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Abstract— With the increasing penetration of electric vehicles
(EVs) and various user preferences, charging stations often
provide several different charging modes to satisfy the various
requirements of EVs. How to effectively utilize the charging
capacity to minimize the service dropping rate is a pressing
and open issue for charging stations. Given that EV owners
are price-sensitive to the charging modes, we intend to design
an optimal pricing scheme to minimize the service dropping
rate of the charging station. First, we formulate the operation
of a dual-mode charging station as a queuing network with
multiple servers and heterogeneous service rates, and analyze the
relationship between the service dropping rate of the charging
station and the selections of EVs. Then, we formulate a customer
attrition minimization problem to minimize the number of EVs
that leave the charging station without being charged and propose
an optimal pricing approach to guide and coordinate the charging
processes of EVs in the charging station. The simulation has been
conducted to evaluate the performance of the proposed charging
scheduling scheme and show the efficiency of the proposed pricing
scheme.

Index Terms— Charging stations, charging modes, queuing
theory, charging scheduling, pricing.

I. INTRODUCTION

ELECTRIC vehicles (EVs) have been considered to be a
key technology to cut down the massive greenhouse gas

emissions from the transportation sector, and they are also
expected to mitigate the fossil fuels scarcity problem [1].
Thanks to the policies and plans for promoting EVs from
the regions and countries worldwide (e.g., the sales of EVs
including PHEVs in US will reach 50% of total sales of mobile
vehicles by 2030, and Europe has the similar targets [2]),
the amount of EVs is expected to reach a sizable market share
in the next decade.
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However, due to limited cruising range, EVs may require
frequent recharging when they travel to a faraway destination,
and hence charging convenience is one of the most impor-
tant concerns for EV owners. In addition, due to the high
cost of battery replacement, battery lifetime-related cost is
another important concern for EV owners. Given the slow
evolution of battery technologies, the key issue to is how
to address these challenges without waiting for new battery
technologies.

Charging stations play an important role in providing
charging services to EVs. Typically, there exist two dif-
ferent charging modes for conventional public chargers:
i) AC Level II (charging power typically is 10-22 kW); and
ii) Direct Current Quick Charging (DCQC) (charging power
typically is 50-120 kW). Given the EV charging requirement,
AC Level II has a longer charging duration while DCQC
has a shorter charging duration, which may further reduce
battery lifetime. Because of deployment cost concerns, both
the number of charging stations and the number of chargers
in charging stations are limited. How to use limited charging
station resources to satisfy the various EV charging require-
ments has attracted attention, such as developing intelligent
charging station architectures [3]–[6], and optimizing the loca-
tion and sizing of charging stations [7]–[11]. Nevertheless,
the non-cooperative charging behaviors of EVs will lead to
congestion at charging stations and reduce their operational
efficiency.

To guide and coordinate the charging behaviors of EVs,
there have been extensive researches on developing charging
scheduling schemes, for EV charging stations [12]–[17], for
battery swapping stations [18]–[20], and for charging sta-
tions with renewable energy [21]–[24]. However, these works
assumed that all the chargers in the charging station are using
the similar charging mode, such as AC Level II or DCQC.
Since different EVs may have different charging behaviors
and charging service requirements, i.e., short charging dura-
tion or long battery lifetime or both of them, the charging
station with single charging mode has a low flexibility and
adaptability to satisfy the requirements of multi-class cus-
tomers, and thus limits the service quality.

To deal with the various EV charging requirements,
the charging station can install two types of chargers, such
as part of them with the AC Level II mode and part of
them with the DCQC mode. Consequently, the charging station
can provide different charging services to different classes of
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customers based on their behaviors. Furthermore, guiding the
EV owners to select adequate charging modes can reduce the
congestion and improve the service quality of the charging
station. This motives us to design an optimal scheduling
scheme for the charging station with dual charging modes
to minimize the service dropping rate. To the best of our
knowledge, this is the first paper addressing the charging
scheduling problem for the charging station with dual charging
modes by designing an optimal pricing scheme.

Generally, the selections of EV owners depend on several
factors, i.e., service fee, charging duration, waiting time,
etc [12]. Given that EV owners are price sensitive, we analyze
the relationship between the service dropping rate and the
service rate of the charging station and then design an optimal
pricing scheme to guide and coordinate the charging processes
of EVs, such that the number of EVs that leave the charging
station without being charged can be minimized and the
operation efficiency of the charging station can be improved.
The contributions of this papers can be summarized as follows:

• We model the operation processes of the charging station
with dual charging modes as a queuing network with
multiple servers and heterogeneous service rates.

• Based on the queuing theory, we analyze the relationship
between the selections of EVs and the service dropping
rate of the charging station, and prove that the service
dropping rate is a convex function of the service rates.

• We formulate a customer attrition minimization problem
for the charging station and propose an optimal pricing
scheme to guide and coordinate the charging processes
of EVs to minimize the service dropping rate.

• Simulation results show that the proposed pricing scheme
can reduce the service dropping rate of the charging
station with dual charging modes significantly comparing
to the charging station with a single charging mode.

The rest of the paper is organized as follows: Section II
presents the operation models for the charging station, and
formulates the charging scheduling problem as a customer
attrition minimization problem based on queuing theory. The
relationship between the selections of EVs and the service
dropping rate of the charging station is analyzed, and an
optimal pricing scheme is designed by utilizing the price sensi-
tiveness of EV owners in Section III. Section IV demonstrates
the operational performance analysis based on simulation
results. Finally, Section V concludes our work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Considering a charging station, there are N1 AC chargers
and N2 DC chargers to provide charging services for connected
EVs.1 Given the charging demand of one EV, both the service
fee and the battery lifetime-related cost of the AC chargers
are much lower than the DC chargers. But, the charging
duration for the AC chargers is much longer. As shown in
[12] and [25], the dominant factors that affect the selections

1For simplicity, we use the AC charger and the DC charger to denote the
charger with the AC Level II charging mode and the charger with the DCQC
charging mode, and the AC mode and the DC mode instead of the AC Level
II charging mode and the DCQC charging mode in this paper, respectively.

Fig. 1. Operation model and queuing model for the charging station. (a)
Operation model. (b) Queuing model.

of EVs are service fee, waiting time, battery lifetime-related
cost, etc. In this paper, we assume that the service fee and
the battery lifetime-related cost will affect the EVs’ selections
while the waiting time will affect the service dropping rate
of the charging station. When the corresponding queue length
is too long, EV will leave the charging station without being
charged. Otherwise, EV will be charged by one charger with
the selected charging mode immediately or late.

For each EV, it needs to select one charging mode when it
arrives at the charging station. Then, it will be charged when
there is at least one available charger with the selected charg-
ing mode; otherwise, it needs to wait in the corresponding
queue until one charger with the selected charging mode is
available, or leaves the charging station directly without being
charged if the corresponding queue length is too long. Here,
the percentage of EVs that leave the charging station directly
denotes the service dropping rate, which is one of the main
factors related to the Quality of Service (QoS) of the charging
station. Our objective is to design an optimal pricing scheme
based on EV owners’ preferences to guide them to select
adequate charging modes, such that the service dropping rate
of the charging station can be minimized. The operation model
and the queuing model for the charging station are shown
in Fig. 1. A summary of notations is given in Table I.

Note that, given the ubiquitous communication networks,
in the future, EVs and charging stations can exchange pricing
and waiting time information remotely. Such that, an EV can
decide which charging mode it prefers and whether go to
the charging station for charging service or not based on its
QoS. In this scenario, the queuing model and the proposed
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TABLE I

NOTATION DEFINITIONS

pricing algorithm in this paper can still be applicable, using
the concept of virtual queues.

A. Operation Model of Charging Stations

Considering the realistic scenarios that the average EV
arrival rate during peak vs. off-peak hours may be different,
we divide the whole day into T time slots (i.e., an hour is
one time slot), and assume that the average EV arrival rate
within the time slot remains the same, while that for different
time slots may change. Let t , t = 1, 2, . . . , T , denote t-th time
slot. The arrival of EVs at each time slot follows a Poisson
process with the average rate of λt during time slot t [26]. The
probability for n EVs arriving at the charging station during
time slot t is given by

P{n} = eλt (λt )
n

n! , n = 0, 1, 2, · · · .

When EVs arrive at the charging station, they will select
their charging modes based on their preferences and the
corresponding service fee. Let p̄A

t and p̄D
t respectively denote

the probability for one EV selecting the AC mode and the DC
mode during time slot t , respectively. The values of p̄A

t and
p̄D

t satisfy

p̄A
t + p̄D

t = 1, (1)

0 ≤ p̄A
t , p̄D

t ≤ 1. (2)

Let λA
t and λD

t denote the expected number of EVs that select
the AC mode and the DC mode during time slot t , respectively.
We have

λA
t = λt p̄A

t and λD
t = λt p̄D

t . (3)

Generally, based on the existing data analysis in [27],
the EV charging requirements follow a lognormal distribution
with a mean value E and a standard deviation of Ed . Thus,
we assume that the expected charging requirement of each EV
is E . Let T A and T D denote the expected service time for one
AC charger and one DC charger to fully charge a battery with
the capacity of BC , respectively. T A > T D always holds. The
mean service times for one EV selecting the AC mode and
the DC mode are ET A/BC and ET D/BC , respectively.

Based on the selections of EVs, they enter two separate
queues: 1) one queue for EVs that select the AC mode, denoted
by Q A

t ; 2) another queue for EVs that select the DC mode,
denoted by QD

t . The queue lengths of Q A
t and QD

t at time
slot t can be given by the following equations:

Q A
t = max{0, Q A

t−1 + λA
t − V A

t − O A
t − L A

t }, (4)

QD
t = max{0, QD

t−1 + λD
t − V D

t − O D
t − L D

t }, (5)

where V A
t and V D

t respectively denote the total number of
the available AC chargers and DC chargers at slot t , O A

t and
O D

t respectively denote the number of EVs that have been
fully recharged by the AC chargers and the DC chargers and
leave the charging station during time slot t , and L A

t and L D
t

respectively denote the number of EVs that select the AC mode
and the DC mode and leave the charging station without being
charged due to the long corresponding queue length.

In this paper, the maximum queue length is used to denote
the maximal tolerable queue length of the EV owners, denoted
by Q̄ A

t and Q̄D
t respectively. If Q A

t ≥ Q̄ A
t (QD

t ≥ Q̄D
t ),

the coming EVs that select the AC (DC) mode will leave the
charging station without being charged; otherwise, they will
be charged immediately or wait in the corresponding queue.
Let Lt denote the service dropping rate of the charging station
during time slot t . The expected value of Lt can be given by

Lt = L A
t + L D

t , (6)

where

L A
t = λA

t Pr{Q A
t |Q A

t ≥ Q̄ A
t }, (7)

L D
t = λD

t Pr{QD
t |QD

t ≥ Q̄D
t }. (8)

Obviously, the service dropping rate Lt depends on the
selections of EVs λA

t and λD
t , and the queue lengths Q A

t and
QD

t , as well as the maximum queue lengths Q̄ A
t and Q̄D

t . Since
the values of Q̄ A

t and Q̄D
t are determined by EV owners, it is

difficult for the charging station to change them. According to
(4) and (5), Q A

t and QD
t mainly depend on the selections of

EVs λA
t and λD

t , respectively, which can be tuned to reduce
the service dropping rate Lt .

B. Selection Model of EVs

Generally, due to the high construction cost of the DC mode,
the service fee of the DC mode is much higher than that for
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the AC mode. Furthermore, the battery lifetime-related cost for
the AC mode is much lower than that for the DC mode [28].
Different EVs may have the different preferences, but are price
sensitive [16]. Since different charging stations always have
the similar service fee of the AC mode, we set the service fee
of the AC mode as a constant and adjust the service fee of
the DC mode.

Let C A
t and C D

t denote the service fee per kWh during time
slot t , and C A

B and C D
B denote the battery lifetime-related cost

per kWh, with the AC mode and the DC mode, respectively.
Here, C A

t < C D
t and C A

B < C D
B always hold. Generally,

the service fee of the DC mode can only be adjusted in a
given range. Let C D and C

D
denote the lower bound and upper

bound on the service fee of the DC charger. Thus, the service
fee C D

t should always satisfy

C D ≤ C D
t ≤ C

D
. (9)

As mentioned above, the selections of EVs mainly depend
on the service fees C A

t and C D
t and the battery lifetime-related

costs C A
B and C D

B . Specifically, in this paper, we define p̄A
t and

p̄D
t as follows:

p̄D
t = −aC D

t + b, (10)

p̄A
t = 1 − p̄D

t , (11)

where a = 1
C A

t +β−(C D
B −C A

B )
, b = aC

D
, and β denotes the

service time reduction cost of the DC mode comparing with
the AC mode. It can be seen that a is a price-dependent term
and b is a price-independent term.

To ensure 0 ≤ p̄A
t , p̄D

t ≤ 1, we set C D = C
D − (C A

t + β −
(C D

B − C A
B )), which usually is larger than 0. Such that, when

C D
t equals its lower bound C D , all the coming EVs will select

the DC mode, i.e., p̄D
t = 1 and p̄A

t = 0; when C D
t = C

D
,

all the coming EVs will select the AC mode, i.e., p̄D
t = 0

and p̄A
t = 1. Note that, our proposed algorithm also applies

to other probability models, such as linear or concave ones.

C. Service Dropping Rate of Charging Station

Let p̄L
t denote the probability for EVs leaving the charging

station without being charged during time slot t . The expected
values of p̄L

t can be given by

p̄L
t = Pr{Q A

t |Q A
t ≥ Q̄ A

t } p̄A
t + Pr{QD

t |QD
t ≥ Q̄D

t } p̄D
t . (12)

Thus, the expected value of the service dropping rate Lt can
be rewritten as

Lt = λt p̄L
t , (13)

due to λA
t = λt p̄A

t and λD
t = λt p̄D

t . It can be found that
the service dropping rate Lt can be reduced by adjusting the
service fee C D

t , which affects the values of p̄A
t and p̄D

t .

D. Customer Attrition Minimization Problem

The service dropping rate is not only an important parameter
for the loss of benefit, but also one of the major factors for the
satisfaction of EV owners. To minimize the service dropping
rate of the charging station, we formulate a customer attrition

minimization problem. Since EV arrives at different time slot
follow a Poisson process, which has independent increments,
we just need to minimize the service dropping rate of the
charging station during each time slot, such that the total
service dropping rate can be minimized. By now, the customer
attrition minimization problem can be formulated as follows:

P0: min
C D

t

Lt = λt p̄L
t ,

s.t . C D ≤ C D
t ≤ C

D
,

p̄D
t = −aC D

t + b, (14)

p̄A
t + p̄D

t = 1, (15)

1 ≤ p̄A
t , p̄D

t ≤ 0, (16)

(4), (5), and (12). (17)

The objective is to minimize the service dropping rate Lt by
adjusting the service fee C D

t . The first constraint defines the
available range of C D

t . The constraints (14)-(16) describe the
relationship between the service fee C D

t and the selections of
EVs, p̄A

t and p̄D
t . The other constraints show relationships

among p̄L
t , Q A

t , QD
t , p̄A

t , and p̄D
t .

III. OPTIMAL EV CHARGING SCHEDULING SCHEME

To solve the customer attrition minimization problem,
we first analyze the performance measure of the queue system
to explore the possible range of optimal price and the rela-
tionship between the service dropping rate Lt and the service
fee C D

t . Then, we transform the primal problem into a convex
optimization problem. At last, we propose an optimal pricing
scheme to guide the EVs to select adequate charging modes,
such that the total service dropping rate of the charging station
can be minimized.

According to the definitions of p̄A
t and p̄D

t , it can be found
that the relationships among λA

t , λD
t and C D

t are linear. For
any given service fee C D

t and arrival rate λt , λA
t and λD

t can
be calculated according to (3), (10) and (11). Also, C D

t and
λA

t can be obtained when the value of λD
t is given. Hence,

in the following sections, we can replace the variable C D
t by

λD
t for easy computation.

A. Performance Measures Based on Queue Theory

Let μA and μD denote the average service rate for one AC
charger and that for one DC charger, respectively. Based on the
system model, the values of μA and μD , and their relationship
can be given by

μA = BC

ET A
, (18)

μD = BC

ET D
, (19)

μA = T D

T A
μD. (20)

Obviously, μA < μD since T D < T A.
The charging processes of EVs at the charging station

can be formulated as two independent queuing networks,
i.e., M/M/N1 with ρA

t = λA
t /(N1μ

A) and M/M/N2 with
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ρD
t = λD

t /(N2μ
D), respectively. Here, ρA

t and ρD
t are the

corresponding utilization factors for different charging modes.
For the optimal service fee Ĉ D

t , we have the following
Theorem:

Theorem 1: For any given arrival rate λt , the available
range for the optimal service fee Ĉ D

t can be given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1μ
A + bλt − λt

aλt

≤ Ĉ D
t ≤ bλt − N2μ

D

aλt
, if λt ≥ N1μ

A + N2μ
D;

bλt − N2μ
D

aλt

< Ĉ D
t <

N1μ
A + bλt − λt

aλt
, otherwise.

Proof: According to the queuing theory, if with infinite
buffer, the necessary conditions for these two queue systems
to be stable are ρA

t < 1 and ρD
t < 1. If the mean arrival

rate is greater than the mean service rate, the necessary
conditions for the stable queue systems cannot be satisfied,
which makes the server keeping busy and the queue growing
without bound2 [29]. Thus, based on the arrival rate λt and
the service rate, we classify the available range of Ĉ D

t into the
following two cases:

CASE I: If λt ≥ N1μ
A + N2μ

D , there is no available

service fee satisfying λt p̄ A
t

N1μA < 1 and λt p̄D
t

N2μD < 1 simultaneously.

If ρA
t ≥ 1, the chargers with the AC mode will keep

busy since their queuing system becomes overloaded and
the service dropping rate will increase with respect to λA

t ,
and L A

t ≈ λA
t − N1μ

A; otherwise, the service dropping rate
L A

t ≈ λA
t Pr{Q A

t |Q A
t ≥ Q̄ A

t } = λA
t (1 − Pr{Q A

t |Q A
t < Q̄ A

t }).
The parameters for L D

t are similar to those for L A
t . Hence,

the service dropping rate Lt can be given by the following
cases:

• If λA
t > N1μ

A and λD
t < N2μ

D , we have

Lt ≈ λt − N1μ
A − λD

t Pr{QD
t |QD

t < Q̄D
t }; (21)

• If λA
t ≥ N1μ

A and λD
t ≥ N2μ

D , we have

Lt ≈ λt − N1μ
A − N2μ

D; (22)

• If λA
t < N1μ

A and λD
t > N2μ

D , we have

Lt ≈ λt − N2μ
D − λA

t Pr{Q A
t |Q A

t < Q̄ A
t }. (23)

Since Pr{Q A
t |Q A

t < Q̄ A
t } < 1 and Pr{QD

t |QD
t < Q̄D

t } < 1,
(22)<(21) and (22)<(23) always hold. To minimize the service
dropping rate Lt , ρA

t ≥ 1 and ρD
t ≥ 1 should be satisfied

simultaneously. Thus, the available range for the optimal
service fee Ĉ D

t is

λt p̄A
t ≥ N1μ

A ⇒ Ĉ D
t ≥ N1μ

A + bλt − λt

aλt
,

λt p̄D
t ≥ N2μ

D ⇒ Ĉ D
t ≤ bλt − N2μ

D

aλt
.

2In a realistic queuing system, the buffer size is limited, so the queue length
will be limited, while a portion of the arrivals will be blocked when the buffer
is full.

CASE II: If λt < N1μ
A + N2μ

D , it means that there exists
an optimal service fee Ĉ D

t that can satisfy ρA
t < 1 and ρD

t < 1
simultaneously. If ρA

t < 1 and ρD
t < 1, it means that λA

t <
N1μ

A and λD
t < N2μ

d always hold, and the service dropping
rate Lt can be calculated by

Lt = λA
t Pr{Q A

t |Q A
t ≥ Q̄ A

t } + λD
t Pr{QD

t |QD
t ≥ Q̄D

t }
= λt − λA

t Pr{Q A
t |Q A

t < Q̄ A
t } − λD

t Pr{QD
t |QD

t < Q̄D
t }.
(24)

It can be found that (24)<(21) and (24)<(23) always hold.
Hence, the optimal service fee Ĉ D

t should satisfy

λt p̄A
t < N1μ

A ⇒ Ĉ D
t <

N1μ
A + bλt − λt

aλt
,

λt p̄D
t < N2μ

D ⇒ Ĉ D
t >

bλt − N2μ
D

aλt
.

The available range for the optimal service fee Ĉ D
t is obtained.

According to the available range for the optimal service
fee Ĉ D

t given by Theorem 1, if the arrival rate λt satisfies
λt ≥ N1μ

A + N2μ
D , we have the following Lemma for the

optimal service fee Ĉ D
t :

Lemma 1: The optimal service fee Ĉ D
t can be any value

in the available range [ N1μA+bλt−λt
aλt

, bλt−N2μD

aλt
] when λt ≥

N1μ
A + N2μ

D .
Proof: For the service dropping rate Lt given by (22),

it can be found that the minimal value of the service dropping
rate Lt is a constant when λt ≥ N1μ

A + N2μ
D , and the only

condition for the optimal service fee Ĉ D
t is to make sure of

that ρA
t ≥ 1 and ρD

t ≥ 1 are satisfied simultaneously. Thus,
the optimal service fee Ĉ D

t can be any value in the available

range [ N1μA+bλt−λt
aλt

, bλt−N2μD

aλt
].

Therefore, we only need to design the optimal pricing scheme
for the problem when λt < N1μ

A + N2μ
D .

Let n1 and n2 denote the steady state of the charging
processes of the AC mode and the DC mode, in which there are
n1 and n2 customers in their corresponding systems, include
the customers in service, respectively. Let pA

t (n1) denote the
probability that in steady state the number of customers present
in the AC mode is n1 during time slot t and pD

t (n2) denote
the probability that in steady state the number of customers
present in the DC mode is n2 during time slot t . Then, we have

pA
t (n) =

⎧
⎪⎪⎨

⎪⎪⎩

pA
t (0)

(N1ρ
A
t )n

n! , if n ≤ N1;

pA
t (0)

(ρA
t )

n
N N1

1

N1! , if n ≥ N1;
(25)

pD
t (n) =

⎧
⎪⎪⎨

⎪⎪⎩

pD
t (0)

(N2ρ
D
t )n

n! , if n ≤ N2;

pD
t (0)

(ρD
t )

n
N N2

2

N2! , if n ≥ N2;
(26)

where

pA
t (0) = [

N1−1∑

n=0

(N1ρ
A
t )n

n! + (N1ρ
A
t )N1

N1!
1

1 − ρA
t

]−1, (27)
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pD
t (0) = [

N2−1∑

n=0

(N2ρ
D
t )n

n! + (N2ρ
D
t )N2

N2!
1

1 − ρD
t

]−1. (28)

In this paper, we use the steady-state distribution of EVs to
model the service processes of the charging station and solve
the customer attrition minimization problem.

B. Service Dropping Rate of Charging Station

Since the maximal queue lengths Q̄ A
t and Q̄D

t for EVs
during time slot t are constant, the service dropping rate Lt

can be given by

Lt =
∞∑

n1=N1+Q̄ A
t

λA
t pA

t (n1) +
∞∑

n2=N2+Q̄ D
t

λD
t pD

t (n2) (29)

where
∑∞

n1=N1+Q̄ A
t

λA
t pA

t (n1) = λA
t (p A

t (N1+Q̄ A
t ))(N1+Q̄ A

t )

1−ρ A
t

denotes the blocking traffic for the queue of the AC mode

and
∑∞

n2=N2+Q̄ D
t

λD
t pD

t (n2) = λD
t (pD

t (N2+Q̄ D
t ))(N2+Q̄D

t )

1−ρD
t

denotes
the blocking traffic for the queue of the DC mode. According
to the definitions of pA

t (n) and pD
t (n) given by (25) and (26),

it can be found that pA
t (n) and pD

t (n) also depend on the
values of λA

t and λD
t . Hence, the service dropping rate Lt

mainly depends on the values of λA
t and λD

t .

C. Problem Transformation

According to Theorem 1 and the relationship among λA
t ,

λD
t , p̄A

t , p̄D
t and C D

t given by (3), (10) and (11), the optimal
λD

t should satisfy

λt − N1μ
A < λD

t < N2μ
D . (30)

By now, the primal Problem P0 can be transformed to the
following problem P1, in which the variable is λD

t , i.e.,

P1: min
λD

t

Lt , (31)

s.t . λt − N1μ
A < λD

t < N2μ
D. (32)

In this problem, the goal is to find the optimal λD
t to minimize

the service dropping rate Lt , and the available range for λD
t

is given by constraint (32). If the objective function Lt is
a convex function of λD

t , Problem P1 can be transformed
into a typical convex optimization problem. Thus, we first
establish that, if the problem is a convex optimization problem,
the solution of this problem is indeed toward the global
optimum [30]. To solve this problem, we first prove that
convexity of the service dropping rate Lt with respect to λD

t ,
and then propose an optimal pricing scheme to obtain the
optimal price Ĉ D

t .

D. Proof of Convexity

According to (29), the service dropping rate Lt is

Lt = λA
t pA

t (n′
1)

1

1 − ρA
t

+ λD
t pD

t (n′
2)

1

1 − ρD
t

,

where n′
1 = N1 + Q̄ A

t and n′
2 = N2 + Q̄D

t . Due to λA
t =

N1μ
AρA

t and λD
t = N2μ

DρD
t , we have

Lt = L A
t + L D

t ,

where

L A
t = N1μ

AρA
t pA

t (n′
1)

1

1 − ρA
t

= N1μ
A pA

t (0)
N N1

1 (ρA
t )n′

1+1

N1!
1

1 − ρA
t

, (33)

L D
t = N2μ

DρD
t pD

t (n′
2)

1

1 − ρD
t

= N2μ
D pD

t (0)
N N2

2 (ρD
t )n′

2+1

N2!
1

1 − ρD
t

. (34)

It can be found that L A
t and L D

t have the similar structure.
Thus, we first prove that the second part L D

t is an increasing
and convex function of λD

t , and then we can derive that the
first part L A

t is a decreasing and convex function of λD
t due

to λA
t = λt − λD

t . Because ρA
t is a linear function of λA

t and
such a variable substitution will not change the convexity of
the objective function, we take L D

t as the objective function
and ρD

t as the variable in the following part. For the second
part L D

t , we have the following theorem:
Theorem 2: The service dropping rate L D

t is an increasing
and convex function of the service rate ρD

t .
Proof: The proof can be found in Appendix A.

Since L A
t and L D

t have the similar structure and λA
t = λt −

λD
t , we have the following Lemma for the relationship between

L A
t and ρD

t :
Lemma 2: The service dropping rate L A

t is a decreasing and
convex function of the service rate ρD

t .
Proof: The proof can be found in Appendix B.

Theorem 3: The service dropping rate Lt is a convex func-
tion of λD

t .

Proof: Since Lt = L A
t + L D

t , ∂2 L A
t

∂(ρD
t )2 > 0 and ∂2 L D

t

∂(ρD
t )2 > 0,

we have ∂2 Lt

∂(ρD
t )2 > 0. Since λD

t = ρD
t N2μ

D , ∂λD
t

∂ρD
t

= N2μ
D > 0

always holds. Hence, ∂2 Lt

∂(λD
t )2 = (N2μ

D)2 ∂2 Lt

∂(ρD
t )2 > 0. Thus,

the service dropping rate Lt is a convex function of λD
t .

Because the relationship between λD
t and C D

t is linear, the ser-
vice dropping rate Lt also is a convex function of C D

t .

E. Optimal Pricing Scheme

Since the objective function Lt is a convex function of
λD

t and the constraint (32) is a linear constraint for λD
t ,

the transformed Problem P1 is a convex optimization problem.
Since this optimization problem will be solved by the charging
station, it can be solved using existing centralized tools, such
as fmincon function [31] or CVX toolbox [32] in Matlab.
We omit the details of how to solve this problem.

By solving Problem P1, the optimal λD
t can be obtained,

then the optimal pricing Ĉ D
t can be calculated by

Ĉ D
t = b

a
− λD

t

aλt
. (35)

The process for obtaining the optimal price Ĉ D
t can be

sketched as Algorithm 1.
Theorem 4: The minimal Lt can be achieved by the optimal

pricing scheme shown in Algorithm 1.
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Algorithm 1 Optimal Pricing Scheme for the Charging Station

Initialization λt , N1, μ
A, N2, μ

D, Q̄ A
t , Q̄D

t

• If λt ≥ N1μ
A + N2μ

D

Chooses λD
t randomly in [N2μ

D, λt − N1μ
A];

• Else

Obtains the optimal λD
t by solving Problem P1;

• end

Calculates the optimal price Ĉ D
t by (35);

return Ĉ D
t

Fig. 2. The EV arrivals of the charging station.

Proof: According to Theorem 1 and Lemma 1, if λt ≥
N1μ

A + N2μ
D , the minimal service dropping rate Lt ≈ λt −

N1μ
A − N2μ

D can be obtained by any value in the available
range, i.e., Ĉ D

t ∈ [ N1μA+bλt−λt
aλt

, bλt−N2μD

aλt
]. If λt < N1μ

A +
N2μ

D , since the customer attrition minimization problem is a
convex optimization problem according to Theorem 3, there
exists an unique optimal solution, which can be obtained by
solving Problem P1 [30]. Thus, the proposed optimal pricing
scheme in Algorithm 1 can minimize the service dropping
rate Lt .

IV. PERFORMANCE EVALUATION

In order to demonstrate the performance of the proposed
algorithm, we take one charging station with dual charging
modes and time-varying arrivals of EVs as a case study,
and then analyze the effects of the number of chargers,
the maximal waiting queue length, and the arrival rate on the
optimal pricing of the charging station.

A. Case Study

Consider a charging station with N1 = 15 AC chargers and
N2 = 8 DC chargers. The average service rates for each AC
charger and DC charger are μA = 2

5 per hour and μD = 12
5

per hour, respectively. According to [33], the cost for replacing
a 24kWh battery is about $5500, and the lifetime with the
AC mode and the DC mode are about 650 and 500 cycles,
respectively. Thus, we can derived that C A

B ≈ $0.35/kWh and
C D

B ≈ $0.46/kWh. The maximal queue lengths are Q̄ A
t = 10

and Q̄D
t = 8. We set C A

t = $0.15/kWh, C
D = $0.8/kWh,

β = $0.2/kWh, and E = 16kWh. The arrivals of EVs during
different time slot can be found in Fig. 2. Assume that there
exists another two construction plan: i) charging station with
the AC mode, in which all the DC chargers (including the
waiting space) are replaced by the AC chargers, and all the

Fig. 3. Optimal price Ĉ D
t where C A

t = $0.15/kWh and selections of EVs
at different time. (a) Optimal price Ĉ D

t . (b) Selection of EVs.

Fig. 4. The numbers of EVs that leave the charging station without being
charged and the corresponding expected queue lengths at different times.
(a) L A

t and L D
t . (b) Q A

t and QD
t .

EVs can only select the AC mode, i.e., N̄1 = 31 and Q̄ A
t = 10;

ii) charging station with the DC mode, in which all the AC
chargers are replaced by the DC chargers, i.e., N̄2 = 23
and Q̄D

t = 18, while the service fee of the DC mode is
$0.63/kWh.

The optimal price Ĉ D
t of the charging station with dual

charging modes and the expected selections of EVs can be
found in Fig. 3. It can be found that the available range for the
optimal price changes and the optimal price of the DC mode
is time-varying due to time-varying EV arrival rate. With the
increase of the arrival rate λt , the available range for optimal
price will be narrowed, which means that the selections for
the optimal price become less, and the optimal price Ĉ D

t for
the DC mode will be decreased, such that more EVs will
select the DC mode. However, since the service fees in the
charging stations with single mode are constants, all the EVs
in i) charging station with the AC mode can only select the
AC mode while only part of EVs in ii) charging station with
the DC mode will select the DC mode due to its high battery
lifetime-related cost.

The total service dropping rates for different charging
stations and the expected queue lengths can be found in Fig. 4.
It can be found that the optimal pricing scheme can minimize
the service dropping rate since it can guide the EVs selecting
the suitable charging mode to improve the utilization of
chargers in the charging station. For i) the charging station
with the AC mode, part of EVs leaves due to its limited service
ability and the long waiting queue, while for ii) the charging
station with the DC mode, part of EVs will not select this
charging station due to its high battery lifetime-related cost and
high charging service fee. For the charging station with dual
charging modes under optimal pricing scheme, by adjusting
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Fig. 5. Optimal solution with the increase of arrival rate λA
t : a) the optimal price Ĉ D

t ; b) the selections of EVs λA
t and λD

t ; c) the service dropping rates
L A

t and L D
t ; and d) the expected queue lengths Q A

t and QD
t .

TABLE II

THE SERVICE DROPPING RATE (UNIT: EVS)

the service fee of the DC mode, both the number of EVs
that leave the charging station without being charged and the
expected queue lengths can be minimized, especially when the
arrival rate is high.

With same arrival rates and construction space, i) charging
station with the AC mode has the smallest service ability and
longest waiting queue, ii) charging station with the DC mode
has the largest service ability and the smallest waiting queue,
and charging station with dual charging modes under optimal
pricing scheme has a middle service ability and waiting queue.
In addition, i) charging station with the AC mode has the
largest service dropping rate due to limited service ability, and
ii) charging station with the DC mode has a higher service
dropping rate due to its high battery lifetime-related cost, and
the charging station with dual charging modes under optimal
pricing scheme can minimize the service dropping rate, which
has a higher flexibility and adaptability to deal with the time-
varying arrival rate of EVs.

The expected service dropping rate for different charging
stations can be found in Table II. It can be found that the
charging station with dual charging modes under the proposed
pricing scheme can minimize the total service dropping rate of
the charging station. The charging station with the AC mode
has the highest service dropping rate due to its limited charging
service rate even when it has 31 chargers. The charging station
with the DC mode has a middle service dropping rate due to its
high service fee and high battery lifetime-related cost. As we
know, since the charging station with the DC mode has enough
charging service ability to service more EVs, reduce its service
fee can cut down the service dropping rate. However, we found
that only when the charging station with the DC mode reduce
its the service fee to $0.59/kWh, which is much lower than
the service fee in charging station with dual charging modes,
it has the similar service dropping rate of the charging station
with dual charging modes.

B. Relationship Between Arrival Rate and System
Performance

The maximal service ability of the charging station with
dual charging modes is 25.2 EVs/hour. In order to explore the
performance of our proposed pricing scheme, we set the arrival
rate from [1, 35] and respectively show the optimal price Ĉ D

t
and its available range, the minimal service dropping rates L A

t
and L D

t , the selections of EVs λA
t and λD

t , and the expected
queue lengths for the AC mode and the DC mode in Fig. 5.

From the simulation results in Fig. 5(a), it can be found
that, when the arrival rate of EVs is smaller than the maximal
service ability of the charging station, with the increase of
the arrival rate λt , the available range for the optimal price
becomes narrow to ensure that both of the utilization factors
ρA

t and ρD
t are smaller than 1, and the optimal price Ĉ D

t
decreases; otherwise, the available range for the optimal price
becomes wider to ensure that both of the utilization factors ρA

t
and ρD

t are larger than 1, and the optimal price Ĉ D
t can be any

value in the available range. Specially, when the arrival rate of
EVs is smaller than the maximal service ability of the charging
station, the charging station needs to select an optimal pricing
by solving Problem P1 to minimize the total service dropping
rate for both the AC mode and the DC mode; and when the
arrival rate of EVs is larger than the maximal service ability of
the charging station, the charging station just needs to select
one available value in the available range since any value in
the available range will obtain the same service dropping rate.

Figs. 5(b)-5(d) show the selections of EVs, the service
dropping rates and the expected queue lengths, respectively.
With the increase of EV arrival rate, the selections of EVs
for both the AC mode and the DC mode, the service dropping
rate and the expected queue lengths will be increased. In order
to minimize the service dropping rate, it can be found that
the selections of EVs for both the AC mode and the DC
mode increase smoothly. Also, the service dropping rate grows
when the arrival rate of EVs is larger than a certain threshold
and the expected queue lengths reach their upper bounds of
the charging station. Since the service rate of the AC mode
is much lower than the service rate of the DC mode, more
EVs are assigned to select the DC mode to minimize the total
service dropping rate.

C. The Effects of N1 and N2 on Service Dropping Rate Lt

To explore the effect of the charging facilities in the
charging station on the service dropping rate Lt , we fix the
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Fig. 6. The minimal service dropping rate Lt affected by the values of N1
and N2: (a) N1 = 15 and N2 ∈ [1, 20]; (b) N2 = 8 and N1 ∈ [1, 20].

Fig. 7. The minimal service dropping rate Lt affected by the values of Q̄ A
t

and Q̄D
t : (a) Q̄ A

t = 10 and Q̄D
t ∈ [1, 20]; (b) Q̄D

t = 8 and Q̄ A
t ∈ [1, 20].

EV arrival by λt = 22, and perform the following simula-
tions: 1) fixing N1 = 15 while adjusting N2 from 1 to 20,
the minimal service dropping rate Lt is shown in Fig. 6(a);
2) fixing N2 = 8 while adjusting N1 from 1 to 20, the minimal
service dropping rate Lt is shown in Fig. 6(b). It can be
found that the minimal service dropping rate Lt in the first
simulation is decreasing much faster than that in the second
one. That is because the service rate of each DC charger is
much higher than that of each AC charger. For a charging
station with limited space, more DC chargers can reduce the
service dropping rate, but may decrease the number of EVs
due to its high battery lifetime-related cost.

D. The Effects of Q̄ A
t and Q̄D

t on Service Dropping Rate Lt

Since the maximal queue length affects the minimal service
dropping rate Lt , we conduct several simulations to demon-
strate the effects of Q̄ A

t and Q̄D
t on the minimal service

dropping rate Lt . First, we fix Q̄ A
t = 10 and adjust Q̄D

t
from 1 to 20, whose minimal service dropping rate Lt is
shown in Fig. 7(a). Then, we fix Q̄D

t = 8 and adjust Q̄ A
t

from 1 to 20, whose minimal service dropping rate Lt is
illustrated in Fig. 7(b). Obviously, the service dropping rate
Lt in the first simulation will decrease more quickly than that
in the second simulation. That is because the service rate for
the DC chargers is much higher than that of the AC charger.
However, increasing the waiting space of the charging station
may not improve the service dropping rate significantly, since
the service dropping rate mainly depends on the service ability
of the charging station.

V. CONCLUSION

In this paper, we modeled the operation of the charging
station with dual charging modes as a queuing network with

the multiple servers and heterogeneous service rates, and
analyzed the relationship between the service dropping rate
and the selections of EVs. Then, by making use of price
sensitiveness of EV owners, we designed an optimal pricing
scheme to guide and coordinate the charging processes of EVs
to minimize the service dropping rate of the charging station.
Simulation results are provided to demonstrate the efficiency
of the proposed charging scheduling scheme.

In our future work, we will consider the optimal pricing
scheme for the charging station, where the arrival rate of the
charging station depends on the service fee and the EVs can
change their selections when the selected queue length is too
long. Also, we intend to design an algorithm to determines the
optimal number of chargers with dual charging modes based
on the distribution of EVs, which can maximize the total profit
of the charging stations and improve the service quality of the
charging station.

APPENDIX A

Proof: For the special case when Q̄D
t = 0, according

to the Erlang’s C formula [34], the loss probability for
M/M/N/N can be given by

B(N2, N2ρ
D
t ) = pD

t (0)
N N2

2 (ρD
t )N2

N2!
1

1 − ρD
t

=
(N2ρD

t )N2

N2!(1−ρD
t )

∑N2−1
n=0

(N2ρD
t )n

n! + (N2ρD
t )N2

N2 !(1−ρD
t )

=
( N2−1∑

n=0

N2!(1 − ρD
t )

n!(N2ρ
D
t )N2−n

+ 1
)−1

. (36)

The existing works [35], [36] have proved that B(N2, N2ρ
D
t )

is an increasing and convex function of ρD
t when

N2 is given. Thus, both of the first and the sec-
ond derivatives B(N2, N2ρ

D
t ) with respect to ρD

t are
larger than zero, i.e., ∂ B(N2, N2ρ

D
t )/∂ρD

t > 0 and
∂2 B(N2, N2ρ

D
t )/∂(ρD

t )2 > 0.
According to (34), L D

t can be rewritten as

L D
t = N2μ

D(ρD
t )Q̄ D

t +1 B(N2, N2ρ
D
t ). (37)

The first derivative L D
t with respect to ρD

t is

∂L D
t

∂ρD
t

= N2μ
D
(∂(ρD

t )Q̄ D
t +1

∂ρD
t

B(N2, N2ρ
D
t )

+ (ρD
t )Q̄ D

t +1 ∂ B(N2, N2ρ
D
t )

∂ρD
t

)
.

Since N2μ
D > 0, ∂(ρD

t )Q̄D
t +1

∂ρD
t

= (Q̄D
t + 1)(ρD

t )Q̄ D
t > 0,

B(N2, N2ρ
D
t ) > 0, (ρD

t )Q̄ D
t +1 > 0, and ∂ B(N2,N2ρD

t )

∂ρD
t

> 0,

we have ∂L D
t

∂ρD
t

> 0.
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The second derivative L D
t with respect to ρD

t is

∂2 L D
t

∂(ρD
t )2

= N2μ
D
(∂2(ρD

t )Q̄ D
t +1

∂(ρD
t )2

B(N2, N2ρ
D
t )

+ 2
∂(ρD

t )Q̄ D
t +1

∂ρD
t

B(N2, N2ρ
D
t )

∂ρD
t

+ (ρD
t )Q̄ D

t +1 ∂2 B(N2, N2ρ
D
t )

∂(ρD
t )2

)
. (38)

Since ∂2(ρD
t )Q̄D

t +1

∂(ρD
t )2 = Q̄D

t (Q̄D
t +1)(ρD

t )Q̄ D
t −1 > 0, ∂(ρD

t )Q̄D
t +1

∂ρD
t

>

0, ∂ B(N2,N2ρD
t )

∂ρD
t

> 0, and ∂2 B(N2,N2ρD
t )

∂(ρD
t )2 > 0, ∂2 L D

t

∂(ρD
t )2 > 0 always

holds.
Since ∂L D

t

∂ρD
t

> 0 and ∂2 L D
t

∂(ρD
t )2 > 0 always hold, the service

dropping rate L D
t is an increasing and convex function of the

service rate ρD
t .

APPENDIX B

Proof: Since λA
t = Lt − λD

t , ρA
t = λA

t /N1μ
A and ρD

t =
λD

t /N2μ
D , we have

ρA
t = Lt − N2μ

DρD
t

N1μA
, (39)

and the first derivation of ρA
t with respect to ρD

t is

∂ρA
t

∂ρD
t

= − N2μ
D

N1μA
. (40)

Since L D
t has the same structure with L A

t , it can be easily

proved that ∂L D
t

∂ρD
t

> 0 and ∂2 L D
t

∂(ρD
t )2 > 0. Due to ∂ρD

t

∂ρ A
t

< 0,

we have ∂L D
t

∂ρ A
t

< 0 and ∂2 L D
t

∂(ρ A
t )2 > 0. Thus, the service dropping

rate L D
t is a decreasing and convex function of ρA

t .
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