upper bound of the curvature of the global objec-
tive function f(w) as L. Large L means much curved function.
To guarantee the designed quadratic auxiliary function φ(w)
is completely above f(w), the curvature of φ(w) is defined by
L. The curvature information of a function lies in its second
derivatives. In order to determine its maximum curvature we
must determine the largest possible eigenvalue (in magnitude)
of its Hessian matrix, i.e.,

L = max
w

∥∥▽2f(w)
∥∥
2
⇒ max

w

∥∥▽2φ(w)
∥∥
2
=

1

αk
. (39)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3307675

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on August 24,2023 at 08:26:00 UTC from IEEE Xplore.  Restrictions apply. 



8

Once determined the curvature upper bound L, which means
we determined the minimal learning rate αk as we set αk = 1

L .
The global model updating becomes to

wk+1 = wk − 1

L
g(wk). (40)

We get φ 1
L
(wk+1) as

φ 1
L
(wk+1) =

L

2
∥wk+1 −wk∥2

+ g(wk)
T (wk+1 −wk) + f(wk).

(41)

Because

L · I − ▽2f(w) ⪰ 0, (42)

thus, for any w we have

wT (L · I − ▽▽▽2f(w))w ≥ 0 (43)

which leads to

φ 1
L
(wk+1) ≥ f(wk+1), (44)

which guarantees f(w) to always descend. In practice, we
should use αk = 1

L as a benchmark to search for larger
convergence-forcing fixed step length values. Plugging (40)
into (44), we get

f(wk+1) ≤
1

2L
g(wk)

Tg(wk)−
1

L
g(wk)

Tg(wk) + f(wk)

= f(wk)−
1

2L
g(wk)

Tg(wk).

(45)
Since g(wk)

Tg(wk) ≥ 0, the objective evaluation decreases
at each updating. To prove that the magnitude of the gradient
will become sufficiently small which means that it converges
to a stationary point, we accumulate an infinite sequence of the
magnitude of gradients, and then to proof this accumulation is
a finite number which gives us the idea that later components
in this infinite sequence should be sufficiently small. Following
this idea, we subtract f(wk) from both sides of (45) and
accumulate the results from k = 0 to infinite as

∞∑
k=0

(f(wk+1)− f(wk)) ≤ − 1

2L

∞∑
k=0

g(wk)
Tg(wk). (46)

And we know that

K∑
k=0

(f(wk+1)− f(wk)) ≥ f(w∗)− f(w0), (47)

where w∗ is the optimal solution to minimize f(w). Obvi-
ously, f(w∗)− f(w0) ̸= −∞, that means

∞∑
k=0

g(wk)
Tg(wk) < +∞ ⇒ lim

k→∞
g(wk)

Tg(wk) = 0. (48)

The gradient will finally vanish, and this conclusion can be
achieved by using any smaller than αk ≤ 1

L .

B. Convergence Speed Analysis

The one iteration reduction for the shared NN model is
bounded by

||wk+1 −w∗||2 = ||wk − αkg(wk)−w∗||2

= ||w∗ −wk||2 − 2αkg(wk)
T (wk −w∗)

+ α2
k||g(wk)||2.

(49)
We need to set lower bound for the inner product
g(wk)

T (wk −w∗), since when the search direction tends to
become asymptotically orthogonal to the gradient direction,
the updating will get stuck. Analysis can be shown as follows.

According to the quadratic upper bound and the linear
lower bound of the global objective function, we obtain the
inequality as

f(wk+1)− f(wk) = f(wk+1)− f(z) + f(z)− f(wk)

≤ g(wk+1)
T (wk+1 − z) + g(wk)

T (z −wk) +
L

2
||z −wk||2

= g(wk+1)
T (wk+1 −wk) + (g(wk+1)− g(wk))

T (wk − z)

+
L

2
||z −wk||2.

(50)
We define

z = wk − 1

L
(g(wk)− g(wk+1)), (51)

then, we obtain

(g(wk+1)− g(wk))
T (wk − z)

= − 1

L
||(g(wk+1)− g(wk))||2.

(52)

And since
L

2
||z −wk||2 =

1

2L
||(g(wk+1)− g(wk))||2, (53)

we obtain

g(wk)
T (wk+1 −wk) ≤ f(wk+1)− f(wk)

≤ g(wk+1)
T (wk+1 −wk)−

1

2L
||(g(wk+1)− g(wk))||2

(54)
which leads to

(g(wk+1)− g(wk))
T (wk+1 −wk)

≥ 1

2L
||(g(wk+1)− g(wk))||2.

(55)

We define ψ(w) = f(w)− τ
2 ||w||2. Then, we have

(▽▽▽ψ(w∗)− ▽▽▽ψ(wk)
T (w∗ −wk)

≥ 1

L− τ
||▽▽▽ψ(w∗)− ▽▽▽ψ(wk)||2,

(56)

which leads to

(g(w∗)− g(wk))
T (w∗ −wk)− τ ||w∗ −wk||2

≥ 1

L− τ
||g(w∗)− g(wk)− τ(w∗ −wk)||2.

(57)

We continue to simplify (57) as

(g(w∗)− g(wk))
T (w∗ −wk)

≥ τL

L+ τ
||w∗ −wk||2 +

1

L+ τ
||g(w∗)− g(wk)||2.

(58)
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Since g(w∗) = 0, we obtain

g(wk)
T (wk −w∗) ≥ τL

L+ τ
||wk −w∗||2

+
1

L+ τ
||g(wk)||2.

(59)

Thus, one step reduction can be bounded by

||wk+1 −w∗||2 ≤ L+ τ − 2αkτL

L+ τ
||wk −w∗||2

+ (α2
k − 2αk

L+ τ
)||g(wk)||2.

(60)

According to

||g(wk)||2 = ||g(wk)− g(w∗)||2 ≤ ||wk −w∗||2, (61)

we rewrite (60) as

||wk+1 −w∗||2 ≤ L+ τ − 2αkτL

L+ τ
||wk −w∗||2

+ (α2
k − 2αk

L+ τ
)L2||wk −w∗||2.

(62)

And according to (62) and the , we set αk = 2
L+τ to obtain

||wk+1 −w∗||2 ≤ (
L− τ

L+ τ
)2||wk −w∗||2

= (
κ− 1

κ+ 1
)2||wk −w∗||2.

(63)

By unrolling the recursion in (63), we obtain that

||wk+1 −w∗||2 ≤ (
κ− 1

κ+ 1
)2k||w0 −w∗||2, (64)

and combining with the quadratic upper bound

f(wk+1) ≤ f(w∗) + g(w∗)T (wk+1 −w∗)

+
L

2
||wk+1 −w∗||2

= f(w∗) +
L

2
||wk+1 −w∗||2,

(65)

we obtain

f(wk+1)− f(w∗) ≤ L

2
||wk+1 −w∗||2

≤ L

2
e−

4k
κ+1 ||w0 −w∗||2.

(66)

Based on (66), we conclude that iterate wk+1 achieves ap-
proximation accuracy |f(wk+1) − f(w∗)| ≤ ϵ as long as k
satisfies

k ≥ κ+ 1

4
log

L||w0 −w∗||2

2ϵ
. (67)

VI. PERFORMANCE EVALUATION

In this section, we conduct extensive simulations to eval-
uate the performance of the proposed scheme. We use a
diverse set of synthetic local datasets that emulate real-world
healthcare IoT data characteristics. These simulations provide
practical insights into the effectiveness of our method. We
employ centralized learning with overall features (CELF) as
a benchmark. It is important to note that CELF is con-
sidered an ideal solution but may not be practical in real-
world scenarios since it processes all features together. We
compare our proposed Collaborative Learning with Adaptive

Latent Feature (COLAF) against this benchmark to assess its
promising capabilities. Furthermore, we compare COLAF with
individual learning based on local features (ILLF) to highlight
the significant improvements achieved by our approach. By
presenting the simulation results and benchmark comparisons,
we demonstrate the practical benefits and effectiveness of our
proposed method for collaborative learning with heteroge-
neous healthcare IoT devices.

A. Local Data Set Synthesis

We begin by describing the original dataset, which consists
of samples with six features: monitoring time (TIME), sugar
level (SL), EEG monitoring rate (EEG), blood pressure (BP),
heart beat rate (HR), and blood circulation (CIRCULATION).
After removing outliers, we are left with a total of 14203
samples. Among these samples, approximately 29.1% are
associated with the activity of Falling. To facilitate our eval-
uation, we divide the dataset into a training set containing
9516 samples and a testing set containing 4687 samples. In
our scenario, IoT devices in institutions collect samples with
features TIME, EEG, and CIRCULATION. The remaining
features are captured by personal IoT devices. Specifically, we
consider three types of personal IoT devices, each measuring
a different physical sign: SL, BP, and HR. The 9516 training
samples are divided into multiple local datasets, with each
type of IoT device having its own set of local data. The test
dataset for each individual IoT device comprises 4687 samples
with their associated features. Given the varying sizes of the
local training datasets and our goal of comparing training
approaches with the same number of epochs, we define the
batch size rate as the percentage of one batch in the entire
training dataset. This ensures that the number of updates
each epoch remains consistent across different local datasets.
Controlling the number of updates is crucial as it greatly
affects the training results.

B. Performance with Various Neural Network Architectures

To evaluate the effectiveness of our proposed method, we
performed experiments using different neural network archi-
tectures with varying numbers of hidden layers and neurons
per layer. In this experiment, we set the total number of epochs
to 1000 and the batch size rate to 1. For our proposed training
method to generate latent features, the local model parameters
of each individual IoT device underwent 200 training epochs
with a batch size rate of 0.1. The dimension of the latent space
is defined as 6, and there are 20 IoT devices participating in the
collaborative training for each type. These experiments aimed
to assess the performance of our approach across a range of
the shared neural network configurations, providing valuable
insights into its effectiveness and robustness.

CELF serves as an ideal benchmark is evaluated by the
original test data set and is not intended for practical imple-
mentation in healthcare IoT applications. For both COLAF and
ILLF, we simulate heterogeneous local features by partitioning
the original test dataset samples, enabling us to generate local
testing datasets that reflect the realistic behavior of healthcare
IoT devices. The performance of COLAF and ILLF is then
evaluated using the corresponding local features from the test
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Fig. 2. Different number of hidden layers.

dataset of each IoT device. Fig. 2 illustrates the averaged
testing accuracy and testing loss results of COLAF and ILLF
across all participating IoT devices, providing a more practical
and meaningful evaluation of their performance in healthcare
IoT applications.

As depicted in Fig. 2, we evaluated the impact of varying
the number of hidden layers in the shared neural network
model. The range of hidden layers tested was from 4 to 16,
with each layer containing 10 neurons. The results consistently
demonstrated that as the number of hidden layers increased,
our proposed COLAF approach achieved performance levels
that close to the benchmark set by CELF, the global training
scheme. In contrast, the benchmark ILLF, which relies solely
on individual IoT devices, performed significantly worse due
to limited access to comprehensive data. Even assuming indi-
vidual IoT devices have sufficient computing capabilities for
training large neural network models, COLAF still outper-
formed ILLF. These findings emphasize the effectiveness of
collaborative learning in enhancing the overall performance
of healthcare IoT devices, showcasing its potential for driving
advancements in intelligent healthcare applications.

Then, we investigate the impact of varying the number of
neurons in each hidden layer of the shared neural network
architecture. We consider a range of values from 10 to 40 neu-
rons in each hidden layer, while maintaining a total of 8 hidden
layers. The results, depicted in Fig. 3, clearly demonstrate the
superiority of the proposed COLAF over the ILLF approach.
The performance of COLAF approaches that of the CELF,
indicating its ability to achieve comparable performance while
overcoming the limitations of individual training. Notably, the
optimal performance of COLAF is achieved with 20 neurons in
each hidden layer, as shown in Fig. 3(a). As the complexity of
the shared neural network model increases beyond this point,
the performance of COLAF slightly deteriorates due to the
limitations of the latent features’ representation ability.

In conclusion, the proposed COLAF demonstrates its ca-
pability to effectively train relatively complex neural network
models by leveraging the latent local features from healthcare
IoT devices. It achieves performance levels comparable to
CELF, which is not practical for real-world scenarios, while
surpassing the performance of ILLF trained by individual IoT
devices.

C. Number of IoT Devices Participating in Collaborative
Learning

To investigate the impact of the number of IoT devices
participating in the collaborative learning process, we con-
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Fig. 3. Different number of neurons on each hidden layer

ducted experiments with varying numbers of IoT devices while
keeping the number of samples held by each device fixed. We
performed 1000 training epochs with a batch rate of 1 for each
configuration. We define the aligned latent feature dimension
as 6, the parameters of the local encoders were trained by 200
epochs. The shared neural network architecture consisted of
8 hidden layers, each with 10 neurons, which was consistent
across all following experiments.

The experimental results, depicted in Fig. 4, reveal that
increasing the number of IoT devices participating in the
collaborative learning process significantly improves its per-
formance when the number of devices is relatively small as
shown in Fig. 4 with 200 to 600 IoT devices. However, as the
number of devices collaborating reaches 600, the performance
improvement becomes marginal. Continuing to add more IoT
devices beyond this point offers only slight enhancements
to COLAF’s performance as shown with 800 participated
IoT devices. In summary, the experiments highlight the di-
minishing returns of including additional IoT devices in the
collaborative learning process once a sufficient number of
devices are already collaborating. This finding underscores the
importance of optimizing the IoT device participation to strike
a balance between performance gains and resource utilization
to combining more IoT devices.
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Fig. 4. Different number of collaborated IoT devices

Figure 5 presents the convergence speed of the proposed
COLAF, compared with CELF and ILLF, when 200 IoT
devices of each type participate in the collaborative training.
The local model of each IoT device develops the latent space
in 6 dimensions and the local parameters are trained over 200
epochs with a batch rate of 0.1.

In Fig. 5(a), it can be observed that the ILLF demonstrates
a significantly faster convergence speed compared to both
COLAF and CELF during the training procedure. Moreover,
ILLF consistently outperforms the other two training schemes
in terms of training loss. This rapid convergence of ILLF is
particularly evident when the number of samples available to
each IoT device is limited. However, while ILLF achieves
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superior training loss, its testing performance is significantly
poorer than the other two schemes, as shown in Fig. 5(b). This
is due to the limited training samples available to individual
IoT devices, which prevents them from acquiring a compre-
hensive understanding of the samples in the test dataset. As a
result, the locally trained model becomes highly overfit to the
limited local samples, leading to poor testing performance. It
is worth noting that the faster convergence of training loss in
ILLF for smaller training datasets does not necessarily indicate
better model performance in practical applications. To achieve
reliable and robust model performance, it is crucial to consider
a broader scope beyond the limitations of limited local datasets
which leading to the motivation of the proposed COLAF.
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Fig. 5. Convergence analysis.

D. Impact of Different Batch Rates

The choice of batch size plays a crucial role in training
results, as it determines the number of updates made during
each epoch based on the training dataset size. Since the train-
ing datasets differ among the three schemes (ILLF, COLAF,
and CELF), batch rates need to be defined to ensure an equal
number of updating steps across schemes within each epoch.
Fig. 6 demonstrates that the proposed COLAF consistently
outperforms ILLF and achieves performance levels closer to
CELF. The model in this experiment comprises 8 hidden
layers with 10 neurons in each hidden layer, trained over 1000
epochs, and involves the participation of 200 IoT devices for
each type in the collaborative training.

The ILLF initially exhibits poor performance with a batch
rate of 0.001, primarily due to severe overfitting. As the batch
rate increases from 0.001 to 1, the issue of overfitting gradu-
ally diminishes in ILLF. However, both CELF and COLAF
experience a slight reduction in performance as the batch
rate increases, owing to fewer updates being made. Overall,
the results highlight the effectiveness of COLAF compared
to ILLF, as it consistently achieves better performance and
closely approaches the performance of CELF.
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Fig. 6. Impact of Different Batch Rates during Training Procedure.

E. Number of Latent Feature Space Dimensions

The dimension of the latent feature space is a critical aspect
of COLAF’s design. To explore the impact of the latent feature
dimension, we conducted experiments with a range of latent
feature dimensions, specifically from 2 to 8, as depicted in
Fig. 7. The model was trained over 1000 epochs with a batch
rate of 1, using samples collected from 200 IoT devices of
each type. The shared NN model consisted of 4 hidden layers,
each with 10 neurons. The results revealed that as the number
of latent feature dimensions increased within a reasonable
range, the performance of COLAF surpassed that of ILLF.
Initially, as the dimensionality of the latent features increased,
the performance of the collaborative trained model improved
due to enhanced representation capabilities. However, beyond
a certain point, when the latent feature dimensions continued
to increase, the performance of the collaborative trained model
began to decline, likely due to sparse latent features.

The results underscore the importance of choosing an ap-
propriate dimension for the latent feature space in COLAF,
striking a balance between representation ability and avoid-
ing over-sparsity. The collaborative training approach demon-
strated its effectiveness in improving performance compared
to individual training, highlighting the potential of leveraging
latent features for enhanced healthcare IoT analytics.
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Fig. 7. Different number of dimensions for latent feature space.

F. Impact of Local Training of IoT Devices

Addressing the work load of IoT devices to train the local
model is a crucial consideration in COLAF. In Fig. 8, we
explore the relationship between the local work loads w.r.t.
the number of local training epochs within IoT devices and the
performance of COLAF. The shared NN model used for this
experiment with COLAF and the individual model with ILLF
consist of 4 hidden layers, with 10 neurons in each hidden
layer. It is trained over 1000 epochs with a batch rate of 1.
For each type of IoT device, we have 200 different devices
participating in the collaborative training scheme. Each IoT
device trains a local model capable of generating a latent
feature space with 6 dimensions.

The results clearly demonstrate that the proposed COLAF
consistently outperforms ILLF across a range of local com-
puting settings, varying from 50 to 200 local training epochs
with COLAF. As the number of training epoch within the
local IoT devices increases, there is an initial improvement
in the testing accuracy and loss of COLAF. However, as
the number of local training epochs reaches 200, there is
a decline in performance of COLAF due to overfitting of
the local model to the local training samples. These findings
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highlight the trade-off between local work loads within IoT
devices and performance in COLAF. While increasing the
local work loads can initially improve performance, there is
a limit beyond which further local training efforts leads to
diminishing returns. Achieving an optimal balance is crucial
to maximize the benefits of collaborative learning in healthcare
IoT applications.
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Fig. 8. Convergence of Local Model Training.

G. Computing Cost on IoT Devices

Furthermore, the proposed COLAF significantly reduces the
computing cost on each IoT device compared to the ILLF,
as demonstrated by the computing time required during the
training phase. In Fig. 9, we present a comparison of the
computing cost between COLAF and the benchmark ILLF
by varying the number of latent features and local training
epochs in COLAF. The evaluation of ILLF is the average
computing time of conducting 200 training epochs with the
NN model overall participated IoT devices. To be fair with
the comparison, the evaluation of the local computing cost in
each IoT device of COLAF also covers 200 local epochs with
varying the latent space dimensions while keeping the training
epochs constant as shown in Fig. 9(a). Then, we evaluate the
average computing time of COLAF by fixing the latent feature
dimension while increasing the local training epochs as shown
in Fig. 9(b).

The results clearly demonstrate that COLAF significantly
reduces the computing time on IoT devices compared to the
ILLF. Although the computing time increases as the local
model training epochs range from 100 to 400, the increment
remains negligible compared to the computing cost associated
with the ILLF. Fig. 8 further supports these findings, indi-
cating that the collaborative trained model achieves superior
performance by conducting no more than 200 training epochs
on the local model, surpassing the performance of the ILLF.
This highlights the efficiency and effectiveness of COLAF
in reducing computing cost while still achieving remarkable
performance compared to the ILLF.

VII. CONCLUSION

In this paper, we introduce a novel Collaborative Learning
architecture designed to leverage the abundant healthcare data
gathered by diverse IoT devices. Our architecture is capable
of adapting to the diverse local feature spaces of different
IoT devices and enables collaborative training of deep neural
network models, making it applicable to various healthcare IoT
devices. By shifting the majority of the training workload to a
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central server, our collaborative learning architecture alleviates
the computational burden on individual IoT devices. We eval-
uate the performance of our proposed method through a series
of experiments, demonstrating its reliability and promise. The
results highlight the effectiveness of our collaborative learning
framework in integrating different types of healthcare data
collected from heterogeneous IoT devices. In conclusion, our
collaborative learning framework offers a valuable solution
for the seamless integration of diverse healthcare data from
heterogeneous IoT devices. Through alignment of local feature
dimensions and guaranteed data privacy, it paves the way for
enhanced intelligent healthcare applications.

How to enhance the collaboration intelligence by incorpo-
rating diverse local features through the implementation of
compressive learning to process the local latent feature vectors
will be an important future research issue. Our focus will
be on optimizing the collaborative performance concerning
the sketching of the entire set of local latent features, which
holds great promise in effectively reducing the communication
burden within our proposed collaborative framework.
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