
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Mobility and Context-Aware Pre-caching Strategy
Using Spatial-Temporal Informer for Vehicular

Service
Chenglong Wang, Student Member, IEEE, Jun Peng, Senior Member, IEEE, Lin Cai, Fellow, IEEE,

Weirong Liu, Member, IEEE, Ziyu Zhao, Hu He, Student Member, IEEE, Zhiwu Huang, Member, IEEE

Abstract—With the rapid development of vehicle-to-everything
technology, vehicular edge caching has emerged as a crucial
component for managing frequently accessed content at the
network’s edge. However, due to vehicles’ high mobility, it
is challenging to determine where and which content needs
to be cached. To address this issue, a mobility and context-
aware pre-cache strategy is proposed to proactively pre-fetch and
replace content in two steps. Firstly, by integrating the traffic
features from vehicles and roads, a spatial-temporal informer-
based model is designed to predict long-term vehicle trajectories.
Subsequently, a proactive context-aware pre-cache strategy is
proposed. By analyzing the context of different cache types, the
required content can be further accurately estimated according
to the cache type and workload. Extensive simulations based
on real-world mobility scenarios are conducted to validate the
performance of the proposed method. The results show that the
proposed method can improve prediction accuracy and cache hit
rate by 34.56% and 18.89%, and reduce mean response time and
total energy cost by 6.1% and 2.65% compared to the existing
pre-caching methods.

Index Terms—Content pre-cache, Long-term mobility predic-
tion, Context awareness pre-fetch, Vehicular edge network.

I. INTRODUCTION

With the rapid development of vehicle-to-everything (V2X)
technology, the emergence of vehicular content networks has
ushered to connect vehicles, adjacent roadside units (RSUs),
and remote content servers, serving as the backbone for
intelligent transportation systems [1], [2]. Empowered by the
vehicular content network, connected vehicles can have real-
time access to a diverse range of content, facilitating ad-
vanced vehicular services such as streaming infotainment [3],
driving assistance [4], and autonomous driving [5]. However,
the growing demand for these advanced vehicular services
requires real-time data retrieval and adjacent storage resources,

Chenglong Wang, Weirong Liu, and Hu He are with the School of Computer
Science and Engineering, Central South University, Changsha, 410083, China
(e-mail: 415389362@qq.com, frat@csu.edu.cn, summerki@csu.edu.cn).

Jun Peng is with the School of Electrical Information, Central South
University, Changsha, 410083, China (e-mail: pengj@csu.edu.cn)

Lin Cai is with the Department of Electrical and Computer En-
gineering, University of Victoria, Victoria BC V8W 3P6, Canada (e-
mail:cai@ece.uvic.ca).

Ziyu Zhao is with the School of Law and Criminal Justice, East China
University of Political Science and Law, Shanghai, 200042, China, (e-mail:
2221110088@ecupl.edu.cn).

Zhiwu Huang is with the School of Automation, Central South University,
Changsha, 410083, China (e-mail: hzw@csu.edu.cn).

(Corresponding author: Weirong Liu.)

and the low content access latency cannot be satisfied if the
contents need to be retrieved from a remote content server.
To ensure low access latency, effective vehicular caching
management is crucial.

Developing a feasible vehicular caching strategy for vehicu-
lar content networks is challenging due to the vehicle mobility
and dynamic content demand [6]. The high-speed movement
of vehicles poses challenges to content pre-cache strategy
design [7]. To ensure cache hit rate and adjacent accessibility,
the content pre-cache strategy needs to determine where and
which content should be pre-fetched based on the temporal
dependencies of the current requested content and vehicle mo-
bility. On the other hand, the limited storage capacity of RSUs
poses difficulties in vehicular content caching replacement. To
avoid storage wastage, the designed strategy needs to be aware
of upcoming and leaving vehicles and dynamically update
stored cache content based on the demands and locations of
vehicles. As a result, considering both content pre-fetching
and content replacement are needed.

Existing cache management methods primarily focus on
content popularity, which leverages statistical analysis [8],
request pattern recognition [9], and popularity prediction [10]
to obtain content popularity for content pre-caching. How-
ever, different types of cached content exhibit distinct request
probabilities, which don’t always adhere to the popularity
relationships dictated by Zipf law [11]. For instance, the next
requested cache block will likely be a neighboring block rather
than the most popular one for video streaming services. This
degrades the performance of popularity-based cache strategies
when multiple service types coexist.

Additionally, according to research [12], approximately 70%
of caches in the remote content server are one-hit caches,
which could be the content exclusive to a specific user. This
requires designing a pre-caching strategy that not only con-
siders the dependencies of required content but also is aware
of vehicle mobility. Although some works have integrated
convolutional neural networks, recurrent neural networks, and
attention mechanisms to predict the mobility of vehicles,
most of these studies focused on one-step-ahead predictions.
The one-step-ahead prediction works are often insufficient to
accommodate the computational overhead and the time to
update cached content. As a result, the design of a cache
strategy that considers long-term mobility prediction and the
contextual dependencies and content types is still an open
issue.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Different from the existing state-of-the-art pre-caching
schemes that solely rely on content popularity for determining
pre-cached content and utilize short-term predictions to decide
the pre-caching destination, this paper proposes a long-term
mobility and context-aware pre-caching scheme. Specifically,
a Spatial-Temporal Informer (ST-Informer) model is proposed
to predict long-term vehicular mobility. Despite the increase in
the number of model parameters associated with the proposed
ST-Informer, the adoption of a probability-sparse self-attention
mechanism enables a reduction in computational complexity
while significantly enhancing the accuracy of predictions.
Leveraging these prediction results, a proactive, context-aware
content pre-caching approach is designed. This strategy is
designed to not only mitigate prediction inaccuracies but also
to dynamically pre-cache and replace various types of cached
content in response to the contextual demands of connected
vehicles. Compared to the state-of-the-art pre-caching meth-
ods, the proposed scheme demonstrates superior performance
in adapting to diverse vehicular content.

The main contributions of this paper are summarized as
follows:

• A novel long-term vehicle trajectory prediction model,
Spatio-Temporal Informer, is proposed for pre-caching
destination determination. Compared to the existing pre-
diction models, the proposed ST-Informer can embed
both spatial and temporal features into input data, en-
abling feature extraction of vehicle mobility patterns from
both temporal and spatial dimensions and achieving the
best prediction accuracy in different prediction lengths.

• To proactive pre-fetching required vehicular content, a
mobility and context-aware pre-caching strategy is de-
signed. Compared to the state-of-the-art pre-caching strat-
egy, which is solely based on user mobility or content
popularity, the proposed strategy can dynamically pre-
cache and replace vehicular content in response to vehicle
mobility, content popularity, and contextual demands.

• Extensive experiments are conducted on the realistic
urban vehicle mobility scenario in Bologna city to verify
the superiority of the proposed pre-caching strategy. The
experiment results show that the designed ST-Informer
can reduce mean square error by 34.56% compared to the
state-of-the-art prediction methods, and the proposed pre-
caching strategy can improve the cache hit rate by 18.89%
and reduce mean response delay and energy cost by 6.1%
and 2.65% compared to the existed caching strategies.

The rest of this paper is organized as follows. Related
work is introduced in the next Section. The system model
is presented in Section III. The designed ST-Informer is
introduced in Section IV. The proactive context-aware pre-
caching strategy is presented in Section V. The experiment
results are presented in Section VI, followed by the conclusion
in Section VII.

II. RELATED WORK

Efficient content caching is crucial for enhancing communi-
cation reliability and reducing latency in vehicular networks.

Over the past few years, numerous studies have been con-
ducted on caching strategy design, which can be categorized
into reactive caching and proactive caching.

Reactive caching involves making content caching decisions
based on content popularity. Existing works have employed
methods ranging from request content pattern analysis to
popularity prediction for formulating reactive caching strate-
gies. In [13], the hidden Markov model was used to predict
content popularity based on the statistical analysis of content
request characters. Based on the predicted content popularity,
a popularity-based content caching method was designed for
making caching decisions. Similarly, [14] introduced a QoE-
driven caching method that integrates file popularity and user
interest into caching update strategies. This approach employs
deep reinforcement learning to address the QoE-driven RSU
content caching problem effectively. By mining sequential
patterns in content retrievals, a predictive edge caching method
was proposed in [15] to make caching decisions adaptively
according to the real-time content popularity. Some studies go
a step further by integrating deep learning into popularity pre-
diction for designing caching strategies. For example, a multi-
agent reinforcement learning caching method was introduced
in [16], which was capable of adapting to the diversity of
RSU content popularity from both spatial and temporal per-
spectives. In [17], a clustering-based long short-term memory
deep learning method was proposed for content popularity
prediction. The predicted popularity was then used to inform
caching decisions adaptively through the deep deterministic
policy gradient method.

The drawback of reactive caching strategies is their focus on
caching content without considering the data forwarding path.
In practical content networks, nearly 70% of caches are one-hit
caches [12], which are content exclusive to a specific vehicle.
This means that solely considering popularity and neglecting
vehicle mobility can decrease the cache hit rate and storage
efficiency of RSUs. Therefore, reactive caching strategies may
become ineffective in vehicular edge networks.

The proactive caching strategy considers the data forward-
ing path, fetching and updating content based on both con-
tent characteristics and user mobility. Some works incorpo-
rate vehicle mobility to design the mobility-aware caching
strategy. For example, a federated learning-based mobility-
aware proactive caching strategy was proposed in [18]. The
proposed caching strategy integrates a mobility-aware cache
replacement policy, which can update contents in response to
the mobility patterns of vehicles. In [19], a federated deep
reinforcement learning method was proposed for cooperative
caching. The proposed cooperative caching strategy took the
vehicle positions and velocities as the model input and used
an autoencoder to predict popular contents for cooperative
caching.

Over the past few years, many researchers have incorpo-
rated software-defined network technology and deep learning
methods to design content caching methods [20]. To meet
augmented reality service delay requirements in edge-assisted
software-defined networks, a joint caching and computing
resource reservation method was proposed in [21]. By for-
mulating the caching problem as a long-term stochastic op-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

timization problem, the proposed method can significantly
reduce the overall resource consumption. In [22], spatio-
temporal characteristics aware content caching is proposed for
emergency content in software-defined vehicular networks. By
predicting the content popularity, the proposed method can
determine the most suitable content for caching in each RSU.
Several works used deep learning methods to predict mobility
for content caching. By adopting deep reinforcement learning,
a traffic-aware content caching method was proposed in [23],
which can optimize the content provider vehicle distribution
across the vehicular social network. In [24], a proactive content
caching strategy is proposed for urban vehicular networks. The
proposed caching strategy uses a deep attention-based learning
method to predict the next step vehicle trajectory and content
popularity for content caching and dispatching.

Several works further incorporate the transformer into the
caching strategy design. To extract the long-term depen-
dencies, an attention-based vision transformer edge caching
framework was proposed in [25], which can reduce the
computational complexity of the caching strategy. In [26],
a transformer-based actor-critic online centralized content
caching method was proposed, which can minimize the task
execution time subject to resource constraints. In [27], a gen-
erative pre-trained transformer model was proposed to cache
content for AI-generated content services. By incorporating
the in-context learning ability of the pre-trained transformer
model, the resources can be allocated to meet the user’s
demand.

The major limitations of existing content-caching works
lie in their focus on short-term mobility prediction and do
not account for the context of the required content. Firstly,
vehicle mobility prediction is a critical factor in determining
the optimal pre-caching locations. Given the dynamic network
conditions and the high mobility of vehicles, proactive caching
mechanisms must make caching decisions within a limited
prediction length. However, a short prediction length not only
leaves insufficient time for running the prediction algorithms
and content pre-caching but also results in an imbalanced
workload due to a lack of long-term preview of future de-
mands. Secondly, current research tends to pre-fetch content
based solely on its popularity, overlooking the diversity of
cache types and the contextual associations between contents.
Consequently, there is an imperative requirement to devise a
proactive caching strategy that integrates vehicle mobility with
the contextual relevance of content across various cache types,
which motivates this work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, the edge content delivery system includes
content servers and roadside units (RSUs). There is a set of
vehicular content [f1, f2, ..., fn] ∈ F , and the edge server
is co-located with a content server, which stores all content
F . Denote by [r1, r2, ..., rm] ∈ R the RSU set covered by
the edge server, which is responsible for providing access
to connected vehicles. Assume all the RSUs have the same
capacity C to cache the content.

 Historical

Trajectory and

Demand Upload

 Vehicular Content

Pre-Cache

Predicted

Trajectory++

++

+

+

+

+

ST-Informer Trajectory Prediction

Predicted

Trajectory+

+

ST-Informer Trajectory Prediction

Demand

Model

Contextual Awareness
Pre-Cache

Content
Server

 Content
Estimation

Content

Retrieve

Connected

Vehicle

Storage

Device
 Content

Server

Required

Content

Base StationRSU
Connected

Vehicle

Storage

Device
 Content

Server

Required

Content

Base StationRSU

Fig. 1: The system overview of the proposed context-aware
pre-caching strategy.

A. Content Request Model

This paper considers a 3-layer content storage model.
Requested contents can be retrieved from the access RSU,
adjacent RSUs, or the content server. The RSUs and connected
vehicles, as well as other RSUs, are interconnected via 5G
millimeter-wave wireless links [28]. Refer to the content
delivery structure in [29], [30], each RSU is connected to
the content server through a backhaul wired network link to
retrieve the required vehicular content.

As depicted in Fig 1, if the vehicle requests content fi and
it is stored in the accessed RSU, the content will be directly
transmitted to the vehicle, which is defined as the level-1 cache
hit (L1 cache hit). Otherwise, if the requested content fi is not
in the accessed RSU, the content request will be sent to the
one-hop adjacent RSUs. If the requested content is found in
one of the adjacent RSUs, it will be transmitted to the vehicle
via the access RSU, which is defined as level-2 cache hit (L2
cache hit). Otherwise, if the requested content cannot be found
in the adjacent RSUs, it will be retrieved from the edge content
server via the backhaul transmission link.

To bring the content closer to the connected vehicles, a
content pre-fetch strategy is proposed in this paper. Once
an access RSU receives a content request, a content pre-
fetch request packet is sent to the edge content server. The
packet consists of the vehicle features (such as speed and
acceleration), road features (such as the vehicle density and
average travel time), and the ID of the current request content.
The content server will use these features to predict the
mobility of vehicles and estimate the content that the vehicle
may request in the next time slot. After that, the most possible
content is pre-fetched to the corresponding RSU according to
the mobility prediction and estimation result.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

B. Cache Demand Model

In this paper, two different cache types are considered,
popular cache (for web and other entertainment applications)
and streaming cache (for real-time driving assistant applica-
tion), respectively. Assume that each vehicle will request a
popular cache with probability ppcon and a streaming cache with
probability pscon in each timeslot, and we have ppcon + pscon = 1.
Denote by fpc

i ∈ F pc and fsc
i ∈ F sc as the set of popular

content and streaming content, and we have F pc + F sc = F .
Popular Cache: As many works have presented before,

the popular cache follows the Zipf law [11]. Assuming that
the total number of content is N , then the cache request
probability of content fpp

i can be given as

P (fpc
i) =

b

(is ·H(M, s))
(1)

where b is a normalization constant to ensure that the proba-
bilities sum up to 1. s is the Zipf parameter, and H(M, s) is
the harmonic series of the M -th term.

Let Z be the link indicator matrix, whose element zi,j
equals 1 when content fpc

i can be directly linked to content
fpc
j , otherwise equals 0. Then the next step cache request

probability can be represented as

P (fpc
j |f

pc
i) =

n∑
k=0

P (fpc
j)

zi,j · P (fpc
i)

(2)

Streaming Cache: Similar to the popular cache content,
the cache request probability of content fsc

i is requested can
be given as

P (fsc
i) =

b

(is ·H(M, s))
(3)

Unlike the popular cache, when content fsc
i is requested,

the next content is most likely to be fsc
i+1. For simplicity, it is

assumed P (fsc
i+1|fsc

i) = 1.

C. Communication Cost

As aforementioned, the requested contents can be retrieved
from the access RSU, adjacent RSUs, or the edge content
server. Denote the distance between the vehicle and access
RSU as dv,ri , then the correspond transmission rate can be
represented as

Rv,ri(t) = B · log2

(
1 +

Prihv,rid
−δ
v,ri

I +N

)
. (4)

where Pri and hv,ri denote the transmit power of RSU
and small-scale fading between the vehicle and access RSU,
respectively. δ represents the path loss exponent. B denotes
the bandwidth. N and I represent the power of noise and the
interference between the vehicle and the RSU.

Assumed the content request packet size is ∥f req∥, if the
requested content is stored at the access RSU, then the
response time can be derived according to the (4) as

TD(t) =
∥f req∥
RUL

v,ri(t)
+
∥fk∥

RDL
v,ri(t)

, (5)

where ∥fk∥ denotes the content size. RUL
v,ri(t) and RDL

v,ri(t)
are the uplink and downlink transmission rates between the
connected vehicle and RSU. If the content is stored at a one-
hop adjacent RSU rj , the response time can be given as

TH(t) =
∥f req∥+ ∥fk∥

Rri,rj

+ TD, (6)

where Rri,rj is the transmission rate between adjacent RSU
and access RSU.

It is assumed that each RSU is wired to the content server.
If the requested content cannot be found in adjacent RSU, we
can only find it from the edge content server, whose response
time can be represented as

TB(t) = Tri,e +
2 ∥f req∥
Rri,rj

+ TD, (7)

where Tri,e is the end-to-end propagation delay between
access RSU and edge content server.

Since the transmission time over packet-switching networks
can overlap with each other, the end-to-end delay from edge
content to any RSU Tri,e is approximated as a constant. In
summary, the response time of content request can be rewritten
as

Tv(t) =

 TD(t), if L1 Cache Hit,
TH(t), if L2 Cache Hit,
TB(t), Otherwise,

(8)

where the L1 cache hit denotes the required cache is stored
in the access RSU, and the L2 cache hit denotes the required
cache is stored in a one-hop adjacent RSU.

D. Energy Cost

Similar to the response time, the energy cost is discussed
in three different cases. If the cache hits the access RSU, the
energy cost can be given as

ED(t) =
Pv ∥f req∥
RUL

v,ri(t)
+

Pr ∥fk∥
RDL

v,ri(t)
. (9)

where Pv and Pr are the transmission power of the vehicle
and RSU. If the cache hits the adjacent RSU, the energy cost
can be represented as

EH(t) =
Pr ∥f req∥+ ∥fk∥

Rri,rj

+ ED, (10)

Similarly, the energy cost to retrieve content from the edge
content server can be given as

EB(t) = Eri,e +
2Pr ∥f req∥
Rri,rj

+ ED, (11)

where Eri,e is the backhaul transmission energy. In summary,
the total energy cost can be rewritten as

Ev(t) =

 ED(t), if L1 Cache Hit,
EH(t), if L2 Cache Hit,
EB(t), Otherwise,

(12)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Prob-Sparse

Attention Block

Self-attention

Distilling

Encode

Cov-1d MaxPool

Self-attention

Distilling

Cov-1d MaxPool

Self-attention

Distilling

Cov-1d MaxPool Cross

Self-attention

Feature

Map

Decode

FC

Cov-1d

Position

Embeding

Spatial

Embeding

Temporal

Embeding

Cov-1d

Position

Embeding

Spatial

Embeding

Temporal

Embeding

Data Embeding

Regressor

Data Scalar

Prediction

Length
History Data Length

Position Coding

Temporal Coding

Spatial Coding

Prob-Sparse

Attention Block

Masked Prob-Sparse

Attention Block

T
ra

jecto
ry

P

red
ictio

n
T

ra
jecto

ry

P
red

ictio
n

Scalar

Scalar

Stamp

Stamp

Data Stamp

Encode Input Decode Input

Raw Trajectory Data

Fig. 2: The model structure of the proposed ST-Informer. The raw features are divided into two parts and pass the embedding
layer as the input of the encode-decode layer. The encode-decode layer extracts hidden dependencies by multi-head probability
sparse self-attention block to predict vehicle trajectory.

E. Problem Formulation

Denote Φ the content storage indicator matrix, whose
element ϕi,j equal to 1 if the content fj storage in the RSU
ri, otherwise equal to 0.

For vehicle content request qv ∈ Q = {ri, fj}, the content
hit rate can be represented as

H(t) =
∑
v∈V

∑
qv∈Q

L1 Hit︷ ︸︸ ︷
ϕ
qv={ri,fj}
ri,fj

(t)+

L2 Hit︷ ︸︸ ︷
ϕ
qv={ri,fj}
rk,fj

(t)

∥Q∥
(13)

To reduce the response time and energy cost, the key is to
improve the cache hit rate. When the required content can be
retrieved in an adjacent RSU, the response time and energy
cost can be significantly reduced.

The objective of this paper is to optimize the content pre-
cache strategy, which requires determining where and which
vehicular content needs to be pre-cached. In the following
section, we address this problem in two steps. First, a long-
term trajectory predictions model ST-Informer is proposed to
identify the pre-cached location. Then, a context-aware pre-
caching method is designed to determine the specific content
that needs to be pre-cached.

IV. ST-INFORMER FOR TRAJECTORY PREDICTION

In order to design a feasible content pre-caching strategy, we
need to know the connected vehicles’ trajectories in the future
to determine pre-cache location. As most previous works pre-
fetch content based on the one-step-ahead forecast, which is
not robust against forecast bias, in this work, a long-term
mobility prediction method ST-Informer is designed.

In the proposed ST-Informer, we adopt the encode-decode
structure of the Informer model with an upgraded data em-
bedding method for the multi-vehicle trajectories prediction

problem. As shown in Fig. 2, the proposed ST-Informer con-
sists of data encoding, feature embedding, feature decoding,
and output regression. In the following subsection, a detailed
introduction to these components of the proposed ST-Informer
will be provided.

A. Data Preprocessing

In this paper, we aim to predict all vehicle trajectories in
considered areas for determining the pre-caching destination,
so unlike other single object time-series prediction tasks di-
rectly using vehicle data as model input, data pre-processing
is required.

TABLE I: The Input Data Features of ST-Informer

Features
Type

Features
Name Description

Time timestep The simulation time step

Vehicle

V-ID The ID of the vehicle
Azimuth The azimuth of the vehicle

Speed The speed of the vehicle
Location The coordinates of the vehicle

Road

R-ID The ID of the road
Travel time The mean travel time of the road
Max-speed The maximum speed of the road
Mean-speedThe mean speed of the road
Occupancy The occupancy percentage of the road

As shown in Table I, the raw data contains records of
all vehicles during each timeslot, which includes features
such as driving speed, azimuth, and current coordinates. Each
record also has a unique ID and a lane ID indicating the
corresponding vehicle and the road lane where the vehicle is
located. To expand the feature dimension, we collect the road

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

lane features including travel time, maximum speed, mean
speed, and occupancy of the road lane.

According to the lane ID and timestep in the vehicle data,
the road features are incorporated as one data sample Xt.
After that, the incorporated data are grouped by the vehicle
ID as vehicle trajectory

[
Xt−Lh

, · · · , Xt, · · · , Xt+Lp

]
, where

[Xt−Lh
, · · · , Xt] is the history data and

[
Xt, · · · , Xt+Lp

]
is the prediction data. For simplicity, the history data and
prediction data are denoted as X(t−Lh,t) and X(t,t+Lp). Lh

and Lp are the history data length and prediction data length.

B. Data Embedding

Due to the no recurrence and limited convolution used in
the Informer model, the model lacks the local spatial and
temporal dependencies of the vehicle trajectories. However,
the spatio-temporal dependencies are beneficial for improving
the prediction performance. For example, the traffic condition
can be learned from the vehicle that recently traveled the same
road.

To capture the global positional dependencies and local
spatio-temporal dependencies of the vehicle trajectories, the
information about spatial traffic conditions and temporal vehi-
cle mobility trends need to be injected into the trajectory’s time
sequence. In this paper, three types of data encoding methods
are used, positional encoding, spatial encoding, and temporal
encoding.

Similar to the classical Transformer, the sine and cosine
functions are used as positional encoding, which can be given
as

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (14)

where pos and i is the position and dimension index of input
Xt, and dmodel is the size of embedding dimension.

Temporal encoding encompasses two aspects: the data index
within the entire trajectory and its specific time index in
seconds, minutes, and hours. Each encoding is normalized to
the range of [−0.5, 0.5], which be given as

TE =

[
I(second)

59
,
I(minute)

59
,
I(hour)

23
,

I(Xt)

∥X∥ − 1

]
− β,

(15)
where I(·) denotes the index of correspond feature.

Due to the inconsistent scales of different features in equa-
tion (15), it is necessary to normalize them to the consistent
scales. However, since the [0, 1] interval lacks a negative range,
which impairs the performance during gradient computation,
we further shift the normalized values by subtracting 0.5,
mapping the interval to [−0.5, 0.5]. Consequently, β is defined
as a normalized vector with elements set to 0.5.

For instance, if a vehicle enters the considered area at
08:01:00 and departs at 08:04:00, the spatial coding for a
data sample collected at 08:03:30 would be

[
8
23 ,

3
59 ,

30
59 ,

150
179

]
−

[12 ,
1
2 ,

1
2 ,

1
2]. In this way, each data sample can have a unique

representation for temporal feature extraction.
Since we want to learn the hidden spatial dependencies from

other vehicles and road lanes, the model needs to be aware of

which vehicle the data sample comes from and which road
section the vehicle is driving on. Consequently, we encode
information regarding the road ID and vehicle ID to obtain a
distinctive spatial representation. Similar to (15), the spatial
encoding is given as

SE =

[
I(V-ID)

∥V ∥ − 1
,

I(R-ID)

∥Road∥ − 1

]
− β, (16)

Then, the data encoding is incorporated together as the input
data stamp, which can be given as

Xstamp
t = Conv1d(PE) + Conv1d(TE) + Conv1d(SE),

(17)
where Conv1d(·) performs a 1-D convolutional filter with
kernel width set as 3. Then data features Xt and data stamp
Xstamp

t will be the input of the encoder and decoder.

C. Encoder

For the encoder, two multi-head probability sparse self-
attention blocks are used to extract hidden spatio-temporal
dependencies efficiently.

Given a time sequence X(t−Lh,t+Lp), the history data
segment X(t−Lh,t) and its corresponding data stamp Xstamp

(t−Lh,t)
will be the input of encoder. First, the data features are
incorporated with corresponding data stamp as the encoder
input by

Xenc in
(t−Lh,t)

= Conv1d
(
Xscalar

(t−Lh,t)

)
+Xstamp

(t−Lh,t)
, (18)

where Xscalar
(t−Lh,t)

is the normalized data from X(t−Lh,t).
Due to the high computational complexity when self-

attention mechanisms handle long sequences, scholars have
researched to reduce the computational complexity. One such
improvement is probability-sparse self-attention. Compared
to traditional self-attention, probability-sparse self-attention
significantly reduces computational complexity by focusing
only on a subset of time steps, rather than considering all steps
equally. This makes it more efficient and scalable, especially
for long sequences. By concentrating on the most relevant
time steps, it filters out noise and less important information,
leading to more accurate predictions. Therefore, the proposed
ST-Informer adopts probability-sparse self-attention to extract
the spatial-temporal dependencies.

Then the multi-head probability sparse self-attention mech-
anism is used to extract hidden spatio-temporal dependen-
cies. The encoder input Xenc in

(t−Lh,t)
is represented as Q =

WqXenc in
(t−Lh,t)

, K = WkXenc in
(t−Lh,t)

, and V = WvXenc in
(t−Lh,t)

by multiply three trainable weight matrices. After that, the
attention can be calculated by

A(Q,K,V) = softmax

(
Q̄KT

√
dk

)
V, (19)

where Q̄ is a sparse matrix only contains the Top-u queries
under the sparsity measurement M̄ (qi,K) proposed in [31].
By selecting sparse Top-u to calculate the dot-product pairs Q̄,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

the time and space complexity can be significantly reduced.
The sparsity measurement function can be given as

M̄ (qi,K) = max
j

{
qik

⊤
j√
d

}
− 1

LK

LK∑
j=1

qik
⊤
j√
d

, (20)

where LK denotes the size of K, and qi, ki are the i-th row
in Q and K.

According to the attention value calculated by (19) and (20),
the multi-head attention can be obtained as

MultiHead(Q,K,V) = Concat (A1, ...,Ai)WO, (21)

where WO is the trainable weight of the attention head.
For simplicity, [·]A is denoted as the calculation of multi-

head probability sparse self-attention shown from (19) to (21).
Then, the procedure from the k-th multi-head prob-sparse self-
attention block to the k+1-th block can be expressed as

Xk+1
(t−Lh,t)

= MaxPool
(
ELU

(
Cov1d

(
[Xk

(t−Lh,t)
]A

)))
,

(22)
where MaxPool(·) is the Max-Pooling function with a stride
equal to 2, and ELU(·) is the ELU activation function. The
final multi-head probability sparse self-attention block output
will be sent to the Decoder as the feature map.

D. Decoder
For the decoder, one masked multi-head probability sparse

self-attention block is used to map the input and extracted
feature map.

Considering the generative-style of the transformer, which
requires a start token for dynamic decoding [32], a shorter
sequence slice of the encoder Xdec in

(t−Lp,t)
will be part of

the input of the decoder. The input of the decoder can be
represented as

Xdec in
(t−Lp,t+Lp)

= Concat
(
Xdec in

(t−Lp,t)
, X0

(t,t+Lp)

)
, (23)

where Xdec in
(t−Lp,t)

is performed as a start token for generating
prediction results, and X0

(t,t+Lp)
is a placeholder for the

prediction result, whose elements’ values are set to 0. To avoid
the future data involved in attention computing, masked multi-
head attention is applied in self-attention computing by setting
masked dot-products to −∞.

After the calculation of the masked multi-head self-attention
block by (22), the output will be processed by the cross multi-
head self-attention block for feature mapping. Then, a fully
connected layer is used for regression, and only the second
half of the output vector will be used in the loss function
calculation.

The whole training process is given in Algorithm 1. To
train the proposed ST-Informer, the dataset is divided into the
training set, validation set, and testing set based on vehicle
ID, which consists of 70%, 10%, and 20% of vehicles’
trajectory respectively. The MES loss function is used for
back-propagation, which can be given as

Loss = −
t+Lp∑
i=t

(yi − ŷi)
2

LP
, (24)

where yi and ŷi are the true locations and the predicted
locations of the vehicle.

Algorithm 1: The training process of ST-Informer
Data: Training set and Validation set.
Output: Trained ST-Informer model

1 epoch← 0, loss indicator ← 0
2 while epoch ≤ 20 do
3 epoch← 0
4 while batch ≤ ⌈|Training| /64⌉ do
5 batch← 0.
6 Use one batch of training data for model

forward propagation to calculate the
probability vector ŷ.

7 Calculate the loss based on loss function (24),
and back-propagate the loss value for
parameter updating.

8 batch← batch+ 1.

9 while batch ≤ ⌈|V alidation| /64⌉ do
10 batch← 0.
11 Use one batch of validation data for model

forward propagation and calculate the
validation loss val loss based on loss
function (24).

12 batch← batch+ 1.

13 if val loss < loss indicator then
14 loss indicator ← val loss Save and update

the model parameters as a trained model.

15 else
16 continue.

17 epoch← epoch+ 1.

V. CONTEXT-AWARE CONTENT PRE-CACHE STRATEGY

For vehicular content pre-cache strategy, two issues need
to be addressed: (i) When and where to pre-fetch the required
cache block based on the prediction results; (ii) How to update
the stored cache to avoid wasting storage space and better cater
to user content requests. To address these challenges, we will
introduce the proposed context-aware pre-caching strategy for
cache pre-fetch and cache replacement.

The performance of the pre-caching strategy is highly
related to the accuracy of the trajectory prediction. As afore-
mentioned, the long-term vehicle trajectory prediction can be
obtained using the proposed ST-Informer method. In each
timeslot, the proposed ST-Informer method will predict n-
timeslot future data. To fully utilize prediction results, the
prediction result can be divided into three parts denoted as
pre-fetch initialization part, short-term preview, and long-term
preview.

The pre-fetch initialization part corresponds to the pre-
fetch initialization phase, which involves time costs associated
with cache request transmission, obtaining vehicle trajectory
prediction results, and executing pre-fetching. Beyond the
initialization phase, the prediction results are further divided

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

into two parts with equal length: short-term previews and long-
term previews. Short-term previews will be utilized to inform
pre-fetch decisions, while long-term previews provide insight
into future load trend changes and will serve as a reference
for cache replacement decisions.

A. Contextual-Aware Content Pre-fetch

As aforementioned, prediction errors are inherent in any
prediction method, potentially resulting in caches being pre-
fetched to the wrong RSU. To mitigate the performance degra-
dation caused by prediction errors, the iterative error correction
method is proposed to improve the prediction accuracy.

The main idea of iterative error correction is that we aim
to correct prediction errors by using results from predictions
made at different timeslots. For example, when seeking the
pre-cache RSU location in the t + k timeslot, we choose the
most frequently predicted RSU among predictions made at
each timeslot from t to t+ k − 1 as the final pre-fetch RSU.

Denote ŷt+k
t as the t+ k timeslot pre-fetch RSU predicted

at t timeslot, then the target RSU can be obtained by

yt+k = argmaxCount(
[
ŷt+k
t , ŷt+k

t+1 , . . . , ŷ
t+k
t+k−1

]
) (25)

where Count(·) represents the number of occurrences of the
predicted RSU in the different timeslots. k denotes the pre-
fetch delay, which involves time costs associated with request
transmission, obtaining vehicle trajectory prediction results,
and executing pre-fetching.

Note that iterative error correction is effective when there
are fewer dependencies in prediction at different timeslots, and
prediction k − 1 slots earlier has the similar performance as
the most recent one. In transformer-based methods, the self-
attention mechanism does not inherently prioritize the order of
elements in a sequence [33], allowing it to dynamically select
features from various timeslots for prediction. Consequently,
predictions at different slots exhibit reduced dependency. The
results of the experiment in [31] also show that the accuracy
of the Informer prediction is hardly affected by an increase
in prediction length. This observation strongly supports the
adoption of our iterative error correction method.

By adopting iterative error correction, we can determine
where the cache needs pre-fetch. Next, we will decide which
cache blocks need to be pre-fetched. According to the pre-
diction result using (25) and the pre-fetch delay, the required
cache estimation is performed.

In this paper, two types of caches are considered: popular
cache and streaming cache. The popular cache corresponds
to the non-real-time entertainment cache, which can be re-
peatedly requested by different vehicles. The streaming cache
corresponds to one-time real-time computing caching, which
will not be requested repeatedly. Since the streaming cache
is accessed sequentially, the cache requested after k steps is
fsc
i+k.

For popular cache, the pre-fetch cache can be estimated by
the k-step Markov chain. Assume the pre-fetch delay is k, the
k-step cache request probability can be calculated by

vk = v0 ·Dk, (26)

where v0 represents the initial state, which indicates the cache
requested at the initial state. D denotes the state transition
matrix, whose element can be calculated by (2). The element
of vk indicates the probability of each cache likely to be
requested after k steps. The cache with the highest probability
in vk is selected as the pre-fetch cache.

Algorithm 2: Context-Aware Content Pre-fetching
Input: Prediction result ŷ, Current request cache f req,

pre-fetch delay k
Output: pre-fetch cache and destination

1 Perform iterative error correction based on (25) to
obtain the pre-fetch destination yt+k.

2 if f req is popular cache then
3 Calculate state transition matrix D based on (2).
4 Select the highest probability cache as pre-fetch

cache according to (26).

5 else
6 Select fsc

i+k as pre-fetch cache.

In summary, the cache pre-fetch process is given in Algo-
rithm 2. Firstly, the prediction results from each past timeslot
are collected for iterative error correction to decide the pre-
fetch destination RSU. Subsequently, considering the current
requested cache type and the pre-fetch delay, the content
requested after the k-step will be estimated.

B. Adaptive Dual-Cache Replacement

Due to the limited storage capacity, the cache pool of RSU
needs to be updated dynamically according to the real-time
condition. In this paper, an adaptive dual-cache replacement
method is designed considering long-term load trends and load
balance.

To ensure real-time performance for the streaming cache,
we will design the cache replacement strategy in each timeslot
based on the pre-fetch decision. The proposed dynamic dual-
cache replacement method is shown in Algorithm 3.

In each timeslot, we divide the cache pool into two segments
to store the popular cache and streaming cache separately and
use n to adjust the number of stored popular caches. The
technique to determine the value of n is as follows: when there
is available space in the RSU cache pool, increase n based
on the pre-fetch decision while ensuring the requirements for
streaming cache are satisfied. When the cache space is limited,
prioritize streaming cache. In the worst-case scenario, only
store the top nmin most popular caches, ensuring that the
probability of these caches being requested is greater than
threshold ε. In summary, the stored popular cache number n
can be given as

n = max {nmin, (C − |f sc|)} , (27)

where nmin is the minimal stored popular cache number,

and it follows
nmin∑
i=0

P (fpc
i) ≤ ε. P (fpc

i) is the content request

possibility, which can be calculated by equation (1).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Algorithm 3: Adaptive Dual-Cache Replacement
Input: Prediction result ŷ, pre-fetch popular cache,

pre-fetch streaming cache
Output: Cache replacement strategy

1 Determine the stored popular cache number n of RSU
based on the short-term pre-fetch cache.

2 if (C − n) ≥ ∥fsc(t)∥ then
3 Update streaming caches by using the MRU

strategy.

4 else
5 Update C − n streaming caches by using the MRU

strategy.
6 update the remaining cache to the adjacent RSU if

there is space available.

7 if n ≥ ∥fpc(t)∥ then
8 Update popular cache by using the LRU strategy.

9 else
10 Update n popular caches by using the LRU

strategy.
11 update the remaining cache to the adjacent RSU if

there is space available.

The cache pool capacity of RSU is denoted by C, and the
number of requests of popular cache and streaming cache in
time slot t are ∥fpc(t)∥ and ∥fsc(t)∥, whose value can be
obtained by the proposed pre-fetch algorithm introduced be-
fore. Similar to the cache pre-fetch design, cache replacement
will have different update strategies based on the type of the
cache. Since the streaming cache is a highly real-time, one-
time cache, we prioritize updating the pre-fetched streaming
cache and use the Most Recently Used (MRU) strategy to
replace the already-hit streaming cache in each timeslot. For
popular cache, the Least Recently Used (LRU) strategy is used
to replace the cache pool. In cases of insufficient cache space,
the remaining pre-fetch cache will be stored in the cache pool
of adjacent RSUs if they have available space.

VI. EXPERIMENT RESULT

In this part, experiments are conducted to verify the perfor-
mance of the proposed content pre-cache method. First, the
prediction accuracy of the proposed ST-informer is compared
with existed prediction models. Then, the performance of the
designed pre-cache method is compared with state-of-the-art
methods in terms of cache hit rate, response time, and energy
cost.

A. Experiment Settings

1) Scenario Settings: The proposed method is evaluated in
the city of Bologna by using the Simulation of Urban MObility
(SUMO). The mobility dataset is collected from the “Real-
World Bologna” [34], which covers a portion of the inner city
of Bologna spanning an area of 1500 × 1800 square meters.
The data samples of Real-World Bologna were collected from
8,779 vehicles during rush hour from 8 am to 9 am.

TABLE II: The Simulation Setting

Parameter Value
The number of roads 15
The number of RSUs 31
The coverage of RSUs 50 m
The size of popular cache 5 MB
The size of streaming cache 5 MB
The size of the cache request packet 10 KB
The maximum transmit power of vehicles 23 dbm
The maximum transmit power of RSUs 29 dbm
The background noise power -104 dbm

(a) Real-world map

800 1000 1200 1400 1600 1800
X (m)

900

1000

1100

1200

1300

1400

Y
 (m

)

(b) Road structure in SUMO

Fig. 3: The real-world map and the simulation scenario at
the city center of Bologna around the Porta San Felice. The
selected area includes 15 roads with a total number of 32 lanes,
which is covered by 31 RSUs.

In our experiments, the most congested area in Bologna is
selected to verify the performance of the proposed method.
The selected area at the city center of Bologna around the
Porta San Felice, which includes 15 roads with a total number
of 32 lanes as shown in Fig. 3(a). As shown in Fig. 3(b), the
selected roads are divided into 31 road segments with a length
of 50 meter, each covered by an RSU located in the center of
the road segment. In this case, a total of 507,592 data samples
are divided into three subsets: 355,314 data samples are used
as training data, 50,759 data samples are used as validation
data, and the remaining data samples are used as testing data.

2) Simulation Setting: The covered vehicles access the
RSU through the NLOS mm-wave channel under the C-V2X
wireless communication standard. The maximum transmission
power of the vehicle and RSU are set to 23 dbm and 29 dbm
respectively. The background noise power refers to the thermal
noise power spectral density in [35]. For simplicity, the max-
imum capacity of the RSU to store cache blocks is set to 30,
and the size of both the streaming cache and the popular cache
is set to 5 MB. Other detailed settings are given in Table II.

3) Neural Network Setting: The neural network settings
for the proposed ST-Informer are outlined in Table III. The
encoder of the ST-Informer comprises 2 prob-sparse attention
blocks, while the decoder contains one masked prob-sparse
attention block. The attention head number of the prob-sparse
attention block is set to 8, equivalent to the input feature
number. The input lengths for the encoder and decoder are
set to 96 and 48, respectively, with a prediction length of 24.
The dropout probability for each attention block is set to 0.05.
For training the ST-Informer, a step learning rate is employed,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

with the initial learning rate set to 1e-4 and reduced by half
every 4 epochs. The training epoch is set to 20, and the batch
size is 32.

TABLE III: The Hyperparameters Setting

Parameter Value
The feature number of encoder / decoder 8 / 8
The sequence length of encoder / decoder 96 / 48
Prediction length 24
The number of encoder / decoder layers 2 / 1
The number of attention head 8
Training epoch 20
Batch size 32
Learning rate 1e-4
Optimizer Adam
StepLR decay 4 epochs
StepLR gamma 0.5
Drop-out probability 0.05

B. Performance Comparison of Trajectory Prediction

In this subsection, the mobility prediction performance of
the proposed ST-informer is evaluated. Firstly, the compared
methods and performance metrics are introduced. Subse-
quently, the performance comparison between the proposed
ST-informer and other state-of-the-art methods is presented.

1) Performance Metric: To assess the predictive accuracy
of our proposed prediction method, the following performance
metrics are utilized:

• Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|ŷi − yi|

• Mean Square Error (MSE):

MSE =
1

n

n∑
i=1

(ŷi − yi)
2

• Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2

• Mean Absolute Percentage Error (MAPE):

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
2) Compared Method: We compared the proposed ST-

informer with three state-of-the-art deep learning methods.
• ESN-LSTM: an echo state long short-term memory net-

work adopted in [36], incorporating echo state network
and LSTM to predict user mobility.

• DLMV: a deep learning-based mobile vehicle trajectory
prediction method proposed in [37]. The proposed DLMV
method is an autoencoder structure, which extracts hidden

mobility patterns from vehicle sensing data for mobility
prediction.

• Informer: an efficient generative style transformer-based
method proposed in [31], which is known as the most
suitable tool for long sequence time-series forecasting
problems. The proposed Informer replaces the origi-
nal canonical self-attention with the prob-sparse self-
attention mechanism, which can enhance the prediction
capacity with less time complexity.

3) Prediction Accuracy Comparison: In this subsection, we
compare the proposed ST-Informer with three state-of-the-
art methods in terms of training performance and prediction
accuracy.

First, the performance during the training process is com-
pared in Fig. 4. The training and validation loss are presented
in Fig. 4(a) and Fig. 4(b), respectively, and the corresponding
per-slot mean square error in the testing set is shown in Fig.
4(c).

As depicted in Fig. 4(a) and Fig. 4(b), all methods can
converge within 5 training epochs. DLMV, Informer, and the
proposed ST-Informer achieve almost the same lowest training
loss during the 20 training epochs. Considering validation
loss, the proposed ST-Informer achieves the lowest validation
loss. It means that the proposed ST-Informer achieves the best
prediction accuracy among the compared methods.

The corresponding per-slot prediction mean square error in
the testing set is provided in Fig. 4(c). For the next 6-slot
prediction, ECN-LSTM has the highest mean square error, and
DLMV has the second-highest mean square error. Meanwhile,
the Informer and the proposed ST-Informer achieve almost
the same lowest mean square error during the next 6-slot
prediction. Subsequently, all methods display increasing trends
from the next 6-slot to the next 18-slot prediction. Among the
shown methods, Informer and DLMV experience significant
increases as the prediction length extends. In contrast, the
proposed ST-Informer maintains the lowest mean square error.

From the next 18-slot to the next 24-slot, the mean squared
error of Informer exhibits slight fluctuations and achieves
the second-lowest mean square error. This is attributed to
the self-attention mechanism not requiring the chronological
dependencies of input time series. By employing the self-
attention mechanism, Informer and the proposed method can
adaptively select important hidden correlations from the input
time series, enabling better prediction accuracy in long-term
predictions. Similar fluctuations also exist in the proposed ST-
Informer. By incorporating the spatio-temporal embedding, the
proposed ST-Informer achieves the lowest mean square error
during the next 24-slot prediction.

To further investigate prediction accuracy, the average per-
formance metrics for different prediction lengths are pro-
vided in Table IV. In the next 6-slot prediction, Informer
and the proposed method exhibit similar performance and
achieve better prediction accuracy compared to other meth-
ods. Informer has the lowest mean square error and root
mean square error, while the proposed ST-Informer has the
lowest mean absolute error and mean absolute percentage
error. Subsequently, the proposed ST-Informer demonstrates
the best prediction accuracy in the 12-slot, 18-slot, and 24-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0 5 10 15 20
Training Epoch

0.00

0.01

0.02

0.03

0.04

Tr
ai

ni
ng

 L
os

s
ECN-LSTM
DLMV
Informer
Proposed

[37]
[36]

[31]

(a) Training loss

0 5 10 15 20
Training Epoch

0.05

0.10

0.15

0.20

0.25

0.30

Va
lid

at
io

n
Lo

ss

ECN-LSTM
DLMV
Informer
Proposed

[37]
[36]

[31]

(b) Validation loss

5 10 15 20
Predict Length

0.05

0.10

0.15

M
ea

n
Sq

ua
re

 E
rr

or

ECN-LSTM
DLMV
Informer
Proposed

[37]
[36]

[31]

(c) Testing MSE

Fig. 4: The performance comparison with three state-of-the-art methods during the training process. (a) The training loss
comparison during 20 training epochs; (b) The validation loss comparison during 20 training epochs; (c) The per-slot testing
mean square error comparison for the next 24 slots.

TABLE IV: The Average Performance Metric in Different Prediction Lengths

Performance Metric for Next 6-slot Performance Metric for Next 12-slot Performance Metric for Next 18-slot Performance Metric for Next 24-slot
Method MAE MSE RMSE MAPE MAE MSE RMSE MAPE MAE MSE RMSE MAPE MAE MSE RMSE MAPE

ECN-LSTM [36] 0.1854 0.0821 0.2856 0.4100 0.1822 0.0776 0.2783 0.3992 0.1837 0.0755 0.2745 0.3569 0.1915 0.0791 0.2808 0.3405
DLMV [37] 0.1311 0.0507 0.2249 0.3340 0.1415 0.0573 0.2381 0.3274 0.1606 0.0704 0.2621 0.3103 0.1851 0.0917 0.2949 0.2968

Informer [31] 0.1077 0.0197 0.1401 0.5807 0.1421 0.0433 0.2034 0.5107 0.1611 0.0569 0.2286 0.4522 0.1716 0.0651 0.2449 0.4079
Proposed 0.1044 0.0240 0.1530 0.2887 0.1122 0.0299 0.1707 0.2543 0.1226 0.0359 0.1860 0.2466 0.1353 0.0426 0.2018 0.2302

0.2 0.4 0.6 0.8 1.0
Request Generation Probability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e DPC
APC
PEC
Proposed

[24]
[38]

[15]

(a) Overall Hit Rate

0.2 0.4 0.6 0.8 1.0
Request Generation Probability

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e

DPC
APC
PEC
Proposed

[24]
[38]

[15]

(b) Popular Cache Hit Rate

0.2 0.4 0.6 0.8 1.0
Request Generation Probability

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e

DPC
APC
PEC
Proposed

[24]
[38]

[15]

(c) Streaming Cache Hit Rate

Fig. 5: The cache hit rate comparison with three state-of-the-art caching strategies. (a) The overall hit rate comparison includes
popular cache and streaming cache; (b) The popular cache hit rate comparison; (c) The streaming cache hit rate comparison.

slot predictions. In the longest prediction length, the proposed
ST-Informer reduces by 21.15% for MAE, 34.56% for MSE,
17.59% for RMSE, and 22.43% for MAPE compared to the
second-best-performing method.

In summary, the experiment shows that the proposed ST-
Informer exhibits similar performance with the Informer in
the next 6-slot prediction, and outperforms other state-of-the-
art methods in all other longer-term trajectory prediction.

C. Performance Comparison of Pre-Caching Strategy

According to the prediction results, the performance of the
pre-caching strategy in terms of cache hit rate, mean response
time, and energy cost are evaluated. Similarly, the performance
metrics and compared methods are introduced.

1) Performance Metric: To evaluate the proposed pre-
caching strategy, the cache hit rates for the popular cache
and the streaming cache will be individually presented, along
with the aggregate overall cache hit rate for both types.

Additionally, the mean response time and energy cost are used
for performance evaluation. The performance metric is given
as follows:

• Cache Hit Rate: The overall cache hit rate measures the
percentage of the requested popular and streaming cache
that is successfully retrieved from the RSUs without the
need to access the cache server through the backhaul link,
calculated by (13).

• Mean Response Time: The Mean Response Time mea-
sures the average time taken for a cache request to be
fulfilled by retrieving the required cache block, calculated
by (8).

• Energy Cost: The Energy Cost metric assesses the energy
consumption associated with cache retrieving, calculated
by (12).

2) Compared Method: In this part, we evaluate the pro-
posed pre-caching strategy with three state-of-the-art proactive
edge caching methods. Two of these methods rely solely on

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

0.2 0.4 0.6 0.8 1.0
Request Generation Probability

20

30

40

50

60

70

80
M

ea
n

R
es

po
ns

e
Ti

m
e

(m
s)

DPC
APC
PEC
Proposed

[24]
[38]

[15]

(a) Mean Response Time

0.2 0.4 0.6 0.8 1.0
Request Generation Probability

2

4

6

8

En
er

gy
 C

os
t (

K
J)

1e8

DPC
APC
PEC
Proposed

[24]
[38]

[15]

(b) Energy Cost

Fig. 6: The mean response time and energy cost comparison with three state-of-the-art caching strategies.

content popularity, while the remaining one incorporates both
popularity and mobility two aspects when making content
caching decisions.

• APC: an adaptive priority-based content caching method
proposed in [38]. The APC method utilizes a Bayesian
network to predict content popularity for cache pre-
fetching and employs a priority-based least recently used
(LRU) strategy for cache block replacement.

• PEC: a predictive edge content caching method proposed
in [15]. The PEC method predicts content popularity for
cache pre-fetching. The PEC adopts the LRU2 method for
cache replacement, which evicts caches based on the least
recently used strategy from the previous two requests.

• DPC: a dynamic proactive content caching method pro-
posed in [24]. The DPC method predicts vehicle trajec-
tory and content popularity for content pre-fetching. The
DPC uses the basic LRU strategy for cache replacement.

3) Performance Evaluation: In this subsection, the pro-
posed pre-caching strategy is evaluated in terms of the cache
hit rate, mean response time, and energy cost. To investigate
the performance on different workloads, the performance
comparison is conducted on different request generation prob-
abilities.

The cache hit rate performance comparison is depicted in
Fig. 5. The overall cache hit rate, encompassing both streaming
cache and popular cache, is presented in Fig. 5(a), while the
separated popular cache hit rate and streaming cache hit rate
are given in Fig. 5(b) and Fig. 5(c), respectively.

The performance comparison of the overall cache hit rate on
different request generation probability is given Fig. 5(a). As
shown in Fig. 5(a), there are two trends in the overall cache hit
rate with the increase of request generation rate. Popularity-
based methods, such as APC and PEC, exhibit an increasing
trend, reaching the maximum overall hit rate at the highest
workload. In contrast, context and mobility-aware methods,
including DPC and the proposed method, show a decrease
with the increase in the request generation rate.

The reason for these two opposing trends is due to the
opposite trends observed in the hit rates of different cache

types. For popular cache, the request probability follows the
Zipf law. As the number of requests increases, many content
requests are more likely to target the top popular content,
further reducing the number of requests for less popular
caches. Therefore, as long as RSUs cache these top-popular
contents, the content cache hit rate increases. As a result, it
is observed that the cache hit rates of all methods increase
with the increase in the request generation probability. In this
case, the proposed method can achieve the highest cache hit
rate at 99.74% on the highest request generation probability,
a slight improvement of 0.2% compared to the second-highest
method.

The comparison of the streaming cache hit rate is illustrated
in Fig. 5(c). The streaming cache hit rate shows a decreasing
trend with the rise in request generation probability. In contrast
to the hit rate of popular cache, streaming cache is more likely
to be a one-time cache, making it less probable for repeated
access in a short period. Consequently, the increasing number
of requests exacerbates RSU capacity insufficiency, resulting
in a decline in the content hit rate. Therefore, handling the
streaming cache requires frequent content replacement and
precise prediction.

An example can be observed from Fig. 5(c), where the
APC method and PEC method have an intersection when the
request generation probability equals 0.6. This is because the
PEC method employs the LRU2 content replacement method.
When the request generation probability is below 0.6, the
workload pressure is relatively low, and LRU2 provides a
slight improvement over LRU. However, as the workload
increases, using LRU2 for updates leads to wasted cache space,
resulting in a sharp decline in cache hit rate. In the case of
the highest request generation, the APC and PEC methods can
only achieve 56.07% and 52.08%, respectively.

Another reason for the decrease in the cache hit rate is
that the pre-fetching of streaming cache relies more on the
context of preceding requests rather than popularity. Although
the DPC method, by combining content popularity and user
mobility, can slightly improve the cache hit rate, even under
the lowest workload conditions, the cache hit rate can only

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

reach 77.93%. In contrast, the proposed method can achieve at
least 99.54% when the request generation probability is below
0.3 and achieve the highest cache hit rate in the worst case.
This shows an 18.89% cache hit rate improvement under the
same request generation probability.

In summary, considering the performance on both popular
and streaming cache, the proposed method achieves an overall
cache hit rate of 88.72%, representing an improvement of
almost 10% compared to other methods.

The comparison of mean response time performance is il-
lustrated in Fig. 6(a). Due to the low cache hit rates of the APC
and PEC methods, RSUs need to retrieve the required content
from the edge content server through the backhaul wireless
transmission link to fulfill user content requirements, resulting
in a higher mean response time. In contrast, owing to the load
balance design in the pre-caching strategy and a higher cache
hit rate, the proposed method consistently achieves the lowest
mean response time under various workloads. Even in the
case of the highest workload, the proposed method achieves
a mean response time of 30.33 ms, presenting a performance
improvement of approximately 6.10% compared to the DPC
method.

The performance comparison of energy cost is depicted in
Fig. 6(b). The energy cost of all methods increases with the
rise in request generation probability. Similar to the response
time analysis, the total energy cost is highly relevant to the
cache hit rate. Due to frequent backhaul content transmission,
the APC and PEC methods exhibit the highest and second-
highest energy consumption, respectively. The PEC method
attains the second-lowest energy cost owing to its relatively
higher cache hit rate. Among all the compared methods, the
proposed method achieves the lowest energy cost. Although
the proposed method consumes more energy to pre-fetch
content to the adjacent RSU for load balancing, it is still
more energy-efficient compared to retrieving content through
the content server. In comparison to the second-best energy-
saving method, the proposed method can reduce 2.65% energy
cost in the highest request generation probability case.

VII. CONCLUSION

In this paper, we propose a mobility and context-aware
pre-caching strategy for vehicular content pre-caching in two
steps. Firstly, a long-term vehicle trajectory prediction model
ST-Informer is proposed to improve prediction accuracy. The
proposed ST-Informer achieves the highest prediction accu-
racy, demonstrating reductions of 21.15% for MAE, 34.56%
for MSE, 17.59% for RMSE, and 22.43% for MAPE compared
to the original Informer and other state-of-the-art methods.
Based on the prediction results, a context-aware pre-caching
strategy is designed. Leveraging short-term and long-term
previews from the prediction and the context of the content,
the proposed pre-caching strategy can proactively pre-cache
and replace different types of content based on the context of
the current requested content. Compared to existing methods,
the designed pre-caching strategy can improve the cache hit
rate by 18.89% and reduce mean response delay and total
energy cost by 6.1% and 2.65%, respectively, under the same
workload.

REFERENCES

[1] J. Clancy, D. Mullins, B. Deegan, J. Horgan, E. Ward, C. Eising,
P. Denny, E. Jones, and M. Glavin, “Wireless access for v2x communi-
cations: Research, challenges and opportunities,” IEEE Communications
Surveys & Tutorials, 2024.

[2] L. Yao, Y. Wang, X. Wang, and G. WU, “Cooperative caching in ve-
hicular content centric network based on social attributes and mobility,”
IEEE Transactions on Mobile Computing, vol. 20, no. 2, pp. 391–402,
2021.

[3] X. Jiang, F. R. Yu, T. Song, and V. C. M. Leung, “Resource allocation
of video streaming over vehicular networks: A survey, some research
issues and challenges,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 7, pp. 5955–5975, 2022.

[4] W. Zhao, S. Gong, D. Zhao, F. Liu, N. Sze, M. Quddus, and H. Huang,
“Developing a new integrated advanced driver assistance system in a
connected vehicle environment,” Expert Systems with Applications, vol.
238, p. 121733, 2024.

[5] L. Liu, S. Lu, R. Zhong, B. Wu, Y. Yao, Q. Zhang, and W. Shi,
“Computing systems for autonomous driving: State of the art and
challenges,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6469–
6486, 2020.

[6] M. A. Javed and S. Zeadally, “Ai-empowered content caching in
vehicular edge computing: Opportunities and challenges,” IEEE network,
vol. 35, no. 3, pp. 109–115, 2021.

[7] Y. Zhang, C. Li, T. H. Luan, Y. Fu, W. Shi, and L. Zhu, “A mobility-
aware vehicular caching scheme in content centric networks: Model
and optimization,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 4, pp. 3100–3112, 2019.

[8] B. Bharath, K. G. Nagananda, D. Gündüz, and H. V. Poor, “Caching
with time-varying popularity profiles: A learning-theoretic perspective,”
IEEE Transactions on Communications, vol. 66, no. 9, pp. 3837–3847,
2018.

[9] H. S. Goian, O. Y. Al-Jarrah, S. Muhaidat, Y. Al-Hammadi, P. Yoo,
and M. Dianati, “Popularity-based video caching techniques for cache-
enabled networks: A survey,” IEEE Access, vol. 7, pp. 27 699–27 719,
2019.

[10] Q. Chen, W. Wang, F. R. Yu, M. Tao, and Z. Zhang, “Content caching
oriented popularity prediction: A weighted clustering approach,” IEEE
Transactions on Wireless Communications, vol. 20, no. 1, pp. 623–636,
2020.

[11] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.”
Glottometrics, vol. 3, no. 1, pp. 143–150, 2002.

[12] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 3, pp. 52–66, 2015.

[13] L. Yao, Y. Wang, Q. Xia, and R. Xu, “Popularity prediction caching
using hidden markov model for vehicular content centric networks,” in
2019 20th IEEE International Conference on Mobile Data Management
(MDM). IEEE, 2019, pp. 533–538.

[14] C. Song, W. Xu, T. Wu, S. Yu, P. Zeng, and N. Zhang, “Qoe-driven
edge caching in vehicle networks based on deep reinforcement learning,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5286–
5295, 2021.

[15] C. Li, X. Wang, T. Zong, H. Cao, and Y. Liu, “Predictive edge caching
through deep mining of sequential patterns in user content retrievals,”
Computer Networks, p. 109866, 2023.

[16] P. He, L. Cao, Y. Cui, R. Wang, and D. Wu, “Multi-agent caching
strategy for spatial-temporal popularity in iov,” IEEE Transactions on
Vehicular Technology, vol. 72, no. 10, pp. 13 536–13 546, 2023.

[17] Z. Zhang and M. Tao, “Deep learning for wireless coded caching with
unknown and time-variant content popularity,” IEEE Transactions on
Wireless Communications, vol. 20, no. 2, pp. 1152–1163, 2021.

[18] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-
aware proactive edge caching for connected vehicles using federated
learning,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 8, pp. 5341–5351, 2020.

[19] Q. Wu, Y. Zhao, Q. Fan, P. Fan, J. Wang, and C. Zhang, “Mobility-aware
cooperative caching in vehicular edge computing based on asynchronous
federated and deep reinforcement learning,” IEEE Journal of Selected
Topics in Signal Processing, vol. 17, no. 1, pp. 66–81, 2023.

[20] W. Zhuang, Q. Ye, F. Lyu, N. Cheng, and J. Ren, “Sdn/nfv-empowered
future iov with enhanced communication, computing, and caching,”
Proceedings of the IEEE, vol. 108, no. 2, pp. 274–291, 2019.

[21] Y. Pei, M. Li, H. Wu, Q. Ye, C. Zhou, S. Hu, and X. Shen, “Joint
caching and computing resource reservation for edge-assisted location-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

aware augmented reality,” in ICC 2023-IEEE International Conference
on Communications. IEEE, 2023, pp. 2547–2552.

[22] S. Khodaparas, A. Benslimane, and S. Yousefi, “An intelligent caching
scheme considering the spatio-temporal characteristics of data in internet
of vehicles,” IEEE Transactions on Vehicular Technology, vol. 73, no. 5,
pp. 7019–7033, 2024.

[23] N. Aung, S. Dhelim, L. Chen, A. Lakas, W. Zhang, H. Ning, S. Chaib,
and M. T. Kechadi, “Vesonet: Traffic-aware content caching for vehicular
social networks using deep reinforcement learning,” IEEE Transactions
on Intelligent Transportation Systems, vol. 24, no. 8, pp. 8638–8649,
2023.

[24] B. Feng, C. Feng, D. Feng, Y. Wu, and X.-G. Xia, “Proactive content
caching scheme in urban vehicular networks,” IEEE Transactions on
Communications, vol. 71, no. 7, pp. 4165–4180, 2023.

[25] Z. H. Meybodi, A. Mohammadi, E. Rahimian, S. Heidarian, J. Abouei,
and K. N. Plataniotis, “Tedge-caching: Transformer-based edge caching
towards 6g networks,” in ICC 2022-IEEE International Conference on
Communications. IEEE, 2022, pp. 613–618.

[26] M. Han, X. Sun, X. Wang, W. Zhan, and X. Chen, “Joint caching, com-
munication, computation resource management in mobile-edge comput-
ing networks,” in 2024 IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2024, pp. 1–6.

[27] M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, and Z. Han,
“Sparks of generative pretrained transformers in edge intelligence for
the metaverse: Caching and inference for mobile artificial intelligence-
generated content services,” IEEE Vehicular Technology Magazine,
vol. 18, no. 4, pp. 35–44, 2023.

[28] Z. Chen, L. X. Cai, and X. Hao, “Near-field and far-field beamforming
design for ris-enabled millimeter wave systems,” in 2024 IEEE 99th
Vehicular Technology Conference (VTC2024-Spring), 2024, pp. 1–6.

[29] P. Yadav and S. Kar, “Efficient content distribution in fog-based cdn:
A joint optimization algorithm for fog-node placement and content
delivery,” IEEE Internet of Things Journal, vol. 11, no. 9, pp. 16 578–
16 590, 2024.

[30] X. Deng, P. Guan, C. Hei, F. Li, J. Liu, and N. Xiong, “An intelligent
resource allocation scheme in energy harvesting cognitive wireless sen-
sor networks,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 2, pp. 1900–1912, 2021.

[31] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI conference on artificial intel-
ligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[33] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” arXiv preprint arXiv:1803.02155, 2018.

[34] L. Bieker, D. Krajzewicz, A. Morra, C. Michelacci, and F. Cartolano,
“Traffic Simulation for All: A Real World Traffic Scenario from the City
of Bologna,” in Modeling Mobility with Open Data. Springer, 2015,
pp. 47–60.

[35] H. Peng, Q. Ye, and X. Shen, “Spectrum management for multi-access
edge computing in autonomous vehicular networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 21, no. 7, pp. 3001–3012,
2019.

[36] L. Li, Y. Xu, J. Yin, W. Liang, X. Li, W. Chen, and Z. Han, “Deep
reinforcement learning approaches for content caching in cache-enabled
d2d networks,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 544–
557, 2019.

[37] X. Zhu, Y. Luo, A. Liu, W. Tang, and M. Z. A. Bhuiyan, “A deep
learning-based mobile crowdsensing scheme by predicting vehicle mo-
bility,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 7, pp. 4648–4659, 2021.

[38] C. Li, M. Song, S. Du, X. Wang, M. Zhang, and Y. Luo, “Adaptive
priority-based cache replacement and prediction-based cache prefetching
in edge computing environment,” Journal of Network and Computer
Applications, vol. 165, p. 102715, 2020.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3530699

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on April 27,2025 at 05:05:04 UTC from IEEE Xplore. Restrictions apply.

