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Abstract—In a dynamic spectrum allocation (DSA) system,
reliable prediction of spectrum occupancy based on a spec-
trum consumption model (SCM) is critical for system design,
performance analysis, and evaluation. In this article, we focus on
a low-level abstracted measured dataset from a massive campaign
and investigate the occupancy of representative frequency bands.
First, we apply an autoregressive-moving-average (ARMA) model
combined with a low-pass filter, given the stationarity of the
channel measurement dataset and thanks to the computational
simplicity of the model. The average received power and off-state
probability are extracted from the measured data. According to
the results, the measured and predicted data are in good agree-
ment. Comparing the proposed model-based ARMA with the
popular long short-term memory learning algorithm, they have
similar error accuracy with pre-processed data, while ARMA
has a much lower training complexity. In the second step, we
develop an SCM describing the spectrum usage for designing
and examining the DSA system. We extract the periodic, ape-
riodic low-frequency, and burst components of the time series.
Also, a binary sequence is extracted from a sparse occupancy
channel, and modelled by a non-homogeneous Markov chain.
Results show that the model-generated data can maintain the
same statistics as the measured data.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum prediction, LSTM, ARMA.

I. INTRODUCTION

RADIO frequency is the vital resource on which wire-
less communication services rely. Due to the enormous

growth in the number of mobile devices in recent years,
spectrum scarcity becomes a pressing issue for spectrum
management agencies and wireless service providers [1]–[3].
Traditionally, the spectrum is statically allocated to particular
licensees over wide geographical regions. Measurements in [4]
show that roughly 80% of the lower bands are empty of any
signals within 7 dB of the environmental noise. In other words,
a significant portion of the licensed spectrum, called white
spaces, is unused. The challenge of ever-increasing demands
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Fig. 1. Example of a DSA system.

for spectrum and exploiting it efficiently, has attracted consid-
erable research efforts [5]–[8].

Dynamic Spectrum Access (DSA) is promising to relieve
the spectrum scarcity problem and utilize the white spaces
in the spectrum. It allows the systems to share the spec-
trum and adjust spectrum assignments in real time [1], [9].
It is different from the other cognitive radio approach which
temporarily allows the unlicensed or secondary users (SU)
to use some vacant licensed bands opportunistically without
interfering with the licensed or primary users (PU). DSA is
technically simple and has attracted the attention of spectrum
regulators recently. Traditionally, spectrum in a large area will
be allocated to users for a long period of time, e.g., months
to years. Using DSA, spectrum in a specific area can be
dynamically allocated in the time unit of hours or tens of
minutes only.

Spectrum prediction and statistical modeling are two impor-
tant aspects of DSA, which are the main focuses of this article.
DSA systems need to be aware of how spectrum resources are
being used in different locations and situations. By deployment
of the DSA system, the spectrum can be exploited efficiently
through dynamic spectrum assignment, which is done by tak-
ing into account the spatial and temporal traffic statistics of
different services [10]. Spectrum opportunity identification and
exploitation are two key components of the DSA systems.
While the former one is responsible for intelligently identi-
fying and tracking the spectrum both temporally and spatially,
the latter one decides when and how a secondary user uses the
spectrum. Spectrum prediction is a complementary approach
to foresee the behavior of a frequency band. It will facilitate
the spectrum management and optimize user assignment to
improve the DSAs’ performance [11], [12]. Fig. 1 shows an
example of a DSA system in which the channel states of the
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future time slots are predicted to be occupied by the current
spectrum owner or idle. Existing spectrum prediction meth-
ods can be classified into model-based and non-model-based
methods, represented by linear regression and neural network
(NN), respectively. Generally, NNs are used to learn and model
complex non-linear patterns, and their performance is highly
dependent on the dataset instead of the mathematical model.
In other words, this method is appropriate for the case where
there is lack of a reasonable model a priori. Long short-term
memory (LSTM) which is an artificial NN method uses the
historical and current data to predict the future [13]. Therefore,
it may capture the data’s temporal correlation. On the other
hand, the linear regression is typically a linear model with a
computational complexity of O(N ), where N is the length of
the time series, and the model coefficients can be estimated
fast with less computation. Accordingly, the time series can
be predicted much easier [14]. From the DSA systems’ point
of view, especially considering the large number of users to
handle in real time, a simple yet effective model is of a high
priority.

Further, the statistical modeling of the spectrum usage, i.e.,
spectrum consumption model (SCM), plays a pivotal role in
DSA systems design. Moreover, it provides a common method
to assess the spectrum usage compatibility. SCMs provide a
way to capture the spectral, spatial, and temporal characteris-
tics of any wireless systems. The collected data and captured
parameters by the SCMs allow the development of spectrum
management policy [1], [15], and pave the way for smart spec-
trum [16]. The SCMs may also help regulators to determine the
spectrum rights and its boundaries, allow designers to design
DSA systems efficiently, and assist markets by defining the
allowed amount of spectrum that is traded as well as a bet-
ter spectrum sharing policy. The IEEE 1900.5.2 standard [17]
focuses on the usage of the SCMs to evaluate the compatibil-
ity, interference, and coexistence of the devices in the DSA
systems. It has also specified different elements for an SCM,
including the total reference power, spectral power density,
power map, starting time, and ending time [1], [15].

In this article, we focus on the low-level abstracted
measured data from a massive measurement campaign and
investigate the occupancy of representative frequency bands.
The main contributions of this article are twofold: first,
because of the stationarity of the channel measurement results
and the DSA’s requirement of low complexity, we apply
autoregressive-moving-average (ARMA) and LSTM models
combined with a low-pass (LP) filter to the dataset for one-
hour ahead occupancy prediction, and compare the results
accordingly. Second, we provide a useful SCM depicting the
spectrum occupancy for designing and examining the DSA
system. For the occupancy prediction, a priori information of
the dataset is considered. The Gauss-Newton (GN) algorithm
is used to estimate the parameters of the ARMA model, where
the initial values are obtained by the long autoregressive (AR)
model. Two different types of data are extracted from the raw
measurements which are the average received power and the
probability of the off state. According to the simulation, high-
precision predictions are obtained for both types of the data.
For the spectrum occupancy modeling, we extract the periodic

components, bursts, and aperiodic low-frequency part inspired
from the nature of the dataset, and model them separately.
We examine the model-generated data from different per-
spectives, including the time/frequency domains, probability
density function (PDF), autocorrelation function (ACF), and
partial autocorrelation function (PACF). Results show that the
model-generated data can well approximate the measured data
in all of the above aspects. Furthermore, an ON/OFF sequence
is extracted from the measurements of the channel with sparse
occupancy and then modeled by a non-homogeneous Markov
chain. High similarities to the measured dataset are achieved
according to the modeling results. The channel prediction and
occupancy model are all performed in a centralized way on
a server which collects different sensors data. The occupancy
state or power level of different frequency channels in the sen-
sors’ locations will be reported to the network’s users for the
following time slots.

The organization of the rest of this article is as follows. In
Section II, the related works are presented. Section III is dedi-
cated to the dataset description and presentation. The spectrum
prediction models and results are explained in Sections IV
and V, respectively. Section VI describes the statistical spec-
trum modeling of the dataset. Finally, Section VII concludes
this article.

II. RELATED WORK

A. Spectrum Measurement

Several spectrum measurement campaigns have been done
around the world. In [18], based on the spectrum measure-
ments in the Netherlands, it has been shown that the totally
vacant channel state exists with a high probability. Also, a
stochastic model for the duty cycle distribution, i.e., the aver-
age occupancy of a channel, has been introduced according to
the 200 KHz channel measurements. The proposed duty cycle
is useful for DSA systems and vacant channel determination.
The spectrum occupancy of some communication bands in the
range of 50–860 MHz has been investigated in Leicester, U.K.,
in [19]. It has been demonstrated that the average occupancy
of 50–470 MHz band is about 3.71%, and this band can be
the candidate for the dynamic spectrum applications. A cloud-
based system including the architecture and an initial system
prototype was presented in [20]. Another spectrum measure-
ment has been done for an outdoor application in [21]. The
frequency range of the measurement was between 75 MHz and
3 GHz. The resolution bandwidth was 10 KHz which evenly
divides the frequency blocks. The results from the measure-
ments show remarkable spectrum opportunities in frequencies
above 1 GHz.

B. Spectrum Prediction

In [22], the authors concentrated on spectrum prediction as
an alternative approach to increase the efficiency of the spec-
trum sensing. Jacob et al. proposed two fast schemes based
on Bayesian inference, i.e., a method in which Bayes’ rule is
used to update the probability distribution. According to the
predicted probabilities, the channels can be sorted and the one
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in a lower rank will be neglected in the spectrum sensing pro-
cess. The performances of the proposed approaches in [22]
are compared with the statistical methods in this work.

NN and recurrent NN (RNN) are two learning approaches
to predict a dataset. Some kinds of datasets such as traf-
fic data in large-scale networks have a non-linear nature.
Azzouni and Pujolle in [23] utilized LSTM in RNN to train the
prediction model, which was shown to outperform the tradi-
tional methods in terms of accuracy. In [24], the RNN method
was applied to the RF measurements of Land Mobile Radio
(LMR) to improve the performance, assuming that traffic data
was multi-modal and non-stationary. Channel utilization effi-
ciency and aggregate waiting time were considered as two
comparison metrics due to the dataset’s non-linearity. LSTM
and fully-connected multi-layer perceptron methods have been
applied to two different frequency bands, 1.82–1.875 GHz
and 5.27–5.29 GHz in [25], and it is concluded that the LSTM
model predicts more accurately.

Convolutional neural networks (CNNs) are a kind of neu-
ral networks with capability of features extraction from data
with convolution structures [26]. They have been designed for
image datasets and they can extract spatially invariant local
relationships [27], [28]. Despite their competitive classification
accuracy, they suffer from slow training speed and high com-
putational cost. CNNs are applicable for time series forecasting
problems as well where the temporal and spatial patterns of
the dataset are extracted simultaneously. In multi-variate time
series, an input block contains parallel observations in dif-
ferent time slots, and they are fed into the CNN model as
a 2D data. CNNs are applicable to univariate time series as
well. However, each causal convolutional filter acts as a finite
impulse response (FIR) filter. Temporal CNNs assume that
relationships are time-invariant and a fixed set of filter weights
are derived at different time steps [27]. On the other hand,
RNNs with the help of internal memory gates are a better fit
for univariate time series forecasting.

Hidden Markov model (HMM) can also be utilized in DSA
systems. This model can be helpful in the identification of
the observation sequences with the same pattern [29]. Since
HMMs are good at reproducing the training sequences, they
can be used in channel occupancy prediction in DSAs. The
spectrum occupancy prediction error was studied in [30],
where the next time slot prediction error was modeled as a
function of channel detection error and PU’s state transition
probability. It showed that HMM is a good candidate for duty
cycle prediction. However, the HMM-based prediction meth-
ods do not show good accuracy on all kinds of data especially
on non-Markovian real-world spectrum data [31].

The received power prediction may be utilized in schedul-
ing and channel access procedure. Several researches have
been done on channel access problem using deep reinforce-
ment learning in the medium access control (MAC) layer.
In [32], a dynamic multi-channel access problem has been
studied in which correlated channels follow an unknown joint
Markov model. Using the concept of reinforcement learning,
an optimal access policy which maximizes the expected num-
ber of successful transmissions in the long run is derived via
online learning. In [33], a multi-agent spectrum prediction

approach is proposed for a multi-channel wireless network.
Reinforcement learning has been applied to the problem by
modeling the problem as a partially observable stochastic game
with a continuous action space. The results can be fed into the
network schedulers to avoid collisions with other neighbouring
users.

Different parameters such as location, time, and frequency
can be taken into account in studying the spectrum occu-
pancy. The mixed effects of the aforementioned parameters
were modeled as a linear regression in [34]. Three different
frequency bands in the range of 88 MHz–3 GHz in five differ-
ent locations in the USA have been chosen and studied in this
work. Based on the results, the authors claimed that a good
linear fit can be obtained using the spectrum measurement
data.

The AR model has been applied to other datasets as well.
For instance, the spectrum has been measured at four differ-
ent locations in [35] with a perfect synchronization of the
measuring devices. An AR model has been proposed and
applied to the measured data in order to predict the binary
time series. Akaike information criterion (AIC) and mean of
the response residual magnitudes were considered as the cri-
teria for determining the AR parameters. Also, a four-state
Markov chain was used to store the last two bits correspond-
ing to the occupancy states. It has been shown that the AR
model can outperform the Markov chain type prediction.

In addition to the AR model, the ARMA approach can be
used to predict time series more accurately by considering the
current and various past values in a stochastic term using the
moving-average (MA) model. In [36], the authors have studied
different prediction methods including the ARMA model in
content delivery networks. It has been shown that the ARMA
model can improve the accuracy of the prediction. However,
there is no ARMA model that can predict all contents accu-
rately over the content’s lifetime. In [14], Deng et al. have used
the ARMA model in conjunction with Euclidean distance in
order to model the nearest neighbor classification. They argued
that the computational training cost of the RNN and HMM is
much higher than the training cost of the ARMA model. The
performance is promising according to the results. The ARMA
model can be used in the spectrum occupancy prediction field
as well. In [37], the frequency range of 100 MHz–2.4 GHz has
been measured in an outdoor location for a week. The ARMA
model has been applied to the measured data. The authors
have shown that the fitted data show a good agreement with
the measured one in terms of AIC.

We note that directly applying ARMA and LSTM models
to the raw spectrum sensing dataset may result in poor accu-
racy. Different from the previous approaches, in this work,
we investigate the features of the different channels in dif-
ferent frequency bands considering the typical types of their
usage. Applying the domain knowledge, we study how to
pre-process the data and then build reasonable and accurate
ARMA and LSTM models that can accurately predict the
channel occupancy of the channels experiencing a high tempo-
ral correlation. Furthermore, studying SCMs, especially based
on the measurements, can provide us the pattern of the data
which is useful in designing and examining the DSA systems.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 26,2023 at 04:51:17 UTC from IEEE Xplore.  Restrictions apply. 



718 IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. 7, NO. 3, SEPTEMBER 2021

C. Spectrum Consumption Model

SCM’s goal is to capture the temporal, spatial, and spectral
characteristics which specify how the spectrum is consumed
by any transmitter or receiver. Total power, spectrum mask,
location, schedule, etc. are several parameters in the SCM.
In [15], how the SCMs can be exploited in spectrum shar-
ing and management has been presented and discussed. The
IEEE 1900.5.2 standard’s preliminaries and ongoing efforts
have been described in this work. An overview of the IEEE
1900.5.2 standard which defines the SCMs data model and
devices’ compatibility in spectrum systems has been provided
in [1] by using example use cases. An open source tool for
analysis and construction of the SCMs has been proposed
in [38], where the SCMs’ potential for spectrum sharing and
DSA is highlighted.

III. DATASET DESCRIPTION

The raw dataset was collected at three sites in an urban area
by a spectrum awareness system deployed by Communications
Research Centre (CRC) in Ottawa, Canada, starting from June
1, 2016, to September 1, 2016 by a B200 USRP Ettus Research
radio frequency front end. The coordinates of these sites are
45◦22′10.0′′N 75◦42′15.7′′W, 45◦26′37.9′′N 75◦38′53.8′′W,
and 45◦20′44.6′′N 75◦53′02.0′′W. The system includes a
network of sensors with high resolution in time and frequency
for the measurements which are reported to a cloud-based
platform for data processing and analysis [24]. The frequency
range spans from 138–941 MHz. The measurements are chan-
nel and time-specific. The resolution bandwidth is 15 KHz
and the channels are scanned every 300 ms. The scanned
results, i.e., the received powers, have been converted to the
histogram by counting the times the received power falling in
each determined interval (−120 to −20 dBm, 1-dBm granu-
larity). Different from many existing spectrum access works
in the literature that focused on dynamic access of channel
anytime by the SUs, in practice, spectrum sharing or leasing
to the SUs will be arranged with much longer time duration to
minimize the disturbance to the PUs and the spectrum man-
agement overhead. This is the reason that the histogram was
stored hourly and converted to a probability mass function
(PMF) for each channel.

According to the PMF, we can obtain two performance met-
rics. One is the average received power and the other is the
probability of the off state, denoted as Poff . When the received
power in a channel is lower than a threshold, it is defined as
the off state. In this article, the threshold is set to −120 dBm,
the lower-bound of the histogram. Regardless of the channel
of each data file, the last 500 hours are separated as the test
dataset to evaluate the performance of prediction (Section V),
and the rest of the data is the training dataset. For modeling
(Section VI), all the collected data are used as the training
dataset.

The measurements mainly cover the LMR spectrum bands
that are serving first responder organizations such as police,
fire stations, ambulance services, and public works organi-
zations such as utility companies. One typical traffic over

LMR is from regular daily human usage, where transmis-
sions occur in fixed locations such as office buildings and
certain service areas. Therefore, the 300 ms scanning span
can capture the channel behavior well. Considering the work
pattern of service providers, the traffic density increases during
the daytime and decreases in the night. Given the fixed loca-
tion of the sensing device, this type of traffic generates more
stable and predictable received power. Besides, LMR also
includes dispatch services such as taxis, or companies with
large vehicle fleets. When a mobile transmitter passes by the
sensing device, the received power will increase first because
of the reduced transmission distance, and then decrease as
the transmitter leaves. It typically happens within one-hour
duration and generates a sudden jump in the training/test
dataset.

We select a channel within the range of 145–155 MHz as
a representative, which is denoted as the type-A channel in
this article. It contains regular daily usage and also has jumps
in measurements. Its average received power is relatively low,
which is promising for cognitive radio to reuse the spectrum.
Other channels in 850–860 MHz have similar features too.
Augmented Dickey Fuller (ADF) and Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) are two tests which determine the
stationarity by defining a null or alternative hypothesis. We
use both of the tests to check the stationarity of the dataset.
Both the average received power and off-state probability are
stationary with a confidence level of 95% due to channel
behaviors, based on which the ARMA model is applied to
the type-A channel in the following sections.

Another typical channel within the range of 460–470 MHz
is selected for modeling and denoted as the type-B channel. In
the type-B channel, the spectrum does not have a regular daily
usage and the received power is below the sensing sensitivity
for most of the time. Other channels in 159–169 MHz and
410–420 MHz also have the similar features. Because of its
sparseness, we convert the raw dataset to an ON/OFF (1–0)
sequence and then, model it as a non-homogeneous Markov
chain in Section VI-C.

IV. SPECTRUM PREDICTION MODELS

A. ARMA Model and Parameters Estimation

An ARMA(p, q) model is a combination of AR(p) and
MA(q) models and this model is fit for univariate time
series [39]. The AR(p) part is responsible for modeling the
future value by a linear combination of the past observations
as well as a random error. On the other hand, MA(q) takes into
account the past errors as explanatory variables. The ARMA
model is given by

Xt −
p∑

k=1

akXt−k = εt −
q∑

s=1

msεt−s , (1)

where t ≥ max(q, p). Xi , i = t − p, . . . , t and εj , j = t −
q , . . . , t are observed values and prediction errors at the i-th
and j-th time slots, respectively. ai , i = 1, . . . , p and mj , j =
1, . . . , q are parameters of the AR and MA parts, respectively.
In order to estimate the ARMA model’s parameters, we apply
the least square (LS) estimation where the squared difference
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between the actual data and predicted one is minimized. The
objective function of LS estimation is given by

min
a1,...,ap ,m1,...,mq

N∑

i=r

ε2i , (2)

where N is the size of the training dataset, and r = max(q, p).
By rewriting (2) in a vector form, we have

min
β

εT ε = (Y − F (β))T (Y − F (β)), (3)

where

β =
[
a1, . . . , ap , − m1, . . . ,−mq

]T
,

ε =

⎡

⎢⎢⎢⎣

εr
εr+1

...
εN

⎤

⎥⎥⎥⎦, Y =

⎡

⎢⎢⎢⎣

Xr

Xr+1
...

XN

⎤

⎥⎥⎥⎦, F (β) =

⎡

⎢⎢⎢⎣

fr (β)
fr+1(β)

...
fN (β)

⎤

⎥⎥⎥⎦,

fi (β) =
p∑

k=1

akXi−k −
q∑

s=1

msεi−s , i = r , . . . ,N .

Since the objective function in (3) is a non-linear LS
problem, it is not straightforward to obtain a closed-form solu-
tion. Therefore, we apply the GN algorithm to approximate the
optimal solution. In the GN algorithm, without a good initial
point, the rugged gradient leads to step length fluctuation and
makes it difficult to converge. In order to obtain a closer initial
point to the optimal value, we first use the long AR model and
estimate its parameters according to the LS method. Then we
find the approximated initial point by equalization of the AR
and ARMA models. The long AR model is given by making
mj = 0, j = t − q , . . . , t in (1) as follows,

Xt = l1Xt−1 + l2Xt−2 + · · · + lpLXt−pL + εt , (4)

where t ≥ pL, and li , i = 1, . . . , pL, are parameters of the
long AR model. Since the same parameter estimation method,
i.e., LS estimation, is applied to obtain the parameters, the
objective function is the same as (3), but F (β) is replaced
by Xl, where l = [l1, . . . , lpL ]T . By taking derivative of the
objective function w.r.t. l and making it equal to zero, we have

∂(Y − Xl)T (Y − Xl)
∂l

= −2Y TX + 2lTXTX = 0

=⇒ l =
(
XTX

)−1
XTY . (5)

With the back-shift operator, B, the long AR model in (4)
and ARMA model in (1), can be rewritten as (6) and (7),
respectively.

I1(B) =
(
1 − l1B − l2B2 − · · · − lpLBpL

)
Xt = εt , (6)

I2(B) =

(
1 − a1B − a2B2 − · · · − apBp

)
(
1 − m1B − m2B2 − · · · − mqBq

)Xt = εt . (7)

Given that the inverse functions, I(·), in (6) and (7) are equiv-
alent, we can obtain the parameters of the ARMA model by
solving I1(B) = I2(B) [40]. By comparing operator B’s
exponents on the both sides of the equation I1(B) = I2(B)
and writing them in matrix form, we have

TABLE I
PARAMETERS’ DEFINITION

⎡

⎢⎢⎢⎣

m1

m2
...

mq

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

lp lp−1 · · · lp+1−q

lp+1 lp · · · lp+2−q
...

...
. . .

...
lp+q−1 lp+q−2 · · · lp

⎤

⎥⎥⎥⎦

−1⎡

⎢⎢⎢⎣

lp+1

lp+2
...

lp+q

⎤

⎥⎥⎥⎦,

(8)⎡

⎢⎢⎢⎢⎢⎣

a1

a2

a3
...

ap

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

m1

m2

m3
...

mp

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0
−m1 1 · · · 0
−m2 −m1 · · · 0

...
...

. . .
...

−mp−1 −mp−2 · · · 1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

l1
l2
l3
...
lp

⎤

⎥⎥⎥⎥⎥⎦
,

(9)

where mi = 0 for i > q, and we set pL = p + q . Given l
in (5), ai , i = 1, . . . , p and mj , j = 1, . . . , q can be obtained
by solving (8) and (9). We consider parameters as a vector
the same as (3) and denote it as β0. The calculated β0 is
considered as the initial point of the GN algorithm.

Given βk , the parameter vector in the k-th iteration of the
GN algorithm, prediction errors are obtained by

εi = Xi −
[
Xi−1 · · · Xi−p εi−1 · · · εi−q

]
βk , (10)

where Xi = εi = ai = mi = 0 for i < 0. We apply the
following GN updating equation to approximate the optimal
solution recursively until all of the parameters are stabilized,
i.e., the difference of each parameter between two adjacent
iterations is smaller than a threshold [41].

βk+1 = βk +
(
∇F (βk )T∇F (βk )

)−1∇F (βk )T

× [Y − F (βk )]. (11)

Table I summarizes a few important notations in this article
for convenient reference.

B. LSTM Framework Implementation

The LSTM framework is implemented in Python, and Keras
library [42] is used to build the LSTM network architecture.
Keras is a high-level neural network programming interface
that provides powerful building blocks for deep learning
networks. Stacked LSTM layers are exploited for the spec-
trum prediction, which consists of four hidden layers. The
first two and the last two layers have 80 and 50 LSTM cells,
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respectively. The activation function and the optimization
algorithm that are used in the training phase are ReLU and
Adam, respectively. The Adam optimization algorithm [43] is
an adaptive learning rate optimization algorithm designed for
training deep neural networks. It computes adaptive learning
rates for different parameters by estimation of the first and the
second moments of the gradients. We split the dataset into two
parts. 85% of the dataset is used for training the model, and the
remaining will be utilized for testing the model’s performance.
The time step and the batch size of the model are set to 15
and 64, respectively. The model is trained for about 400 iter-
ations. The optimization algorithm’s parameters including the
learning parameter, β1, β2, and ε are 0.001, 0.9, 0.999, and
10−8, respectively, with an adaptive learning rate. A dropout
of 0.5 was applied to the first two hidden layers of the model
to avoid over-fitting. Mean squared error is chosen as the loss
function of the model. In order to predict the received power
in the current time slot, the focus is on the previous time
slots whose total number is equal to the time step parame-
ter mentioned earlier. For a certain time step, the prediction
model is trained in a way that minimizes the mean squared
error of the model’s output and the current time slot’s received
power.

Generally, the LSTM model has more parameters than the
ARMA one. The total number of parameters in the LSTM
model is Np = 4 × nc × nc + 4 × ni × nc + nc × no +
3 × nc where nc , ni , and no are the numbers of memory
cells, input units, and output units, respectively. Therefore,
the computational complexity of learning the LSTM model
per time step is proportional to the number of parameters,
i.e., O(Np) [44], [45]. Accordingly, as it was mentioned in
Section I, the ARMA model parameters are easier to find. In
order to have a rough idea on the complexity of these two
models, we can compare their running time. We run both of
the models on a computer with 3 GB RAM and a 3.40 GHz
Intel Core i7–3770 CPU. The training and prediction phases
of the LSTM model take around 1400 s and 2 s, respectively,
while the running time of the ARMA model is 16 s.

V. SPECTRUM PREDICTION RESULTS

We apply the ARMA model and LSTM learning method to
the spectrum data and compare the results in this section.

A. Average Received Power

We apply the aforementioned method to the training dataset
of the type-A channel in order to estimate the parameters of
the ARMA model. Given certain p and q, parameters and cor-
responding prediction errors can be obtained by (10) and (11).
Denoting the variance of the prediction error in the training
dataset as σ2

ε (p, q), the Bayesian information criterion (BIC)
is defined as

BIC(p, q) = N ln{σ2
ε (p, q)} + (p + q) ln(N ), (12)

where N is the size of the training dataset. The best p and q
are selected when BIC(p, q) is minimized. In BIC, a function
of the posterior probability of a model truthfulness is esti-
mated. Obviously, a model with a lower BIC means that it

Fig. 2. BIC metric to determine (p, q).

can describe the original data better [46]. Fig. 2 shows the
different values of BIC corresponding to different values of p
and q. As it can be observed, the minimum BIC is achieved
when p = q = 2, i.e., the model uses the predicted power
values and the corresponding errors of the last two hours, and
the corresponding LS estimation of the ARMA model is

Xt − 1.5529Xt−1 + 0.5529Xt−2 = εt − 1.2202εt−1

+ 0.2222εt−2. (13)

Figs. 3 (a) and (b) show the fitting results of the above
ARMA model and the LSTM method inside the training set
and the prediction results in the test set, respectively. We
use the variance of the prediction error, σ2

p , and the mean
absolute percentage error (MAPE) as the metrics to evaluate
the prediction performance in the test dataset. The MAPE’s
formula is

MAPE = 100 × 1
N

N∑

t=1

∣∣∣∣
yt − ŷt

yt

∣∣∣∣, (14)

where yt , ŷt , and N are the real data, the predicted one, and
its length, respectively. The results of different methods are
summarized in Table II.

As shown in Fig. 3, neither of the ARMA model nor LSTM
fits the training dataset very well. Further increasing (p, q) in
the ARMA model cannot substantially reduce σ2

ε (p, q), and
thus results in a relatively low ARMA order according to
the minimum BIC and a relatively high σ2

p . We also applied
the AIC to determine the order [37]. The same result, i.e.,
(2, 2), is obtained in this case. The training dataset contains
many sudden jumps that may be caused by mobile users as
mentioned in Section III, which are denoted as bursts in this
article. A burst typically happens in an hour and disappears
in the next one or two hours. Besides, there is no obvious
pattern observed for the occurrence of bursts, which means
that they have weak temporal correlations with the other data.
Therefore, it is difficult for the ARMA and LSTM models to
predict them.

Pre-Processing the Dataset by an LP Filter: A burst is sim-
ilar to an impulse signal in the time domain, which includes
lots of high-frequency components in the power spectrum. It
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TABLE II
ERROR COMPARISON OF DIFFERENT PREDICTION METHODS

Fig. 3. One-hour ahead prediction using ARMA (2,2) and LSTM.

inspires us to apply a low-pass filter to remove high-frequency
components and increase temporal correlation for the training
dataset. The filter’s cutoff frequency is a trade-off between
temporal correlation and the power of error residue, i.e., the
difference between the filtered and unfiltered data. From the
testing results, 0.5π is chosen as the cutoff frequency. This
frequency was examined for each month separately. The results
showed that it is stable and a proper setting for the LP filter.

The results from applying the ARMA and LSTM models to
the dataset of regular and working days are shown in Figs. 4
and 5. The ARMA model can receive a better fitting result

on the filtered data as shown in Fig. 4 (b). Unlike the best
order in the unfiltered case, i.e., (p, q) = (2, 2), as shown in
Fig. 2, further increasing the order of the ARMA model can
greatly reduce σ2

ε (p, q) for the filtered data and thus, results
in a lower BIC. For the filtered average received power data of
the regular days, the variance of the prediction error without
considering the processing error is σ2

ε (10, 9) = 0.094, while
the corresponding error variance is 1.175 for the LSTM one.

To have a fair comparison, the error residue from the LP fil-
ter should be further combined to obtain the overall prediction
error of the original data. The variance of the prediction error
and the MAPE are 8.054 and 1.37%, respectively. Comparing
with the ARMA-only model, an appropriate LP filter can sig-
nificantly improve the precision of the prediction. The variance
of the prediction error and the MAPE for the data of reg-
ular days are 1.45% and 8.064, respectively. Obviously, the
ARMA model can achieve a better result in comparison to the
sophisticated LSTM learning approach.

Besides, we examine the training dataset day by day and find
that the weekend data is slightly different from the working-
day one. This phenomenon can be observed more clearly in
Fig. 7, where an obvious low-frequency component with the
period of one week exists. The highest frequency of the data
in the Fig. 7 corresponds to Fs/2, where Fs = 1 hour−1.
The dominant frequencies in the spectrum happen roughly on
{π/6, π/12, π/28, π/42, π/82} which correspond to periods
of {0.5, 1, 2.3, 3.5, 6.83} days, respectively. We apply the
same method, i.e., ARMA and LSTM combined with the LP
filter, to the training and test datasets containing the data of
working days only. The results are shown in Fig. 5. The aver-
age received power prediction error variance of the working
days is 0.195 and 0.302 for ARMA and LSTM, respectively.
The pre-processing based on the a priori information, such as
holidays, special events, and user behaviors, can substantially
improve the accuracy. Considering both prediction and pro-
cessing errors, the power prediction of working days results
in a smaller error residue and a better fitting in comparison
to the regular days power prediction. In this case, σ2

p = 2.97,
and the MAPE of prediction is 0.82% only. The same metrics
are σ2

p = 2.77 and 0.9% for the LSTM learning method.

B. Off-State Probability (Poff )

The same methods are applied to Poff as well. The one-
hour ahead prediction results for regular days only are shown
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Fig. 4. Prediction of the average received power by applying ARMA(10,9) and LSTM combined with a low-pass filter to the dataset of regular days.

Fig. 5. Prediction of the average received power by applying ARMA(9,8) and LSTM combined with a low-pass filter to the dataset of working days.

Fig. 6. Prediction of Poff by applying ARMA(10,10) and LSTM combined with a low-pass filter to the dataset of regular days.

in Fig. 6. In this case, σ2
p = 3.62 × 10−5, and the MAPE of

prediction is 0.29%. The LSTM learning method gives roughly
similar results as σ2

p = 2.4×10−5 and 0.35%. We repeated the
tests for other type-A channels, such as those in 850–860 MHz
band, and the results are similar. Due to the space limit, we
do not report them here.

The error comparisons between different approaches are
summarized in Table II. It can be concluded from the results
that the LSTM method outperforms the pure ARMA model
for both power and Poff prediction, while the ARMA has
a slightly better performance on the pre-processed data in
terms of accuracy. The MAPE and total error variance are
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Fig. 7. Spectrum of the dataset of regular days.

smaller for the power prediction by deploying the ARMA
model. According to the results presented in Figs. 4 and 5,
the LSTM cannot predict the bursts in the test dataset, while
ARMA can predict with a better precision. The cumulative
distribution functions (CDF) of the absolute prediction error
of the regular and working days are shown in Fig. 8. The
probability of a smaller prediction error is higher in the
ARMA model compared to the LSTM one both for regular
and working days.

VI. STATISTICAL SPECTRUM MODELING

A. Average Received Power for Type-A Channels

In addition to prediction, it is desirable to have a
model to generate time sequences having similar statis-
tical characteristics to the training dataset of the work-
ing days. The ARMA and LSTM models may capture
the temporal correlation, but cannot reconstruct periodic
and burst components, so they are insufficient for the
modeling purpose. Therefore, we extract and model them
separately.

In Fig. 7 (a), it can be seen that the major periodic com-
ponents are at one-day period ( π

12 ) and its doubled frequency
(π
6 ). We use two sine functions to model them. The amplitudes,

initial phases, and frequencies of sine functions are obtained
via fast Fourier transform (FFT).

The i-th measurement in the dataset is denoted as xi whose
unit is dBm. If |xi −E (x )| > 2σx , xi is considered as a burst,
where E(x) and σx are the expectation and standard devia-
tion of the dataset, respectively. This threshold is an empirical
parameter, by which bursts are identified as shown in Fig. 9(a).
Given that the number of mobile users is large and the prob-
ability of any given user approaching the sensing device is
low, we use a Poisson process to model the bursts arrivals.
The interval between two adjacent bursts should follow the
exponential distribution. The fitting result for λ = 19.25 is
shown in Fig. 9 (b). According to the shape of the PDF
curve, gamma distribution is used to model the amplitude
of the bursts. Fig. 9 (c) shows the results and its tuned
parameters.

Fig. 8. CDF of the absolute prediction error for the dataset.

We remove the fitted sine functions from the training data
and use E(x) to replace all the bursts. Then, an LP filter with
a cutoff frequency of 0.2π is applied. The cutoff frequency is
selected based on the FFT of the training data in Fig. 10(d).
After removing two impulses of the fitted sine functions, the
spectrum is similar to the spectrum of white noise except
for the low-frequency part (< 0.2π). The ARMA model is
used only for capturing the temporal correlation of the low-
frequency components. We apply a high-pass filter (> 0.2π)
to the generated white noise to model the high-frequency com-
ponents. All of the model related parameters are summarized
in Appendix A.

The comparison between the model-generated data and the
training data from different points of view is then made as
follows. We compare the PDFs in Fig. 10 (a). The model-
generated data are consistent with the training data. ACF
and PACF are used to depict the temporal correlation which
are shown in Fig. 10 (b) and (c). Besides, a similar FFT
is obtained as well, where the major periodic components
are well preserved in the model-generated data as shown in
Fig. 10 (d). Fig. 10 (e) shows a comparison in the time
domain. The similarities in terms of period, amplitude, and
bursts are illustrated. Similar patterns are observed in the
model-generated data and the training data. It shows that
the model can reconstruct the temporal correlation of the
training data.

B. Off-State Probability (Poff ) for Type-A Channels

For the training dataset in terms of Poff (working days
only), the same modeling is applied. In Fig. 11, the results
show that the model-generated data are consistent with the
training data in terms of PDF, temporal correlation, and
periodicity. The occurrences of bursts are reconstructed as
well. All of the model related parameters are summarized in
Appendix B. The proposed modeling approach was applied to
other type-A channels, and similar results were achieved.

C. Non-Homogeneous Markov Model for Type-B Channels

Different from type-A channels, Poff = 1 for most of the
time in type-B channels. Thus, we convert the dataset (working
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Fig. 9. Burst parameters of the dataset of working days.

Fig. 10. Comparisons between the model-generated data and the training data on the average received power.

days only) into an ON/OFF (1–0) sequence by rounding them
using the following indicator function.

1
(
Poff (t)

)
=

{
1, Poff (t) < 1,
0, otherwise .

(15)

We apply a two-state discrete-time non-homogeneous (time-
varying) Markov chain to model this ON/OFF training data as
shown in Fig. 13. At each hour, the system may either transfer
to another state or stay in the current one.

Obvious periodic components, e.g., the 24-hour period, can
be found in the FFT of the training data (1–0 sequence)
too, so we use time-varying transition probabilities, i.e.,
P01(t),P10(t), to capture the temporal correlation and peri-
odicity. Because the training data has been collected from 6
am in each day, we define P10(t) = P[off at (t + 6)am/pm|on

at (t + 5)am/pm], t = 1, . . . , 12. P01(t) is defined in a similar
way. In total, we can obtain 24 sets of transition probabili-
ties. The arrival and departure probabilities at the same hour
for each day remain the same, by which the periodicity is
reconstructed. The transition probabilities are estimated based
on the training data. Detailed parameters are summarized in
Appendix C.

We generate a 1–0 sequence by using the above model and
compare it with the training data. In Figs. 12 (a) and (b),
similar patterns are reconstructed in both ACF and PACF.
The periodic components are also well preserved as shown
in Fig. 12 (c). The duty ratio of the model-generated data
is 25.93%, while that of the training data is 25.88%, which
are statistically similar. The modeling was repeated for other
type-B channels, and the results were similar.
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Fig. 11. Comparisons between the model-generated data and the training data on Poff .

Fig. 12. Comparisons between the model-generated data (1–0 sequence) and the training dataset.

VII. CONCLUSION

In this article, we focused on the low-level abstracted mea-
sured data and investigated the occupancy of the representative
frequency bands to utilize the white spaces using the DSA
systems. For the prediction of the average received power,
we applied the model-based ARMA approach and the model-
free LSTM learning method to the dataset. Because of the
weak temporal correlation of the burst which may mislead
the parameter estimation process, we used an LP filter to
remove the high-frequency components to focus on the tem-
poral correlation of the training data. We applied both of
the aforementioned methods to the pre-processed data, and
the simulation results show that a higher precision of the
prediction can be achieved. A priori information of the dataset
has taken into account as well. The accuracy can be further
improved if only the dataset of working day is used. High-
precision prediction is achieved for Poff by applying the same

Fig. 13. Two-state non-homogeneous Markov chain.

methods. The results from the ARMA model were compared
to the results from the LSTM one. The ARMA model can
achieve higher accuracy than LSTM in the burst prediction.
However, the overall accuracy of these two methods is quite
similar, and the ARMA model’s parameters can be trained
faster with the benefit of less complexity.

Furthermore, we provided an SCM depicting the spectrum
occupancy for designing and examining the DSA systems.
Based on the nature of the training dataset, we have extracted
the periodic, bursts, and aperiodic low-frequency components
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from the data and modeled them separately. We examined the
model-generated data from different perspectives, including
the time/frequency domains, PDF, and (P)ACF. Results show
that the model-generated data can approximate the measured
data well in all of the above aspects. An ON/OFF sequence
was extracted from the channel with sparse occupancy and
then, was modeled by a non-homogeneous Markov chain. High
similarities to the measured data have been achieved according
to the results, which is substantial for DSA systems.

There are many open issues beckoning for further investi-
gation. In this article, we predict and model two typical types
of channels. How to deal with the occupancy for possibly
non-stationary channels waits for further exploration, possibly
using other tools such as autoregressive-integrated-moving-
average or HMM. Given that different types of channels may
use different models, a simple method guiding users to select
an appropriate model is desirable yet an open issue. Bursty
channels are non-predictable given the current approach due to
low temporal correlation. How to apply other domain knowl-
edge to predict bursty events is an open issue. For instance, the
behaviors of licensees may facilitate the prediction. Overall,
the proposed prediction approach, i.e., considering the usage of
each channel to pre-process the training data to enhance the
temporal correlation for more accurate spectrum prediction,
points to a promising direction. The proposed simple yet effec-
tive spectrum occupancy models based on non-homogeneous
Markov chains provide a powerful tool for both analysis and
simulation of DSA systems. Moreover, the spatial correla-
tion of the collected data on different locations can be taken
into account by machine-learning networks such as CNNs to
improve the prediction accuracy.

APPENDIX A
AVERAGE RECEIVED POWER MODELING PARAMETERS

The model is presented as follows,

X (mod)
t (dBm) = E (x ) + c1 sin

(
πt
12

+ φ1

)

+ c2 sin
(

πt
6

+ φ2

)
+ X (a)

t + n(hp)
t + Bt ,

(16)

where E(x) is the mean value of the training data, and
E(x) = − 102.17 dBm. For two sine functions, c1 = 1.4, c2 =
0.5, φ1 = 4.41, and φ2 = 2.67. X (a)

t is the output of an
ARMA model as shown below.

X (a)
t =

[
X (a)

t−1 · · · X (a)
t−7 εt εt−1 · · · εt−4

]
β ′,

β ′ = [5.84 − 15.28 23.17 − 21.95 13.01 − 4.46 0.69 1
− 1.62 1.86 − 0.90 0.31]T . (17)

In the above ARMA model, εt follows an independent and
identical normal distribution N(0, 0.0034) for all t. n(hp)

t is
a white noise n0, n0 ∼ N (0, 0.96), filtered by a high-pass
filter with the cutoff frequency of 0.2π. We use MATLAB
to generate the FIR filter. Bt is the burst at t-th time slot. Its
arrival and amplitude follow Poisson and Gamma distributions,
as shown in Figs. 9 (b) and (c), respectively.

APPENDIX B
PARAMETERS FOR MODELING Poff

The model for Poff adopts the same expression as shown
in (16), but with different parameters which are summarized
as follows, E(x) = 0.927, c1 = 0.021, c2 = 0.006, φ1 =
1.397, φ2 = 5.591. X (a)

t is given by

X
(a)
t =

[
X

(a)
t−1 · · · X

(a)
t−10 εt εt−1 · · · εt−6

]
β
′,

β
′ = [4.71 − 9.26 9.12 − 4.39 2.62 − 6.34 8.95 − 6.46

2.40 − 0.37 1 − 0.50 0.58 0.43 0.79 − 0.58 0.76]T ,

(18)

where εt follows an independent and identical normal distri-
bution N (0, 3.70× 10−5) for all t. n(hp)

t is a white noise n0,
n0 ∼ N (0, 0.011), filtered by a high-pass filter with the cut-
off frequency of 0.2π. Both the interval and the amplitude of
bursts follow exponential distribution, with λ equal to 31.62
and 0.87, respectively.

APPENDIX C
PARAMETERS FOR ON/OFF MODEL

The transition probabilities are given by

[P01(1), . . . ,P01(24)]
= [12 0 1 17 46 26 19 26 08 21 26 38

22 30 30 36 55 63 37 20 17 7 9 7] × 10−2,

[P10(1), . . . ,P10(24)]
= [90 80 100 100 36 64 77 82 76 60

75 50 60 48 58 45 44 62 52 72 75 81 88 81] × 10−2.
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