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Abstract—Privacy-preserving data aggregation in ad hoc net-
works is a challenging problem, considering the distributed com-
munication and control requirement, dynamic network topology,
unreliable communication links, etc. Different from the widely
used cryptographic approaches, in this paper, we address this
challenging problem by exploiting the distributed consensus
technique. We first propose a secure consensus-based data ag-
gregation (SCDA) algorithm that guarantees an accurate sum
aggregation while preserving the privacy of sensitive data. Then,
we prove that the proposed algorithm converges accurately and
is (ε, σ)-data-privacy, and the mathematical relationship between
ε and σ is provided. Extensive simulations have shown that the
proposed algorithm has high accuracy and low complexity, and
they are robust against network dynamics.

I. INTRODUCTION

Privacy-preserving data aggregation (DA) has attracted great
attention with many applications in wireless sensor networks,
smart metering systems, cloud computing, etc., [1]–[7]. We
consider the applications in distributed networked systems,
where data aggregation can be carried out using consensus
algorithms [7]. Typical scenarios include the wireless sensor
networks where sensors are deployed randomly in an area
to monitor the environment, and the sensing data will be
aggregated and polled by a remote monitor; or in a smart
metering system where the smart meters collect real-time
electricity usage and the aggregated usage in an area will be
used by the utility company to adjust power supply and enable
appropriate demand control. However, these data are often
privacy-sensitive [6]. How to ensure accurate data aggregation
while preserving privacy is an essential and challenging issue,
especially in ad hoc networks.

The ad hoc mode has both pros and cons that should be
considered in the design of accurate and privacy-preserving
DA. It is well known that in ad hoc networks, centralized
algorithm design or optimization solutions are difficult or too
costly to implement. Thus, without relying on a centralized
controller, an ad hoc network does not suffer from the single-
node failure problem and becomes more robust against node
failure and link dynamics. On the other hand, without a central

1: Dept. of Automation, Shanghai Jiao Tong University, and Key Laboratory
of System Control and Information Processing, Ministry of Education of
China, Shanghai, China jphe@sjtu.edu.cn
2: Dept. of Electrical & Computer Engineering, University of Victoria, BC,

Canada cai@ece.uvic.ca; pan@uvic.ca
3: State Key Lab of Industrial Control Technology, Zhejiang University,

China pcheng@iipc.zju.edu.cn
4: Dept. of Electric and Computer Engineering, Hong Kong Univer-

sity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
eesling@ust.hk

This research work is partially sponsored by the National Key R&D
Program of China 2017YFE0114600, and Natural Science Foundation of
China (NSFC) under grant 61828301, 61761136012, and the Natural Sciences
and Engineering Research Council of Canada (NSERC). The work by Ling
Shi is supported by a Hong Kong RGC General Research Fund 16208517.

trusted authority, it is concerned that some nodes may be com-
promised or attacked, resulting in the meltdown of the whole
network. In addition, dynamic network topology, limited node
computing capacity, higher rates of communication errors and
losses, and severe delay variations all make privacy-preserving
DA more challenging in ad hoc networks. Although privacy-
preserving DA has been heavily investigated, existing solutions
are typically based on various cryptography techniques, re-
quiring either secure communication channels, pre-established
shared keys, a trusted authority, or the combination of them.

Consensus is an important distributed computing method,
which has gained much attention in automatic control and
signal processing areas [9]–[15], and has been widely used
in various networking areas, e.g., time synchronization in
sensor networks [16], [17]. Note that an average consensus
algorithm can help each node to obtain the average value
of all nodes’ states in a distributed way, which is a building
block of the distributed aggregation algorithm designed in this
paper. Recently, Mo and Murray in [20] addressed the privacy-
preserving average consensus problem, and they designed a
novel Privacy Preservation Average Consensus (PPAC) al-
gorithm to solve the problem. Using PPAC, the privacy-
preserving and accurate DA can be achieved in the mean-
square sense, while it is more desirable and more challenging
to guarantee the privacy and accuracy in a deterministic
manner.

To meet the above challenges of DA in ad hoc networks,
in this work, we investigate the possibility of not relying on
cryptography tools. To enable fully distributed additive data
aggregation, we first analyze the conditions on the added
noise in the consensus algorithms, which can guarantee that
an average consensus can be achieved deterministically. Then,
based on the given conditions, we design a secure consensus-
based data aggregation (SCDA) algorithm that can achieve
(ε, σ)-data-privacy and high accuracy in obtaining the sum
and the average. Given the accuracy of the aggregation, our
solution can be applied to other types of aggregation such as
product, variance and other high-order statistics.

The main contributions and approaches of this work are
summarized as follows. First, we exploited an average consen-
sus algorithm to solve the privacy-preserving data aggregation
(DA) problem in ad hoc networks. We derived a sufficient
condition and a necessary condition of the noises added to
the consensus process, under which an accurate aggregation
is achieved. Based on the sufficient condition, a distributed
SCDA algorithm is designed without using any trusted au-
thority, so that the aggregator can obtain the aggregated
results from any participating nodes. Second, we proved the
convergence of the SCDA. To quantify the degree of the
privacy protection, we introduced a novel privacy definition,
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named (ε, σ)-data-privacy, which means that the probability
that each node can infer its neighbor nodes’ initial states in
an ε interval is no larger than σ. We also proved that SCDA
provides (ε, σ)-data-privacy, and the relationship between ε
and σ has been derived.

The remainder of the paper is organized as follows. System
model and problem formulation are presented in Section II.
SCDA is proposed and analyzed in Sections III. Simulation
evaluation is presented in Section IV, followed by concluding
remarks and further research issues in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an ad hoc network where nodes are self-
organized into clusters (using an existing clustering algo-
rithm [18]). We focus on a connected cluster with n nodes.
The data from the nodes in the cluster are aggregated, while
each individual’s data should not be revealed to any other node
(including the aggregator) or eavesdropper. The aggregator can
poll any node in the cluster to acquire the aggregated data.

Two nodes can select each other as neighbors to exchange
data with a logical link (a single-hop or multi-hop communica-
tion path) between them. Thus, an underlying logical network
can be constructed. It should be noted that since a logical
link can be a multi-hop communication path, the underlying
network may not be equivalent to the physical communication
network. The application of logical link is to hide the topology
information from privacy attackers, and thus it can enhance
privacy protection. For example, even an eavesdropper can
eavesdrop all one-hop neighbors’ information of node i, it
cannot know which part of the information is used in the state
update of node i. The underlying network is modeled as an
undirected graph, G = (V,E), where V is the set of nodes
and E is the set of logical links (edges) between nodes. Let
Ni be the neighbor set of node i, where j ∈ Ni iff (j, i) ∈ E
(neighboring nodes are connected by logical links). Note that
the logical links are negotiated in a distributed way, and thus
node i knows its neighbor set Ni, but does not know the full
topology of the underlying network.

Let N+ be the set of positive integers. Define the infinite
norm as ‖ x ‖∞= max{|xi|}, which is the maximum absolute
value of all the elements of vector x. We use ˆ[◦] to denote an
estimation of [◦].

B. Problem Formulation

Denote the privacy-sensitive data of each node as xi(0),
which is also called the initial state of node i. In this paper,
we consider how to obtain the additive aggregation, i.e.,∑n
i=1 xi(0). The main design objectives are listed below. First,

the aggregation should be obtained in a distributed manner,
without the knowledge of the whole network topology, i.e.,
each node in the network (including any attacking node)
does not have the full knowledge of the network topology1.
Second, the computation and communication cost should be
minimized. Lastly, each node’s initial state should not be

1This assumption is not presented in some existing works, e.g., [11], [20],
[21], for differential privacy analysis.

known to others (including its neighbors, the aggregator,
and eavesdroppers) to preserve privacy, while the aggregation
should be accurate.

To achieve the above objectives, we choose to devise the
solution based on average consensus which is a well-known
distributed algorithm. Given the total number of nodes (n), the
sum is easily obtained by multiplying the average by n. 2

In a nutshell, distributed average consensus computes the
average of the initial data by local information exchanges
among neighbors (in the underlying network). The state of
each node is updated iteratively by taking a weighted sum
of its current state and those of its neighbors. If the weights
are carefully chosen, the states of all nodes will converge to
their average after a number of iterations. To preserve privacy,
each state being sent to the neighbors will be added with a
noise. Denote by xi(k) the state of node i at iteration k. The
information being sent out at k-th iteration is designed as

x+
i (k) = xi(k) + θi(k), i ∈ V, (1)

where θi is the noise for privacy preservation.
In each iteration, the state is updated as follows.

xi(k + 1) = wiix
+
i (k) +

∑
j∈Ni

wijx
+
j (k)

= wii(xi(k) + θi(k)) +
∑
j∈Ni

wij(xj(k) + θj(k)) (2)

for i ∈ V , where wijs are the weights. Here, θi(k) may not
be necessary, while it is included to simplify the mathematical
expression in both the formulation and proof.

To ensure that average consensus is achieved by the con-
sensus algorithm and that the weights can be obtained in a
distributed manner, we use Metropolis weights [8], given by

wij =


(1 + max{di, dj})−1, j ∈ Ni,

1−
∑
l∈Ni

wil, i = j,

0, otherwise,

(3)

where di and dj are the number of neighbors of node i and
j in G, respectively. For a connected graph, a matrix with
Metropolis weights is doubly stochastic.

Putting in the matrix form, we have

x(k + 1) = W (x(k) + θ(k)), (4)

where x, θ ∈ Rn,W ∈ Rn×n satisfying x = [x1, x2, ..., xn]T

and θ = [θ1, θ2, ..., θn]T , and W is the matrix with Metropolis
weights as its elements. Since W can be obtained in a
distributed manner, we give an assumption as follows.

Assumption 2.1: It is assumed that the full knowledge of
Wi of node i is unavailable to other nodes in the network,
where Wi is the i-th row vector of matrix W .
Define the average state as x̄ = 1

n

∑
i∈V xi(0). The problem

is changed to design the noise process θ(k), such that

lim
k→∞

xi(k) = x̄, i ∈ V. (5)

2Using average consensus, we can obtain the average of log xi, (xi)k (for
k = 2, 3...) to calculate the product, variance, and other statistics.
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Using the Metropolis weights, W is doubly stochastic and
the average consensus can be easily guaranteed when θ(k) = 0
for all k [9], [10]; however, non-zero noise is necessary to pre-
serve privacy. If the aggregation can tolerate some discrepancy,
we have more freedom to design the noise process θ(k). For
example, we can choose θ(k) to be mutually independent with
an exponentially decaying co-variance matrix [11]. However,
to achieve the exact average consensus, the added θ(k) has to
ensure that the consensus result will not be affected and the
privacy can be guaranteed, which implies that θ(k) must be
carefully designed and correlated. In [20] PPAC was designed
to guarantee the privacy and the exact average consensus,
by adding and subtracting Gaussian and zero-sum noises to
the consensus process. It is proved that PPAC has a mean-
square convergence rate, i.e., an exact average consensus can
be guaranteed by PPAC in the mean-square sense. However,
what are the general conditions on the added noise that can
guarantee the privacy and the exact average consensus is still
an open issue. Different from [20] and [21], the convergence
of the average consensus is deterministic, not in the sense of
mean square or probability. We will conduct the analysis and
design the algorithm to solve this problem.

III. PRIVATE AND ACCURATE DATA AGGREGATION

In this section, we first analyze the sufficient conditions and
the necessary conditions on the added noise process such that a
deterministic average consensus can be achieved. Then, based
on the obtained conditions, we propose the SCDA algorithm
and analyze its performance in terms of convergence, aggre-
gation accuracy, privacy, and implementation complexity.

A. Algorithm Design
We first present a theorem, which provides a sufficient

condition of deterministic average consensus and a theoretical
support for our algorithm design.

Theorem 3.1: Considering the linear dynamic system (4),
if the added noise vectors are bounded, i.e., ‖θ(k)‖∞ ≤ αρk

for some α > 0 and ρ ∈ [0, 1), and the sum of all added
noises satisfies

∑∞
k=0

∑n
i=1 θi(k) = 0, then (5) holds true.

Meanwhile,
∑∞
k=0

∑n
i=1 θi(k) = 0 is a necessary condition.

The proof of Theorem 3.1 is given in Appendix A, where
the proof of the convergence can be referred to Theorem 3 of
[16]. Based on this theorem, if the noise process θ(k) satisfies
the two conditions that ‖θ(k)‖∞ ≤ αρk, i.e., exponentially
decaying, and

∑∞
k=0

∑n
i=1 θi(k) = 0, i.e., zero-sum, the goals

of accurate and fast aggregation can be achieved. The expo-
nentially decaying condition can ensure the convergence of the
algorithm. The zero-sum condition ensures that the achieved
consensus is an exact average consensus, which guarantees
a fully accurate aggregation. Hence, Theorem 3.1 provides
general conditions on the added noise which guarantees that
an average consensus can be achieved deterministically. From
the proof of Theorem 3.1, we have the following corollary.

Corollary 3.2: Consider the linear dynamic system (4). If
there are h sub-sequences θ(`+kh) of noise process θ(j) and
each sub-sequence satisfies ‖θ(`+kh)‖∞ ≤ αρk for some α >
0 and ρ ∈ [0, 1), and the noise process θ(`) satisfies the zero-
sum condition, i.e.,

∑∞
`=0

∑n
i=1 θi(`) = 0, then lim

k→∞
xi(k) =

x̄ for i ∈ V , where ` = 0, 1, ..., h− 1.

Based on Corollary 3.2, each node can randomly divide the
noise adding process into several sub-sequences, such that the
correlation between any pair of adjacent added noises is not
clear to the other nodes.

Remark 3.3: Considering time-varying networks or directed
networks, (4) is changed to x(k+1) = W (k)(x(k)+θ(k)). In
this case, an exact average consensus can still be achieved, if
the weight matrices W (k), k = 0, 1, · · ·, are always doubly
stochastic and the added noises satisfy the conditions in
Theorem 3.1. Because the row-stochastically can ensure that
each input vector (including x(0)) will converge to a constant,
and the column-stochastically can keep the sum of the input
vector unchange with iterations. Then, we can follow the proof
of Theorem 3.1 to prove the exact average consensus.

Algorithm 1 : SCDA Algorithm
1: Select each element in θi(0) randomly from [−α

2
ρ, α

2
ρ].

2: Let x+i (0) = xi(0) + θi(0) and transmit x+i (0) to its neighbor
nodes.

3: Set δi(0) = θi(0).
4: Set k = 1.
5: while k < Max Iteration Number do
6: Update xi(k) with (4) based on x+i (k − 1) and x+j (k − 1)

received from all neighbor nodes (∀j ∈ Ni).
7: Select each element of δi(k) randomly or autonomously from

[−α
2
ρk+1, α

2
ρk+1], i.e.,

|δi(k)| ≤
α

2
ρk+1, k ≥ 1. (6)

8: Set θi(k) according to

θi(k) = δi(k)− δi(k − 1). (7)

9: Set x+i (k) using (1), and then transmit x+i (k) to its neighbor
nodes.

10: k = k + 1.
11: end while

We further design the SCDA algorithm for node i in Algo-
rithm 1. The Max Iteration Number in step 5 is given initially.
According to our simulation, we can simply let Max Iteration
Number equal n2, which is sufficiently large to guarantee an

accurate aggregation. We can also let each node terminate the
iteration when it finds all its neighbors’ states are sufficiently
close to its own state, e.g., |xi(k) − xj(k)| ≤ ε for ∀j ∈ Ni
and a given small ε. SCDA is a fully distributed algorithm.
Only the neighbor set Ni is the input of each node i, and after
sufficient iterations (k ≥ n2), all nodes’ updated states could
be the output of SCDA. Based on the output, the aggregator
can easily achieve the goal of DA. In addition, we can also
use the same approach given in [20] to prove that SCDA also
converges at least in a mean-square sense.

B. Convergence and Accuracy of SCDA

The following theorem gives the convergence and accuracy
of SCDA, and its proof is given in Appendix B.

Theorem 3.4: Using SCDA, we have (5) holds true, i.e., an
average is achieved.

For each cluster, every node will achieve an average con-
sensus using the SCDA algorithm, i.e., the aggregator can
obtain the average state x̄ from any node after the algorithm
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converges. Then, the sum can be obtained from using nx̄,
resulting in an accurate sum aggregation.

Remark 3.5: It follows from Theorem 3.4 that for SCDA,
there exists k0 > 0 such that V (x(k)) < ε holds for ∀k ≥
k0 and ε > 0, where V (x(k)) = max(x(k)) − min(x(k)).
However, this is not true for PPAC. The reason is that

V (x(k + 1)) = V (W (x(k) + θ(k)))

≥ |V (Wθ(k))− V (Wx(k))|,

where Pr{V (Wθ(k)) ≥M} > 0 holds for any M > 0 since
fθi(k)(y) > 0 holds for ∀θi(k) ∈ θ(k) and y ∈ R. Thus, one
infers that V (x(k)) < ε cannot be guaranteed by PPAC for
any given k > 0 with probability 1.

Note that the proof of Theorem 3.4 only used the properties
of a doubly stochastic matrix and the results given in Theorem
3.1. SCDA can also be adopted to address the privacy of
the asynchronous gossip consensus algorithms which also
have the doubly stochastic matrixes in the algorithm dynamic
functions, e.g., [13], [14]. However, considering the privacy
of more complicated consensus algorithms, e.g., second-order
consensus, e.g., [15], it is an open problem.

Remark 3.6: With SCDA, a higher accuracy of DA requires
more iterations and an exact DA needs a sufficiently large
number of iterations. It should be noticed that the larger
communication delays will decelerate the convergence speed
of SCDA. Hence, when the delays are not negligible, there is
a tradeoff between convergence speed and DA accuracy, and
we will discuss how to accelerate the convergence speed of
SCDA at the end of this section.

C. Privacy of SCDA

For SCDA, node i only transmits the information sequence
x+
i (k), k = 0, 1, ..., to its neighbors. For each message x+

i (k),
there is a noise component θi(k) added to xi(k). Hence, any
neighbor node cannot know the exact value of xi(0) based on
the received information sequence from node i. Meanwhile,
note that when k ≥ 1, xi(k)+ is an updated state which may be
quite different from the initial state xi(0), since each update is
an averaging process among all the information received from
its neighbor nodes’ states. Define for ∀j ∈ Ni, the information
set which is available for node i at iteration k as follows,

Ii(k) ={xi(0), x+
i (0), ..., xi(k), x+

i (k);

x+
` (0), ..., x+

` (k), ∀` ∈ Ni},

where all the message of node i and the message output
of its neighbors are included in Ii(k), and let Ii(∞) =
limk→∞ Ii(k). Suppose that node i cannot listen to all the
neighbors’ information of node j. This assumption can be
guaranteed in the underlying network construction with Nj *
Ni, and it has been proved to be necessary in [20]. The added
noises are assumed to be unknown to each node i, and the
initial states of nodes are independent with each other.

Note that if node i does not have any prior information of
xj(0) and no additional information is available for estimation,
then it is unlikely to make an accurate estimation on xj(0)
with a high probability. That is, we cannot make an accurate
estimation directly if we do not have any information about

the initial state of a node. Hence, when node i directly
estimates node j’s initial state without using any prior or side
information, denoted by x̂0

j (0), it is reasonable to assume

Pr{x̂0
j (0) ∈ [xj(0)− ε, xj(0) + ε]} � σ, (8)

where ε and σ are two given small positive constants, and
σ = maxν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε fθj(0)(y)dy. This assumption can
be extended to the case when side information may be avail-
able. For instance, if it is known that the state xj(0) is belong
to the interval [−M,M ] with equal probability, we have

Pr{x̂0
j (0) ∈ [xj(0)− ε, xj(0) + ε]} =

ε

M
.

In this case, (8) still holds if there exists [v − ε, v + ε] such
that fθj(0)(y)� 1

M for ∀y ∈ [v − ε, v + ε].
Under SCDA, the broadcast information of node j, i.e.,

x+
j (0), x+

j (1), ..., x+
j (k) ∈ Ii(k), is available to node i to

infer/estimate the initial value of neighbor node j. Note that
the information output, x+

j (k), equals the weighted sum of the
received information in the previous round plus a noise. Based
on the information output, node i will take the probability over
the space of all noises {θj(k)}∞k=0 (where the space is denoted
by Θ) under the condition that Ii(∞) is known, to estimate the
values of the added noises. Then, using the difference between
each information output and the estimated noises, we have
x̂j(0) = x+

j (k) − θ̂kj , where θ̂kj is the estimation of random
noise θkj (θkj = x+

j (k)−xj(0)). Using this estimation, we have
|x̂j(0)− xj(0)| = |θ̂ki − θki |, and

Pr {|x̂i(0)− xi(0)| ≤ ε} = Pr
{
|θ̂ki − θki | ≤ ε

}
. (9)

To evaluate the privacy of SCDA, we give the definition of
(ε, σ)-data-privacy as follows.

Definition 3.7: A distributed algorithm provides (ε, σ)-data-
privacy, if, with information set Ii(∞), the probability that
each node i can successfully estimate its neighbor node j’s
initial value xj(0) in a given interval [xj(0)− ε, xj(0) + ε] is
no larger than σ, i.e.,

σ = max
θ̂ki ∈Θ,k≥0

Pr{|θ̂ki − θki | ≤ ε}. (10)

In the above definition, ε indicates the estimation accuracy and
σ expresses the privacy cost. Given the estimation accuracy ε,
a smaller value of σ offers a stronger privacy guarantee.

Remark 3.8: For noise-adding privacy preserving solutions,
no matter what type of noise distribution is used, there is a
chance that an estimated value of the original data is close
to the real data, but such a probability cannot be directly
measured by differential privacy or the privacy metrics based
on mutual information or Fisher information (e.g., given an
estimation accuracy, the disclosed probability of initial states
cannot be measured by the existing privacy metrics directly).
Hence, it motivates us to introduce (ε, σ)-data-privacy, which
is defined as the probability of ε-accurate estimate (the dif-
ference of an estimation and the original data is within ε) is
no larger than σ (the disclosure probability). This definition
reveals the relationship between the privacy and the estimation
accuracy. Therefore, the propose privacy definition links the
disclosure probability and the estimation accuracy directly,
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which is meaningful to quantify the data privacy in the
applications of consensus. Indeed, the proposed (ε, σ)-data
privacy defines a new metric which is critically important for
many Internet-of-Things (IoT) applications, and different from
the traditional differential privacy extensively studied in the
literature, such as [20], [21].

Next, we prove that SCDA provides (ε, σ)-data-privacy, and
obtain the following theorem with the proof in Appendix C.

Theorem 3.9: SCDA algorithm is (ε, σ)-data-private, and the
relationship between ε and σ satisfies

σ = max
ν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε
fθj(0)(y)dy, (11)

and limε→0 σ = 0, where fθj(0)(y) is the probability density
function (PDF) of θj(0).

Remark 3.10: It should be noted that Theorem 3.9 is
obtained under the assumption that node i cannot listen to
all the neighbors’ information of node j. If this assumption is
relaxed and node i has the knowledge of Nj , then at any time
k ≥ 1, node i can exactly calculate the value of θj(k) through
the following equation,

θj(k) = xj(k)− [wjjxj(k − 1) +
∑
l∈Nj

wjlx
+
l (k − 1)],

where all the expressions on the right-hand side are known
to node i. Hence, over the time, node i can calculate all
of θj(k), ..., θj(1). Then, using the zero-sum property of the
noise, node i can calculate θj(0) by θj(0) = −

∑∞
k=1 θj(k).

Therefore, node i knows the value of xj(0) through xj(0) =
x+
j (0)− θj(0), i.e., xj(0) is released. This result is consistent

with Theorem 4 in [20], which proved that the disclosed space
of a node with m neighbors is of dimension m+ 1.

D. Complexity of SCDA

Since each node just calculates a weighted average at each
iteration, SCDA has very low computation complexity, in
O(n). According to our simulation results, when the underly-
ing network is well connected (e.g., the diameter of the graph
is much smaller than n), the consensus can be reached in O(n)
iterations. Note that since the number of hops is confined to
the diameter of the cluster, we can also let nodes select logical
neighbors within a small number of hops (e.g., 1 to 3). Thus,
the communication cost is in O(kn2), where k is the number
of iterations which is typically smaller than n for large n. We
can further divide the network into more clusters to accelerate
the convergence rate, while as a trade-off the aggregator needs
to poll more nodes. The latest consensus algorithm proposed in
[12] can guarantee that an average consensus is achieved in a
few iterations, or nearly linear time. It thus can be applied
to guarantee an ultrafast average consensus, which further
reduces the communication cost of SCDA.

IV. PERFORMANCE EVALUATION

In this section, simulations are conducted to evaluate the
performance of the SCDA.

A. Simulation Setup

In the simulation, there are 100 nodes randomly deployed
over a 1, 000 × 1, 000 m2 square area, where the communi-
cation range of each node is 300 m. Unless otherwise stated,
the whole area is divided into 4 equal-sized sub-areas and the
nodes in each sub-area are clustered, i.e., there are 4 clusters.

We set α = 5 and ρ = 0.4. Define the maximum difference
between nodes’ states in each cluster by V (x(k)). Clearly, a
consensus is achieved if V (x) = 0.

B. Evaluation of SCDA

Figure 1(a) shows the dynamics of all nodes’ states under
SCDA. It is observed that the states of all 25 nodes converge
exponentially to a constant state, which exactly equals the
average of their initial states. This demonstrates that an average
consensus can be achieved by SCDA, i.e., the aggregated sum
is accurate. Figure 1(b) shows the sum of θ(k) used by the
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Fig. 1. The performance of SCDA.

nodes, where we randomly select three of them to illustrate.
Clearly, the sum of each θi(k) converges to 0, which satisfies
the conditions in Theorem 3.1.

Then, we change the values of α and ρ and the convergence
of SCDA is shown in Figs. 1(c) and 1(d). When α = 0 or
ρ = 0, it means that the added noise is always 0. It is observed
that the convergence rate is slightly affected by adding an
exponentially decaying noise as the maximum difference is
less than 10−4 within 20 iterations. Therefore, SCDA can
preserve the privacy with guaranteed accuracy of aggregation.

Next we study the convergence of SCDA under different
clustering strategies by changing the number of clusters in
the network. When there are several clusters in the network,
we pick one cluster randomly to illustrate in Fig. 2. From the
figure, with more clusters, SCDA has a faster convergence rate
as anticipated. Furthermore, note that SCDA can have a fast
convergence rate even if the node number of each cluster is
large, e.g., with 100 nodes for the one-cluster case in Fig. 2,
SCDA can converge to an acceptable accuracy (e.g., 10−3)
within 30 iterations.
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Fig. 2. The convergence of SCDA with different clusterings.
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Fig. 3. The robustness of SCDA.

C. Robustness

Note that the communication delay, packet losses and the
dynamic change of the topology may occur. Herein, when
the delay is larger than a threshold (e.g., the interval between
two iterations), the packet will be dropped. At each iteration,
if a packet is lost or dropped, it is equivalent to that a
logical link is broken at that iteration. In this case, the node
just updates its state according to the successfully received
neighbor information and adjusts the weights accordingly. In
the following simulation, we randomly remove a portion of
the logical links at each iteration to investigate the robustness
of the proposed solutions.

As shown in Fig. 3, under different drop ratios (the percent-
age of links being broken in each iteration), SCDA can still
converge, although the convergence rate will decrease slightly
when the drop ratio becomes larger.

V. CONCLUSIONS AND FURTHER DISCUSSIONS

In this paper, we have investigated the privacy-preserving
data aggregation problem in ad hoc networks using the average
consensus approach. We have proposed the SCDA algorithm
to solve the problem. SCDA is simple to implement and can
ensure private and accurate aggregation. SCDA does not rely
on a centralized controller or a trusted aggregator, and it can
be implemented in a distributed manner and robust against
the network dynamics. Simulation results have shown that
the proposed algorithm has fast convergence rate and high
accuracy, and they are robust against network dynamics.

There are still many open issues worth further investigation.
In this paper, the underlying network should be a connected,
undirected graph. To ensure connectivity, a spanning tree
connecting all the nodes in the cluster can be built and
the links in the spanning tree should be included in the
underlying network. How to deal with permanent node failures
needs further investigation. The undirected graph requires bi-
directional communications. In case bi-directional logical link

cannot be maintained, novel consensus solutions need to be
used which are much more complicated. How to apply this
work to a more general scenario has attracted attentions,
e.g., consider the network with dishonest nodes [19] and the
optimal estimation under general noise adding mechanism
[22]. Overall, using consensus can be a promising alterna-
tive to the heavily investigated privacy-preserving approaches
using cryptography techniques in distributed systems. It is
also possible to combine these two powerful tools to further
enhance privacy and security, which beckons further research.
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APPENDIX A
THE PROOF OF THEOREM 3.1

First, we prove that each xi(k) is bounded by some constant
M for i ∈ V . Since W is doubly stochastic, we have
‖W ‖∞= 1. Hence,

‖ x(k + 1) ‖∞=‖W (x(k) + θ(k)) ‖∞
≤‖W ‖∞‖ x(k) + θ(k) ‖∞≤‖ x(k) ‖∞ + ‖ θ(k) ‖∞

≤‖ x(0) ‖∞ +
k∑
`=0

‖ θ(`) ‖∞ . (12)

Using the condition that ‖θ(`)‖∞ ≤ αρ`, it follows

‖ x(k + 1) ‖∞ ≤‖ x(0) ‖∞ +
k∑
`=0

αρ`

≤‖ x(0) ‖∞ +
α

1− ρ
= M, (13)

which implies that each xi(k) is bounded by M for all k.
Next, we prove the convergence of (4). The function

V (x(k)) is nonnegative and has the property that V (x(k)) = 0
if and only if all the elements of x(k) have the same values,
i.e., x(k) = C · 1, where C is a constant and 1 is a vector
with all its elements equal to 1.

Note that W ` is still a doubly stochastic matrix for ` ∈ N+,
and we have lim`→∞W ` = 1

n1T 1. Since the topology of each
cluster is assumed to be connected, we have Wn > 0. Then,
from Lemma 2 in [16], it follows that, for any vector y,

max{Wny} −min{Wny} ≤ (1− ε)(max{y} −min{y}),
(14)

where ε = maxnj=1 minni=1(Wn)ij , ε ∈ (0, 1). Hence, we have

V (x(k + n)) = max(x(k + n))−min(x(k + n))

≤ max(Wnx(k))−min(Wnx(k))

+

n∑
`=0

[max(W `θ(k + n− `))−min(W `θ(k + n− `))]

≤ (1− ε)V (x(k)) + 2

n∑
`=0

αρk+n−`

≤ (1− ε)V (x(k)) + 2α
ρk(1− ρn+1)

1− ρ
, (15)

where we used the fact of (14). From (15), one infers that

V (x(`+ hn)) ≤ (1− ε)V (x(`+ (h− 1)n)) + α̂(`)ρ(h−1)n

≤ (1− ε)2V (x(`+ (h− 2)n))

+ α̂(`)[ρ(h−1)n + (1− ε)ρ(h−2)n]

≤ (1− ε)lV (x(`+ (h− l)n))

+ α̂(`)[ρ(h−1)n + (1− ε)ρ(h−2)n + ...+ (1− ε)l−1ρ(h−l)n]

≤ (1− ε)hV (x(`)) + α̂(`)hmax{ρ(h−1)n, (1− ε)(h−1)},

for ` = 0, 1, ..., n−, l = 3, 4, ..., h and h ∈ N+, where α̂(`) =

2αρ` (1−ρn+1)
1−ρ is a constant. Since ε ∈ (0, 1) and ρ ∈ [0, 1),

limh→∞ V (x(`+hn)) = 0 for ` = 0, 1, ..., n−1. Clearly, the
above equation implies that limk→∞ V (x(k)) = 0, i.e.,

lim
k→∞

max(x(k))−min(x(k)) = 0, (16)

which means that the differences between elements of x(k)
will converge to zero. Then, we will prove that the sum of
each column vector of x(k) is a constant, and thus prove that
an average consensus can be achieved.

Define
∑

(◦) as the sum of all elements in (◦). Since W
is still a doubly stochastic matrix, we have

∑
(Wx(k)) =∑

(x(k)). Then, one obtains that∑
(x(k)) =

∑
(Wx(k − 1) +Wθ(k − 1))

=
∑

(x(0) +
k−1∑
`=0

θ(`)). (17)

Taking limiting on both sides of the above equation yields

lim
k→∞

∑
(x(k)) =

∑
(x(0) + lim

k→∞

k−1∑
`=0

θ(`)) =
∑

(x(0)),

(18)

where we used the condition that
∑

[
∑∞
`=0 θ(`)] = 0. Com-

bining (16) and (18) yields that limk→∞ x(k) = C · 1 = x̄1,
i.e., an average consensus is achieved.

It notes from (17) that

lim
k→∞

n∑
i=1

xi(k) =

n∑
i=1

xi(0) + lim
k→∞

n∑
i=1

k−1∑
`=0

θi(`).

If (5) holds, then
∑n
i=1 xi(∞) =

∑n
i=1 xi(0). It thus follows

that the zero-sum condition is the necessary condition to
achieve an exact average consensus with (4).

APPENDIX B
THE PROOF OF THEOREM 3.4

We just need to prove that the SCDA algorithm can ensure
the two conditions in Theorem 3.1.

First, we prove that the first condition, i.e.,∑∞
k=0

∑n
i=1 θi(k) = 0, is ensured by SCDA. From

step 1 and 4, one infers that θi(1) + θi(0) = δi(1)
and θi(2) + θi(1) + θi(0) = δi(2) for any i ∈ V .
Then, by mathematical induction, one obtains that∑∞
k=0 θi(k) = limk→∞ δi(k). From (6), one has that

lim
k→∞

|δi(k)| ≤ lim
k→∞

|α
2
ρk+1| = 0,

which implies that
∑∞
k=0 θi(k) = 0 for any i ∈ V . Hence, we

have
∑∞
k=0

∑n
i=1 θi(k) = 0.

Next we prove the added noise, θ(k), is exponentially
decaying, i.e., ‖θ(k)‖∞ ≤ αρk. From (7) and (6), one infers

|θi(k)| = |δi(k)− δi(k − 1)| ≤ |δi(k)|+ |δi(k − 1)|

≤ α

2
ρk+1 +

α

2
ρk ≤ αρk. (19)

Thus, we have ‖θ(k)‖∞ ≤ αρk.

APPENDIX C
THE PROOF OF THEOREM 3.9

To prove this theorem, we need to prove that at each
iteration k, the probability that each node i can successfully
infer that xj(0) ∈ [xj(0) − ε, xj(0) + ε] is no larger than σ
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using the information set Ii(k). In the following, we prove
this result for each iteration.

At time k = 0, node i can estimate neighbor j’s initial value
based on Ii(0) and use the fact that

x+
j (0) = xj(0) + θj(0), (20)

for estimation. Then, the corresponding estimation is given by

x+
j (0) = x̂j(0) + θ̂j(0). (21)

Then, we have

Pr {x̂j(0) ∈ [xj(0)− ε, xj(0) + ε]} = Pr
{
|θ̂j(0)− θj(0)| ≤ ε

}
= Pr

{
θj(0) ∈ [θ̂j(0)− ε, θ̂j(0) + ε]

}
=

∫ θ̂j(0)+ε

θ̂j(0)−ε
fθj(0)(y)dy.

(22)

Note that θ̂j(0) is an estimation and could be any values in
[−α2 ρ,

α
2 ρ]. Hence, we have

max
x̂j(0)

Pr {x̂j(0) ∈ [xj(0)− ε, xj(0) + ε]}

= max
ν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε
fθj(0)(y)dy (23)

Hence, (ε, σ)-data-privacy is ensured at time k = 0 for SCDA.
At time k = 1, node i can estimate xj(0) based on Ii(1)

and use the fact of both (20) and

x+
j (1)

wjj
= x+

j (0) +
1

wjj
[
∑
l∈Nj

wjlx
+
l (0) + θj(1)]

= xj(0) + θj(0) +
1

wjj
[
∑
l∈Nj

wjl(xl(0) + θl(0)) + θj(1)].

(24)

If using (20) only, we also have (23). Then, we consider the
estimation with (24). Let fθ′j(1)(z) be the PDF of θ′j(1), where

θ′j(1) = θj(0) +
1

wjj
[
∑
l∈Nj

wjlx
+
l (0) + θj(1)]

= θj(0) +
1

wjj
θj(1) +

∑
l∈Nj

wjl
wjj

x+
l (0)

= θj(0) +
1

wjj
θj(1) + θ

′′

j (1). (25)

Based on (24), one can make estimation,
x+
j (1)

wjj
= x̂j(0) +

θ̂′j(1). Let θ̃j(1) = θj(0) + 1
wjj

θj(1). Then, we have

max Pr{|θ̂′j(1)− θ′j(1)| ≤ ε}
≤ max Pr{|θ̂

′

j(1)− θ
′

j(1)| ≤ ε|θ̃j(1)}
= max Pr{|θ̂

′

j(1)− θ̃j(1)− θ
′′

j (1)| ≤ ε}
≤ max Pr{|θ̂

′′

j (1)− θ
′′

j (1)| ≤ ε}, (26)

where θ̂
′′

j (1) = θ̂
′

j(1) − θ̃j(1) is viewed as an estimation of
θ
′′

j (1), and we have used the independence between variables
θj(0) + 1

wjj
θj(1) and θ

′′

j (1). Since node i cannot listen to
all the neighbors’ information of node j, there exists at least

one independent variable x+
l (0) in

∑
l∈Nj wjlx

+
l (0) that is

unknown to node i (i.e., no information of x+
l (0) is available

to node i) to estimate the value of θ
′′

j (1). From (8), we have

Pr{|θ̂
′′

j (1)− θ
′′

j (1)| ≤ ε} ≤ max
ν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε
fθj(0)(y)dy.

(27)

Combining (26) and (27), we have

Pr{x̂j(0) ∈ [xj(0)− ε, xj(0) + ε]}

≤ max
ν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε
fθj(0)(y)dy.

Then, using (20) and (24) together for estimation, we have

Pr{x̂j(0) ∈ [xj(0)− ε, xj(0) + ε]}

≤ max
ν∈[−α2 ρ,

α
2 ρ]

µ∈[b1,B1]

∫ ν+ε

ν−ε

∫ µ+ε

µ−ε
fθj(0),θ′j(1)(y, z)dzdy

≤ max
ν∈[−α2 ρ,

α
2 ρ]

µ∈[b1,B1]

∫ ν+ε

ν−ε

∫ µ+ε

µ−ε
fθ′j(1)|θj(0)(z|y)fθj(0)(y)dzdy

≤ max
ν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε
fθj(0)(y)dy, (28)

where [b1, B1] (B1 − b1 > 0) is an interval including all the
possible value of θ′j(1). The above result means that if we
combine the two facts for estimation, it will not enhance the
successful estimation probability. Therefore, at time k = 1,
we still have (23) and (ε, σ)-data-privacy is still ensured.

At each iteration k, with similar analysis, there are k + 1
facts (equations) can be used for estimation. Based on the
(k + 1)-th equation, i.e.,

x+
j (k)

[W k]jj
=

1

[W k]jj

[
[W k]jx(0) +

k∑
l=0

[W k−l]jθ(l)

]
= xj(0) + θ̃j(k)

+

[
[W k]j
[W k]jj

x(0) +
k∑
l=0

[W k−l]j
[W k]jj

θ(l)− xj(0)− θ̃j(k)

]
= xj(0) + θ̃j(k) + θ

′′

j (k) = xj(0) + θ′j(k) (29)

where [W k]j denotes the j-th row vector of W k, [W k]′j is
a vector obtained from setting [W k]jj = 0 for [W k]j , and
θ̃j(k) =

∑k
l=0

[Wk−l]jj
[Wk]jj

θj(l). Then, with the similar analysis
of (26) and (27), we can obtain the following equation,

Pr{x̂j(0) ∈ [xj(0)− ε, xj(0) + ε]}

≤Pr{|θ̂
′′

j (k)− θ
′′

j (k)| ≤ ε} ≤ max
ν∈[−α2 ρ,

α
2 ρ]

∫ ν+ε

ν−ε
fθj(0)(y)dy,

where we have used the fact that θ̂
′′

j (k) contains the indepen-
dent variables with no information available to node i. Also,
if we combine the equations together, we can prove that the
successful estimation probability cannot be increased. That is,
(23) holds and (ε, σ)-data-privacy is proved at iteration k.

From the above discussion, one concludes that (23) holds
and (ε, σ)-data-privacy is guaranteed by SCDA. Meanwhile,
note that fθj(0)(ν) is the PDF function of θj(0), it follows
that limε→0 σ = 0.


