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Abstract—Clock synchronization is a fundamental requirement
for network systems. It is particularly crucial and challenging in
wireless sensor networks (WSNs), because WSN environments
are dynamic and unpredictable. To tackle this problem, how to
accurately estimate clock skew, the inherent reason causing clock
desynchronization, is investigated. According to the measurement
results, clock skew is a non-stationary random process highly
correlated to temperature, and its measurements contain severe
noises. Based on the observation, an additional information aided
multi-model Kalman filter (AMKF) algorithm is proposed, which
uses temperature measurements to assist clock skew estima-
tion. Using AMKF, an environment-aware clock synchronization
(EACS) scheme is proposed to dynamically compensate clock
skew. The scheme is simple, scalable, and of low computation
and energy cost. Using EACS as an additional component of the
conventional synchronization protocols, the clock is updated with
local information before the clock re-synchronization process is
triggered, so it can substantially prolong the re-synchronization
period, which not only reduces the energy consumption but also
is essential for the scenarios where frequent synchronization
is infeasible. The theoretical lower bound of clock estimation
error is derived as a benchmark. Extensive simulation and
test (by implementing EACS in a sensor testbed) results have
demonstrated the feasibility and effectiveness of the proposed
scheme which can prolong the time resynchronization period
by an order of magnitude in dynamic environments and its
performance is close to the theoretical bound.

I. INTRODUCTION

Low-cost, low-power and miniaturized sensor nodes can
construct wireless sensor networks (WSNs) supporting many
applications, such as smart grid, environment monitoring, and
wild animal tracking [1]–[4]. Many WSN functions require
all nodes have a common notion of time to facilitate data
transmission, localization, sleep and transmission scheduling,
information fusion, etc. However, the output value of a node’s
local clock, local time, is often different from that of another
node, leading to clock offset. An unbounded clock offset
will degrade the network performance and even endanger the
proper functioning of WSNs.

Therefore, clock synchronization, the process of mitigating
the clock offset between different nodes to obtain a common
notion of time, is a fundamental requirement of WSNs. It is
also a very challenging issue. First, sensor nodes are deployed
in dynamic and even hostile environments, so the clock syn-
chronization should be adaptive to the changing environment.
Second, sensor nodes have very limited computation capacity
and power supply. Third, a large number of sensor nodes may
be needed to fulfill a given task due to the limited coverage of
a single node, so scalability is another important requirement.

Clock skew is the inherent and dominant reason causing

clock desynchronization [5]. It is the instantaneous clock
drift rate between two or more clocks, i.e., the difference
of ticks from different clocks. The output value of a clock
is the accumulated number of its ticks and therefore the
effect of clock skew can be accumulated. The accumulation
of clock skew will lead to an unbounded clock offset, so
clock resynchronization by exchanging timestamps must be
conducted after a certain period, depending on the required
synchronization accuracy. The re-synchronization protocol de-
sign has been heavily investigated in the literature [6]–[9].
Here, we focus on clock skew estimation and compensation
which can be used to further enhance the performance of the
existing protocols [6], [8], [10].

How to accurately estimate clock skew and compensate
it is non-trivial [11]. Previously, a constant clock skew was
assumed for skew estimation, which is not accurate according
to the measurement results. Kalman filters have been used
to improve online skew estimation performance, which can
achieve the minimum mean square error (MSE) for linear
systems with white Gaussian noise [12]–[15]. However, in
WSNs, clock skew is non-stationary due to environment varia-
tions. Different from the previous approaches, in this paper, we
use the correlation of temperature and clock skew in a multi-
model Kalman filter to accurately estimate the clock skew in a
dynamic environment. Here, the dynamics of the environment
mainly refers to the changing environment temperature.

The main contributions of this paper are threefold. First,
based on our measurements, we demonstrate that the clock
skew is highly correlated to temperature, so we use a hybrid
two-model system to describe the clock skew. For the hybrid
system, the main challenge is to determine which model
should be used in the Kalman filter for a specific time
period, as clock skew measurements contain severe noise.
To tackle this problem, we propose an additional information
aided multi-model Kalman filter (AMKF) to obtain the model
likelihood for clock skew based on the local temperature
model likelihood estimation. Second, using the clock skew and
temperature estimation outcomes, we propose an environment-
aware clock synchronization (EACS) scheme to dynamically
compensate the clock skew. The proposed solution can sub-
stantially improve the clock skew estimation accuracy and
prolong the resynchronization period. Besides, the proposed
EACS scheme relies on local information only and therefore it
is simple and scalable. Third, we obtain the Cramer-Rao lower
bound for the clock skew estimation. The theoretical bound is
useful to determine an upper bound for the local clock skew
compensation period. Finally, simulation and experimental



results using our sensor testbed are presented to demonstrate
the superior performance of the proposed EACS scheme,
which can reduce the resynchronization frequency (and thus
the energy cost) by more than an order of magnitude, and its
performance is close to the theoretical bound.

The rest of the paper is organized as follows. Section II
introduces the related work, and the important notations are
summarized in Sec. III. The clock skew measurement results
are presented in Sec. IV. In Sec. V, the clock skew models are
discussed and formulated based on the measurement results.
The environment-aware clock skew compensation protocol is
given in Sec. VI. The performance lower bound for clock
skew estimation and performance evaluation by trace-driven
simulation and experiment are given in Sec. VII, followed by
concluding remarks and further research issues in Sec. VIII.

II. RELATED WORK

Clock synchronization protocol design has attracted ex-
tensive research work and many approaches have been pro-
posed for different scenarios. For example, the Network Time
Protocol (NTP) [6] has been widely used in the Internet,
which allows computers to extract the timestamp information
from NTP packets to update their local clocks. For multi-
hop wireless networks, the Flooding Time Synchronization
Protocol (FTSP) [8] has been proposed. It calculates the
clock skew in a moving window and uses linear-regression
algorithms to mitigate both clock offset and clock drift in a
hierarchical way. Clock skew is the instantaneous clock drift
rate caused by imperfect oscillators and/or Phase Locked Loop
(PLL) modules, which results in the different durations of
clock ticks. FTSP takes the clock skew into account, therefore,
it can achieve a relatively high synchronization accuracy.

With the estimation of clock skew, clock offset can be com-
pensated to prolong the resynchronization period. Recently,
several clock skew estimation algorithms have been proposed.
A linear optimization problem was formulated and solved
by linear programming in [16]. A convex hull algorithm for
offline clock skew estimation was proposed in [17], and this
algorithm was also used for real-time clock skew estimation
and mitigation. In [18], how to jointly estimate clock offset
and clock skew with unknown synchronization delay was
addressed. In [19], a directed clock skew removal technique
was proposed. However, the relationship between clock skew
variation and working environment has not been considered in
such work, and the skew estimation using a moving window
might not be able to track the change of clock skew accurately.

In general temperature is a key parameter affects the oper-
ation of a clock as the crystal oscillator and/or clock circuit
are sensitive to temperature. Although the temperature com-
pensated crystal oscillator (TCXO) does exist, e.g., MAXIM
DS32KHz, the cost is still too high ($2.81@1K [20]) for some
sensor nodes, and the TCXO also increases the complexity,
energy consumption and footprint of wireless devices. In
addition, even with a TCXO, the clock skew is still non-
negligible (e.g.,up to ±7.5ppm [20]). Thus, we are motivated
to devise low-cost, flexible software solutions.

In [21], a temperature-compensated time synchronization
algorithm was proposed to compensate the clock according
to the environment temperature and can achieve a much
longer resynchronization period. The limitation of that work
is that the calibration algorithm treated the clock skew as a
stationary random process, which may not be true in dynamic
environments and will thus degrade the estimation accuracy.

On the other hand, it is well known that Kalman filter is
optimal for linear systems with white Gaussian noise in terms
of MSE. Therefore, it is a good choice for real-time clock skew
estimation and several approaches have been proposed based
on Kalman filter [12]–[15]. The algorithms proposed in [12],
[13] assumed that the clock skew is constant, which works
well in a relatively stable environment, while the performance
will degrade in dynamic environments. For example, the
temperature may vary more than 20°C within 12 hours in
an outdoor environment. Temperature changes may be more
dramatic for some applications such as wild fire detection. The
circuit temperature changes can also be faster due to the heat
generated by the circuit components.

In [14], an AR(1) model was developed to describe the
changing clock skew, which provides some adaptivity w.r.t
the changing clock skew. In [15], an interacting multi-model
(IMM) Kalman filter was employed in clock skew estimation
to consider the changing clock skew. However, due to the high
noise level of clock skew measurement, the model uncertainty
problem still exists. In addition, how to utilize the high
correlation between temperature and clock skew to better
estimate clock skew has not been investigated in [14], [15].

Different from the previous approaches, in this work, we
first identify the correlation between temperature and clock
skew from the measurement results, and propose to accu-
rately estimate clock skew with the assistance of temperature
measurements using a low-cost Kalman filter. Based on the
estimations, we use the correlation between temperature and
clock skew to compensate the instantaneous clock skew,
so it can maintain the required clock synchronization level
for a much longer duration without exchanging timestamp
messages. Thus, much less energy consumption is needed for
sensor nodes to exchange timestamp messages over the air.
The proposed solution can be easily extended to any other
wireless devices equipped with temperature sensors.

III. NOTATIONS

For presentation clarity, we first define the important terms
used in this paper. The notations are consistent with the
previous work [15].

Clock is the device to measure time. Generally speaking, it
consists of a periodic component that ticks at a given frequency
and a counter that counts the number of ticks from a starting
point. Denote by CA(t) the output value of clock A at a given
reference time instant t.

Clock offset is the difference between the time reported by
two or more clocks. If the time at clock A and at clock B are
CA(t) and CB(t), respectively, the offset of clock A relative
to clock B can be written as θA,B(t) = CA(t) − CB(t).
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Fig. 1. Synchronization between two nodes.

Clock skew is the differential coefficient of the clock offset.
The clock skew reflects the tick duration difference of two or
more clocks, and is denoted by

αA,B(t) =
dθA,B(t)

dt
≈

θA,B(t + τ(t)) − θA,B(t)

τ(t)
, (1)

where τ(t) is the sampling interval.
Using a uniform sampling where τ(t) = τ , the clock offset

and clock skew can be discretized, respectively, as

θA,B [n] = CA[n] − CB [n], (2)

and αA,B [n] = (θA,B [n + 1] − θA,B [n])/τ. (3)

There are several sources that may cause errors in synchro-
nization when exchanging timestamps. Denote by D[n] the
observed time difference between two remote clocks from the
n-th sample, and it is expressed as

D[n] = θ[n] + tc[n] + tt[n] + tp[n], (4)

where θ[n] denotes the inherent clock offset, tc[n] and tp[n]
are the message construction delay at the sender side and the
processing delay at the receiver side, respectively, and tt[n] is
the propagation delay. tc[n] and tp[n] may be different from
system to system due to the CPU capacity and the system load.
Their variations are usually at µs level or even smaller, by
setting the corresponding processes at a high priority. Hence,
we can approximate them as constants and their variations
can be included in the system observation noise. tt[n] can
also be approximated as a constant if the channel is stable
and not busy, thus its variance can be included in the system
observation noise as well. Therefore, we can rewrite the
observed time difference as

D[n] = θ[n] + tc + tt + tp + ω′[n], (5)

where ω′[n] is the observation noise for the n-th sample.
Considering a simple synchronization case with two nodes,

let a node broadcast one-way messages to the other node
periodically to obtain the clock skew measurements, which is
part of the typical two-way message exchange for conventional
synchronization protocols. As shown in Fig. 1, node A peri-
odically sends timestamp messages to node B. Based on the
timing relationship, we can get the observed time difference
from the first timestamp message as D[0] = tr0 − ts0, where
ts0[n] and tr0[n] are the time instants of sending and receiving

the first timestamp, respectively. Hence, the clock offset can
be expressed as θ[0] = D[0] − tc − tt − tp − ω′[0].

Since we do not know the values of tc, tt and tp, we need
another observed time difference D[1] to obtain the clock skew
measurement. Similar to D[0] and θ[0], we can get D[1] and
θ[1], respectively, as D[1] = tr1 − ts1 and θ[1] = D[1]− tt −
tc − tp − ω′[1].

The observed clock skew then can be expressed as

α[0] = θ[1] − θ[0] = D[1] − D[0] + ω[0], (6)

where ω[0] = ω′[0] − ω′[1] represents the observation errors
caused by the approximations mentioned above, which is
assumed to be white Gaussian noise with variance σω. In this
manner, we can obtain a series of clock skew measurements
{α[0], α[1], α[2], ...α[n]} .

IV. CLOCK SKEW MEASUREMENTS

To accurately estimate clock skew, we first investigate its
property from measurement results. As all oscillators and PLL
modules are sensitive to temperature, and sensor nodes need
to work in dynamic environments, in addition to the exist-
ing measurement results [15], [22]–[24], we conduct further
measurements over a time span of six months to verify and
quantify the correlation of temperature and clock skew.

A. Measurement Setting

We used one laptop as the reference node and the widely
used sensor node, Berkeley Mica2 Mote [1], as the client to
send timestamps periodically, where the period duration is set
to one second for simplicity. We used two Mica2 nodes and
put them together. One Mica2 node was connected to the MIB
board [25], which offers the serial interface to send timestamp
messages to the laptop. To avoid the buffer jitter, when a
serial port event interrupt is triggered, the laptop will read
the system time right away and then process the timestamp
messages. Using the wired link to send the messages can
minimize the noise introduced by the transmission delay, so
the measured clock skews can be more accurate. The second
node was connected to a sensor board MTK300 [26], which
has a temperature sensor. The reason we used two nodes here
is that the sensor board MTK300 is too thick for Mica2 to
connect with the MIB board.

To obtain the clock skew measurement in a dynamic envi-
ronment, we used a heater to increase and a fan to reduce the
environment temperature for the Mica2 sensor nodes. This can
mimic the outdoor situation where the sunshine and wind can
increase and reduce the temperature. The Mica2 node equipped
with the temperature sensor sent the temperature measurement
to the other node on demand. The Mica2 node connected to
the MIB board periodically transmitted timestamp messages
containing the temperature information to the laptop. Hence,
we can use these messages to obtain the clock skew measure-
ment, as shown in Fig. 1.
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Fig. 2. Experiments on temperature and clock skew.

B. Measurement Results and Analysis

The measurement results are shown in Fig. 2. From the
figure, when the environment is stable, the clock skew can be
well modeled as a constant with additive noise. On the other
hand, the absolute value of clock skew increases (decreases)
as the temperature increases (decreases) and hence cannot be
considered as a stationary random process, since its mean
value is time-varying. Therefore, it is difficult to use a single
model to describe the dynamic behavior of clock skew [15],
and we use a hybrid two-model system to describe the clock
skew as

α[n] = α + φ[n] (a),

α[n] = α[n − 1] + τρ + φ[n] (b),
(7)

where ρ is the changing rate of clock skew and τ is the sam-
pling interval and φ[n] represents the processing noise, which
can be considered as crystal jitter caused by electromagnetic
interference and/or some other uncertain factors.

If the temperature is relatively stable, the change of clock
skew is marginal and the constant clock skew model in (7-
a) should be employed. If the temperature changes, we can
use the constant velocity model shown in (7-b) to characterize
the change of clock skew, because the temperature change is
relatively smooth during the sample period and the constant
velocity model has been widely used in kinematics.

However, given the severe noise level of clock skew mea-
surements, it is very difficult if not impossible to determine
which model to use at a time instant. In addition, from the
measurement results, we note that the change of clock skew
is not necessarily linear, and sometimes it follows a quadratic
curve. However, we avoid to introduce other models, such
as constant acceleration model, as more models will further
exaggerate the model uncertainty problem. In addition, the
constant velocity model has the ability to keep up with the
constant acceleration process if the sampling rate is sufficiently
high, and in this case, the model imperfection can be treated
as part of the processing noise.

A more important observation is that, in Fig. 2, the trend
of the temperature curve matches the clock skew curve very

well. We repeated the experiments, and the results all show
the similar tendency. To reveal the correlation, we first used
the raw measurement data to calculate the Pearson product-
moment correlation coefficient (ρX,Y = E[(X − uX)(Y −
uX)]/(σXσY )) of the clock skew and temperature measure-
ments. The coefficient result is −0.505 only, as the clock skew
and temperature measurements both contain noises. We then
used a moving window of size 5 to smooth the measurement
results. We used the average of the measurement results within
the window and calculated their correlation coefficient again,
and the result is −0.973, indicating that the temperature and
clock skew are indeed highly correlated (negative temperature
coefficient). However, we need to use advanced estimation
techniques to use this correlation, as the raw measurements,
particularly for clock skew, contain severe noise.

Furthermore, from our measurements repeated over a half-
year span, for the same pair of clocks, the relationship of
clock skew w.r.t. temperature is stable; but different pairs
of clocks exhibit different clock skew change patterns w.r.t.
temperature. With this observation, we propose to dynamically
compensate the clock skew for each sensor node by first
estimating the relationship between the clock skew (w.r.t.
the reference clock) and temperature, which can enhance the
effectiveness of the clock offset compensation process and
prolong the resynchronization period.

Also, the impact of temperature on clock skew is dominant
when compared with other environment factors, such as hu-
midity, shock etc. [24], [27], which have not been studied in
this paper, and we treat them as system noise.

V. AMKF CLOCK SKEW ESTIMATION

According to the measurement results, clock skew is depen-
dent on and sensitive to the temperature and is modeled as a
hybrid system with two models. It cannot be considered as a
stationary random process and many estimators designed for
stationary random processes are not applicable here, such as
Maximum-likelihood, Wiener filter, etc. Here, we employ the
Kalman filter for clock skew estimation.

Considering the hybrid system of clock skew models, it is
difficult to determine the suitable model for a specific time,
because the switching of models is random and unpredictable.
In our previous work [15], an IMM Kalman filter is used
to tackle this model uncertainty in clock skew, which can
combine the output of several filters based on different models
and/or parameters. Instead of making explicit decisions, the
IMM Kalman filter uses the weighted sum of the outputs from
different filters as the system output. The output combination
is based on a soft decision by assigning different probabilities
to different models. The transition between these models is
considered as a Markov chain with preset transition probabili-
ties. In each iteration, every model processes the measurement
data independently and the likelihood function is calculated
based on the estimation of each filter. Then we can obtain the
dynamic weights, which can be considered as the posterior
probability of each filter based on these likelihood functions.
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Although the IMM Kalman filter has the potential to deal
with model uncertainty, it is still difficult to accurately estimate
the model probability because the measurement noise is rela-
tively large. The measurement noise may lead to severe errors
in selecting the clock skew models, so the previous solution
in [15] is not robust and accurate enough.

On the other hand, we note that the measurement noise for
temperature is much smaller than that of clock skew as there
are more additive error sources for clock skew measurement.
Given the high correlation of temperature and clock skew, we
can use the temperature information to assist the decision of
which model to use for clock skew estimation.

Therefore, we propose the additional information aided
multi-model Kalman filter (AMKF), which can estimate the
model probability for one process using the model probability
of another related process of which the model probability is
easier to obtain. This approach is different from the traditional
approaches, where the decision is based on the estimated
process itself only.

To use AMKF, we need to know the model probability of
the related process, which is temperature in this work. Given
the fact that the temperature measurements contain relatively
small noise and the environment temperature can be either
stable or slowly changing, temperature is also modeled as a
hybrid two-model system with a constant model and a constant
velocity model. We use the IMM Kalman filter [28] to process
the temperature first and obtain the corresponding model
probability. At any time instant, the model for the temperature
is assumed identical to the model for the clock skew because
these two processes are highly positive-correlated.

The structure of the IMM Kalman filter is shown in Fig. 3.
The IMM Kalman filter takes three steps: reinitialization,
model conditioned filtering, and output estimation. The first
step is to reinitialize the estimation state x̃

(i)
k−1|k−1 and co-

variance matrix P̃
(i)
k−1|k−1 based on the estimation results

x̂
(i)
k−1|k−1 and the corresponding covariance matrix P̂

(i)
k−1|k−1

of all filters in the system. In the second step, we maintain
several standard Kalman filters based on different models
independently to process the measurements zk. At last, the
output x̂k|k is estimated based on the estimation results from
different filters and the corresponding model likelihoods Λi

k,
which is calculated based on the estimation residuals and
corresponding covariance matrix.

Once we obtain the model probability from the IMM filter
for temperature, we can set a threshold to determine which
model to use for clock skew estimation. In our work, the
threshold may not be 0.5. This is because the constant-velocity
model is a higher order model when compared with the
constant model. Therefore, the estimation error caused by
the inaccurate model selection of using the constant velocity
model for a constant process is smaller than vice versa. Hence,
the constant-velocity model is slightly preferable, so it is
associated with a larger likelihood. Since we largely eliminate
the model uncertainty of clock skew, we can use the sequential
Kalman filter here with different state transition matrix and

Fig. 3. Structure of the IMM Kalman Filter.

covariance matrix of the processing noise. The mathematical
details of IMM [29] and Kalman filter [30] are not presented
here due to the space limitation.

The computational complexity of Kalman filter is mainly
caused by the matrix inversion. As it comes to our problem,
the matrices involved are all 2× 2 and therefore the inversion
can be calculated efficiently, so the computational complexity
of the proposed solution is affordable even for sensor nodes.

VI. ENVIRONMENT-AWARE CLOCK SYNCHRONIZATION

An effective compensation of clock skew can prolong the
clock re-synchronization period and thus less frequent times-
tamp exchange is needed, which is particularly desirable for
WSNs where communication energy is costly and frequent
re-synchronization may even not be feasible due to mobility,
sleeping schedule, etc. As discussed in the previous section,
clock skew is highly correlated to temperature and sensor
nodes are typically deployed in dynamic environments, we
propose the environment-aware clock synchronization (EACS)
scheme to dynamically compensate clock skew.

For dynamic clock compensation, we need to build a clock
skew table containing clock skew w.r.t. temperature for each
node. This can be conducted online or offline. The proposed
AMKF estimator can be used to obtain such a table stored in
each sensor node. The table size is moderate, varying from a
few hundred to kilo bytes depending on the temperature range
and the required granularity.

During the operating phase, for sensor node i, a local vari-
able θ(i)[n] is used to indicate the clock offset in the n-th time
slot, which is the accumulated clock skew since the previous
synchronization. Due to the thermal inertia, temperature does
not change very quickly if the temperature sampling rate is
high enough, such as in a few seconds and therefore we
assume that clock skew does not change during a sampling
period. Thus, the instantaneous temperature estimation can
represent that for the whole sampling period. We can use the
current temperature and a linear approximation to obtain the
instantaneous clock skew α(i)[n] based on the entries of the
clock skew table. Then we can update the clock offset as

θ(i)[n] = θ(i)[n − 1] + τα(i)[n]. (8)

If the current temperature is beyond the temperature range
of the clock skew table, a resynchronization is triggered to
keep up with the reference clock and estimate the clock skew
accordingly. Then we can update the clock skew table with
new entries for the out-of-range temperature. If the clock offset
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exceeds a given threshold (such as half of the granularity of the
local clock), we compensate it to the local clock as follows:

Ci[n] = Ci[n] − θi[n]. (9)

The EACS scheme is described in Algorithm 1.

Algorithm 1 Environment-aware clock synchronization
Input Tcs: clock skew table with respect to temperature;

Th, Tl: the highest and lowest temperature in Tcs, respec-
tively;

N: default, course-grained synchronization period;
u: local clock tick unit;

Start:
initialize the clock offset θ[0] = 0;
for k = 1 to N (time slot) do

obtain the current working temperature tk

if tk > Th or tk < Tl then
if reference clock is available then

conduct resynchronization and update clock skew table
else

select clock skew corresponding to Th or Tl

end if
end if
in Tcs, find the largest tu ≤ tk and the smallest tl ≥ tk and the
corresponding skew αu and αl

if tu == tl then
αk = αu = αl

else
αk = (αu−αl)

tu−tl

(tk − tl) + αl // linear approximation
end if
θ[k] = θ[k − 1] + ταk

if θ[k] ≥ u

2
then

C[k] = C[k] − θ[k] // compensate offset to clock C[k]
θ[k] = 0

end if
end for
conduct resynchronization if reference clock is available
go to Start

Given the unavoidable clock skew estimation errors and
clock jitters, the clock will eventually drift away but at a much
slower pace. Given a clock offset upper bound, resynchroniza-
tion is needed after a certain period using existing protocols
such as FTSP, which is beyond the scope of this paper.

Discussions: To address the challenges for clock synchro-
nization in WSNs, first, EACS is designed for dynamic envi-
ronments. Second, for the software-based EACS, the computa-
tional cost of the clock compensation is very low, which makes
it feasible for those platforms with limited computation capac-
ity. Third, as the clock skew is compensated appropriately, the
synchronization period can be substantially prolonged. Given
that the energy consumption due to wireless communications
is significant, using the dynamic clock compensation, the
overall energy consumption using EACS is much less. The
proposed scheme can also benefit the scenarios where frequent
clock synchronization is not feasible. Finally, as EACS does
not require message exchanges during the clock maintenance
stage, it is also scalable, even for multi-hop networks. The
clock compensation accuracy for nodes at different hops away
from the reference node is similar because the compensation
relies on the local information only.

VII. PERFORMANCE STUDY

In this section, we first present the Posterior Cramer-Rao
Lower Bound (PCRLB) of skew estimation error, which can
be used as a performance benchmark. We next evaluate the
performance of the proposed EACS scheme by simulation with
the parameters obtained by the measurements, and then by
experiments using our sensor testbed.

A. Error Estimation Bound

With clock skew compensation, the clock offset is mainly
due to the imperfect skew estimation, so the skew estimation
error bound determines the synchronization period and pro-
vides important insights for clock synchronization protocol
design. The estimation covariance matrix can be used to
indicate the estimation accuracy, which is bounded by the
Posterior Cramer-Rao Lower Bound (PCRLB). In this section,
we derive the PCRLB for clock skew estimation, which can
be used as a benchmark for performance evaluation.

Denote the state to be estimated and the measurement at
time instance k as xk (∈ Rn) and zk (∈ Rm), respectively. The
posterior Fisher information matrix (FIM) for Xk is defined
as

J (Xk) , −E

[

∂2 log p (Xk, Zk)

∂Xk (∂Xk)
′

]

(10)

where Xk = [xT
1 , xT

2 · · ·xT
k ]T , Zk = [zT

1 , zT
2 · · · zT

k ]T and
p(Xk, Zk) are the joint probability density function (PDF) of
Xk and Zk, respectively. Denote the estimation of Xk as X̂k

. The estimation covariance is bounded by the PCRLB as

PXk
= E[(X̂k − Xk)(X̂k − Xk)′] ≥ Φk , J−1

k (Xk) , (11)

with the equality holds when X̂k = E(Xk|Zk). Since Xk =
[(Xk−1)

T , xT
k ]T , Tichavsky et al. showed that the posterior

FIM J(Xk) can be decomposed into block matrix [31]:

J(Xk) =

[

JXk−1,Xk−1
JXk−1,xk

JT
Xk−1,xk

Jxk,xk

]

=

[

J11
k J12

k

J21
k J22

k

]

. (12)

Similarly, PXk
can also be decomposed into block matrix

PXk
= E

[

PXk−1
(X̂k−1 − Xk−1)(x̂k − xk)T

(X̂k−1 − Xk−1)(x̂k − xT
k )T Pxk

]

,

(13)
where E[Pxk

] is the estimation covariance of xk. As PXk
−Φk

is semi-definite, the corresponding PCRLB is

Pxk
= E[(x̂k − xk)(x̂k − xk)T ] ≥ φk (14)

where φk = (J22
k −(J12

k )T (J11
k )−1J12

k )−1. The corresponding
posterior FIM for xk is

J(xk) = J22
k − (J12

k )T (J11
k )−1J12

k . (15)

It is not easy to evaluate the equation above. However, given
the fact that

p(Xk, Zk) = p(zk|xk)p(xk|xk−1)p(Xk−1, Zk−1). (16)
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Let Xk = [(Xk−2)
T , xT

k−1, x
T
k ]T , we have,

J(Xk) = J([(Xk−2)
T , xT

k−1, x
T
k ]T )

=





J11
k−1 J12

k−1 0

(J12
k−1)

T Jk−1
22 + Dk−1

11 Dk−1
12

0 (Dk−1
12 )T Dk−1

22



 ,
(17)

where

D11
k−1 = −

∂2 log p(xk|xk−1)

∂xk−1∂(xk−1)′
,

D12
k−1 = −

∂2 log p(xk|xk−1)

∂xk−1∂(xk)′
,

D22
k−1 = −

∂2 log p(xk|xk−1)

∂xk∂(xk)′
.

Therefor, similar to (13)-(14), we can express J(xk) based
on (17) as

J(xk) = D22
k−1 − (D12

k−1)
T (J(xk−1) + D11

k−1)
−1D12

k−1, (18)

where J(xk−1) = J22
k−1 − (J12

k−1)
T (J11

k−1)
−1J12

k−1. Given a
general linear Gaussian system,

xk+1 = Axx + vk,

zk = Hxk + ωk,
(19)

where A is the state transition matrix, H is the observation
matrix, vk and ωk are the process noise and observation noise
respectively, and the corresponding covariance matrix are Q
and R. Then, we can rewrite D11

k−1, D12
k−1 and D22

k−1 as

D11
k−1 = AT Q−1A,

D12
k−1 = −AT Q−1,

D22
k−1 = Q−1 + HT R−1H.

(20)

Substitute these equations into (18), we can evaluate J(xk)
recursively [31].

J(xk) = Q−1 + HR−1HT−

Q−T A(J(xk−1) + AT Q−1A)−1AT Q−1.
(21)

We can further simplify it by applying the matrix inversion
lemma [32], and we get

J(xk) = (Q + AJ(xk−1)
−1AT )−1 + HR−1HT . (22)

Then we can evaluate J(xk) recursively and the numerical
results are shown in the following section.

B. Performance Evaluation by Simulation

We generate the simulation traces based on the measurement
results in a temperature-changing environment. The tempera-
ture alternates between two states: either being constant for a
while, or changing smoothly in a certain duration. Assume
that the reference clock works in a stable environment or
is well calibrated, and its clock jitter can be treated as part
of the noise. In the simulation, the temperature varied from
20°C to 50°C and the corresponding clock skew varied from
20 µs to 40 µs. The measurement noises followed a Gaussian
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Fig. 4. Temperature measurements and the probability of constant velocity
model.

distribution. We used a set of training data to obtain the table
for clock skew compensation w.r.t. temperature.

We first applied the IMM Kalman filter on temperature
measurements to determine the clock skew model at each time
instant, and the results are shown in Fig. 4. During the period
that the temperature changes from 20°C to 50°C (from the
500 to 600 s), the probability of the constant velocity model
is close to one; during the period that the temperature is
stable, the probability is below 0.5. As a result, during the
temperature changing period, the correct model is selected for
clock skew almost surely; while during the temperature stable
period, there is a small probability that the constant velocity
model is selected, which is acceptable as discussed in Sec. V.

For the two clock skew models, the constant and the
constant velocity model, we choose the clock state vector
as xk = [θk, αk]. The corresponding transition matrix and
processing noise covariance matrix are

A(1) =

[

1 0

0 0

]

, Q(1) = β

[

T 2 0

0 0

]

,

A(2) =

[

1 T

0 1

]

, Q(1) = β

[

T 4/4

T 3/2

T 3/2

T 2

]

,

(23)

where β is a scalar to adjust the processing noise level, which
reflects the accuracy of the model. It can be used to make
a tradeoff between estimation accuracy and filter suitability.
The similar setting is used for temperature except that the
state vector contains temperature and temperature change.

Given the model probability obtained from the IMM filter
on temperature measurements, the model in the Kalman filter
for skew estimation is selected. The estimation results are
shown in Fig. 5. From the figure, the estimation results using
the proposed AMKF (the dashed line) are close to the real
values (the solid line), even though the clock measurements
(the dots) contain severe noise. This is because we can detect
the change of model efficiently using temperature estimation,
so the negative impact of model uncertainty is minimized.
From the figure, the estimation errors are most obvious during
the initial stage (0 to 50 s) and the period that the temperature
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changes to the constant state (600 to 650 s). This is because
that we intentionally set the threshold of the IMM filter to
favor constant velocity model, so the probability of selecting
a wrong model during these periods is higher than that
of other periods. Nevertheless, the estimation error of the
proposed algorithm is always much less than 1 µs/s if the
filter converges.

To further evaluate the estimation error, the root mean
square error (RMSE) of the proposed AMKF algorithm is
shown in Fig. 6. We also compare the proposed AMKF
with our previous solution in [15], which used the IMM
Kalman filter to process the clock skew measurements without
the assistance from temperature measurements. As shown
in [15], the IMM used in [15] can outperform the non-adaptive
estimation algorithms (such as the one in [14]), so it is the best
known solution. From the figure, the RMSE of the proposed
AMKF is less than 50% of the best known results in [15].
PCRLB offers a statistic lower bound of RMSE, and the results
in Fig. 6 show that the performance of the proposed AMKF
is close to the bound. Generally speaking, the Kalman filter
can approach the PCRLB in a linear Gaussian system with
sufficient measurements. However, in dynamic environments,
the process within the same model cannot be arbitrary long
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due to the variations of clock skew and temperature models.
Therefore, the gap to reach the PCRLB exists, which is mainly
caused by the model change.

Next, we use the clock skew estimation error statistics to
analyze the performance of the proposed EACS scheme. To
evaluate the EACS scheme and compare it with the existing
constant skew compensation solution, we generated simulation
data as shown in Fig. 7. Initially, we set the temperature to
around 23.6°C and maintained this temperature for 1, 000 s,
and then increased it to 40.4°C and lasted for another 2, 000 s,
before decreasing it to 20°C again. Clock skew has the similar
trend with noise, caused by clock jitter and other uncertain
factors. We set the sampling period T to be 1 s and the clock
re-synchronization threshold to be 1 ms for simplicity.

The performance of EACS and constant clock skew com-
pensation are compared in Fig. 8. We compare the EACS
performance with the constant clock skew compensation,
which uses the mean value of clock skew. As shown in the
figure, the constant clock skew compensation only works for
certain circumstances and the performance degrades signifi-
cantly once the working environment changes. The clock offset
is well compensated using the proposed EACS, which can
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maintain the clock offset to be one order of magnitude more
accurate than the constant compensation algorithm. Note that
the compensation with mean skew has a wide fluctuation in
clock offset, due to the temperature fluctuation.

We note that the compensated clock offset is in a zig-
zag style. This is because the software-based compensation is
limited by the granularity of the local clock. Therefore, only
when the clock skew is accumulated to a certain threshold, it
can be compensated by adding or subtracting one clock tick.

For the proposed EACS, simulation results show that the
re-synchronization period can be prolonged to more than
1, 500 s, while that for constant skew compensation is less
than 150 s. In other words, using EACS, the synchronization
communication cost is reduced by an order of magnitude. In
addition, during the whole 8000 s simulation, the clock offset
is always below 2 ms, which is much lower than the case
without compensation or with constant skew compensation,
which are more than 100 ms and 12 ms respectively. If we can
conduct the calibration offline in a well controlled environment
and reduce the measurement noise of clock skew by extracting
the hardware timing information, the performance of EACS
can be further improved.

C. Performance Evaluation by Experiment

Simulation study can use a controlled setting to investigate
the performance metrics and bounds such as RMSE and
PCRLB, which are not easy to obtain in real test. On the other
hand, in addition to simulation, the applicability and feasibility
of the proposed EACS scheme should be validated by realistic
tests. We thus conducted experimental verification using the
Mica2 testbed. We used the measurement results shown in
Fig. 2 as the training dataset to obtain the clock skew table
w.r.t. temperature. Then, six months later, we used the same
sensor and the laptop to record their clock skews, where the
sensor was working in a randomly changing environment, and
the traces of temperature and clock skew are shown in Fig. 9.
According to the clock skew compensation table obtained six-
month ago, we used EACS to dynamically compensate the
clock skew of the sensor node.

The test results are shown in Fig. 10. From the figure, even
with a time span of six-month, the clock offset by EACS is
much lower than those without compensation or with constant
skew compensation. The clock offset by EACS is always
below 8 ms over the 7200 s test duration, which is an order
of magnitude improvement to the constant skew compensation
and the no-compensation schemes, where the clock offset is
up to 100 ms and 200 ms respectively. Using 1 ms as the
re-synchronization threshold, the proposed EACS can enlarge
the re-synchronization period to more than 1000 s compared
to those for the other schemes which are less than 100 s.

On the other hand, it is not surprising that the experimental
results are worse than the simulation ones for all schemes due
to the following reasons. First, some often-used assumptions
may not hold in a practical system, such as the measurement
noise may not be strictly Gaussian distributed, which will
degrade the estimation accuracy. Second, we used a laptop
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Fig. 9. Verification trace.
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in lab environment as the reference node, as the clock of
the laptop is much more stable than that of the sensor node.
However, the laptop clock circuit also suffers from thermal
noise and other uncertain factors, and the lab room temperature
may change slightly over the 6-month time span as our lab
has no temperature control, which may introduce some errors.
Third, as shown in Fig. 9, the temperature changing pattern in
the real test is more random and has higher variation than that
used in the simulation. These imperfect practical conditions
degrade the performance of all skew estimation algorithms in
the realistic test. Even with these impairments, the test results
show that EACS can meet our design objective, i.e., reduce
the clock offset and prolong the re-synchronization period by
an order of magnitude, and its performance is reliable over
several months (and probably more).

VIII. CONCLUSIONS

In this paper, we have investigated the clock skew es-
timation and clock synchronization for WSNs deployed in
dynamic environments. Clock skew has been modeled as
a hybrid system with two different models. To tackle the
model uncertainty problem, we have proposed an additional
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information aided multi-model Kalman filter (AMKF) which
uses the temperature information to determine the suitable
model for clock skew. Based on AMKF, we have proposed an
EACS scheme to conduct the real-time clock compensation
and re-synchronization. Simulation and experimental results
have demonstrated the effectiveness and efficiency of the pro-
posed EACS scheme, which can reduce the resynchronization
frequency by an order of magnitude. How to further improve
the accuracy of skew estimation especially considering about
non-Gaussian noise and system jitters to approach the lower
bound of the estimation error remains an open issue. One
possible direction is to jointly estimate temperature and clock
skew measurements with advanced filtering techniques and
parameter learning. Besides temperature, more research work
is needed to investigate the impact of other environment factors
(such as humidity, electromagnetic interference, and vibration)
on clock skew, which are treated as noise in this work as their
influence is much less than temperature.
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