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Abstract—This two-part survey provides a comprehensive
review of graph optimization and learning for resource man-
agement in wireless networks. In Part I, we introduced the fun-
damentals of graph optimization and provided a recent literature
review of graph optimization for resource management in various
wireless communication scenarios. In this part, we first present an
overview of graph learning and introduce several modern graph
neural network models. Then, a state-of-the-art literature review
of graph learning for different resource management issues
in wireless networks is provided, which covers power control,
spectrum management, beamforming design, task scheduling,
and aerial coverage planning. Furthermore, we discuss current
technical challenges and future research directions of graph
optimization and learning for resource management in future
wireless networks.

Index Terms—Wireless networks, resource management, graph

I. INTRODUCTION

Graphs, as a classic discrete mathematical tool, have long
been widely used for wireless network management, thanks to
their capabilities to model complex relationships and interac-
tions among wireless nodes. For resource management in wire-
less networks, there are two primary graph-based approaches
at present which are graph optimization and graph learning.
In Part I of this survey, we have introduced the fundamentals
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of graph optimization and provided a recent literature review
of graph optimizaiton for resource management in wireless
networks. Fig. 1 illustrates the organization of this two-part
survey and the relationship between Part I and Part II. In this
part, we shift the focus to graph learning and its application
to resource management in wireless networks.

In recent years, graph-based resource managment is ex-
tending beyond graph optimization to involve graph learn-
ing, catering to the evolving demands in future wireless
networks. There are increasing research outcomes to apply
graph learning approaches to resource management in wireless
networks, especially graph neural networks (GNNs) and graph
embedding [1]–[9]. This is mainly because graph learning
has the following advantages in resource management: 1)
Scalability with network size, 2) Efficiency of training via
wireless network data, 3) Generalization to dynamic network
status, and 4) Compatibility with existing graph models of
wireless networks. These advancements motivate us in this part
of the survey to conduct a comprehensive literature review of
graph learning for resource management in wireless network.

In this part, we focus on graph learning for resource
management in wireless networks. Specifically, we present an
overview of graph learning and introduce several modern GNN
models in Section II. A state-of-the-art literature review of
graph learning for resource management in wireless networks
is provided in Section III, which is categorized by differ-
ent issues including power control, spectrum management,
beamforming design, task scheduling, and aerial coverage
planning. The characteristics and components of each issue
is demonstrated and the applicable graph learning approaches
in the literature are comprehensively reviewed. Finally, we
summarize technical challenges and future directions from
both perspectives of graph optimization and learning in re-
source management. These challenges come from new fea-
tures brought by the evolution of wireless networks. Future
directions is aligned with the development of advanced graph
optimization and learning techniques.

II. FUNDAMENTALS OF GRAPH LEARNING

In this section, we first present an overview of graph
learning and emphatically discuss GNNs that are a class
of artificial neural networks capable of processing data and
problems represented as graphs. Then, advanced GNN models
and their extensions are introduced.
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Figure 1. Organization of this paper and an overview of major topics.

A. Overview of Graph Learning

Due to the advance of big data and machine learning, graph
learning, also known as graph representation learning, has
made remarkable progress in the past several years. It aims to
generate graph representation vectors to capture the structure
and features of graphs accurately and efficiently. However,
graph learning does not need to construct a graph strictly
corresponding to a kind of graph optimization problems. It is
necessary for graph learning to construct graph data consisting
of the topological structure of a graph and the embeddings of
vertices and edges. To be specific, graph embedding methods
have been very successful in graph representation, which maps
graph elements, e.g., vertices, edges, and subgraphs, to a lower
dimensional space and preserves the properties of graphs.
With the development of recent decade, GNNs have become a
dominating category of graph embedding. A GNN can operate
naturally on graph data to conduct learning tasks via extracting
and utilizing features from the underlying graph.

1) Graph Embedding: Since the adjacency matrix is
memory-consuming for representing large graphs, a graph
G = (V, E) can be represented by their numerical features.
For instance, a vertex in a graph can be represented with a set
of features, e.g., weight, in-degree, our-degree, etc. However,
it is difficult to find features that are important in different
applications and can well represent whole properties of the
graph. Therefore, graph embedding is proposed to deal with
the issue of automatically generating representation vectors
for graphs. Its main idea is formulating graph learning as a
machine learning task in which the inputs are the elements and
properties of graph and the outputs are embedding vectors.
Graph embedding includes vertex, edge, and graph embed-
dings.

• Vertex embedding: It aims to learn a mapping function
which transforms each vertex vm ∈ V into an embedding
vector of dimension d such that d ≪

∣∣V∣∣. The similarities
between vertices in G are stored in the embedding space
consisting of embedding vectors.

• Edge embedding: It is to encode each edge en ∈ E into an
embedding vector of dimension d such that d ≪

∣∣V∣∣. The
similarities between edges in G are stored in embedding
vectors.

• Subgraph embedding: It transforms G or a subgraph H
of G into an embedding vector of dimension d such
that d ≪

∣∣V∣∣. Note that a graph embedding vector can
be generated by aggregating embeddings of vertices and
edges involved in G or H .

So far, almost existing graph embedding methods are vertex
embedding, since it is the basis for edge embedding and
subgraph embedding. The outputted embedding vectors can
be used in different applications such as vertex classification,
edge prediction, graph clustering, etc.

Traditional graph embedding methods are independent of
GNNs and developed for static and dynamic graphs. For static
graphs, there are matrix factorization method, random walk-
based methods, and DL-based methods. For dynamic graphs,
there are aggregation-based methods, random walk-based
methods, DL-based methods, and temporal point process-
based methods [10].

2) GNN: Modern GNNs are built upon the concept of
message passing and adopt a graph-in graph-out architecture.
The architecture of a GNN model in general consists of three
parts that are the input graph, GNN layers, and the output
layer, as shown in Fig. 2a.

The input graph G = (V, E) involves its own topological
structure and all the features of vertices and edges in the
graph. In practice, the topological structure is represented as
an adjacency list that is derived from adjacency matrix. The
n-th entry (i, j) in adjacency list describes the connectivity of
en between vi and vj in G. The feature of each vertice or edge
is represented as a d-dimension embedding vector. Therefore,
we can obtain a vertex matrix with size

∣∣V∣∣× dv and an edge
matrix with size

∣∣V∣∣× de, where dv and de are independent.
GNN layers are the core part of entire model and dominate

the model performance. A GNN layer uses message passing
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Figure 2. An illustration of GNN model.

to learn new embeddings aware of the graph’s topological
structure. Fig. 2b shows an example of how a GNN layer
works. First, message passing enables each vertex to gather
all the neighbours’ embedding vectors, i.e., messages. Second,
each vertex aggregates all received messages via an aggregate
function, e.g., sum, and combines the aggregated result with
its own message, e.g., concatenate. Then, all the aggregated
and combined messages are passed through an update func-
tion that is usually an artificial neural network to output a
new embedding vector for each vertex. Similar to vertices,
message passing can also be applied to edges. Finally, a GNN
layer outputs an updated graph with new embeddings, which
maintains adjacency list and the sizes of vertex and edge
matrices. We can stack several GNN layers together. With a
GNN layer added, each vertex or edge can gather message one-
hop further away. The message passing mechanism ensures
two important properties of GNNs to graph data that are
permutation invariance and permutation equivariance [11].

• Permutation invariance: GNNs do not depend on the
arbitraty ordering of the rows or columns in adjacency
matrix as well as vertex matrix and edge matrix. In
other words, the output embedding vectors of GNN are
invariant whatever any input matrix of graph data is
permuted.

• Permutation equivariance: The output of GNN is per-
muted in a consistent way when the adjacency matrix or
vertex/edge matrix is permuted.

GNNs are required to meet permutation invariance and/or
equivariance in specific tasks.

The output layer is designed according to the aim of learning
tasks. There are three kinds of GNN learning tasks that are
vertex-level tasks, edge-level tasks, and graph-level tasks.

• Vertex-level tasks: They include vertex classification, ver-
tex regression, vertex clustering, etc. The GNN model
aims to output predicted labels or values for vertices.
The output layer can be built by a multi-layer perceptron
(MLP) or a softmax layer. GNN models for vertex-level
tasks are usually permutation equivariant.

• Edge-level tasks: For edge classification and edge predic-
tion, the GNN model aims to output the labels or con-
nection probability for edges. Its output layer is similar
to vertex-level tasks. If there are only vertex embeddings,
the pooling module can be used to gather messages from

vertices for outputting edge-related results. GNN models
for edge-level tasks are almost permutation equivariant.

• Graph-level tasks: They include graph classification,
graph regression, and graph matching. The GNN model
aims to output a label or a graph embedding to an entire
graph. The readout function and the pooling module can
be used in the output layer that aggregates messages
from vertices and edges to generate graph embedding
vector. GNN models for graph-level tasks are usually
permutation invariant.

Furthermore, GNN models can be integrated with reinforce-
ment learning (RL) to deal with decision-making tasks in
dynamic environments represented as dynamic graph data
[12].

Many GNN models can be trained in a supervised, semi-
supervised, or unsupervised manner with an end-to-end frame-
work, according to learning tasks and label availability.

• Supervised learning: All the graph data for training
is labeled. Graph classification is a typical supervised
learning task.

• Semi-supervised learning: Partial graph data for training
is labeled, while the rest is not. Most vertex and edge
classifications tasks are typical semi-supervised learning.

• Unsupervised learning: All the graph data for training
is unlabeled. Vertex regression, vertex clustering, and
edge prediction are typical unsupervised learning tasks.
Most resource management issues are currently solved by
unsupervised learning with GNN.

At training phase, the results of the output layer is substituted
into the loss function, e.g. cross-entropy and mean squared er-
ror (MSE), for optimizing model parameters. The loss function
is designed according to learning tasks and training manners.

B. Modern GNN Models

As mentioned above, the message passing is the core of
GNN design. Different message passing operators are key
to differentiating GNN models. Convolution operator and
recurrent operator are two basic message-passing operators
in GNNs. On the basis of them, several advanced operators
are developed. This subsection reviews several modern GNNs
according to different message passing operators.

1) Recurrent GNNs: The most original recurrent GNNs
(RecGNNs) use an identical module to recurrently process
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graph data to extract vertex embeddings. Based on an in-
formation diffusion mechanism, this RecGNN model updates
vertex states via neighbour information exchange until a stable
equilibrium is reached [13]. Graph echo state network [14]
and stochastic steady-state embedding [15] are developed to
improve training efficiency and convergence performance.

The gating mechanism is exploited to design RecGNNs to
diminish computational limitations. The gated GNN (GGNN)
utilizes a gated recurrent units (GRU) as a recurrent module
for message passing and uses back-propagation through time
for training [16]. Give a graph G = (V, E), the hidden state
Hm (t) of a vertex vm at time step t is updated by its hidden
state at time step t − 1 along with those of its neighbours.
Furthermore, the long short-term memory (LSTM) is also used
to play the similar role as GRU for message passing on graph
data [17].

2) Convolutional GNNs: The convolution operator is the
most popular message passing operator for GNN models,
which is usually categorized into spectral convolution and
spatial convolution. Diverse convolutional GNNs (ConvGNNs)
are based on these two operators.

Spectral convolution is first used in GNN models, due to its
theoretical foundation in graph signal processing. Assume that
a graph G = (V, E) is undirected. Let x ∈ R|V| denote the
vertex embedding of G, where xm is the value of vertex vm.
Spectral graph convolution of x with a filter gw ∈ R|V|×|V|

is defined as x ∗ gw = UgwU
Tx, where U ∈ R|V|×|V| is

the matrix of eigenvectors of L with respect to the order of
eigenvalues and L is normalized Laplacian matrix of G. The
design of gw differentiates spectral-based ConvGNNs.

• Chebyshev spectral CNN: The Chebyshev polynomials
are used to approximate the filter gw in Chebyshev
spectral CNN (ChebNet) [18]. Define Tk (x) as the
Chebyshev polynomials of k-th order. The filter gw can
be approximated as gw =

∑K
k=0 wkTk

(
Λ̄
)

where Λ̄ =
2Λ/λmax− I|V| and λmax is the maximum eigenvalue in
Λ. Λ is the diagonal matrix of eigenvalues of L that are
called the spectrum. Spectral convolution of x in ChebNet
is expressed as x ∗ gw = U

(∑K
i=0 wiTi

(
Λ̄
))
UTx. All

the wi are learnable parameters in ChebNet.
• Graph convolution network: Let A = [ai,j ] denote the

adjacency matrix of G and D = diag
(
D1, D2, . . . , D∣∣V∣∣)

denote a diagonal matrix of vertex degrees. Graph convo-
lution network (GCN) is a simplified version of ChebNet
and takes the general form expressed as

H = X ∗ gw = D̄−1/2ĀD̄−1/2XW, (1)

where Ā = A + I|V| and D̄ = diag
(
D̄1, . . . , D̄|V|

)
.

X =
[
x1, . . . ,x|V|

]T ∈ R|V|×d includes input vectors
of vertex embedding with d dimensions. W ∈ Rd×q

contains learnable parameters shared with all vertices.
H =

[
h1, . . . ,h|V|

]T ∈ R|V|×q includes output vectors
of vertex embedding with q dimensions.

Based on GCN, several variants are developed such as adaptive
GCN [19] and graph wavelet neural network [20]. More
importantly, GCN bridges spectral convolution and spatial
convolution for graph data.

Spatial convolution utilizes the topological structure of a
graph G = (V, E) to define the convolution operation. For
instance, it convolves a vertex embedding with its neighbours’
embeddings and repeats this operation for multiple steps to
obtain the final embedding. Message passing neural network
(MPNN) first proposes a general framework of spatial convo-
lution over a graph [21]. In MPNN, the spatial convolution
of vertex vm ∈ V at step k is defined as a message passing
function which is expressed as

h(k)
m = fk

(
h(k−1)
m ,

∑
vi∈NG(vm)

gk
(
h(k−1)
m ,h

(k−1)
i , ei,m

))
, (2)

where h
(k)
m is the embedding of vm at step k. ei,m is the edge

feature between vi and vm. fk (·) and gk (·) are functions with
learnable parameters shared by all vertices at step k. Following
the form of (2), the graph convolution performed by GCN as
(1) can be rewritten as

h(k)
m = fk

(
W(k)

∑
vi∈Nm

h
(k−1)
i√
D̄mD̄i

)
, (3)

where Nm = NG (vm) ∪ vm. (3) means that every vertex
first aggregates all its neighbours’ messages with its own
message. Then, GCN substitutes aggregated message into a
linear transformation W(k) ∈ Rq×d, whose result is finally
inputted in fk (·). MPNN can cover many existing GNN
models by designating different fk (·) and gk (·) as well as
pooling and readout functions.

• Graph sample and aggregate: If the graph contains
vertices with a large number of neigbours, such as thou-
sands or hundreds, it brings heavy computing load on
MPNN for message aggregation. Instead of aggregating
all neighbours’ messages, graph sample and aggregate
(GraphSAGE) [22] first uniformly samples a fixed num-
ber of neighbours for each vertex and then conduct mes-
sage aggregation. GraphSAGE suggests three message
aggregators, i.e., mean aggregator, LSTM aggregator, and
pooling aggregator. For instance, GraphSAGE with mean
aggregator is a variant of GCN that do sampling before
convolution.

• Graph attention network: The attention mechanism is
adopted for message passing in graph attention network
(GAT) [23], which is shown to obtain better results than
GraphSAGE in several specific tasks. GAT follows a self-
attention strategy to learn the similarities between a vertex
and its neighbours. Its graph convolution is expressed as

h(k)
m = fk

( ∑
vi∈Nm

αm,iW
(k)h

(k−1)
i

)
, (4)

αm,i = g
(
h
(
a
[
W(k)h

(k−1)
i ∥ W(k)h

(k−1)
i

)]))
, (5)

where g (·) and f (·) are softmax function and
LeakyReLU function, respectively. ∥ is the concatenation
operation. a ∈ R1×2q is a learnable parameter. GAT can
be expanded to employ multi-head attention to stabilize
the learning process of self-attention.

• Graph isomorphism network: It finds that GCN, Graph-
SAGE, and other MPNN-based models cannot learn
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to distinguish certain simple topological structures of
graphs. This limits the improvement of representational
ability of GNNs. Hence, graph isomorphism network
(GIN) [24] is proposed which performs the graph con-
volution as

h(k)
m = fk

( ∑
vi∈NG(vm)

h
(k−1)
i +

(
1 + ϵk

)
h(k−1)
m

)
, (6)

where the default setting of fk (·) is an MLP. ϵk is a
learnable parameter or a fixed scalar.

3) Spatial-temporal GNNs: In many real-world applications,
graphs have time-varying features. In order to capture both
spatial and temporal properties of a graph, spatial-temporal
GNNs (STGNNs) are proposed, the majority of which follows
two directions, i.e., recurrent neural network (RNN)-based and
convolutional neural network (CNN)-based approaches.

RNN-based approaches integrate graph convolutional layers
with RNNs. Graph convolutional layers are used to capture
spatial relations among vertices and edges. RNNs are used to
capture temporal relations between graphs over time. Given
a graph G = (V, E), we suppose that a general RNN
form is expressed as H (t) = f (WX (t) + ZH (t− 1) + b),
where X (t) ∈ R|V|×d is the vector embedding matrix at
time step t and H (t) ∈ R|V|×q is hidden state matrix
at time step t. W and Z are learnable parameters. Af-
ter integrating with graph convolution, it is rewritten as
H (t) = f (g (X (t) ,W) + g (H (t− 1) ,Z) + b), where g (·)
is a graph convolutional layer. According to the selection
of RNN module and g (·), different RNN-based STGNNs
are proposed. For examples, graph convolutional recurrent
network integrates LSTM with ChebNet [25]. A traffic flow
prediction method combines GRU with GCN [26]. Structural-
RNN presents an other thought to learn spatial-temporal graph
data that purely uses a rich RNN mixture instead of mixing
RNNs and graph convolutions [27].

CNN-based approaches interchangeably use graph convolu-
tional layers and one dimensional (1D) CNN layers to learn
spatial and temporal dependencies, respectively. Assume that
X ∈ R|V|×q×T is the input where T is the number of time
steps. 1D CNN layer aggregates temporal information for each
vertex along the time axis, i.e., X [m, :, :], while employing
graph convolutional layer to aggregate spatial information at
each time step, i.e., X [:, :, t]. Spatial-temporal GCN (ST-GCN)
composes a spatial-temporal convolutional block by stacking
at least 1D CNN layers and a GCN layer [28], [29]. Graph
WaveNet further proposes a self-adaptive adjacency matrix to
perform graph convolutions without being given an adjacency
matrix [30].

4) Graph autoencoders: The extension of auto-encoder
to graph data has been a trend for generative model and
unsupervised learning based on GNNs, which are called graph
autoencoders (GAEs). Variational GAE (VGAE) first uses a
GCN as the encoder and employs a simple inner product de-
coder [31]. The decoder aims to recover topological structure
of a given graph. Specifically, the encoder outputs a hidden
state H according to X and A. Then, H is inputted into the
decoder. The decoder outputs a reconstructed adjacency matrix
Â according to H. The training for GAE is to minimize the
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negative cross entropy between A and Â. Instead of recov-
ering the adjacency matrix, adversarially regularized VGAE
employs generative adversarial network and GCN to construct
GAE for robust vertex embeddings [32]. Based on VGAE,
many GAE models are developed for graph embedding and
generation [33].

5) Graph transformers: Transformer [34] is a generative
model and has achieved great success in many artificial intelli-
gence (AI) tasks and demonstrated great potential in modeling
and processing graph data. To this end, graph transformers
are designed for graph data and circumvent the shortcomings
for GNNs, e.g., over-smoothing and over-squashing. Existing
graph transformers are aware of topological structures by the
following three primary means.

• GNNs as auxiliary modules: The most direct solution
of involving structural knowledge into the transformer
architecture is to combine GNNs as auxiliary modules
with it. Generally, there are three combination types
which are connecting GNN blocks and transformer blocks
in series, stacking GNN blocks and transformer blocks
alternately, or parallelizing GNN blocks and transformer
blocks, as per Fig. 3. GraphTrans [35], Mesh Graphormer
[36], and Graph-BERT [37] are three representatives of
the above types, respectively.

• Positional embeddings: Topological structure of graph
data can be compressed into positional embedding vectors
that are further added to input features and then fed to
the actual transformer model. This process is expressed
as X̃ = X + f (P), where X is the matrix of input
features. P contains positional embedding vectors and
normally generated from the adjacent matrix. f (·) is a
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function to align the dimension of vectors in X and P.
Laplacian eigenvectors and singular value decomposition
of the adjacent matrix A can be used for positional
embeddings in graph transformers [38], [39].

• Attention bias: The attention matrix can be modified by
the bias matrix containing the information of topological
structure. Let Y denote the attention matrix and B
denote the bias matrix. The modified attention matrix
Ỹ is expressed as Ỹ = f (Y,B), where f (·) is the
modified function. For example, Graphormer [40], as an
attention bias-based graph transformer model, modifies
the attention matrix as Ỹ = Y + B, where B includes
learnable parameters about the shortest path distance
between vertices.

Lessons learned 1: RecGNNs are expert in dealing with time-
sequence graph data and capturing long-range dependencies
among vertices or edges in graph. They can be applied to
dynamic traffic prediction to enable proactive resource alloca-
tion in wireless networks. ConvGNNs are the most popular
GNN architecture which capture local and global features
of static graph via message passing and aggregation. They
are applicable to static and quasi-static resource management
issues in wireless networks. STGNNs are specialized for
handling graph data with dynamic changes over time, which
are usually designed by combining ConvGNNs with RNNs.
They can be used for long-term resource management in
dynamic wireless networks. GAEs are graph data oriented
unsupervised learning and generative models, which consist
of an encoder and a decoder. They can be applied to link
scheduling, network deployment, and topology generation in
large-scale wireless networks. Graph transformers are increas-
ingly popular generative models for graph data, which utilize
self-attention mechanism to capture global graph structure
information and features. They are promised to tackle complex
resource management issues in wireless networks.

III. GRAPH LEARNING FOR RESOURCE MANAGEMENT IN
WIRELESS NETWORKS

Compared to graph optimization, graph learning has the
advantage in addressing large graphs and generalization ability,
which has been applied to enhance resource management for
all types of scenarios discussed in Part I of this survey [41]–
[44]. This section focuses on five key issues and provides
a literature review on the application of graph learning for
resource management.

• Power control: Power control can determine desired sig-
nal strength at the receiver and energy consumption at the
transmitter. It also plays a key role on interference coordi-
nation among transmission links. The communication and
interference among transceivers can be represented via a
graph. Thus, graph learning can be used as an effective
tool for power control.

• Spectrum management: Spectrum resource is always pre-
cious and scarce for wireless communications and net-
working. User association, channel allocation/selection,
and access control are typical spectrum management

problems. Graph learning can rely on powerful represen-
tation capability to guarantee spectrum utilization.

• Beamforming design: Beamforming is a signal processing
technique used in multi-antenna systems for directional
signal transmission or reception. Efficient beamforming
design plays an important role on increasing data-stream
capacity between a transceiver pair. Graph learning has
been proved to be effective for beamforming design.

• Task scheduling: Wireless networks have evolved from a
data pipeline into a multi-task operating platform. Various
wireless edge technologies are developed to utilize net-
work resources to support communication, computation,
caching, and learning tasks. Graph learning is employed
for task scheduling at the edge of wireless networks.

• Aerial Coverage Planning: Unmanned aerial vehicles
(UAVs) can act as aerial base stations (BSs) to enhance
wireless coverage or aerial terminals covered by terres-
trial BSs to realize various use cases. Therefore, aerial
coverage planning is a new dimensionality to resource
management for UAV communications, which can be
handled by graph learning.

All the above five issues involve almost all essential resource
management problems in various wireless networks. Further-
more, graph learning has been effectively applied to these five
issues to improve resource utilization and compensate for the
drawbacks of traditional approaches.

A. Power Control

Power control is one of the most representative resource
management problems in wireless networks. The appropriate
transmit power level can guarantee their desired signal strength
at the receiver and save the energy at the transmitter, as
well as coordinate interference among transmission links. At
present, various GNN models are applied to power control
in interference-limited networks and radio access networks
(RANs).

1) Interference-Limited Networks: Several transmission
links are distributed and each of them is a single-antenna
transceiver pair consisting of one transmitter and one receiver.
All the transmission links reuse the same spectrum band-
width. It is necessary to carefully adjust the transmit power
of each link to restrain interference due to spectrum reuse.
Device-to-device (D2D) networks and multi-hop networks are
typical interference-limited networks. Fig. 4 shows a general
framework of GNNs for power control in interference-limited
networks, which can be conducted in a centralized or decen-
tralized manner.

In the centralized manner, the interference graph, or called
conflict graph, is usually constructed. Each vertex represents
a transmission link, whose weight is denoted by link weight
or transmission quality. Each edge represents interference
between any two transmission links, whose weight is denoted
by interference intensity. MPNN-based models are directly im-
plemented on the interference graph, where interference GCN
(IGCNet) [3] and PCGNN [5] are two representatives. The
results show that MPNN can achieve a higher convergence rate
and better generalization than fully connected neural networks,
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Figure 4. A general framework of GNN for power control in interference-limited networks.

such as MLP, particularly when the network scale is large
[6]. In order to fit the randomly varying fading of wireless
channels, the random edge graph neural network (REGNN) is
proposed to adapt time-varying network topology. In REGNN,
all hidden layers are ConvGNN layers and the edge weight
is given by the randomly fading channel gain. In training
phase of REGNN, a primal-dual learning method is designed
to update the learning parameters and variables [1], [45].
Based on REGNN, the state-augmented algorithm is proposed
which takes dual variables corresponding to network state as
the GNN inputs to achieve the near-optimal performance and
accelerate the convergence [46], [47]. To further accelerate the
training and the inference of GNNs, an edge pruning method
is designed for power control over the interference graph in
D2D networks [48]. In addition, MPNNs are implemented to
jointly optimize power control and communication direction in
half-duplex interference-limited networks, e.g., Flex-Net [49],
and design the power control algorithm in full-duplex D2D
networks, e.g., F-GNN [50]. A STGNN model is designed
for resource allocation in D2D underlaying cellular networks
where GCNs extract spatial features and LSTM extracts tem-
poral features for network traffic data to maximize the system
throughput [51].

In the decentralized manner, since all the devices need to
utilize local information to deduce global network states, local
information exchange and aggregation among neighboring
devices are crucial for the implementation of GNNs. The
aggregation graph neural networks (Agg-GNN) is proposed
to build local embeddings of global network state at each
device via successive local state exchanges and aggregation
on a graph of network topology. Then, the Agg-GNN based
scheme employs ConvGNN layers to solve power control
problems without explicit model knowledge [52], [53]. In
training phase, the primal-dual learning method is performed
in an asynchronous and model-free manner [54]. On the
interference graph, modified REGNN architecture via meta-
learning is designed for power control in a decentralized man-
ner [55]. Results show that the integration of meta-learning
and REGNN can effectively improve the iteration efficiency
and facilitate fast adaptation to time-varying network topology
[56]. The over-the-air computation technique is exploited to
enable each devices to exchange and aggregate messages from
its neighbours for local STGNN training and inference [57].
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Figure 5. An example of algorithm unfolding with GNN.

A GAE model is proposed to realize decentralized power
control in wireless ad hoc networks, which exhibits strong
generalization to random network topologies [58].

Except for directly applying GNNs on graphs, the combina-
tion of GNNs and traditional optimization methods is effective
for power control. Algorithm unfolding, or called unrolling,
bridges GNNs and optimization methods [59]. For instance,
the weighted minimum MSE method (WMMSE) is one of
the most popular optimization algorithms for power control
in interference-limited networks, which can be performed in a
centralized or a decentralized manner. The unfolding WMMSE
(UWMMSE) algorithm is developed to integrate GCN into
the iteration process of WMMSE through algorithm unfolding
[60], as per Fig. 5. Specifically, the iterations of WMMSE
are unfolded as a sequential of GCN layers in which each
layer uses message passing to update iteration parameters.
It is shown that UWMMSE can achieve higher weighted
sum-rate than WMMSE and pure GNN-based method with
increased training time for convergence [61]. Building upon
UWMMSE, the UWGNN algorithm follows a knowledge-
driven principle that leverages the structure and domain knowl-
edge of WMMSE to design the aggregation function and
update function of GNN [62].

2) RANs: Multiple BSs, or called access points (APs), are
deployed to provide radio access service in the coverage. All
BSs reuse available spectrum resources entirely or partially.
Hence, inter-cell interference coordination is required to boost
network capacity and user experience, which can be real-
ized by GNN-based power control. Currently, there are two
frameworks of RANs that are multi-cell networks and cell-
free networks.
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Figure 6. An example of heterogeneous graph.

In multi-cell networks, each BS acts as a centric node to
associate with one or multiple users simultaneously while
each user is associated with at most one BS. Since the
nodes are with different roles and features, the heterogeneous
graph is used to depict multi-cell networks. Different with
homogeneous graph with only one type of vertices and edges,
heterogeneous graphs are composed of different types of
vertices or edges with different features, as per Fig. 6. In a het-
erogeneous bipartite graph, BSs and users can be respectively
represented by two types of vertices with different features.
Each edge represents a channel between one BS and one user
where the edge weight is the corresponding channel gain.
Heterogeneous GNNs (HetGNN) are the specialized GNN
models employed on heterogeneous graphs. Results show that
HetGNNs can efficiently optimize the power control policy for
single-user-per-cell and multiple-user-per-cell scenarios with
lower samples and training complexity than homogeneous
GNNs and fully-connected neural networks [63], [64]. For the
single-user-per-cell scenario, the interference graph can model
the power control problem in multi-cell networks, on which
various ConvGNN layers are designed [65], [66].

In cell-free networks, BS deployment is ultra-dense so that
several BSs can form a cooperative serving cluster for each
user. The association becomes user-centric and the cell edges
become difficult to distinguish, known as cell-free. HetGNNs
are still effective for the power control for cell-free networks
over the bipartite heterogeneous graph which has two types of
edges with different features. In each layer of this HetGNN,
there are two types of messages carried by different edges
that are the message from APs to users and the message from
users to APs [5]. Furthermore, a directed heterogeneous graph
is constructed for power control in cell-free networks. In this
directed graph, each vertex is an AP-user pair whose feature
is the channel gain between them and each edge is AP-type
or user type to connect two vertices with the same AP or
user. GAT is applied on this directed heterogeneous graph to
produce the near-optimal power control [67].

Embedding GNNs into other optimization methods and
learning paradigms is effective as well to solve the power
control problem in multi-cell networks. Successive convex ap-
proximation (SCA) is an iterative optimization method which
is popular for solving various scheduling problems in multi-
cell networks. Based on the principle of algorithm unfolding,
the unfolding SCA (USCA) algorithm is proposed to maximize
the energy efficiency, which integrates GCNs into the iteration

process of SCA to optimize power control for uplink multi-
cell networks [68]. A stochastic gradient descent approach
is used to progressively train GCN by the unsupervised
loss and regularization terms [69]. Moreover, a GNN-based
RL architecture is applied on REGNN for power control in
wireless control systems that have the same framework with
multi-cell networks. The proximal policy optimization (PPO)
algorithm is used with the actor-critic networks parameterized
by REGNNs [70].

Lessons learned 2: GNNs are effective for power control in
large-scale and dense wireless networks, providing distinct
advantages in both network performance and scalability. There
are two primary implementations. First, ConvGNN models
directly operate on graphs, e.g., interference graph, network
topology graph, and heterogeneous graph. These models show
superior generalizability and training efficiency than traditional
DNN models. Second, algorithm unfolding is an effective
bridge between GNNs and traditional optimization algorithms,
such as WMMSE and SCA. It not only enhances optimization
performance but also scales well to wireless networks of vari-
ous sizes. Furthermore, GNN-based power control algorithms
can be implemented by centralized training and execution
or centralized training and decentralized execution. Table I
summarizes the reviewed approaches using GNNs for power
control along with references.

B. Spectrum Management

Due to the scarcity of spectrum resources, spectrum man-
agement is indispensable for wireless communications and
networking. How to assign limited spectrum resources to
transmission links or active users to increase network capacity
and meet their requirements is the fundamental problem for
spectrum management to address. We present the application
of graph learning methods to spectrum management from the
following three aspects, i.e., access control, user association,
and channel allocation.

1) Access Control: Access control is to decide which part
of transmission links or users can access the network at the
current scheduling period. This process is also called link
scheduling. Due to the limit of available spectrum resources
and interference introduced by spectrum reuse, there is a
ceiling to the number of transmission links or active users that
cannot consistently be increased without control. Currently,
graph learning methods, such as GNNs and graph embedding,
conduct access control mainly by two graph models, i.e.,
the conflict graph and the maximum-weight independent set
(MWIS).

On the conflict graph, REGNN is first implemented to
realize access control by constraining transmit powers as
binary variables in ad hoc networks where all the links reuse
one spectrum channel. In this case, the access control problem
is equivalent to a specific power control problem that is a
binary selection of transmitting with Pmax or not transmitting.
Thus, REGNN for this access control problem can inherit its
design for power control [2], [71]. In D2D networks, most
of the literature define 0-1 variables as link access indicators
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Table I
A SUMMARY OF APPROACHES USING GNN ARCHITECTURES FOR POWER CONTROL

Networks References Models Categories Learning Manners Scopes
[3], [5], [6] MPNN ConvGNN Unsupervised

[1], [45] Spectral ConvGNN ConvGNN Primal-dual unsupervised

[46], [47] MPNN ConvGNN State-augmented
Unsupervised Centralized scheduling

Interference- [48]–[50] MPNN ConvGNN Unsupervised
Limited [51] GCN with LSTM STGNN Unsupervised

Networks [52]–[54] Spectral ConvGNN ConvGNN Primal-dual unsupervised
[55], [56] Spectral ConvGNN ConvGNN Meta-Learning Decentralized scheduling

[58] MPNN GAE Value-based RL
[57] MPNN with RNN STGNN Unsupervised Distributed scheduling

[60], [61] UWMMSE using
GCN

GNN-based
unfolding Unsupervised Centralized/decentralized

scheduling
[62] UWGNN using

MPNN
GNN-based
unfolding Unsupervised

[63], [64] HetGNN ConvGNN Unsupervised
[65] MPNN ConvGNN Unsupervised
[66] MPNN ConvGNN Primal-dual unsupervised Multi-cell network

RANs [68], [69] USCA using GCN GNN-based
unfolding Unsupervised

[70] MPNN with PPO GNN-based RL Actor-critic RL
[5] HetGNN ConvGNN Unsupervised Cell-free network[67] GAT ConvGNN Unsupervised
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Figure 7. A general framework of GNN-based MWIS solver for access
control.

and then optimize them via graph embedding techniques and
GNNs. Specifically, the structure2vec, a deep learning (DL)-
powered graph embedding technique, is introduced to access
control for D2D links, which does not require accurate channel
state information (CSI) and only need hundreds of training
network layouts to achieve the near-optimal performance [8],
[9]. GAE and MPNN are utilized to optimize 0-1 link access
indicators in D2D networks via mapping the conflict graph to
a low dimensional stochastic latent representation [72], [73].
Furthermore, MPNN is implemented to joint optimization
of downlink user selection and power control in multi-cell
networks [74]. A heterogeneous GAT-based multi-agent RL
(MARL) algorithm is designed to optimize access control and
resource allocation in a wireless networked control system
[75].

The MWIS problem is formulated on a customized conflict
graph with edge pruning. The graph only includes edges
representing the interference stronger than a prescribed level
and subtracts edges representing weaker interference. In this
case, since the MWIS consists of transmission links or users
allowed to access the networks, finding the MWIS is the
process of access control. To this end, various GCN-based
MWIS solvers are designed, as per Fig. 7. These solvers aim to
maximize network throughput [76], reduce interference [77],
or minimize average communication delay [78]. To further
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Figure 8. An example of GAT-integrated MARL for channel allocation.

improve the efficiency of solving MWIS for access control, a
fast centralized RL scheme based on GCN and deterministic
policy gradient (DPG) are proposed, which are simultaneously
applicable to the single-channel spectrum access and multi-
channel spectrum access [7]. For multi-channel spectrum
access, a two-stage topology-aware access control method is
proposed which uses GCN to link scheduling and the attention
mechanism to link prediction [79]. GAT is utilized to jointly
optimize access and power control for massive connection in
a ultra-dense wireless network [80].

2) Channel Allocation: In multi-channel wireless networks,
because each user has diverse channel gains and suffers various
levels of interference on different channels, channel allocation
is required to assign appropriate channels to each user. The
allocation indicators between channels and users are in general
defined by 0-1 variables. At present, a variety of GNNs are
applied to channel allocation in D2D communications and
cellular networks.
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For D2D communications, a MPNN-based model on the
conflict graph is first designed for joint channel and power
allocation that matches cellular uplink channels with D2D
pairs for improving spectrum efficiency [73]. Furthermore, a
GCN-based beam selection and link activation policy, called
GBLinks, is proposed for millimeter-wave (mmWave) D2D
networks, in which mmWave beams are available radio chan-
nels for D2D pairs [81]. Results show that GBLinks gen-
eralizes to varying network densities and network coverage
region. The above two channel allocation methods for D2D
communications are in a centralized manner. In a distributed
manner, a GAT-based MARL approach is designed to realize
spectrum channel allocation for multiple D2D pairs [82].

For cellular networks, a MPNN-based model is proposed
for optimizing transmit power and spectrum allocation in
single-cell networks, which is shown to generalize well to
the number of users [83]. A MARL algorithm combining
GCN and deep Q-network (DQN) is proposed for channel
allocation in HetNets consisting of macro BSs and small BSs.
In this work, small BSs exploit non-orthogonal multiple access
(NOMA) and cognitive radio (CR) to reuse spectrum channels
of macro BSs to expand network capacity [84]. GAT is
employed to extract potential interference relationships among
subnetworks which is modeled as a complete graph. Then,
multiple GAT models are integrated with multi-agent actor-
critic architecture for channel and power allocation to improve
channel utilization [85], as Fig. 8 shows. In addition, MPNN
is used with the policy gradient method to solve the channel
allocation problem in wireless local area networks (WLANs)
which are modeled as multi-cell networks with random access
scheme [86]. GAT is utilized to design a STGNN model to
proactively allocate spectrum bandwidth in multi-cell vehicle-
to-everything networks [87].

3) User Association: In wireless networks including mul-
tiple BSs or APs, how to associate each user with one serving
BS or AP is an essential issue to be investigated, i.e., user
association. Traditional user association methods follow sim-
ple principles such as the nearest distance and the maximum
receive signal strength to enhance link quality and network
capacity. Due to key performance indicators varying with the
wireless network evolution, the aim of user association has
gradually expanded from network capacity to load balancing,
energy efficiency, user fairness, etc. Recently, graph learning
demonstrates the potential on designing efficient and scalable
user association schemes.

GraphSAGE is utilized to design a user association and
power allocation scheme based on unsupervised graph learning
in ultra-dense HetNets [88]. Double DQN (DDQN) is further
combined with GCN to design a user association algorithm,
named GROWS, to maximize network throughput with user
fairness in small-cell networks [89]. A variant of GAT model
is proposed to jointly optimize user association and beam
selection in mmWave-integrated HetNets to maximize the
system sum-rate [90]. To facilitate intelligent management for
terahertz multi-cell networks, a GNN-based digital twin archi-
tecture is proposed where MPNN is used to jointly optimize
user association and power allocation to maximize average
rate of users [91]. In cell-free massive multiple-input multiple-

output (MIMO) systems, GraphSAGE leverages the path loss
and shadow fading to predict the potential association between
APs and users. It simultaneously works on a homogeneous
graph including only AP nodes and a heterogeneous graph
including AP nodes and user nodes [92]. Catering to the
delay requirement of uRLLC traffic, an edge-wise gated GNN
(EG-GNN) is developed for user association in a mobile
edge computing (MEC) network. The EG-GNN updates node
features and gates in an iterative manner, in which each gate is
designated by a fully connected neural network at the uRLLC
device [93]. In a vehicular edge computing network, a task
scheduling method based on spatial ConvGNNs and PPO is
proposed to improve delay performance by optimizing the
association between tasks and edge servers [94]. In addition,
a GCN-based network access scheme is proposed for LTE-
WLAN heterogeneous networks that select the AP with the
best performance for each user among different types of APs
[95], [96].

Lessons learned 3: Graph learning techniques are compatible
with various spectrum management issues to increase spectrum
utilization and lower management overhead. Because most
spectrum management problems belong to the field of 0-1
integer programming, traditional methods usually face high
computational complexity and their performance heavily de-
pends on CSI accuracy. Due to powerful generalizability, GNN
and graph embedding methods do not require accurate CSI
and just need fewer network samples to achieve near-optimal
results of spectrum management. Meanwhile, these methods
scale well to the number of users and the number of spectrum
resources. Conflict graph, binary graph, and MWIS graph are
popular graphs for GNNs and graph embedding techniques
for spectrum management. Furthermore, GNN-based RL is
an effective approach for spectrum management. On the one
hand, RL algorithms can be used to train GNN models
to enhance solving quality and performance for 0-1 integer
programming problems. On the other hand, GNN models
are used to extract network state information to improve the
decision making of RL in a dynamic environment. Table II
summarizes the reviewed approaches using graph learning for
spectrum management along with references.

C. Beamforming Design

Beamforming is a signal processing technique to focus
transmitted signals to specific direction in multi-antenna sys-
tems such as MIMO and multiple-input single-output (MISO).
A beamformer changes the transmitting directionality of the
antenna array via controlling the phase and relative amplitude
of the signal of each antenna in the array. This process is called
beamforming design that directly determines beam direction
and achievable transmission capacity. Graph learning has been
implemented into beamforming design for MIMO interference
channel, multi-user MIMO (MU-MIMO) systems, and recon-
figurable intelligent surface (RIS)-aided MIMO systems.

1) MIMO Interference Channel : Multiple transceiver pairs,
like D2D pairs, occupy the same radio channel. Each of them
is equipped with multiple antennas in the transmitter and/or
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Table II
A SUMMARY OF APPROACHES USING GRAPH LEARNING FOR SPECTRUM MANAGEMENT

Issues References Models Categories Learning Manners Scopes

Access
Control

[2], [71] MPNN ConvGNN Primal-dual unsupervised Ad hoc network[76] GCN ConvGNN Unsupervised
[8], [9] Structure2vec Graph embedding Supervised

[72] GCN GAE Unsupervised D2D
[73] MPNN ConvGNN Supervised
[80] GAT ConvGNN Unsupervised
[74] MPNN ConvGNN Primal-dual unsupervised Multi-cell network[75] GAT ConvGNN Actor-critic RL
[77] GCN ConvGNN Unsupervised
[78] GCN ConvGNN Value-based RL
[7] GCN with DPG GNN-based RL Policy-based RL Multi-hop network
[79] GCN ConvGNN Supervised

Channel
Allocation

[73] MPNN ConvGNN Supervised D2D underlaying
[82] GAT based MARL GNN-based RL Actor-critic RL cellular network
[81] GCN ConvGNN Primal-dual unsupervised D2D
[84] GCN based MARL GNN-based RL Value-based RL HetNet
[83] MPNN ConvGNN Unsupervised Single-cell network
[85] GAT based MARL GNN-based RL Soft actor-critic RL Multi-cell network[87] GAT with GRU STGNN Supervised
[86] MPNN ConvGNN Policy gradient WLAN

User
Association

[88] GraphSAGE ConvGNN Unsupervised HetNet[90] GAT ConvGNN Primal-dual unsupervised
[89] GCN based DDQN GNN-based RL Value-based RL Multi-cell network[91] MPNN ConvGNN Unsupervised
[92] GraphSAGE ConvGNN Supervised Cell-free network
[93] MPNN ConvGNN Unsupervised

MEC[94] GAT or GraphSAGE
based PPO GNN-based RL Policy-based RL

[95], [96] GCN ConvGNN Supervised LTE-WLAN

the receiver. In order to coordinate interference caused by
channel reuse, the beamforming of each transceiver pair should
be carefully designed to match channel gain and transmission
direction. The beamforming design in interference channel is
similar to the power control in interference-limited networks.
The main difference between them is that the scalar denoting
transmit power becomes a vector denoting the beamformer.
In fact, the beamforming design is equivalent to a power
control problem for single-antenna systems. Therefore, the
interference graph is still efficient to model the beamforming
design problem [5].

To tackle the above beamforming design problem, the
WCGCN is proposed which is based on MPNN. In this work,
MPNN-based beamforming algorithm is proved to be equiv-
alent to distributed local optimization algorithm in terms of
performance and applicability [4]. HIGNN is the other MPNN-
based algorithm for beamforming design in MISO interference
channel. Results show that HIGNN is scalable to wireless
networks of various sizes after trained on small-scale networks
[97]. An edge-update mechanism is designed to propose an
edge-node GNN (ENGNN) which can further efficiently deal
with both edge and node variables for beamforming design
with low computation cost and enhanced generalization [98].
A meta-gating GNN model is proposed for beamforming
design, which exploits WCGCN to design an inner GNN and
an outer GNN. In this framework, meta learning algorithm is
used in training process and element-wise gating operation is
used to multiply the outputs of inner and outer GNNs [99].
GNN-based beamforming design algorithms have also been
further extended from MISO to MIMO interference channel

[100]. Furthermore, UWMMSE algorithm is implemented to
the beamforming design in MIMO interference channel for
the sum-rate maximization, which is shown to be superior in
performance, generalizability, and robustness [101]. A MPNN-
based distributed beamforming and power control algorithm is
designed in a massive ultra-reliability and low-latency commu-
nication (uRLLC) network to reduce signaling overhead and
computation delay [102]. An edge enhanced GAT model is
used to optimize beamforming design in MISO interference
channel with statistical CSI [103].

2) MU-MIMO Systems: MU-MIMO allows a BS to serve
multiple users on one frequency/time resource by means of
multi-antenna techniques. Its main idea is to form a dedicated
beam for each user, enabling the transmission of independent
data streams to different users. Hence, one-to-multiple beam-
forming dominates the performance of MU-MIMO systems
which is different from one-to-one beamforming. At present,
graph learning-based beamforming design has shown the ef-
fectiveness on inter-user interference coordination and network
capacity enhancement in single-cell and multi-cell MU-MIMO
systems.

In single-cell MU-MIMO, a bipartite GNN (BGNN) frame-
work is developed for beamforming design. In BGNN, mes-
sage passing is realized by GCNs over a bipartite graph, as
Fig. 9 shows. There are two disjoint vertex sets represent-
ing antennas and users, respectively, with different types of
features. The edges between them are featured by channel
gains [104]. The spectral graph convolution is combined with
algorithm unfolding to propose a USRMNet algorithm for
beamforming design in a uRLLC system. Results show that
the USRMNet can efficiently maximize the sum rate with
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Figure 9. An example of message passing over a bipartite graph for MU-
MIMO beamforming design.

the constraint of desirable decoding error probability [105].
GAT-based beamforming design models are proposed for
energy efficiency maximization, sum-rate maximization, max-
min user fairness, and sum secure rate maximization in single-
cell MU-MIMO systems [106]–[109]. Moreover, graph learn-
ing methods are used in joint optimization of beamforming
design and other aspects of single-cell MU-MIMO systems. A
GCN-based learning algorithm is proposed to jointly optimize
user scheduling and beamforming design for maximizing the
number of scheduled users [110]. A graph neural imitation
learning method is designed to jointly optimize beamforming
design and antenna selection for saving transmit powers, where
imitation learning accelerates the training of GNN model
[111], [112]. A unicast-multicast GNN (UMGNN) architecture
is proposed to jointly design multicast and unicast beamform-
ers with imperfect CSI [113].

In multi-cell MU-MIMO, the beamforming evolves into
coordinated beamforming among multiple BSs. Inter-cell in-
terference is an important feature for GNNs to learn in this
scenario. The ENGNN is implemented to optimize beam
powers and coordinated beamforming design, which shows
low computational cost and generalization [98]. A GCN-
WMMSE architecture is developed which utilizes deep unfold-
ing in coordinated downlink beamforming. Results show that
this architecture significantly reduces the number of required
iterations to achieve similar performance to WMMSE [114].
Furthermore, a self-optimized MPNN, namely AutoGNN, is
proposed to learn coordinated beamforming in a distributed
manner meanwhile automatically learning the depths of desir-
able GNN layers and the sizes of feature embedding [115].

3) RIS-Aided MIMO Systems: RIS is a programmable
surface structure with the capability of enhancing wireless
propagation environment. It consists of a large number of
tunable reflective elements to intelligently reflect electromag-
netic waves via adjusting phase shifts of reflective elements.
In existing works, RIS is usually deployed in MIMO systems
to focus the beam toward the directions of users, as per
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RISRIS controller

BS

Direct beam
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beams

Figure 10. An example of RIS-aided MIMO systems.

Fig. 10, which relies on the optimization of beamformer and
phase shifts simultaneously. Graph learning methods have
been applied to the optimization of RIS-aided MIMO systems.

Graph learning is initially used to optimize single-cell MU-
MIMO with the aid of a single RIS. A MPNN-based model
is developed to map the uplink pilots to the beamformers at
the BS and the phase shifts at the RIS. This architecture
shows its generalizability to the number of users because
it is permutation invariant for phase shifts and permutation
equivariant for beamformers [116]. Based on this advance,
a dual-GNN framework is proposed in which two MPNNs
respectively optimize user scheduling and RIS configuration
and then are used to fine-tune the beamformers [117], [118].
Similarly, a HetGNN framework consisting of two GNNs are
designed where one is used to learn channel estimation and
the other is used to learn beamformers and phase shifts [119].
A multi-head GAT is exploited to optimize BS precoding and
RIS phase shift to maximize the sum rate of users [120]. A
heterogeneous graph transformer model is employed in a RIS-
aided MU-MIMO system to optimize the precoding, phase
shift, and bandwidth allocation [121].

Graph learning is further employed to optimize multi-
RIS aided MIMO systems. A novel MARL integrated with
WCGCN, called GE-VDAC, is developed to reconfigure hy-
brid spatial beamforming in a multi-AP multi-RIS MIMO-
NOMA network [122]. A HetGNN model is designed to
jointly optimize beamformers, phase shifts, and user-RIS asso-
ciation. Results show that this architecture efficiently improves
the quality of service for users compared to fully association
between RISs and users [123]. A MPNN model is proposed
to jointly optimize beamforming pattern, rate allocation, and
phase shift in a multi-RIS aided downlink MU-MISO system
with rate splitting multiple access [124].

Lessons learned 4: GNNs provide an efficient and alternative
solution for beamforming design in multi-antenna systems.
ConvGNN and algorithm unfolding with GNN are effective
for designing beamforming optimization algorithms, similar
to power control. Several existing GNN models for power
control, such as WCGCN and UWMMSE, are also applicable
to beamforming design. The literature shows that the perfor-
mance and applicability of MPNN are equivalent to distributed
local beamforming optimization algorithms. Moreover, un-
folding traditional beamforming optimization algorithms via
GNN shows the potential to outperform original algorithms in
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Figure 11. An illustration of STGNN for content similarity representation
in edge caching.

terms of performance, generalizability, and robustness. These
evidences facilitate the application of GNNs in various massive
MIMO systems. Recently, GNN-based methods have been em-
ployed in the optimization of RIS-aided MIMO systems which
demonstrate the efficiency of jointly optimizing beamforming
and phase shifts, as well as the generalizability to the system
scale. Table III summarizes the reviewed approaches using
graph learning for beamforming design along with references.

D. Task Scheduling

Wireless networks are becoming multi-task operating plat-
forms to utilize multi-dimensional resources to satisfy various
service requirements. To this end, diverse wireless edge tech-
nologies, such as edge caching, MEC, integrated sensing and
communication (ISAC), and edge learning, are developed to
enable different network elements to cooperate with each other
and perform tasks of communication, computation, caching,
learning, and sensing. GNNs have been used for task schedul-
ing at aspects of content caching, computation offloading, and
edge learning.

1) Content Caching: Deciding where to cache the content
and which content to cache are typical tasks addressed by
GNNs in edge caching systems. GAT is used to propose
a fully decentralized soft MARL algorithm for cooperative
caching and fetching in D2D networks. In this work, GAT
accelerates the coordination of content caching among D2D
pairs [125]. Furthermore, a user preference learning-based
proactive edge caching strategy is developed which utilizes
STGNN to learn content similarity. In this work, STGNN
consists of multi-channel GCN and LSTM models, as Fig. 11
shows. GCN extracts spatial relations among contents over the
content graph in a time slot and then LSTM captures temporal
correlations among contents in different time slots to output
content similarity representation [126].

2) Computation Offloading: GNNs can be applied to com-
putation offloading for interdependent tasks and independent
tasks. In computation offloading of interdependent tasks, di-
rected acyclic graph (DAG) is usually used to model the
order of execution and the interplay of different tasks. Several
GNN-based computation offloading schemes are developed by
means of DAGs. GCN-embedded RL schemes are proposed to
optimize task offloading between one user and one BS where
all the tasks are generated through partitioning one application
and hence interdependent with each other [127], [128]. The
GASTO, a meta-RL computation algorithm based GAT and
LSTM, is developed to cope with the dynamic and uncertainty
of MEC environment which is modeled by a specialized
DAG [129]. Furthermore, GNN-augmented RL schemes are

developed for interdependent task offloading in multi-BS MEC
systems [130], [131]. In addition, a GCN model over a conflict
graph is proposed to optimize task offloading in a multi-cell
MEC network, in which each vertex represents a task and each
edge connects two tasks with the conflict on execution time
[132].

In computation offloading of independent tasks, GNNs work
on the graph of network topology where vertices represent
network elements, e.g., BSs, users, and tasks. Edges repre-
sent the association among these elements. Due to network
topology changes and device collaboration, GNN-based RL
approaches are employed to optimize offloading decision and
resource allocation for independent tasks [133], [134]. To be
specific, a GCN-based actor-critic network is proposed to learn
offloading decision for a single-cell MEC network [135].

For a multi-cell MEC network, a GAT-integrated DQN
is proposed to optimize offloading decision and resource
allocation [136]. A novel link-output GNN-based resource
management scheme is proposed for partial offloading in a
multi-cell MEC network [137]. An inverse RL algorithm is
proposed which utilizes MPNN and GRU to dynamically
optimize offloading decision and computation/communication
resource allocation in a cloud-edge-end computing network
[138]. To realize cooperative task offloading and service
caching, a GAT-based deep recurrent Q-network (DRQN) is
devised for a digital twin-empowered multi-cell MEC network
to improve the quality-of-service of the overall system [139].
A multi-cluster cooperative offloading scheme based on GCN
assisted MARL is proposed for virtual reality tasks in a MEC
network [140]. In addition to the above works, MPNN is
implemented to design a novel resource slicing strategy in
MEC networks [141].

3) ISAC: ISAC is emerging as a key feature of future
wireless networks, allowing for the exploitation of current
network resources and infrastructures to build a perceptive
network. Due the coexistence of sensing and communication
tasks, spectrum sharing and link scheduling between them are
primary problems for resource management. GAT is used to
propose an intelligent resource allocation algorithm for si-
multaneously meeting the requirements of communication and
sensing tasks in an ISAC system [142]. A MPNN-based model
is designed to optimize link scheduling for an ISAC-enabled
vehicular network to maximize sum rate while meeting sensing
requirements, where all the vehicles reuse the same spectrum
bandwidth and can operate in either communication mode
or sensing mode [143]. Based on [143], a dynamic GNN
approach is proposed to select appropriate message pasing
functions according to vehicle network topology [144].

4) Edge Learning: AI is rapidly merging together with
wireless communications and networking. Edge learning is
one of its representative instances, which enables wireless edge
facilities, e.g., BSs, APs, and user devices, to execute machine
learning tasks such as model training and inference. GNNs
have been utilized to task scheduling for distributed edge
computing and federated learning (FL) in wireless networks.

In a distributed edge computing system, there are several DL
tasks required to offload to diverse Internet-of-Things (IoT)
devices. To tackle this problem, a GCN-based task allocation
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Table III
A SUMMARY OF APPROACHES USING GRAPH LEARNING FOR BEAMFORMING DESIGN

Systems References Models Categories Learning Manners Scopes

MIMO
Interference

Channel

[4] MPNN ConvGNN Unsupervised
[97] HetGNN ConvGNN Unsupervised

[98], [102] MPNN ConvGNN Unsupervised D2D
[99] MPNN ConvGNN Meta-learning

[100] HetGNN ConvGNN Unsupervised
[103] GAT ConvGNN Unsupervised

[101] UWMMSE using
GCN

GNN-based
unfolding Unsupervised Ad hoc network

[104], [107] GCN ConvGNN Unsupervised

[105]
Algorithm unfolding

using spectral
ConvGNN

GNN-based
unfolding Primal-dual unsupervised

[106] GAT ConvGNN Supervised Single-cell network
[108], [109] GAT ConvGNN Unsupervised

[110] GCN ConvGNN Unsupervised
MU-MIMO [111], [112] MPNN ConvGNN Imitation learning

[113] MPNN ConvGNN Unsupervised
[98] MPNN ConvGNN Unsupervised

[114] Algorithm unfolding
using GCN

GNN-based
unfolding Unsupervised Multi-cell network

[115] MPNN with
auto-learning ConvGNN Unsupervised

RIS-Aided
MIMO

[116]–[118] MPNN ConvGNN Unsupervised

Single-RIS system[119] HetGNN ConvGNN Unsupervised
[120] GAT ConvGNN Unsupervised

[121] Heterogeneous graph
transformer Graph transformer Unsupervised

[122] MARL with MPNN GNN-based RL Actor-critic RL
Multi-RIS system[123] HetGNN ConvGNN Supervised

[124] MPNN ConvGNN Unsupervised

algorithm is proposed which works on a heterogeneous graph
and learns the optimal matching between the workloads of
DL tasks and available resources of IoT devices [145]. In FL
over wireless networks, BS is equipped with or connected
to the FL server. User devices are FL participants. Each
user device owns a private dataset used to train a local
model and send local model parameters to the FL server.
Then, the FL server aggregates all the collected local model
parameters to generate a global model, as per Fig. 12. In
order to improve the offloading efficiency of local model
parameters, a GCN-based power allocation policy is devised
which uses the primal-dual algorithm to solve considered
optimization problem and outperforms MLP in transmission
success rate and FL global performance [146]. For a RIS-
aided FL system, a novel MPNN-based learning algorithm is
proposed to optimize transmit powers, denoising factor, and
phase shifts [147]. Furthermore, GNNs are employed for FL-
based applications in wireless networks. In a FL-based aerial-
ground air quality sensing framework, a GCN and LSTM
based STGNN is used to achieve accurate and real-time air
quality inference [148]. In wireless FL service market, an
automated strategy-proof mechanism based DQN and GCN
is developed to improve social welfare [149].

Lessons learned 5: Various GNN models and learning ap-
proaches are applicable for utilizing multi-dimensional re-
sources for task scheduling at terms of communication, com-
puting, caching, sensing and learning. There are three popular
GNN-based approaches for task scheduling. First, ConvGNN
can extract implicit information from the graph derived from

Local model Global model Private dataset

BS

Model aggregation 

and distribution

Traning

Traning

Traning

FL server

Figure 12. An illustration of FL.

a specific task, e.g., content similarity, task interdependency,
association opportunity, and interference distribution. This
information further contributes to the conduction of task
scheduling. Second, STGNN is able to capture not only spatial
features from underlying graph but also temporal features from
time-sequential data, e.g., historical data of content request and
time-varying network topology. These features are exploitable
to time-sensitive task scheduling. Third, GNN-based RL is
suitable for designing the task scheduling scheme in a dynamic
wireless environment and cooperative task scheduling among
devices. The key lies in the choice of GNN models and RL
algorithms. In addition, conflict graph and network topology
graph are commonly used for GNN-based task scheduling.
Table IV summarizes the reviewed approaches using GNN
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Figure 13. An illustration of GAT and GGNN for trajectory design in aerial
cellular networks.

architectures for task scheduling along with references.

E. Aerial Coverage Planning

UAV has great potentials to enhance the connectivity and
broaden the applications of wireless networks. On the one
hand, wireless networks can expand the coverage by exploiting
UAVs as aerial BSs and relays. On the other hand, UAVs
can be aerial terminals covered by terrestrial BSs to enable
various use cases such as smart cities, disaster reconstruction,
intelligent transportation, etc. The mobility of UAVs leads
to flexible network topology via controlling flying trajectory
and hovering position, which make aerial coverage planning
be a new dimensionality as well as challenge to resource
management. Due to excellent generalization and scalability,
GNNs are utilized to carry out aerial coverage planning.

A GCN-based trajectory planning algorithm is developed for
UAV swarm communication which rebuilds the connectivity
among UAVs in the swarm during self-healing process. This
algorithm is also combined with meta learning to facilitate the
off-line learning and the on-line execution of GCN [150]. In
aerial cellular networks, GAT and GGNN are employed for
cooperative trajectory design of multiple UAV-BSs to improve
long-term system throughput [151], as per Fig. 13. GAT is
further used to obtain extra spatial information via inter-UAV
communications to plan flying paths of multiple UAV-BSs
for optimal network coverage under partial observation [152].
A GAT-based MARL algorithm is developed for trajectory
planning and resource assignment to ensure load balance
among UAV-BSs [153]. A GNN-empowered partial obser-
vation MARL method is proposed for distributed trajectory
planning to optimize the age of information of users [154]. In
a UAV-relaying IoT network, a dual-stage GNN optimization
framework is proposed in which a GCN-LSTM model is used
to select the best relay path and then a GAT-LSTM model is
used to optimize the deployment of UAV relays. Results show
that this framework can achieve comparable performance to
brute-force search with low computation complexity [155]. In
a UAV-enabled MEC system, a deep RL framework based on
ConvGNN is designed to online train continuous flight actions
and task offloading [156]. In addition, GAT is exploited to

learn cooperative link scheduling policies among users over a
time-varying graph in a UAV-aided hybrid satellite-terrestrial
network, aiming to alleviate masking effect in satellite links
[157].

Lessons learned 6: GNNs efficiently deal with not only stan-
dard radio resource management issues but also aerial cov-
erage planning due to UAV mobility, such as flying trajec-
tory, hovering position, and swarm connectivity. These issues
widely exist various UAV networks and are addressed by
different GNN-based methods. ConvGNN exhibits strong uni-
versality and is capable of obtaining extra spatial information
of UAV networks. It is shown that ConvGNN can perform
comparably to brute-force search in a UAV-relaying network.
GNN-based RL is utilized to improve cooperation among
UAVs on trajectory optimization and access control, catering
to UAV mobility and dynamic network topology. STGNN is
used to capture spatial and temporal information of aerial
cellular networks for optimizing UAV-BS coverage and user
association.

F. Summary and Discussion
This section reviews the application of graph learning for

resource management in wireless networks. We classify all
the literature into five categories that power control, spectrum
management, beamforming design, task scheduling, and aerial
coverage planning. We first focus on how GNN motivates the
development of power control in wireless communications.
Interference-limited networks and RANs are main scenar-
ios of existing GNN-based power control methods where
ConvGNN and GNN-based unfolding are the most prevalent
algorithmic frameworks. Next, we investigate graph learning
methods for spectrum management issues including access
control, channel allocation, and user association. ConvGNN,
graph embedding methods, and GNN-based RL are primary
approaches for designing effective spectrum management al-
gorithms. Then, we elaborate on beamforming design using
GNNs in MIMO interference channel, MU-MIMO systems,
and RIS-aided MIMO systems. Furthermore, we review GNN-
based task scheduling in advanced wireless technologies from
the perspectives of content caching, computation offloading,
and edge learning. ConvGNN, STGNN, and GNN-based RL
are popular models and frameworks for task scheduling to
meet various service requirements. Finally, we concentrate
on the application of GNNs to aerial coverage planning.
GNNs show the efficiency and practicality in aerial access
control, UAV trajectory planning and deployment. In the fu-
ture, the densification and heterogeneity of wireless networks
will become increasingly pronounced, along with an abundant
variety of use cases [158]–[160]. This shift will propel graph
learning techniques, particularly GNNs, to become a crucial
method for resource management, leveraging their advantages
of scalability, efficiency, generalizability, and compatibility
[161].

According to the literature review in this two-part survey,
we have several remarks as follows.

• Graph optimization is suitable for resource management
in moderate-scale and small-scale wireless networks to
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Table IV
A SUMMARY OF APPROACHES USING GNN ARCHITECTURES FOR TASK SCHEDULING

Issues References Models Categories Learning Manners Scopes

Content
Caching

[125] GAT based MARL GNN-based RL Soft actor-critic RL Content placement and
delivery

[126] GCN with LSTM STGNN Supervised Content placement

Computation
Offloading

[127], [128] GCN ConvGNN Policy-based RL

[129] GAT and LSTM
based PPO STGNN Meta-learning Interdependent task

[130], [131] GCN based DQN GNN-based RL Value-based RL
[132] GCN ConvGNN Unsupervised

[133] GraphSAGE and
LSTM based DDPG STGNN Actor-critic RL

[134] HetGNN based DQN GNN-based RL Value-based RL
[135] GCN based DRL GNN-based RL Actor-critic RL
[136] GAT based DQN GNN-based RL Value-based RL Independent task
[137] GAT ConvGNN Unsupervised
[138] MPNN with GRU STGNN Value-based RL
[139] GAT based DRQN GNN-based RL Value-based RL
[140] GCN for MARL GNN-based RL Actor-critic RL
[141] MPNN ConvGNN Supervised Resource slicing
[142] GAT for MARL GNN-based RL Actor-critic RL Message routing

ISAC [143] MPNN ConvGNN Supervised Link scheduling[144] Dynamic GNN ConvGNN Supervised

Edge
Learning

[145] GCN ConvGNN Unsupervised Distributed DL
[146] GCN ConvGNN Primal-dual unsupervised
[147] MPNN ConvGNN Unsupervised
[148] GCN with LSTM STGNN Supervised FL
[149] GCN based DQN GNN-based RL Value-based RL

find the optimal or semi-optimal solution. The algorithm
performance is sensitive to the accuracy of network state
and channel condition.

• Graph learning is suitable for resource management in
large-scale wireless networks to find the near-optimal or
semi-optimal solution. GNN models have good scalability
to network size and well generalization to network state.

IV. TECHNICAL CHALLENGES AND FUTURE DIRECTIONS

Diverse approaches reviewed in this two-part survey evi-
dently show that graph optimization and learning can effec-
tively address various emerging issues at the field of resource
management in wireless networks. There are still existing
challenges and new research directions which are discussed
as follows.

A. Technical Challenges

1) Network Scale and Density: Wireless networks are
growing in size and density, which contains a large number
of wireless equipments. To effectively manage entire wireless
networks, it is necessary to construct a large-scale graph
representing the relationships among numerous equipments.
The handling of such a large-scale graph requires extensive
computation and storage, which is an open issue in the fields
of graph theory and computer science. Furthermore, because
the size of graph directly affects the computation complexity
of algorithms, large-scale and dense wireless networks raise a
challenge to the feasibility of graph optimization and learning
approaches.

2) Dynamicity in Wireless Networks: Wireless networks are
dynamic systems inherently. First, the condition of wireless
channel varies randomly to cause fluctuations in the received

signal power. This leads to the dynamicity of instantaneous
network performance, such as throughput, delay, etc. Second,
the mobility of wireless devices can change the network topol-
ogy, leading to dynamic associations and interference among
these devices. Furthermore, user requirements, traffics, and
buffer states are all dynamic in practice. Although GNNs and
distributed graph optimization algorithms demonstrate their
adaptability to these dynamics, they still present challenges
in the terms of model efficiency and generalization.

3) Heterogeneity of Wireless Devices: Recent wireless net-
works mainly consists of three types of wireless devices
including server devices (e.g., edge servers), user devices
(e.g., mobile terminals), and connecting devices (e.g., BSs
and relays). In many resource management problems, these
heterogeneous devices cannot be uniformly represented and
differentiated by identical vertices and edges. Heterogeneous
graph are increasingly utilized to depict wireless networks.
However, most existing GNNs are primarily designed for
homogeneous graphs and cannot directly applied over hetero-
geneous graphs. Even when adapted for heterogeneous graphs
using additional operations, their performance is often limited.
Therefore, developing GNNs over heterogeneous graphs for
resource management remains a challenge.

4) Incompleteness of Network Data: Many resource man-
agement factors significantly affect wireless network per-
formance, as reflected by several key parameter indicators
(KPIs). It is labor-intensive and impractical to establish the
relationships between each factor and KPIs, and label them for
building training, validation, and test data sets. Incomplete data
is typically used for unsupervised learning and reinforcement
learning, which usually have a performance gap compared
to supervised learning. Consequently, designing an efficient
graph optimization and learning algorithm using incomplete
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data poses a significant challenge in resource management.

B. Future Directions

1) Advanced Graphs for Wireless Networking: The ad-
vancement of graph theory introduces various new methods
to model and optimize problems on resource management
in wireless networks. For examples, extremal graph theory
investigates how a parameter of a graph can be big or small
under given constraints, such as the number of vertices and
edges. It has potential benefits in proposing scalable graph
optimization and learning approaches for resource manage-
ment [162]. Random graph theory focuses on a graph obtained
by randomly adding or deleting edges and investigates its
probability distribution and stochastic properties at different
stages. It provides an alternative way to depict the dynamicity
of wireless networks [163]. In addition, the theory of games
on graphs can be utilized to design distributed algorithms
for resource management [164]. In consequence, advanced
graph modeling and optimization approaches for wireless
communications are worthy of investigation.

2) Scalable Resource Management with Graphs: Densifi-
cation and heterogeneity are two significant features of future
wireless networks to enhance network capacity and coverage
performance. As network density and complexity increase,
scalable resource management schemes become vital. Graph
optimization and learning have shown benefits in scalability.
However, striking a balance between scalability and effective-
ness is challenging. For instance, the scalability of GNNs
comes at the expense of graph completeness, such as the
sampling operation in GraphSAGE that leads to partial loss
of graph information. Therefore, improving the effectiveness
of scalable wireless management with graphs is a promising
direction.

3) Generative Models on Graphs for Wireless Network-
ing: Scalability is one of primary reasons why GNNs be-
come popular for resource management in wireless networks.
However, this is just one aspect of their generalization and
generative capability. Beyond network scale, the model output
after changes in user requirements, fronthaul/backhaul capac-
ity limitations, delay constraints and others is an important
evaluation criterion for the model’s performance. In order
to enhance generalization and generative capability, GAEs,
graph transformers, and other generative models are increas-
ingly employed for resource management in wireless networks
[165]–[169]. Therefore, the application of generative models
on graph for wireless networking is a promising research
direction.

4) Graph Learning with Domain Knowledge of Resource
Management: Knowledge-driven machine learning is a grow-
ing field that improves learning efficiency and explainability
by incorporating domain knowledge into model architecture
and algorithm design. For resource management in wireless
communications, domain knowledge includes information and
experience of specific resource management problems, such as
the water-filling algorithm for power allocation and semidefi-
nite relaxation method for beamforming design. This knowl-
edge can be embedded in models by customizing the input

data, loss function, and model construction. Therefore, the
incorporation of abundant resource management knowledge
into graph learning is an important research direction.

V. CONCLUSION

This paper is the Part II of a two-part survey to present a
comprehensive survey of graph learning for resource manage-
ment in wireless networks, while the Part I focuses on graph
optimization in this field. In this part, we have introduced
the fundamentals of graph learning and presented several
modern GNN models. Then, the state-of-the-art literature on
graph learning methods for resource management has been
comprehensively reviewed according to different issues, i.e.,
power control, spectrum management, beamforming design,
task scheduling, and aerial coverage planning. Finally, we
have discussed current technical challenges and future research
directions of graph optimization and learning for resource
management in future wireless networks.
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