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Abstract—This paper presents methodologies for deriving reli-
ability performance of wireless communication networks to sup-
port demand response (DR) control. First, the impact of commu-
nication impairments on a direct DR control program is investi-
gated. Second, the outage probability of a wireless link is mod-
elled and quantified, considering the multipath fading, shadowing,
and random path loss given the location distribution of smart me-
ters. Third, the distributions of packet delivery ratio are derived
for two wireless network architectures: the single-hop infrastruc-
ture-based network and the multi-hop mesh network. Simulation
results verify the above reliability models and provide important
insights on the coverage of wireless communication networks con-
sidering the reliability requirements of DR programs.

Index Terms—Communications reliability, demand response,
network topology, outage probability, smart grid.

I. INTRODUCTION

T HE bi-directional communication networking of the
smart grid infrastructure enables many demand response

(DR) technologies, which control hundreds or thousands of
distributed energy resources over vast geographic areas [1]–[7].
Among access technologies, wireless communication net-
working is a promising solution because of low cost and wide
coverage. However, it is critical to understand the reliability
of wireless communications and to quantify its impact on DR
performance, especially on DR programs that require frequent
information exchange between the controller and end devices
[1]. An example of such DR programs is the use of water
heaters [2], [3] or heating, ventilation, and air conditioning
(HVAC) units [4] for ancillary services. Assuming that each
end device is controlled through a smart meter that relays the
end device status to and receives control commands from the
DR controller, the reliability of the wireless communication
networks affects both the correctness of the controller decision
process and the effectiveness of control performance.
Previous studies have revealed the considerable potential and

benefits of DR programs. However, to ensure effective control
performance, the impact of communication reliability on DR
control must be addressed. In [8], the frequency with which in-
formation can be retrieved from and delivered to loads was in-
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vestigated but other communication impairments such as packet
losses were ignored. In [9], a discrete Markov chain model was
adopted to quantify the packet losses due to the buffer-overflow
at the data aggregator (DA), but the impact of wireless commu-
nication errors between the smart meters and the DA was not
considered. For a general wireless network, [10], [11] studied
the communication reliability using Bernoulli processes with
parameter . However, amethod for obtaining has not been ad-
dressed. In [12], the reliability of a multi-hop wireless commu-
nication system and its impact on DR was studied using Monte
Carlo simulations.
This paper focuses on reliability analysis of wireless access

networks for DR applications. The main contributions of this
work are threefold. First, we evaluate and compare the impact
of wireless communication errors on the DR control strategy
in two cases. In the first case, it is assumed that packet losses
randomly occur to all devices; while in the second case, the
communication losses are concentrated within a certain group
of users who experience worse communication conditions than
other users. Second, we use the outage probability as the perfor-
mance metric to analyze the reliability of communication ser-
vices in the smart grid. To quantify the outage probability of
wireless communication links, three aspects of random effects
are considered: i) the log-normal shadowing effect, ii) Rayleigh
fading, and iii) the random locations of smart meters. Numerical
approximations to link outage probability are derived. Given
the analytical model of link reliability, the reliability in both
single-hop and multi-hop wireless networks is modeled and an-
alyzed using binomial distribution and conditional binomial dis-
tribution. Finally, model accuracy is verified by comparing an-
alytical and simulation results. In addition, this paper provides
important insights on the coverage of wireless communication
networks considering the reliability requirements of DR control.
The rest of this paper is organized as follows. Section II de-

scribes the smart grid system model and discusses the main fac-
tors affecting wireless communication reliability. In Section III,
we present a sample DR control strategy [4], and evaluate the
impact of communication impairments on demand response.
The model of wireless communication link reliability is pre-
sented in Section IV. In Section V, the reliability of wireless
communication networks is studied, followed by model valida-
tions in Section VI. We conclude the paper and discuss the fur-
ther research issues in Section VII.

II. SYSTEM MODELS

In this paper, we assume that houses equipped with smart me-
ters are distributed within a service area with one central DA
to collect power-related information from meters and to deliver
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TABLE I
NOTATIONS USED IN THIS PAPER

control commands to those meters. Table I summarizes the no-
tations used in this paper.

A. Reliability Index

We first define the wireless communication reliability index at
different levels. For the reliability of a wireless link, link outage
probability is used. For reliability at the network-level, which is
composed of multiple links, reliability is evaluated by the packet
delivery ratio. These two performance indexes are defined sep-
arately in Definitions 1 and 2.
Definition 1: Link outage probability is the probability that

the link quality is insufficient to support communication re-
quirements. In a lossy wireless communication network, a link
is considered reliable if its outage probability is lower than a
predefined threshold.
Definition 2: Given a number of packets to be transmitted,

packet delivery ratio is defined as the ratio of the number of
packets successfully received at the destination(s) over the
number of packets transmitted.
Given the definition of reliability performance indexes, there

are several common factors affecting the wireless communica-
tion reliability, including the network topology, the collision or

Fig. 1. Network topologies. (a) A single-hop network. (b) A multi-hop net-
work.

buffer overflow in medium access control (MAC), and the prob-
abilistic wireless channel behavior. Models and assumptions of
these factors are presented as following.

B. Network Topology and Routing
Depending on the coverage area, an important issue is net-

work topology design, which defines how to construct the wire-
less network (such as using a single-hop or a multi-hop archi-
tecture). For a wireless link, the longer the distance between the
source and the destination, the higher the probability of packet
error. If a relay is introduced, the transmission range of a single
hop is reduced, but the number of hops increases, which makes
the hop-by-hop transmission more complex and error prone.
In this paper, we consider both single-hop and multi-hop

wireless access networks, as the two cases shown in Fig. 1.
A single-hop wireless network covers a circular area, where
information packets or control commands are directly deliv-
ered between the smart meters and the DA. For a multi-hop
network, smart meters are distributed in a square area and
organized into square-shape clusters with a cluster-header
working as relay nodes, collecting data packets from its cluster
members and forwarding these packets to the DA through other
cluster-headers. Depending on the distance between adjacent
cluster-headers, hop forwarding may occur multiple times,
using the Manhattan Walk routing scheme [13] and the same
routing path for bi-directional communications.

C. MAC Protocol
The contention-based MAC protocols are not desirable for

applications with constant bit-rate traffic or requirements of
high-reliability assurance, because packets can be dropped
due to collisions in contention access. For DR in the smart
grid, the requirements of communication resource is typically
predictable, because most smart meters installed in houses are
likely to be static and communication traffic is consistently
low and periodic [1]. Considering these characteristics, we
adopt a reservation-based MAC protocol using medium sharing
schemes, such as time division multiple access (TDMA), and
ignore packet losses due to buffer overflow as the traffic load
for DR control is deterministic and low. Thus, the unreliable
wireless communications studied in this paper are mainly due
to the network topology and wireless channel behavior.

D. Wireless Channel Model
The wireless channel behavior has a significant influence on

the packet delivery errors. To model a realistic wireless channel,
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the log-normal shadowing effect and Rayleigh fading are con-
sidered, assuming that the channel is static during a packet trans-
mission. For a packet delivery, the signal that arrives at the des-
tination is

(1)

where is the transmitted signal, is the additive white
Gaussian noise with variance , and is the channel power
gain, which is exponentially distributed with the mean varying
independently according to a shadowing effects, and deter-
mined by the path-loss. For the path-loss, , where
is the distance between the source and destination, is the
path-loss component, and is a constant dependent on the car-
rier frequency and antenna gain. For the log-normal shadowing
effect with given distance , we have its probability density
function (PDF), as

(2)

where is the shadowing effect, is a constant, and
is the standard variance of shadowing effect in decibels (dB).

For the Rayleigh fading channel given the shadowing effect ,
we have the PDF of channel power gain as

(3)

The randomness of smart meter locations is also considered in
this paper. Assuming smart meters are distributed as a Poisson
point process in a specified region, the distance between a source
and a destination becomes a random variable, which depends
on the wireless communication network topology [14]. In the
following, the PDF of random distance in a network is indicated
as .

III. IMPACT OF COMMUNICATIONS ON DEMAND RESPONSE
CONTROL STRATEGY

In this section, the impact of wireless communications on the
performance of the DR programs is simulated using the models
and the direct DR control strategy proposed in [4]. From this
simulation, the reliability requirements for the communication
network are derived. Note that communication network prob-
lems have different impacts on different DR programs because
the load models and control strategies may or may not be sen-
sitive to communication delays or errors. A good DR controller
design should account for realistic communication impairments.

A. Demand Response Control Strategy

In Section IV of [4], the performance of a temperature-pri-
ority-list-based direct load control scheme is used to aggregate
1000 HVAC loads (with a temperature bandwidth of and an
outdoor daily average temperature of ) for load balancing
services. Two types of control signals are used: the regulation
signal and the load following signal. Both control signals are
normalized to . As demonstrated in [4], if reliable and

Fig. 2. Impact of communication errors on following and regulation signals.
In the figure, the line in the middle of the box indicate the mean value of the
control error samples, the boxes above and below the mean value represent the
25th and 75th percentiles of the samples respectively, and the points outside the
boxes represent the samples beyond the 99.3% coverage if the data is normally
distributed. (a) Load following case I. (b) Load following case II. (c) Regulation
case I. (d) Regulation case II.

accurate bi-directional communications are always available,
the performance meets load balancing requirements well.

B. The Impact of Communication Errors

To illustrate the impact of communication errors on the ef-
fectiveness of DR programs, we re-run the above simulations
considering communication impairments in the delivery of con-
trol commands from the control center to the HVAC units. As-
suming that percent ( , 1, 2, 3, 4, and 10) of the control
commands delivered to the 1000 HVAC units are either incor-
rect or lost, two scenarios (Case I and Case II) are simulated with
different patterns of communication errors: In Case I, the packet
losses occur randomly in the 1000 HVAC units. In Case II, the
packet losses occur randomly in the first 100 of the 1000 HVAC
units. We assume that if an unit does not receive commands
from a central controller unit, it will remain in its previous state
until the maximum or minimum local temperature setting is val-
idated. The control errors (the difference between the real power
consumption and the targeted power consumption) are shown in
Fig. 2. Violations of user comfort levels (shown in Fig. 3) are ac-
counted for by calculating the amount of time in a day that room
temperatures exceed the temperature region. The following ob-
servations are made from simulation results.
If the communication impairments occur randomly among

1000 HVAC units, DR performance is not significantly de-
graded. This is because, at each time interval, only a small
percentage of HVAC units must be turned on or off. The
probability of control commands not reaching those units can
be small. For example, if 50 units need to switch from “on” to
“off” and , then on average only 2 units are expected to
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Fig. 3. Duration of comfort band violation. (a) Load following. (b) Regulation.

not respond. And the chance that these two units cannot receive
a command in the following time interval is very low, which
will not impact the overall performance significantly.
However, if the communication impairments occur only

among certain HVAC units, the DR system performance can
be significantly degraded. This is because at each time interval,

percent of the 100 HVAC units will not follow the com-
mand. Cumulatively, some units may not receive a command
for several time intervals, causing larger deviations from their
targeted outputs.
User comfort is hardly affected, when the packet loss rate is

less than 4%.When the packet loss rate is greater than 4%, there
are times when room temperatures exceed the region.
The above analysis shows that it is critical to design communi-
cation networks so that the packet losses do not occur consis-
tently within a small group of control objects and to ensure that
packet losses do not exceed 10% to keep the control errors of
the DR control strategy within 5% of 95% of the time.

IV. ANALYSIS ON LINK RELIABILITY

A. Outage Probability
In this paper, outage probability, the probability that the

signal-to-noise ratio1 (SNR) of the received signal is lower than
an outage threshold, is applied to evaluate the reliability of a
wireless link. More precisely, let denote the symbol SNR,
and be the signal power transmitted from the source node,

. The outage probability, , is given by

(4)

where is a threshold, called outage SNR.
Note that there are other metrics for communication relia-

bility evaluation, such as bit-error-rate (BER) and packet-error-
rate (PER). BER and PER depend on the detailed information
of the physical layer techniques such as the modulation and
coding. Thus, it is difficult if not impossible to obtain a general
expression to relate BER/PER and SNR for any physical layer
techniques. The outage probability is more general and indepen-
dent of the physical layer techniques. Given any physical layer
techniques adopted, we can easily map the outage probability to
BER and PER.
1As demonstrated in Section II, a properly designed reservation-based MAC

protocol can largely eliminate the interference caused by concurrent commu-
nications. Thus, SNR is used here instead of signal-to-interference/noise ratio
(SINR).

B. Link Reliability
As demonstrated in Section II, the channel gain depends on

the distance between the source and destination. Given the dis-
tance , the PDF of SNR, considering both the log-normal shad-
owing effect (2) and Rayleigh fading (3), is

(5)

Thus, the link outage probability based on distance with
outage SNR threshold is

(6)
Therefore, the link reliability can be evaluated by

, which indicates the outage probability for an ar-
bitrary link in a specified network topology setting. Let

,

(7)

where

(8)

(9)

, and is the PDF of the random distance
between the source and the destination limited in .

C. Approximation of Link Outage Probability
As in (7)–(8), a double integral is encountered in computing

the link outage probability, making it difficult to obtain analyt-
ical results and thus compelling us to find a proper approxima-
tion.
1) Approximation I
The link outage probability with the given outage SNR can

be approximated using a two-tiered -point Gauss quadrature
[15].
For the first tier, Gauss-Legendre quadrature [15] can be ap-

plied to compute the inner integral in (8). Thus,

(10)
where , , is the -th
root of -order Legendre polynomial, and is the weight
associated with .
In the second tier, for the integral of normal-weighted func-

tion in infinity interval in (7), Gauss-Hermite quadrature can be
adopted [15]. Therefore,

(11)

where is the -th root of the monic Hermite polynomial,
; its associated weight is given by . In
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(10) and (11), and denote the Quadrature method adopted;
, , , and have been tabulated in [15].
2) Approximation II
As shown in [16], the distribution of SNR can be approx-

imated using a single log-normal distribution when for the
shadowing effect is larger than 6 dB. The PDF, shown in (5),
can be approximated by

(12)

where , ,
and is the Euler’s constant.
In this case, the outage probability can be derived using a

one-step approximation applying Gauss-Legendre quadrature.
Therefore,

(13)

where

and is the complementary error function.
The proofs of (10), (11), and (13) can be found in

Appendix A.

V. ANALYSIS ON NETWORK-LEVEL RELIABILITY

In this section, we discuss the network-level reliability with a
given number of smart meters, and study the impact of network
topology on reliability.
To apply a link reliability model above for network-level re-

liability, the outage SNR threshold needs be set according
to the required reliability, i.e., and the physical
techniques, i.e., BPSK/MQAMmodulation. can be acquired
using Monte Carlo simulation or a two-state Markov model,
which has been proposed in the literature to characterize the be-
havior of packet errors in fading channels for a wide range of
parameters [17].

A. Reliability in a Single-Hop Network

In a single-hop network, all smart meters are directly con-
nected to the DA, as shown in Fig. 1(a). Assuming all smart
meters are distributed uniformly and independently, the packet
delivery ratio, as the performance index of network-level reli-
ability, can be modelled as a Bernoulli process with parameter

, which indicates the probability of successful
delivery between a smart meter and the DA. Let denote
the probability that packet delivery ratio is no less than , i.e.,

at least packets are successfully delivered to their desti-
nations . Therefore,

(14)

Note that the accuracy of is related to , the PDF
of the distance between a smart meter and the DA, and the dis-
tance distribution depends on the shape of the coverage area.
Typically, if an omni-directional antenna is used, the shape can
be approximated as a circle with the DA at the center. How-
ever, if multiple DAs are used to cover a large area, a hexagon
shape is more accurate than a circle for computing the random
distance [14].

B. Reliability in a Multi-Hop Network

Unlike a single-hop network, in a multi-hop network a packet
may be relayed by other smart meters or relays [1] before it
arrives at the destination. For an arbitrary smart meter, the
multi-hop networks’ end-to-end outage probability in sending
or receiving a correct packet to or from the DA is determined
by two factors: the number of hops along its packet routing
path and the outage probability for each hop.
Given an -hop routing path between a smart meter and the

DA, it means that there are other smart meters along the
routing path to forward the packet. Let denote the distance of
the -th hop along the routing path, and denote the
end-to-end outage probability with outage SNR threshold ,

(15)

where is the link outage probability determined by
(6).
In a multi-hop network, the number of hops needed to de-

liver a packet between a smart meter and the DA depends on
the network topology and the adopted routing algorithm. In this
paper, we study the clustering-based grid topology,2 as shown
in Fig. 1(b) and Manhattan routing scheme [13]. Assuming that
a large area is covered using square-clusters with an
edge length of , there can be clusters, where

. Let denote the probability of a smart
meter taking hops to reach the DA,

(16)

Let denote the probability that the packet deliver ratio is
at least in a multi-hop network. Therefore, in a
multi-hop cluster-based network with unit grid size grid
is

(17)

2The cluster-header selection algorithm has been investigated extensively in
the literature and is beyond the scope of this paper.
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Fig. 4. Link outage probability Approximation I. (a) In a circle. (b) In two par-
allel squares.

where . In addition,
note that the link distance distributions of the first, last, and
other hops can be different in the above network topology (see
Appendix B).

VI. MODEL VALIDATION AND APPLICATIONS

In this section, we discuss extensive simulations conducted to
evaluate the accuracy of the proposed reliability model of com-
munication networks at both link and network levels. In addi-
tion, as an application of the model developed, the maximum
coverage of a DA is obtained with different reliability levels,
and comparison is presented between using the single-hop and
multi-hop network topologies.We use the following channel pa-
rameters on all links between smart meters and the DA:

, the standard deviation for the log-normal shadowing ef-
fect, , the path loss exponent, , and the path
loss constant, (for 2.4 GHz carrier frequency)
[18].

A. Model Validation

The accuracy of the link outage probability model is tested
by comparing it to the Monte Carlo simulation results. The
random distance distributions (see Appendix B) in the two
types of topologies are adopted. One is a circle, which fits to
the wireless communication link between a smart meter and
the DA in the single-hop communication architecture; and the
other is two parallel squares, which fits to the link between two
cluster-header smart meters in multi-hop networks.
Fig. 4 shows computed using Approximation I (11)

with various circle radii or square edges as 25, 50, and 100 me-
ters. In all cases, the results of our analysis match well with the
simulation results. Results of a third analysis approximation are
also presented, in which, for simplification, the average link dis-
tance is used instead of the random distance distribution, and
only the random effects of the shadowing effect and Rayleigh
fading are considered. As Fig. 4 shows, it is obvious that the
method using the average distance significantly underestimates
the link outage probability, which can cause unacceptable over-
estimation of the link reliability.
In Fig. 5, the accuracy of two approximation methods, I and

II, are compared with different standard derivations of shad-
owing effect, and . It can be found the
SNR distribution computed by Approximation II becomes close

Fig. 5. Link outage probability Approximation II. (a) In a circle. (b) In two
parallel squares.

Fig. 6. PMF of packet delivery ratio. (a) In a single-hop network. (b) In a
multi-hop network.

to the results in Monte Carlo simulations when is larger than
6 dB.
The network level reliability model is verified in Fig. 6,

which shows the probability mass function (PMF) of the packet
delivery ratio given the outage SNR, . With the
single-hop architecture [Fig. 6(a)], as the coverage area is
enlarged, the distance between a smart meter and the DA also
increases, so that the peak value of the PMF curve shifts low
and right to the low packet delivery ratio region.
With the multi-hop architecture, the setting is slightly dif-

ferent from the single-hop scenario in that the coverage area is
fixed at but the square size is increased. In Fig. 6(b),
the PMF of packet delivery ratio in a multi-hop network shows
the same trend as that in single-hop network. Although the
number of hops is reduced with an increased cluster size, the
packet delivery ratio is more sensitive to the communication
distance, as path loss increases much faster as a function of
powers of the distance.

B. Model Application—Maximum Coverage
To explore the maximum coverage that a DA can provide

when the delivery ratio is guaranteed, search algorithms [19] can
be developed by applying the proposed reliability indexes. In the
following, a one-dimensional search algorithm is used to find
the maximum diameter in the single-hop scenario, and a two-di-
mensional search algorithm is adopted for the maximum cov-
erage edge length and the optimal cluster size in the multi-hop
scenario.
Recalling the results shown in Section III, up to 4% delivery

failure ratio is acceptable for the DR control. Fig. 7 shows the
maximum coverage, , in which the four groups of bars repre-
sent the maximum coverages with different outage SNR thresh-
olds. For each bar group, the height of the bars indicates the
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Fig. 7. Maximum coverage. (a) In a single-hop network. (b) In a multi-hop
network.

Fig. 8. Packet delivery ratio vs. network size. (a) In a single-hop network. (b)
In a multi-hop network.

maximum coverage ensuring that the link outage probability is
lower than 1%, 2%, 3%, and 4% with packet delivery ratio no
less than 70%, 80%, and 90%.
Another important observation in Section III is that the DR

performance is more vulnerable to delivery ratio disproportion
among different groups of users. Results in Fig. 8 demonstrates
that such disproportion exists in the communication networks
if the same physical layer techniques are adopted, such as
modulation and coding, etc.; it is found that the probability of
packet delivery ratio degrades quickly w.r.t. the distance in
both single-hop and multi-hop networks. Due to the path-loss
between smart meters and the shadowing effect, as the cov-
erage increases, the signals from smart meters in the edges are
typically weaker. Thus communication services would be far
worse for the smart meters at the edges of the coverage area.
To design reliable communication networks for smart grid,
extra protection for edge smart meters should be considered,
such as re-transmissions in the MAC layer or adaptive modula-
tion/coding in the physical layer.

VII. CONCLUSION
In this paper, we have modelled and analyzed the reliability

of wireless communication services for the smart grid. We
have first investigated the impact of communication losses
on DR control accuracy. Model-based simulations reveal the
importance of communication service reliability for effective
DR control. Next, we have modelled communication reliability
and evaluated it in the link level, considering the log-normal
shadowing effect, Rayleigh fading, and random locations of
smart meters. Extended from the link level model, commu-
nication reliability in both single-hop and multi-hop wireless
networks has also been modelled. Note that the communication
model proposed is applicable for a general DR control strategy,

not limited to the specific one in [4]. Monte Carlo simula-
tions were conducted to verify the accuracy of the proposed
model. The proposed models have been applied to quantify the
maximum coverage of a wireless network with the reliability
requirements.
More research efforts are beckoned to fully understand the in-

teraction of communication network design and DR control in a
smart grid. One issue is to provide similar reliability for all smart
meters, such as retransmission in the MAC layer and adaptive
modulation/coding (AMC) in the physical layer. Our model can
be extended to consider retransmission by computing the failure
probability of all (re-)transmissions, and consider AMC by set-
ting an appropriate SNR threshold according to the physical
techniques. Note that when retransmission is adopted to provide
more reliable information delivery, it raises a new issue of opti-
mizingMAC protocol and resource allocation using hybrid con-
tention- and reservation-based strategies. Another issue is the
impact of network topology and routing algorithms on commu-
nication reliability. To explore the optimal topology or routing
algorithm, our model can be applied for evaluating different net-
work topologies and routing algorithms by modifying the dis-
tribution of the communication distance and number of
hops between the smart meters and DA accordingly.

APPENDIX A
PROOF OF LINK OUTAGE PROBABILITY APPROXIMATIONS
A.1. Equation (10) in Approximation I
The Gauss-Legendre quadrature [15] can be used to calcu-
late integral of within , that

(18)

Let , for an integral interval
,

(19)

Thus, (10) can be derived by substituting (18) into (19).
A.2. Equation (11) in Approximation I
The Gauss-Hermite quadrature [15] can be used to calcu-
late infinite integral of normal-weight as follows:

(20)

Therefore, (11) can be obtained by applying (20) with
.

A.3. Equation (13) in Approximation II
In (12), let and

; thus,

(21)
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and then,

(22)

Similar to the proof of (10), (13) can be obtained by applying
Gauss-Legendre quadrature to calculate (22).

APPENDIX B
RANDOM DISTANCE DISTRIBUTION

The PDF of random distance between two points in a circle,
between two points in a square, and between two points in two
parallel squares can be found in [20].
It is easy to get the PDF of random distance from the centric

to another point in the neighbouring square with edge length
as shown in (23).

(23)
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