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Abstract— This paper explores the joint optimization problem
for trajectory planning and radio resource allocation in
unmanned aerial vehicle (UAV) communications with the aim
of maximizing data collection. Rather than decomposing the
problem into subproblems, as most current approaches do,
we express the quantity of data gathered by a UAV-assisted
network as a function of both the size of the resource block
allocated to all ground devices and their average upload rate.
Based on this formula, it can be concluded that the problem
of maximizing the average data collection can be reduced to
minimizing the flight trajectory if each device communicates
with the UAV within the maximum allowable coverage of the
UAV. To address this issue, we propose an advanced hierarchical
clustering algorithm that divides larger network-scale scenarios
into many disjoint subregions to determine the initial hovering
positions of the UAV. The non-convex minimization trajectory
problem is decomposed into a series of convex optimizations to
minimize path segments along the trajectory, based on the trav-
eling salesman problem (TSP). Subsequently, the communication
optimization process is modified to assign specific upload times
for each device. The effectiveness of the optimization algorithm
is demonstrated through extensive simulations, which show its
superior performance in terms of average rates of data collection
and upload failures.
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I. INTRODUCTION

THE Internet of Things (IoT), which connects every object
on the planet through a seamless network, enables every-

thing to be intelligent and monitored through information
exchange and communication [1]. In order to achieve the
ambitious vision, it is necessary to implement a significant
number of network-connected devices (including wearables,
embedded sensors, traffic lights and street lights, connected
vehicles, cameras, etc.) across a diverse range of verticals
(such as healthcare, transportation, agriculture, and industry).
In these applications, a substantial number of IoT devices are
distributed for the purpose of sustainable monitoring in remote
and inhospitable environments, including rural farmlands,
forests, and disaster-stricken areas. However, the existing
terrestrial networks are constrained in their coverage and are
thus unable to provide the requisite network services in these
locations. In order to extend human communication activities
to a larger area, the space-air-ground-aqua integrated network
(SAGAIN) [1] has emerged as a new and attractive research
topic in the last decade, which realizes the seamless integration
of air networks, satellite systems, and ground communications.
As one of the most prominent components of the SAGAIN,
unmanned aerial vehicle (UAV)-assisted communications can
quickly provide wireless connectivity for mobile devices that
are beyond the reach of terrestrial communication infrastruc-
ture. In addition, UAVs can move flexibly for line-of-sight
(LoS) communications and act as a collection unit to gather
information from a variety of ground devices, providing higher
throughput, low latency and power savings for mobile devices
with limited capabilities. UAV-assisted networks have been
utilized in various applications, such as aerial inspection,
precision farming, traffic management, and package delivery
[2], [3].

Since UAVs are agile, flexible and mobile, the flight trajec-
tory design needs to be more explicit about the communication
performance. This performance is dependent on the user
communication planning and the resource allocation given the
UAV flight path [2]. Most current approaches to solving the
co-design of trajectory and communication are to decompose
the joint optimization into independent subproblems [2], e.g.,
to solve the subproblems of communication scheduling and
trajectory optimization iteratively. However, it remains unclear
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whether priority should be assigned to optimizing the commu-
nication link or the UAV flight path. For instance, Guo, et. al.
in [3] aimed at maximizing the minimum (average) achieved
rate of all terrestrial devices under the constraints of the
UAVs’ trajectories and communication schedules. On the other
hand, in [4], Samir, et. al. focused on minimizing the UAV’s
flight distance while serving time-constrained data collection
devices. In fact, to enhance the quality of the communication
link, a UAV trajectory design necessarily requires a sufficient
path that allows the UAV to approach its served equipment.
Note that for any given UAV flight time, the longer the
UAV flight distance, the less time the UAV has to enjoy
the communication link [4], and vice versa. Another major
research challenge is to optimize the flight path of UAVs.
Since the trajectory depends on a large number of factors, the
complexity of the optimization is prohibitive. On one hand,
to simplify the optimization algorithm, many optimization
schemes [3], [5] have arbitrarily determined the number of
hovering positions based on specific preconditions, such as the
number of devices, load balance, etc. In fact, even a one-point
difference in the number of designable hovering positions
can result in completely different UAV flight trajectories uti-
lizing successive convex approximation (SCA) approach [3],
[4]. Therefore, we should carefully consider this issue when
optimizing UAV trajectories. On the other hand, solving non-
convex optimization problems using SCA methods becomes
increasingly complex with more users, longer flying time,
and more iteration rounds [2]. Similarly, deep reinforcement
learning (DRL) frameworks [6], [7], [8], [9], [10] may be
limited in their ability to explore all possible paths over a large
area within a limited number of simulation rounds. Therefore,
their results may not represent optimal trajectories.

A. Related Work

In order to satisfy the minimum signal-to-noise ratio (SNR)
requirements, UAVs must fly a certain distance to approach
ground equipment for transmission links. The flight trajectory
employed can significantly affect the UAV’s data collection.
However, designing UAV trajectories is typically more chal-
lenging due to the involvement of continuous space, which
leads to a myriad of design variables relating to both trajectory
and communication [2], [3]. To address this issue, a suggested
approach is to estimate the path of the UAV by using a
continuous linear trajectory consisting of a sequence of con-
nected line segments with a finite number of 3D waypoints [2].
There are two trajectory discretization techniques [2]. 1) Time
Discretization (TD) [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14]: The time horizon for flight is divided into equal
time slots. This ensures that the position of the UAV remains
relatively constant during each time slot in comparison to the
distances between all devices and the UAV [4]. In each time
slot, one or more devices can upload data simultaneously to the
UAV. 2) Path Discretization (PD) [15], [16], [17], [18], [19]:
The UAV trajectory is divided into successive line segments
of generally unequal length, connected by hovering positions
(waypoints). The duration of time allocated by the UAV
for each line segment may vary [3]. The UAV gathers data
produced by the ground equipment at each hovering location.
In addition, optimizing an increasing number of waypoints

generally leads to a higher level of complexity in designing
UAV trajectories [3]. Therefore, a UAV trajectory design
that uses PD will typically result in a lower computational
complexity than one that uses TD.

Based on the two trajectory discretization techniques men-
tioned above, recent research on the co-design of trajectory and
communication in UAV data collection can be categorized into
three optimization goals: 1) maximizing energy efficiency [6],
[12], [13], [16], [17], [18]; 2) maximizing throughput/data
rate [3], [7], [9], [10], [11], [14], [20]; and 3) minimizing
latency [4], [8], [19], [21]. In [6], researchers presented a joint
design for allocating frequency bands and determining the 3D
trajectory of the UAV for mobile ground users (GUs) in a
UAV-based communication system. The aim was to promote
fairness and energy efficiency. In [14], the objective was
to tackle the issue of deploying UAVs in 3D space while
simultaneously optimizing the overall user rate and fulfilling
on-board energy and flight duration limitations. Furthermore,
timely data collection is equally critical as system throughput.
In [4], Samir et al. optimized the flight path of a single
UAV and allocated radio resources for maximizing the number
of connected IoT devices, each with its own deadline for
uploading data. In [19] and [21], a measure of information
freshness called Age of Information (AoI) was introduced.
For example, in [19], the mission completion time of the UAV
was minimized by a combination of UAV flight speed, hover
position, and visit sequence optimization, while considering
the AoI of the data in the survey area.

The above optimization models include user time schedule
and assignment, UAV trajectory planning, transmission power
control, etc., which are strongly interrelated and generally
difficult to solve. For example, in [16], the trajectory planning
of the UAV, which includes the sensor serving orders and
the UAV’s hovering positions, was optimized in conjunction
with the upload power allocation of the sensors. To address
these issues, the standard traveling salesman problem (TSP)
was utilized to formulate and solve the optimal serving orders
of the sensors. In addition, the SCA method was used to
obtain the hovering positions of the UAV and the pattern
search method was used to optimize the transmission power.
Specifically for the trajectory problem, the SCA [2], [3], [4],
[11], [13], [16], [21] and block coordinate descent (BCD)
[2] techniques have been proposed, e.g., the SCA method
iteratively finds the optimal trajectory by constructing the
surrogate functions of the original function. For PD-based tra-
jectory optimization, the TSP [21] and the pickup-and-deliver
problem (PDP) [2] have been introduced to initialize UAV
path planning and determine the amount of time to allocate at
each UAV location along the path. On the other hand, DRL
algorithms can reach an optimization solution by maximiz-
ing the expected cumulative reward without transforming a
non-convex problem into a convex one [22], [23]. Recently,
a number of DRL-based frameworks for UAV communication
have been proposed to reduce packet loss [8], improve overall
throughput [7], [10], [24], and increase energy efficiency [12],
[17]. In [9], a scheme based on deep Q-network (DQN) was
presented to maximize the total data rate of the users. This
was achieved by determining the UAV’s next waypoint and the
transmission power of ground equipment in a discrete space.
In [8], researchers developed a flight control scheme based
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on deep deterministic policy gradient (DDPG) to minimize
data packet loss by predicting the UAV’s next position and
velocity, and the devices selected for data collection in a con-
tinuous space. Moreover, in [6], [9], [22], [25], and [26], DRL
algorithms were employed to concurrently optimize multiple
objectives in the UAV-assisted network. To illustrate, in [26],
the primary objective was to diminish the average latency and
enhance the service success rate through the integration of
UAV server-user associations, bandwidth, and computational
resource allocation policies.

B. Contributions
This paper analyzes a data collection problem in UAV

communications. Our optimization objective is to maximize
data throughput while ensuring low latency performance.
To account for the limited on-board energy of the UAV,
we limit the mission duration of the UAV. A new equation has
been developed to calculate the throughput of data gathering
networks by allocating resource blocks to ground devices.
The method divides joint optimization into two separate
stages: planning the trajectory and allocating communication
resources. To decrease the computational complexity of tra-
jectory optimization, we optimize each flight path segment
separately. This involves separating the nonconvex optimiza-
tion into convex subproblems. This paper’s main contributions
are summarized below.

• The data collected from UAV-assisted communication is
presented as two components: the average rate per unit
of bandwidth for all devices, and the size of the allocable
resource block characterized by bandwidth and duration
during the entire flight duration. For the first time,
we demonstrate that maximizing the average amount of
data collected during a flight duration is equivalent to
minimizing the flight distance of a UAV, provided that
each device is within the UAV’s maximum allowable
horizontal coverage when it communicates with the UAV.

• An advanced hierarchical clustering algorithm is pro-
posed for grouping randomly placed IoT devices into
multiple disjoint clusters, utilizing the maximum hori-
zontal coverage of the UAV instead of load balancing
among clusters. Furthermore, the proposed clustering
algorithm eliminates the requirement of predefining a
certain number of clusters and guarantees that the UAV
services each device while enabling the minimum flight
distance.

• A segmented path optimization scheme based on TSP is
proposed to decompose non-convex trajectory scheduling
into a sequence of convex optimizations for path seg-
ments. In each round, TSP is used to achieve the initial
path planning. Following that, the optimization process
begins at the first hovering point by minimizing the two
adjacent path segments connected by that point, while
maintaining all other hovering positions. This process
continues until all hovering positions are updated sequen-
tially. The UAV’s flight distances decrease with each
round, eventually leading to the attainment of an optimal
trajectory after a few iterations.

• Given the optimal trajectory, the communication opti-
mization is transformed into the joint optimization of
hovering time for each cluster and bandwidth for each

device in the clusters using Frequency Division Mul-
tiple Access (FDMA), and upload time optimization
for each device by means of Time Division Multiple
Access (TDMA), respectively. The issue of load bal-
ancing between clusters can be resolved by optimizing
the UAV hovering time for each cluster to upload data,
without controlling cluster size.

• We provide two different device distribution scenarios to
demonstrate different trajectory representations resulting
from multiple co-designs of trajectory and communica-
tion in a UAV-based data collection network. Through
our comparison of SCA-based schemes and DRL-based
frameworks, we demonstrate that the suggested joint UAV
trajectory and communication optimization achieves a
significantly lower upload failure rate and favorable data
collection performance with reduced complexity.

C. Paper Organization

The structure of the paper is as follows: Section II is an
introduction to the system model and the problem formulation.
A resource block based optimization model is presented in
Section III. Sections IV and V outline the UAV trajectory and
communication optimization schemes, respectively. Section VI
analyzes the numerical results. Finally, in Section VII, the
study concludes and potential areas for future research are
discussed.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

Suppose a scenario where a UAV is deployed to gather
information from K sensor nodes (SNs) on the ground. Due
to the limited on-board energy of the UAV, we assume that the
UAV completes a data collection mission within a given time
T and flies at a fixed altitude H and a constant speed V . The
coordinate of the kth SN, referred to as qk = [xk, yk, 0] ∈

R3, k ∈ [1, K ], is invariant within T . The UAV initiates
its flight from a designated start point ustr and traverses
the area according to a predetermined path U = {u(t)|t ∈

[0, T ]} until reaching the designated end point uend . Here,
u(t) = [x(t), y(t), H ] ∈ R3 denotes the UAV’s position at
time t . Furthermore, the sensed data of SN k is packed into
an information packet of a specific size, Qth

k , and must be
uploaded to the UAV before the end of this flight duration,
otherwise this SN is considered to have failed to upload data.
Here, the time of compressing and packaging data is ignored.
B denotes the bandwidth of the system. The UAV’s data from
SN k during the UAV flight duration T is represented by

Qk =

∫ T

0
Bk(t)log2

(
1 +

Pk(t)β0

∥u(t) − qk∥
2σ 2

)
dt, (1)

where Pk(t) and Bk(t) are the transmit power and the allocated
bandwidth of SN k at time t , respectively, ∥·∥ is the Euclidean
norm, and σ 2 is the additive white Gaussian noise (AWGN)
power. We consider UAV-to-SN communication channels as
LoS linkages that are extendable to non-line-of-sight (NLoS)
channel models [4], [6], [7], [9], [10], [14], [15], [17], [19].
β0 is path loss at 1m reference distance.
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According to (1), the total data collected by the UAV from
K SNs during T is

Q =

K∑
k=1

∫ T

0
Bk(t)log2

(
1 +

Pk(t)β0

∥u(t) − qk∥
2σ 2

)
dt. (2)

B. Problem Formulation

We study the bandwidth, upload time, and power allocation
as well as the trajectory for maximizing the average data
collection of SNs during a UAV flight duration. Let B =

{Bk(t)|t ∈ [0, T ], k ∈ [1, K ]} and P = {Pk(t)|t ∈ [0, T ], k ∈

[1, K ]}, and then the formulation of the optimization problem
will be

P1 : max
U,P,B

1
K

K∑
k=1

∫ T

0
Bk(t)log2

(
1 +

Pk(t)β0

∥u(t) − qk∥
2σ 2

)
dt

(3)

s.t. Qk ≥ Qth
k , ∀k, (3a)

0 ≤ Pk(t) ≤ Pmax, ∀k, t, (3b)
Pk(t)β0

∥u(t) − qk∥
2σ 2

≥ γ th, ∀k, t, (3c)

Bk(t) ≥ 0, ∀k, t, (3d)
u(0) = ustr , u(T ) = uend , (3e)

where Pmax denotes the maximum upload power of SN
and γ th denotes the required minimum instantaneous signal-
interference-ratio (SINR). (3a) shows that during T , each SN
must upload all its generated data to the UAV. (3b) indicates
that the transmit power of each SN must be not greater than its
maximum transmit power. (3c) indicates that the instantaneous
received SINR of the UAV from each SN must meet the
minimum requirement. (3d) indicates a bandwidth of 0 or
greater allocated for each SN. (3e) specifies that the UAV
departs from the starting point and returns to the ending point.

In general, solving P1 is inexorable because of trajectory
variables that are infinite in time, i.e., u(t). We adopt the
PD-based trajectory scheme. Let Û = {ui } denote the set of
hovering positions, where ui = [xi , yi , H ] is UAV’s coordi-
nate at hovering point i and N =

∣∣∣Û∣∣∣ denotes the number
of hovering points. As illustrated in Fig. 1, the trajectory of
the UAV is indicated by 5 = [u0, u1, . . . , un, . . . , uN , uN+1],
which represents all possible sequences of visiting hovering
points during the UAV flight duration and is a permutation
of Û in addition to u0 = ustr and uN+1 = uend . Along
the trajectory 5, segment n connects hovering points un−1
and un , and Tn = T f

n + T h
n denotes the UAV travelling time

through segment n, which includes the flight time T f
n from

hovering point positions un−1 to un and the hovering time
T h

n at hovering position un . Therefore, the total UAV flight

duration T is given by T = T h
+ T f

=

N∑
n=1

Tn + TN+1 where

TN+1 is the flight time from uN to uend , and T h
=

N∑
n=1

T h
n

and T f
=

N+1∑
n=1

T f
n respectively denote the total hovering time

and the total flight time during a flight duration T .

Fig. 1. 1D Illustration of Discretized trajectory.

Assume that channel state information (CSI) can be
accurately obtained by the UAV. Additionally, each SN is
associated with the UAV uniquely at one hovering point during
T , and the channel gain between each SN and the UAV
remains constant during their association time. Whether using
TDMA, FDMA or any other communication mode, a mobile
device must be assigned a specific resource block of time and
bandwidth to enable its data transmission. Here, we assume
that SN k at hovering point i is allocated an upload time δi,k
and a bandwidth Bi,k . Let Ji = {δi,k > 0|k ∈ [1, K ]} be the
cluster (set) of the SNs within the coverage of hovering point
i , specifically δi,k = 0 indicating that SN k keeps silent at
hovering point i . Thus, the amount of collected data from SN
k at hovering point i can be expressed by

Q̂i,k = Bi,kδi,k︸ ︷︷ ︸
Resource block

for a SN

log2

(
1 +

Pi,kβ0

∥ui − qk∥
2σ 2

)
︸ ︷︷ ︸

Upload rate per unit of bandwidth for a SN

, (4)

where Pi,k denotes the transmit power of SN k at hovering
point i . According to (4), the data collection from cluster Ji
is represented as

Q̂i =

∑
k∈Ji

δi,k Bi,k log2

(
1 +

Pi,kβ0

∥ui − qk∥
2σ 2

)
. (5)

Let P̂ = {Pi,k |i ∈ [1, N ], k ∈ [1, K ]}, B̂ = {Bi,k |i ∈

[1, N ], k ∈ [1, K ]}, ϒ = {δi,k |i ∈ [1, N ], k ∈ [1, K ]} and
J = {Ji |i ∈ [1, N ]}. According to (5), problem P1 can be
converted into a joint optimization consisting of bandwidth
B̂, upload time ϒ and power allocation P̂ in addition to SN
clustering J, hovering positions Û and trajectory scheduling
5. We rewrite P1 by

P2 : max
Û,J,5,B̂,ϒ,P̂

Q̂avg =

1
K

∑
i∈J

∑
k∈Ji

δi,k Bi,k log2

(
1 +

Pi,kβ0

∥ui − qk∥
2σ 2

)
(6)

s.t. Q̂i,k ≥ Qth
k , ∀k, i, (6a)

δi,k ≥ 0, ∀k, i, (6b)
0 ≤ Pi,k ≤ Pmax, ∀i, k, (6c)

Pi,kβ0

∥ui − qk∥
2σ 2

≥ γ th, ∀i, k, (6d)

Bi,k ≥ 0, ∀k, i, (6e)
u0 = ustr , uN+1 = uend , (6f)∑
i∈J

T h
i ≤ T h, (6g)∑

k∈Ji

Bi,kδi,k ≤ BT h
i , ∀i. (6h)

Here, for easy analysis, we use δi,k to represent the SN
scheduling variable, i.e., when δi,k > 0, user k is connected
with the UAV in hovering point i ; otherwise, δi,k = 0. (6g)
states that the sum of the total time in the hovering state in
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all clusters shall not exceed the total UAV hovering time. (6h)
stipulates that the aggregate of the resource blocks assigned
to all SNs within a cluster must not exceed the total number
of resource blocks allocated to the cluster.

From (6), given other decision variables, the amount of
data collection by the UAV increases with increasing transmit
power, so the maximum transmit power Pmax provides the
best power allocation solution. However, the communication
design for B̂ and ϒ and the UAV trajectory plan of 5, Û and
J are coupled, which cannot be solved directly by existing
convex optimization solvers.

III. RESOURCE BLOCK-BASED JOINT
OPTIMIZATION MODEL

According to problem P2, each SN’s transmit power is set
to maximum. We consider the SNs in a cluster as a single
entity of uploading data. The length of time the UAV hovers
at hovering point i is assumed to be T h

i , so a wireless resource
block with the size of BT h

i is allocated to cluster Ji for
uploading data. Thus, equation (5) can be rewritten as

Q̂i ≜ BT h
i︸︷︷︸

Resource block
for a cluster

1
|Ji |

∑
k∈Ji

log2

(
1 +

Pmaxβ0

∥ui − qk∥
2σ 2

)
︸ ︷︷ ︸

Average upload rate per unit of
bandwidth for SNs in a cluster

, (7)

where |Ji | is the number of SNs in Ji .

Similarly, data collection from all SNs can be obtained
during a flight duration, expressed as

Q̂ ≜ BT h︸︷︷︸
Resource block

during a
flight duration

1
K

∑
i∈J

∑
k∈Ji

log2

(
1 +

Pmaxβ0

∥ui − qk∥
2σ 2

)
︸ ︷︷ ︸

Average upload rate per
unit of bandwidth for all SNs

. (8)

From equation (8), it can be inferred that increasing the
resource block size or the average upload rate of all SNs can
enhance the amount of data obtained by the UAV. However,
with fixed values of T and B, lengthening the hovering
duration T h is bound to reduce the UAV flight distance, which,
in turn, will lead to a decrease in the average data upload rate
of the SNs, and vice versa. To overcome this issue, we propose
a lemma below by deriving an approximation function from
equation (8).

Lemma 1: In UAV-assisted data collection networks that
employ the PD-based trajectory scheme, increasing the UAV’s
hover time (or decreasing its flight time) will increase the
amount of data collected during a given flight duration, if the
horizontal distance between the UAV and its associated SN
remains (

ri,k
H )

2
≪ 1, ∀k ∈ Ji , ∀i ∈ J at each hovering position.

Proof: See Appendix.
Lemma 1 states that the problem P2 can be divided into

two steps: Firstly, the flight distance of the UAV is minimized,
while ensuring that each SN remains within the maximum
horizontal coverage of the UAV, denoted by

P3 : min
Û,5,J

dist (Û) (9)

s.t. ri,k ≤ rmax, ∀k ∈ Ji , ∀i ∈ J, (9a)
6(f),

where dist (Û) denotes the flight distance along all hovering

positions Û and rmax satisfies rmax ⩽
(

Pmaxβ0
γ thσ 2 − H2

) 1
2 and

( rmax
H )

2
≪ 1.

With the optimized UAV trajectory of 5∗, Û
∗

and J∗

by solving P2, we can obtain the optimal duration for the
UAV to hover, (T h)

∗, throughout the entire flight duration.
Subsequently, the next step involves maximizing the average
data collection by optimizing the bandwidth B̂ and upload time
ϒ . This can be expressed as

P4 : max
ϒ,B̂

1
K

∑
i∈J∗

∑
k∈J∗

i

δi,k Bi,k log2

(
1 +

Pmaxβ0

∥u∗

i − qk∥
2σ 2

)
(10)

s.t.
∑
i∈J∗

∑
k∈J∗

i

δi,k = (T h)
∗
, (10a)

∑
k∈J∗

i

Bi,k = B ∀i,

6(a), 6(b), 6(e)., (10b)

IV. OPTIMIZATION OF UAV FLIGHT TRAJECTORY

Optimization problem P3 involving trajectory and user
scheduling is a NP-hard problem. Generally, the more way-
points the UAV must hover, the longer the UAV’s flight
distance. Therefore, reasonable clustering algorithm to shorten
the flight distance while covering all SNs is crucial in UAV
trajectory design.

We propose a cluster coverage plus segmented path opti-
mization (CSegP) scheme to solve problem P3, which is
decomposed into two modules: 1) a clustering module with the
objective of classifying the SNs to obtain the cluster sets J and
the number of clusters (hovering points) N ; and 2) a trajectory
scheduling module with the objective of determining the
hovering positions Û for each cluster and the flight trajectory
5 along all hovering positions Û.

A. Clustering Module
Based on P3, the sole determinant of the clustering

algorithm is the maximum radius of horizontal coverage
of the clusters. In light of the fact that the hierarchical
clustering approach [27], [28] merges the most comparable
clusters by computing the Euclidean distance between them,
we revise the method by updating the criteria for determining
the merging strategy and terminating the clustering process.
Advanced hierarchical clustering presents several advantages
over other clustering algorithms like k-means [29] and affinity
propagation (AP) [30]. These advantages include its ability to
1) handle clusters of various sizes and densities, and 2) not
requiring the number of clusters to be specified.

Given two clusters Ji and J j , their distance is defined as

d(Ji , J j ) = max
x∈Ji ,z∈J j

∥ux − uz∥. (11)

The stop criterion is defined as

min
∀Ji ,J j

d(Ji , J j ) > 2rmax. (12)

For the detailed procedure of the advanced hierarchical clus-
tering algorithm, see Algorithm 1.
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Algorithm 1 Implementation Process of the Advanced Hier-
archical Clustering
Input:

1: Cluster distance function according to (11)
2: A criterion to stop clustering κ = 2rmax
3: Each SN as a separate cluster J={Ji |i ∈ [1, K ]}

4: for i = 1, 2, . . . , K do
5: for j = i + 1, . . . , K do
6: D(i, j) = d(Ji , J j )

7: D( j, i) = D(i, j)
8: end for
9: end for

10: Setting the number of clusters: N = K
11: while N > 1 do
12: Finding the two nearest clusters J ∗

i and J ∗

j , with a
distance of dmin

13: if dmin > κ then
14: End the clustering process
15: end if
16: Merge J ∗

i and J ∗

j : J ∗

i = J ∗

i ∪ J ∗

j
17: for j = j∗ + 1, j∗ + 2, . . . , N do
18: Renumber cluster J j to J j−1
19: end for
20: Clear row j∗ and column j∗ from D.
21: for j = 1, 2, . . . , N − 1 do
22: D(i∗, j) = d(Ji∗ , J j )

23: D( j, i∗) = D(i∗, j)
24: end for
25: N = N − 1
26: end while
Output: Cluster set: J

B. Trajectory Scheduling Module

Through the clustering module, we obtain the SN cluster
set J∗ and the number of clusters N . Then, the trajectory
scheduling for problem P3 is first solved by finding the
optimal hovering positions Û for all clusters. Once Û is
determined, optimizing the trajectory 5 along the hovering
positions Û is similar to the TSP to find the shortest path [31].
However, the two optimizations are combined and therefore
difficult to handle independently.

We propose a segmented path optimization scheme based on
the TSP by following two steps: 1) finding the shortest flight
distance along the hovering points by solving the TSP; and 2)
sequentially optimizing one hovering position while keeping
other positions fixed by minimizing the two adjacent path
segments connected by that point. The trajectory generated
by each step of the operation, in which either all hovering
points are permuted or the position of one hovering point is
optimized, becomes shorter than those in the preceding steps.
This results in the iterative convergence of the optimal trajec-
tory. Specific steps include Step 1: Initializing all hovering
positions of the UAV.

All hovering positions in the 0th round are initialized to be
Û

0
= {ui =

1
|J∗

i |

∑
k∈J∗

i

qk |i ∈ [1, N ]}.

Step 2: Permutation of all hovering points via solving the
TSP.

We solve the TSP to find the r th round trajectory with the
shortest distance, 5r

=
[
u0, ur

1, · · · , ur
N , uN+1

]
, along the

hovering positions Ûr .
Step 3: Sequential optimization of hovering positions along

the trajectory.
Along the r th round trajectory, 5r , shown in Fig. 1, starting

from the initial position, we can achieve the nth best hovering
location, (ur

n)∗, by minimizing the length of segments n and
n + 1. This can be accomplished by taking into account the
optimized previous position, (ur

n−1)
∗, in this round and its

subsequent position, ur
n+1. Optimizing for this scenario can

be expressed as

P5 : min
un

∥un − (ur
n−1)

∗
∥

2
+ ∥ur

n+1 − un∥
2 (13)

s.t. ∥un − qk∥
2

≤ r2
max + H2, k ∈ J ∗

n . (13a)

Since (13) is a convex function, the method of Lagrange
multipliers [32] is introduced as

L(un, λk) = ∥un − (ur
n−1)

∗
∥

2
+ ∥ur

n+1 − un∥
2

+

∑
k∈J∗

n

λk(∥un − qk∥
2
− r2

max − H2).

The necessary conditions for optimization are written as

∂L(un, λk)

∂un
=

4un − 2(ur
n−1)

∗
− 2ur

n+1 + 2
∑
k∈J∗

n

λk(un − qk) = 0,

∂L(un, λk)

∂λk
= ∥un − qk∥

2
− r2

max − H2
= 0,

λk ≥ 0.

We can obtain
(ur

n)∗ =

(ur
n−1)

∗
+ ur

n+1 +
∑

k∈J∗
n

λk
∗qk

2 +
∑

k∈J∗
n

λk
∗

,

λk
∗

≥ 0.

(14)

By solving P5, the hovering positions along the trajectory
5r are iteratively updated to the final position uN , and
we can obtain the next round set of hovering positions,
Û

r+1
= {(ur

i )
∗
|i ∈ [1, N ]}.

Repeating Step 2 and Step 3, we get dist (50) ≥

dist (51) ≥ · · · ≥ dist (5r ) ≥ dist (5r+1) ≥ · · · until the
optimal flight trajectory is reached after a number of rounds.

V. COMMUNICATION OPTIMIZATION

The UAV’s optimal hover time, (T h)
∗, and the upload

rate of each SN, R∗

k , k ∈ [1, K ], via the optimal UAV
trajectory have been determined. In the TDMA manner, the
UAV receives data one at a time from the SNs in a cluster.
According to equation (5), the total data collected by the UAV
during a flight duration can be rewritten as

Q̂T DM A
= B

∑
i∈J

∑
k∈Ji

δi,k log2

(
1 +

Pmaxβ0

∥ui − qk∥
2σ 2

)
. (15)

Similarly, in the FDMA manner, the UAV receives data from
SNs within a cluster on different bandwidths at the same time.
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According to equation (5), the total data collected by the UAV
during its entire flight time can be described as

Q̂F DM A
=

∑
i∈J

T h
i

∑
k∈Ji

Bi,k log2

(
1 +

Pmaxβ0

∥ui − qk∥
2σ 2

)
, (16)

where B =
∑

k∈Ji

Bi,k , ∀i .

According to (15) and (16), problem P4 is transformed
into optimizing the upload time per SN in the TDMA manner
and the bandwidth per SN in a cluster and the hovering time
per cluster in the FDMA manner, respectively. For simplicity,
we focus on the TDMA method (the optimal outcomes are
achieved similarly in the FDMA manner). Once the optimized
set of clusters J∗ is determined, we can designate δk as the
upload time duration of SN k during T . Let ϒ̂ = {δk |k ∈

[1, K ]}. From equation (15), P4 can be expressed as

P6 : max
ϒ̂

Q̂avg =
B
K

K∑
k=1

δk R∗

k (17)

s.t. δk B R∗

k ≥ Qth
k , ∀k ∈ [1, K ], (17a)

δk ≥ 0, ∀k ∈ [1, K ], (17b)
K∑

k=1

δk = (T h)
∗
, (17c)

where R∗

k = log2

(
1 +

Pmaxβ0
∥u∗

i −qk∥
2σ 2

)
, k ∈ [1, K ].

Problem P6 is a first-order polynomial with respect to ϒ̂ .
Sorting the upload rates of all SNs in a descending order,
we obtain R∗

1 , . . . , R∗

k , . . . , R∗

K . To collect the maximum

amount of data possible, we set δ∗

1 = (T h)
∗

−

K∑
k=2

δ∗

k and

δ∗

k =
Qth

k
B R∗

k
, k > 1. This requires satisfying

K∑
k=1

Qth
k

B R∗
k

≤ (T h)
∗,

otherwise, we minimize the number of SNs with failed data
uploads and set δ∗

1 =
Qth

1
B R∗

1
, · · · , δ∗

k̂
= (T h)

∗
−
∑
j<k̂

δ∗

j , δ
∗

k̂+1
=

0, · · · , δ∗

K = 0.

VI. NUMERICAL RESULTS

Numerical results confirming the effectiveness of our pro-
posed algorithm are presented in this section. Our study
explores a network assisted by a UAV, wherein all SNs are
scattered in a random manner in a 200 × 200m2 square
area [12]. The UAV starts flying from the given coordinates
ustr = [0, 0, 100]

T and finishes its flight at uend = ustr . We set

the average packet length of K SNs to Qth
avg =

1
K

K∑
k=1

Qth
k . The

normal setting of the parameter values is shown in TABLE I.
There may be changes to some of the parameter settings.
The specific changes are explained in each figure. In each
simulation, we generated 100 flight durations with varying
SN distributions for the purpose of validation. The computer
used for simulations had an Intel i7, 2.9 GHz processor
and 16 GB RAM. The DRL algorithms were executed in
PyCharm 2022.3.2, while the other algorithms were executed
in MATLAB 2022b.

TABLE I
SIMULATION PARAMETERS

A. Comparison of Different UAV Trajectory and
Communication Co-Designs

To support the conclusion of Lemma 1 and evaluate the
effectiveness of our proposed CSegP scheme, we use the SCA
method [4] to obtain the minimum path as the optimal solution
for problem P3, which we term MinPath-SCA. We introduce
two benchmarks [3]: PD-MaxRate and TD-MaxRate, both
aimed at maximizing the minimum achievable rate among
all SNs and solved using the SCA method. Below is a brief
description of them.

• PD-MaxRate uses the PD-based trajectory, with the given
number of hovering positions, N .

• TD-MaxRate utilizes the TD-based trajectory, dividing
the given flight duration of [0, T ] into M equally sized
time slots with enough short lengths of δt . Setting the
maximum segment length, 1max = 2∗rmax = 30m [2], [3],
we can obtain δt = ⌈1max/V ⌉ = 1.5s and M = ⌈T/δt⌉

= 67 where ⌈·⌉ is the ceiling function.
In addition, two DRL-based frameworks are also used as

benchmarks. In both cases, the remaining energy of the UAV
is calculated in accordance with equation (27) in [6]. Fig. 2
illustrates the training curves for the cumulative reward of
DQN and DDPG.

• DQN [7]: The state space is defined by the current
location and remaining battery budget of the UAV and
the locations of the SNs. The action space is defined by
the 7 flight directions of the UAV (left, right, forward,
backward, up, down, hovering). The reward function
comprises two components: the instantaneous data col-
lected from all nodes at a given time step and a penalty
imposed by the safety controller to ensure that the UAV
reaches the terminal point. Please refer to equation (7)
in [7].

• DDPG [6]: The state space includes the locations of the
SNs, the UAV’s current location and energy and the des-
tination location. The action is UAV velocity (including
the UAV speed and flight direction). The shaped reward
refers to equation (49) in [6].
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Fig. 2. Accumulated reward versus training episode using DQN and DDPG.

Fig. 3. Optimized UAV trajectory for 16 SNs using proposed CSegP.

1) The Optimized UAV Trajectories by Different Schemes:
Fig. 3 depicts the clustering and trajectory planning of the
proposed CSegP scheme for 16 SN scenarios, illustrating the
hovering time for each cluster. As illustrated in Fig. 3, the
designated hovering time for the 3rd, 7th, and 9th clusters is
0 seconds. The results demonstrated that six of the 16 SNs
were unable to complete the data upload within the specified
time of T . Furthermore, Figs. 4(a)-(g) and Figs. 4(h)-(j)
illustrate the optimized UAV trajectories by different schemes,
demonstrating the two distribution scenarios for 10 SNs,
respectively. First, based on Figs. 4(a)-(b), it is apparent that
the UAV flies to close to each SN in turn, so that TD-MaxRate
and PD-MaxRate achieve a higher average SN rate compared
to other schemes. The TD-MaxRate scheme achieves the
highest average rate of the SNs by allowing the UAV to control
its trajectory near the SNs more flexibly through characterizing
the trajectory with more designable slots. Second, from a
visual analysis of Figs. 4(c)-(d), it is evident that owing
to the implementation of a limited number of exploration
rounds, the use of DQN and DDPG does not successfully
guide the UAV convergence to each node, despite having
sufficient designable slots. Furthermore, the smoothness of the
trajectory in the DDPG method outperforms that in the DQN
method. This result is attributed to the continuous nature of
the output actions in the DDPG approach, which enhances the
stability of the trajectory output. Third, it is apparent from
Figs. 4(e)-(f) that the MinPath-SCA scheme with equivalent
designable hovering positions (i.e. N = 8) generates two
distinct UAV trajectories for Case 1, wherein one SN is not
served in Fig. 4(e). This issue arises from the varying initial
settings of the hovering positions implemented by the SCA
method. Furthermore, we can observe in Fig. 4(g) that the
proposed CSegP scheme optimizes N to 8 for Case 1 and its
UAV path matches that of the MinPath-SCA scheme shown
in Fig. 4(f). Finally, to show the effect of the number of
designable hovering positions on the UAV trajectory, the
MinPath-SCA scheme in Case 2 is set to N=8, 9 and 10.

It can be observed from Fig. 4(h) that there are two SNs that
are not served when N=8, while as shown in Figs. 4(i)-(j), the
MinPath-SCA scheme with N=10 yields a longer path than
with N=9. Additionally, the CSegP scheme optimizes N to
9 and achieves the identical path as the MinPath-SCA scheme
with N set to 9. The above figures indicate that CSegP can
achieve optimal trajectories without experiencing optimization
failures caused by an incorrect number of hover points or UAV
position initialization, as seen in the SCA method.

2) System Performance When Changing the Number of
SNs: The number of designable hovering positions for
both PD-MaxRate and MinPath-SCA is fixed at N = 10.
In Figs. 5(a)-(c), we analyze the variation curves of average
data collection, SN failure rate, and runtime as the number
of SNs varies. Due to the negligible runtime of the DRL-
based method, the runtime lines of DDPG and DQN are not
plotted in Fig. 5(c). The most important observations can
be summarized as follows. First, from Figs. 5(a)-(b), it is
evident that for the PD-based trajectory schemes including
PD-MaxRate, MinPath-SCA and CSegP, the average data
collections decrease as K increases. Additionally, the SN
failure rates remain constant at 0 from K = 6 to 10, followed
by an increase from K = 10. Eventually, the failure rates
of both MinPath-SCA and CSegP became very close. This
was due to the fact that the PD-based UAV trajectories with
more SNs require the UAV to fly longer distances, resulting
in less time for data uploading. However, for the TD-based
trajectories like TD-MaxRate, DQN, and DDPG, the average
data collection and SN failure rate show minimal change as
K increases. This is because when K is small, there are many
free slots in the TD-based trajectories, and as K increases,
the newly added SNs will upload their data in these free slots,
so that if Qth

avg is fixed, the SN failure rate and the average data
collection do not change. Second, as shown in Fig. 5(c), the
runtimes for TD-MaxRate and CSegP consistently increase as
the value of K increases. In comparison, PD-MaxRate and
MinPath-SCA demonstrate longer runtimes at K = 6 and
K = 8 than at K ⩾ 10. The minimum runtimes for both
methods occur at K=10, followed by an increase in runtime
for K > 10. This is due to the fact that when the number of
available hovering positions for PD-MaxRate and MinPath-
SCA exceeds the number of SNs (N > K ), the SCA method
fails to converge to a single solution. It will only reach a
conclusion after reaching the maximum iterations. Finally, the
proposed CSegP scheme has a significantly shorter execution
time and outperforms MinPath-SCA with N=10 in terms of
average data collection and SN failure rate.

3) Impact of Changes in the Average Packet Length of
SNs on System Performance: We design 10 and 8 hovering
positions for MinPath-SCA and PD-MaxRate, respectively.
Figs. 6(a)-(b) show the effects of the average packet length of
SNs, Qth

avg , on the average data collection and the SN failure
rate, respectively. First, it can be noted that as Qth

avg grows,
the average data collections of all schemes remain unchanged,
while their SN failure rates increase monotonically. Second,
as illustrated in Fig. 6(a), MinPath-SCA and PD-MaxRate
achieve a greater average data collection with N = 8 com-
pared to N = 10, respectively. Conversely, as depicted in
Fig. 6(b), when Qth

avg=0.5kbit, both MinPath-SCA and PD-
MaxRate demonstrate elevated rates of SN failure with N= 8,
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Fig. 4. Optimized UAV trajectories for 10 SNs by different schemes.

Fig. 5. (a) Average data collection versus number of SNs. (b) SN failure rate versus number of SNs. (c) Runtime versus number of SNs.

reaching 6% and 13%, respectively, while for N=10, all
SNs effortlessly uploaded their data. This is due to the fact
that for the PD-based trajectories, reducing the number of
designable hovering points shortens the flight distance, leading
to increased data collection, but some SNs may not be covered,
as demonstrated in Fig. 4(h). Finally, Fig. 6 (b) demonstrates
that MinPath-SCA with N=8 achieves a lower SN failure rate
than both MinPath-SCA with N=10 and the proposed CSegP
scheme when Qth

avg=1kbit. The reason for this is that if the
size of the information to be uploaded exceeds the maximum
load of the UAV-assisted network (e.g., Qth

avg=1kbit), some
SNs may fail to upload their data, irrespective of the UAV
trajectory plan. In such a scenario, employing a small number
of hovering points to reduce flight distance would result in
a slightly higher amount of data collected without increasing
the SN failure rate. Furthermore, as Qth

avg increases, the failure
rate lines of all PD-based trajectories converge.

4) Impact of Changes in the UAV’s Maximum Horizontal
Coverage Radius on System Performance: To verify Lemma 1
and tell what rmax to set, we set ν = (rmax/H)2. In addition,
we design 8 and 9 hovering positions for MinPath-SCA.
Figs. 7(a)-(b) show the effect of ν on the average data

Fig. 6. (a) Average data collection versus average packet length of SNs.
(b) SN failure rate versus average packet length of SNs.

collection and the SN failure rate, respectively. The main
observations are as follows. First, both MinPath-SCA and the
proposed CSegP schemes observe an increase in the average
amount of data collected with increasing ν. This is attributable
to the fact that an increase in rmax results in a shorter UAV
flight distance, allowing for more time for SNs to upload
data. Second, the failure rate of SN for MinPath-SCA first
decreases continuously, reaches a minimum at almost ν =

0.1, and then begins to fluctuate upwards. In contrast, for the
CSegP scheme, it remains zero initially and then begins to
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Fig. 7. (a) Average data collection versus ν. (b) SN failure rate versus ν.

fluctuate upwards similar to MinPath-SCA from almost ν =

0.1. There are two main reasons for this: 1) when rmax is
small, using only 8 or 9 hovering points in MinPath-SCA
to accommodate 10 SNs can result in some SNs not being
served, leading to a high failure rate. By contrast, the proposed
CSegP scheme utilizes an advanced clustering algorithm based
on rmax that effectively covers all SNs; and 2) if the condition
of Lemma 1 is not satisfied, i.e., ( rmax

H )
2

> 0.1, the horizontal
distances from the SNs to the UAV will begin to affect the
communication links and cause the upload failures of SNs.
Finally, MinPath-SCA with N = 9 achieves a lower SN failure
rate compared to N = 8. However, when ν < 0.1, the former
shows a slightly lower average data collection than the latter.
Based on the results above, it is recommended to set rmax to
the highest value possible, as long as it satisfies the condition
outlined in Lemma 1.

From the above figures, the main results are as follows.
First, Figs. 4-6 demonstrates that despite the TD-based UAV
trajectory schemes (e.g., TD-MaxRate) achieving a higher
average SN rate than the PD-based trajectory schemes, their
overall performance is inferior. For instance, the graphs
in Figs. 6(a)-(b) illustrate that PD-MaxRate with N =

10 achieves on average 5 times higher data collection than
TD-MaxRate. Additionally, when Qth

avg = 1kbit, the failure
rate of PD-MaxRate is only about 55% of that of TD-
MaxRate. The reason for this is that in TD-based trajectories,
the allocation of a fixed length of time slots to one or
more SNs may fall short of completing their data uploads.
Moreover, a substantial number of free time slots are left
unallocated, leading to a significant waste of resources. Sec-
ond, it is noticeable from Figs. 5(a)-(b) and 6(a)-(b), that
for the PD-based trajectories, the schemes that minimize the
UAV trajectory, including the proposed CSegP scheme and
MinPath-SCA, outperform the schemes that maximize the
minimum (average) achievable rate of SNs, such as PD-
MaxRate. In addition, it is evident from Figs. 7(a)-(b) that
the proposed CSegP scheme and MinPath-SCA attain greater
average achievable data collection and lower SN failure rates at
rmax=30m (ν=0.09) in comparison to rmax=15m (ν=0.0225).
Therefore, our flight trajectory minimization model outper-
forms those depicted in Figs. 5(a)-(b) and 6(a)-(b) in terms of
achievable results. Third, the number of designable hovering
points affects the performance of the PD-based trajectory. For
instance, setting N=8 for MinPath-SCA yields a SN failure
rate of approximately 6% at Qth

avg=0.5kbit, as depicted in
Fig. 6(b). Conversely, setting N=10 for MinPath-SCA pro-
duces a reduced average data collection, as seen in Fig. 6(a).
Fourth, the proposed CSegP scheme outperforms MinPath-
SCA, as evidenced by the lower SN failure rate for a similar

TABLE II
CONVERGENCE ROUNDS V.S. NUMBER OF SNS AND CLUSTER SIZE

amount of data collected, as demonstrated in Figs. 5(a)-(b)
and 7(a)-(b). There are two reasons for this: 1) the proposed
CSegP scheme optimizes the number of hovering points based
on the distribution of SNs to effectively cover all SNs with
a minimal number of hovering points; and 2) for the SCA
method, aside from the impact of the number of available
hover points, there may be instances wherein the optimal
path cannot be attained as a result of the inadequate max-
imum number of iterations or the random initialization of
the hovering positions (refer to Fig. 4(e)). Finally, among the
available options, the DRL-based frameworks including DQN
and DDPG demonstrate the lowest performance. The reason
is that the limited number of simulations prevents the DRL
algorithm from exploring all possible paths over a large area,
thus failing to obtain the optimal path.

B. Complexity and Convergence Analysis of the TSP-Based
Segmented Path Optimization Scheme

In each round, K convex optimizations of path segments and
a TSP with K nodes have to be solved. For the TSP, the com-
plexity of the naive solution and the dynamic programming
(DP) algorithm are O(K !) and O(2K

∗ K 2), respectively. The
number of SNs and the cluster size, rmax together determine
the number of iteration rounds. The detailed results of the
simulation are presented in TABLE II. It is evident that
the iteration rounds of the proposed optimization method
are significantly lower in comparison to the SCA method’s
iteration complexity, O(N 3.5log( 1

ϵ
)), where ϵ ∈ [0, 1] is the

solution accuracy [3], [33].

VII. CONCLUSION

In this research, we studied the maximum throughput for
data collection from IoT devices with a deadline on each data
packet in UAV-assisted networks. First, by analyzing the avail-
able resource blocks provided by UAV communication, the
optimal solution for the UAV’s flight trajectory is to minimize
the flight distance while meeting the coverage requirements
to communicate with each IoT device. To accomplish this,
we proposed an advanced hierarchical clustering algorithm
that guarantees coverage of all SNs with the fewest pos-
sible number of clusters. Then we developed a segmented
path optimization scheme based on TSP to decompose the
non-convex optimization problem of minimizing the UAV
trajectory into convex subproblems. Each subproblem involves
minimizing the two adjacent path segments along the trajec-
tory. Ultimately, we transformed communication optimization
into optimizing the upload time of each device in the TDMA
manner. Numerical results reveal that the proposed approach
drastically lowers the complexity of co-designing communi-
cation and trajectory, and achieves favorable throughput and
SN failure rate performance compared to the benchmarks.
Furthermore, the proposed framework is flexible for future
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research in designing UAV paths for different channel models
and communication forms, including non-orthogonal multiple
access (NOMA), to efficiently support a large number of IoT
devices.

APPENDIX
PROOF OF LEMMA 1

Assume that SN k communicates with the UAV at hovering
point i . The horizontal distance between the UAV and SN k

is represented by ri,k =

√
(xk − xi )

2
+ (yk − yi )

2, 0 ≤ ri,k ≤

rmax where rmax is the maximum horizontal coverage radius
of the UAV. Therefore, equation (8) can be rewritten by

Q̂ = BT h 1
K

∑
i∈J

∑
k∈Ji

log2(1 +
Pmaxβ0

(H2 + ri,k 2)σ 2 ). (A-1)

By extracting H2 from the denominator of the log, we have

Q̂ = BT h 1
K

∑
i∈J

∑
k∈Ji

log2(1 +
Pmaxβ0

H2(1 + (
ri,k
H )

2
)σ 2

). (A-2)

Setting (
ri,k
H )2

≪ 1, so we obtain

Q̂ ≈ BT h 1
K

∑
i∈J

∑
k∈Ji

log2(1 +
Pmaxβ0

H2σ 2 ). (A-3)

Equation A-3 demonstrates that if the UAV meets the
requirements at (

ri,k
H )2

≪ 1, ∀k ∈ Ji , i ∈ J, the design of the
UAV’s flight path has minimal impact on the upload rates of
data from the SNs, but has a significant impact on its hovering
time and consequently on the total amount of data collected.
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