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Abstract—The connectivity of ad hoc networks has been extensively studied in the literature. Most recently, researchers model ad
hoc networks with two-dimensional lattices and apply percolation theory for connectivity study. On the lattice, given a message source
and the bond probability to connect any two neighbor vertices, percolation theory tries to determine the critical bond probability above
which a giant connected component appears. This paper studies a related but different problem, directed connectivity: what is the
exact probability of the connection from the source to any vertex following certain directions? The existing studies in math and physics
only provide approximation or numerical results. In this paper, by proposing a recursive decomposition approach, we can obtain a
closed-form polynomial expression of the directed connectivity of square lattice networks as a function of the bond probability. Based
on the exact expression, we have explored the impacts of the bond probability and lattice size and ratio on the lattice connectivity, and
determined the complexity of our algorithm. Further, we have studied a realistic ad hoc network scenario, i.e., an urban VANET, where
we show the capability of our approach on both homogeneous and heterogeneous lattices and how related applications can benefit
from our results.
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1 INTRODUCTION

IN ad hoc networks, nodes can be distributed in the
space without any preexisting communication infras-

tructures. To deliver a message to its destination, short-
range contacts and multi-hop wireless communications
are needed. Such scenarios are termed as wireless, mo-
bile, or vehicular ad hoc networks (W/M/VANETs) or
delay/disruption-tolerant networks (DTNs). In general,
the connectivity in ad hoc networks can be defined as
the connection probability of any two nodes via multiple
intermediate connections.

The connectivity problem in two-dimensional (2D) ad
hoc networks has attracted lots of attention, most re-
cently with geometrical probability, stochastic geometry,
and percolation theories [1]–[3]. When the network can
be adequately modeled as a 2D square1 lattice (e.g.,
VANET in city blocks), percolation theory has been
widely used. Initially in statistical physics, percolation
theory studies the process of liquid filtering through
porous materials. The bond probability indicates the con-
nection probability of any two neighbor vertices. If the
percolation directions are given, i.e., the connection be-
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1. Following percolation notations, square lattice is a lattice of square
cells. We use symmetric lattice to refer to the same number of horizon-
tal and vertical cells in a 2D finite lattice, and strip lattice when the
number of cells in one dimension is fixed but that in the other varies.

tween any two neighbor vertices is directed, such type
of percolation is called directed percolation (DP).

In this paper, we study a related but different problem
of DP: directed connectivity (DC), i.e., given a message
source and the bond probability to connect neighbor
vertices on a square lattice, what is the probability for the
message to reach an arbitrary vertex following certain
directions? The problem appears to be similar to DP at
the macroscopic level, but different microscopically as
DP only cares about the existence of a giant component,
while DC has to determine the exact connectivity to each
vertex, which is more relevant to network connectivity.

Despite the efforts in more than half a century, DP and
DC are mostly studied on their convergence and critical
behaviors with approximation results or numerically by
simulation, from high dimensions [4] to two dimen-
sions [5]–[7]. For DP, one of the most related work deter-
mined the critical probability analytically of a square lat-
tice where the vertical bond probability is py and the hor-
izontal probabilities are 1 and px interleaved at different
layers [5]. Conceptually, DC problems are even harder
than DP. For DC, authors in [6] discovered the relations
between the connectivity and the percolation distance,
the connectivity and percolation angle, respectively, but
only with approximation. However, by extending our
previous work on 2D ladder connectivity [8] and by
proposing a new recursive decomposition approach, we
have obtained the exact analytical expressions for the
DC problem on square lattices. The approach can be
extended to lattices with different horizontal and vertical
bond probabilities, and different tessellation shapes.

This paper makes the following contributions. First,
for the first time in literature to the best of our knowl-



edge, it gives the exact analytical solution to the DC
problem on square lattices and can quickly determine the
network connectivity without lengthy simulation. Even
though the results are based on square lattices, they can
offer valuable insights when clustering and aggregation
are possible in full 2D networks. Second, we explore the
obtained analytical expressions and analyze the impact
of the bond probability, and the lattice size and ratio
on network connectivity, in addition to determining
the complexity of the proposed approach. Third, we
apply the approach to an urban VANET scenario to
show the extensibility of the approach. Inspired by some
existing work [8], [9], we carefully mapped the urban
VANET message propagation to the DC problem. Both
homogeneous and heterogeneous cases are discussed
and valuable insights are discovered about how the
applications can benefit from the results.

The remainder of this paper is organized as follows.
In Section 2, we review the most related work to the con-
nectivity problem in ad hoc networks and its relation to
the directed connectivity. We present our analysis frame-
work and derivation in Section 3. Further, we determine
the algorithm complexity, verify the algorithm correct-
ness and explore the analytical connectivity expressions
in Section 4. Section 5 offers an extension of our approach
to a real-world problem, i.e., directed connectivity in
urban VANETs. Further discussion and conclusions are
presented in Section 6 and 7, respectively.

2 RELATED WORK

Connectivity of ad hoc networks has been extensively
studied, mostly in the 2D Euclidean spaces [10], [11].
Without fixed communication infrastructures, nodes in
ad hoc networks have to rely on their neighbors or
leverage the mobility of them to deliver messages to
the destination, often in a multi-hop manner through
wireless communications and/or short-range contacts.
As a result, the connectivity has to be characterized
probabilistically. A wide variety of ad hoc networks
exist, ranging from stationary (sensor networks [12]) to
mobile ones. VANET is a special type of the latter, where
vehicles are involved as the communication source,
destination and relay [8], [13], [14]. The unique vehi-
cle mobility introduces more challenges to connectivity,
but also offers new opportunities. For example, along
a highway, vehicles travel in one dimension, possibly
also communicating with the vehicles on the reverse
direction. In a city block scenario, a 2D square lattice
is often used to approximate the road grid.

Analytical and algorithmic tools in graph theory and
computational geometry have been widely used in
the modeling and analysis of connectivity in ad hoc
networks [15], together with geometrical probability,
stochastic geometry, and percolation theories in recent
years. For example, a connected dominating set is intro-
duced in ad hoc networks to create a virtual backbone for
the network [16]. Geometrical probability tools offer the

characterization of distance distributions among nodes
in and between different geometry shapes (e.g., triangles,
rectangles and hexagons [17]–[19]), and stochastic geom-
etry tools further introduce the time line in the random
process of node coverage and connectivity [20]. Addi-
tional nodes can be deployed, sometimes even mobile
ones, to improve the connectivity.

Most recently, percolation theory has found a wide
range of applications in networking research, particu-
larly on the connectivity in ad hoc networks [21]–[24].
Many networking scenarios can be adequately modeled
as percolation on square lattices, either individually (e.g.,
VANET in city blocks) or after clustering and aggre-
gation (cluster heads in wireless sensor networks). Al-
though many 2D regular tilings are used (e.g., hexagons
for cellular systems and rhombuses or triangles for
cells with directional antennas), square lattices are most
widely used. For messages with a given destination,
or vehicles traveling in certain directions, geographical
forwarding is often deployed to minimize the network
overhead due to flooding [8]. Thus directed percolation
becomes a premier model in such scenarios, and most
existing work applies the results from isotropic or di-
rected percolation on square lattices.

Motivated by the VANET connectivity in city sce-
narios, this paper studies the DC problem on square
lattices. We try to establish the analytical expression for
the directed connectivity from a given message source
to any possible destinations in the network. The most
related work is presented in [6], where PR,p indicates
the probability of a pair of sites at 0 and R being
connected with directed bond probability p. There exists
a value pc such that for p < pc, PR,p ∼ exp(−|R|/ξ) with
ξ ∼ (pc − p)−ν ; pc and ν can be estimated numerically.
This approximation indicates an exponential decay of
PR,p when p < pc and the exponent is determined by
how far away the bond probability is from the critical
bond probability. For p > pc, percolation happens and
there is always one (or more) infinite path (i.e., giant
component). But this does not mean the sites 0 and R
are connected. The work further discussed the impact of
percolation angle on PR,p, showing that the peculation
can only happen within a “corn” area along the diagonal
of the two connection directions.

Different from the existing work focusing on the con-
vergence behaviors of directed connectivity with ap-
proximation results obtained either by simulation or nu-
merically, we explore the exact connectivity expression
between any two sites as a function of the bond proba-
bility. In addition, we extend our work to more general
DC problems with variable bond probabilities, which
is more desirable than most of the existing work [5],
[6] which just consider either identical bond probability
or different probabilities only between horizontal and
vertical bonds.
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Fig. 1: System model and basic principles.

3 ANALYSIS FRAMEWORK

In this section, we first give the system model for
directed connectivity, and then present the analytical
framework and derivation results for lattices with size
varying from 1 ∗ 1 and 2 ∗ 2 to m ∗ n.

3.1 System Model
As shown in Fig. 1(a), we consider a 2D lattice L(m,n),
with edges parallel to the x and y axes for notation con-
venience. A message is generated at the origin O = (0, 0)
at time t = 0, and propagated along the lattice edges in
the directions indicated by arrows. Assuming the bond
probability p of any two neighbor vertices, what we
want to know is the connection probability from the
origin to (m,n), as a function of p. The derivation of
bond probability p varies in different applications. For
instance, in Section 5, we consider p as the probability
of any two adjacent road intersections in urban areas
being connected and the detailed calculation could be
referred to [8]. To be more general, bond probabilities in
a lattice network could be different from edge to edge.
But for the simplicity of presenting our approach, we
assume a homogeneous p in this section. Heterogeneous
case is presented as an extension in Section 5.

Even with the simplified model, it is still a hard
problem to derive the connection probability at vertex
(m,n), denoted as P (m,n). For example, to reach (m,n),
the message can go through (m−1, n) or (m,n−1) as the
last hop. However, even if P (m− 1, n) and P (m,n− 1)
were known, it is still difficult to derive P (m,n), as the
paths from (0, 0) are not independent before they reach
the last hop. A brute-force approach has to enumerate
all possible paths and overlapping (i.e., when different
paths share the same edges) and its complexity suffers
the combinatorial explosion on the exponent. This is also
the reason why the exact result of DC remains unsolved
for so many years.

To facilitate the presentation, we also illustrate some
basic principles and simple cases in Fig. 1. First, if there
are two directed paths A and B connected by a common
vertex serially as shown in Fig. 1(b), the end-to-end con-
nectivity is P (AB) = P (A)P (B), as A and B are always
independent with directed edges. Here, we define P (A)
and P (B) as the probabilities that path A and B are
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Fig. 2: The decomposition of a 2 ∗ 2 lattice.

connected, respectively. Second, if there are two parallel
paths A and B connecting the source and destination as
shown in Fig. 1(c), the source-to-destination connectivity
is P (A + B) = P (A) + P (B) − P (AB) according to the
principle of inclusion and exclusion (PIE). These two
principles can be used to solve the 1 ∗ 1 lattice problem
as shown in Fig. 1(d): P (A) = P (B) = p · p = p2, and
P (1, 1) = P (A) +P (B)−P (A)P (B) = 2p2− p4 as A and
B are independent and not mutually exclusive. Later we
find that we also encounter a triangular cell as shown in
Fig. 1(e), and the end-to-end connectivity in this case is
PT (1, 1) = p+ p2− p · p2 = p+ p2− p3. The cases become
more complicated when A and B are also dependent.

3.2 2 ∗ 2 Lattices

Following the same principles, we attempt to solve the
2 ∗ 2 lattice problem as shown in Fig. 2. Similarly, the
top-leftmost path A and the union of all other paths,
B, are identified. But the difference from Section 3.1
is that they are no longer independent (as A and B
have many overlapping edges). A naive approach is to
consider each edge along A separately and check the
impact of their connection status on B. Depending on
each edge being connected or not, there are 24 cases of a
single path A and many more cases will be introduced
in B. If using the PIE principle, after the first level
of decomposition, to further decompose B, which has
more than two layers, is very difficult, if not impossible.
This is because most edges, other than the bottom-
rightmost two, are shared by many paths. This also
renders our previous approach [8] on one-layer ladders
not applicable to multi-layer lattices. Observing A is a
single path (i.e., no branches possible), we can have a
simple partition on it. As shown in Fig. 2(a), define Si
as the event that the last i edges along A leading to the
destination are all connected, but the last (i + 1)-th one
is not, so P (Si) = pi(1 − p) for 0 ≤ i ≤ m + n − 1.
For the origin and destination to be connected, we then
have m+ n+ 1 mutually exclusive cases, including B|Si
and A being connected where P (A) = pm+n. Define the
probability that B is connected given Si as P (B|Si), we
have
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P (m,n) = P (A+ B) = 1− P (B +A)

= 1− P (B̄Ā) (1)

= 1− P (B̄
m+n−1⋃
i=0

Si) (2)

= 1−
m+n−1∑
i=0

P (B̄|Si)P (Si) (3)

= 1−
m+n−1∑
i=0

(1− P (B|Si))P (Si)

= P (A) +

m+n−1∑
i=0

P (B|Si)P (Si), (4)

where (1) is due to De Morgan’s law, (2) due to⋃m+n−1
i=0 Si = Ā, (3) due to Si being mutually exclusive,

and (4) due to
∑m+n−1
i=0 P (Si) = P (Ā) = 1 − P (A), i.e.,

A and Si partition and constitute the entire event space
in total probability.

For L(2, 2), given S0, no end-to-end connection is
possible via vertex (0, 2) or (1, 2), so we can discard
the edges adjacent to the two vertices and have B|S0

as shown in Fig. 2(a). Given S1, it implies that (1, 2)
and (2, 2) are connected, and B does not include any
edges from (0, 2), so we can merge (1, 2) with (2, 2)
in B to obtain B|S1. Since S1 and S2 have the same
effect, they are illustrated as B|S1|2 in Fig. 2(a). Given
S3, no connection is possible through (0, 1), so the edges
adjacent to it have to be removed; it also implies that
(0, 1), (0, 2), (1, 2) and (2, 2) are connected sequentially,
so they can be merged, as B|S3 in Fig. 2(a).

After this decomposition, we have B|S0..3. Using the
serial principle, B|S0 can be decomposed into a 2 ∗ 1
lattice (or ladder) and an edge. Figure 2(b) shows how
we further decompose the ladder into A′, B′ and B′|A′
following the conditional probability approach that we
previously proposed for ladders specifically [8], while
Fig. 2(c) shows the new total probability approach with
B′|S′0..2, which can both be solved directly using the
serial principle, P (1, 1) and PT (1, 1): the results are the
same, but the new approach is simpler, especially when
we have multi-layer lattices. Similarly for B|S1|2, they
are decomposed in Fig. 2(d) to components of known
connectivity (e.g., B′′|S′′0 is the same as B|S0), and part
of B|S3 is decomposed in Fig. 2(e), where the serial
principle and P (1, 1) can be applied. Using the total
probability approach, the connectivity of the decom-
posed components can be reassembled,

P (A) = p4, P (B|S0) = p8 − p7 − 2p6 + 3p4,

P (B|S1|2) = −p9 + 3p8 − 3p6 − 3p5 + 3p4 + 2p3,

P (B|S3) = p7 − 2p6 − p5 + 2p4 + p3.

Then P (2, 2) can be recovered as follows

P (2, 2) = P (A) +

3∑
i=0

P (B|Si)P (Si)

= p12 − 4p11 + 2p10 + 4p9 + 2p8 − 4p7 − 6p6 + 6p4.
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Fig. 3: The decomposition of an m ∗ n lattice.

3.3 m ∗ n Lattices

Following the new total probability approach, we at-
tempt to solve the generic m ∗ n lattice problem as
shown in Fig. 3(a). For clarity, we have omitted the
arrow on edges in the following figures. Similar to
B|Si in Section 3.2, we can first remove the edges or
merge the vertices on the top row of an m ∗ n lattice,
as B|S0..m−1, and then remove the edges or merge the
vertices along the leftmost column of the lattice, as
B|Sm..m+n−1, by considering the top-leftmost path A and
events S0..m+n−1, as well as their impacts on B.

After this decomposition, similar to Section 3.2, we
need to further decompose the components eventually
to the ones of known connectivity. For example, B|S0

contains an m ∗ (n− 1) lattice and an edge, which leads
to a recursion among lattices. B|Sm+1 is further decom-
posed in Fig. 3(b) and similarly for all the other B|Sis.
Although all B|Sis and their decomposed components
have different structures, we have found the similari-
ties between these structures during the decomposition
process, and we can introduce a generic structure called
Tower to formulate the recursions among them.

Figure 4(a) shows the generic structure of Tower T . All
the decomposed components of the m∗n lattice, plus the
lattice itself, can be regarded as a special case of T . T has
a layered structure, with more blocks near the bottom,
as we remove edges and merge vertices gradually along
the top-leftmost portion of the tower. The source is the
bottom-leftmost vertex at (0, 0), and the destination is the
top-rightmost one at (m,n). On each layer, there are two
types of building blocks: triangles and rectangles. Each
triangle 4, highlighted in blue on layer K in Fig. 4, is
composed of two shortcuts to (m,n) and one or two
ordinary lattice edges. A rectangle 2, highlighted in red,
is the block originally in the lattice and not affected
by the decomposition process yet. Depending on the
number (ti) of4s and that (ri) of 2s, we can denote layer
i by (ti, ri), except for the base b which is represented
by the number of the bottom edges. Taking into account
all the layers in a configuration for the tower, we can
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denote it by T ((t0, 0),tKi=1(ti, ri),tNi=K+1(0, ri), b), where
t represents a series of layers. Be aware that we distin-
guish four types of layers: 1) the top layer 0 with 4s
only; 2) the mixed ones of both 4s and 2s from layer
1 to K; 3) the ones with 2s only from layer K + 1 to
N ; 4) the base b. For example, T (tn−1i=0 (0,m),m) is the
original m ∗ n lattice, T ((1, 0),tn−1i=1 (0,m),m) is the B|S1

in Fig. 3, T ((m−1, 0), (0,m−1),tn−1i=2 (0,m),m) is B|Sm+1,
and T ((m− 1, 0),tn−1i=1 (0,m− 1),m)) is B|Sm+n−1.

For a generic tower as shown in Fig. 4, we can identify
the top-leftmost path as A and a series of events Si.
Recall that Si means the last i edges along A leading
to (m,n), including the original lattice edges (either
horizontal or vertical) and shortcut edges, are connected,
but the last (i + 1)-th one is not. Let si represent
the last broken edge toward (m,n) and the edge si
corresponds to the event Si. It is important to recall
that the decomposition happens serially from event S0

to Sb, corresponding to Fig. 4(a). Each decomposition
(e.g., Si’s) is performed on the tower obtained from the
previous decomposition (i.e., Si−1’s). Essentially we have
four types of edges along A: 1) one shortcut edge (e.g.,
s0 in Fig. 4(a)) on layer K; 2) horizontal edges (e.g.,
s1 and s2), of which there are ri+1 − ti − ri on each
layer for i ≥ K; 3) at most one vertical and topmost
corner edge (s3 or sa or sb) on each layer for i > K and
ri > ti−1 + ri−1; 4) at most one vertical but not topmost
edges (s4) on each layer for i > K and ri = ri−1. In the
following, we will show how each type of Si can reduce
a tower to another of less complexity.

3.3.1 The shortcut edge along A

For example, s0 is in A but not in B, so whether
it is broken or not does not affect B, and B|S0 =
B as shown in Fig. 4(b). Using the tower notation,
T (· · · , (tK , rK), · · · ) S0−→ T ′(· · · , (tK − 1, rK), · · · ) with
the absence of the shortcut edge at layer K, and no

changes in other layers, so the tower complexity is
reduced.

3.3.2 The horizontal edges along A
For s1, it is in both A and B, and if it is broken but
s0 is connected, it will remove all the horizontal edges
left to it on layer K and introduce a shortcut to (m,n)
directly on layer K + 1, as shown in Fig. 4(c). Using
the tower notation, T (· · · , (tK , rK), (0, rK+1), · · · ) S1−→
T ′(· · · , (tK − 1, rK), (1, tK + rK − 1), · · · ), i.e., one 4
on layer K is removed, but one 4 on layer K + 1
is introduced. However, the number of 2s on layer
K + 1 has been reduced to rK + tK − 1. Recall that
rK + tK ≤ rK+1 for a valid tower, the tower complexity
is reduced overall as well.

For s2, if it is broken but s1 and s0 are connected, it will
also remove all the horizontal edges left to it on layer
K and introduce a shortcut on layer K + 1, as shown
in Fig. 4(d). In fact, all horizontal edges along A will
have the same behavior, and since they always remove
at least one 2 on the next layer and only introduce one4
on the next layer, therefore, the tower complexity keeps
decreasing with s1|2-like edges.

3.3.3 The vertical and topmost corner edges along A
For s3 on layer K + 1, if it is broken but s0..2 are
connected, it will have the same effect as S2, since s3
is the topmost edge of a vertical path segment and there
are no branches between s2 and s3, so the reduction is
shown as B|S2|3 in Fig. 4(d).

3.3.4 The vertical but not topmost edges along A
For s4 on layer K + 2, if it is broken but s0..3 are con-
nected, it will remove a 2 from the same layer, without
introducing any 4 in any layer, as shown in Fig. 4(e).
Using the tower notation, T (· · · , (0, rK+2), · · · ) S4−→
T ′(· · · , (0, rK+2 − 1), · · · ). In fact, all vertical but not
topmost edges along A will have the same behavior, and
since they always remove one 2 without introducing a
4, the tower complexity is further reduced.

3.3.5 The base
On the base line, serial and parallel principles can
be applied to reduce the tower complexity. For ex-
ample, as shown in Fig. 4(f), if layer N has tN
4s and rN 2s, it implies that the base layer
has b − (tN + rN ) edges along a single path of
connectivity pb−(tN+rN ), so P (T (· · · , (tN , rN ), b)) =
pb−(tN+rN )P (T ′(· · · , (tN , rN ), tN + rN )) using the serial
principle. For the tN 4s, each of them implies two
parallel paths: one by the shortcut to the destination di-
rectly, and another through a horizontal edge and then a
smaller tower. Since these two paths are mutually exclu-
sive, the PIE principle applies as P (T ′(· · · , (tN , rN ), tN+
rN )) = p+ (1− p)P (T ′′(· · · , (tN − 1, rN ), tN + rN )). The
PIE principle can be applied repeatedly until the base
becomes 4 free. After that, another top-leftmost path A′
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and layer K ′ can be identified and the above procedures
can be repeated to further reduce the tower complexity,
until the decomposition leads to the components of
known connectivity.

3.3.6 The overall recursion

According to Fig. 3 and Eqn. (4), the recursion process
can by summarized using the following theorem:

Theorem 1: For a lattice with size m∗n, the connection
probability at vertex (m,n),

P (m,n) = P (A) +

m+n−1∑
i=0

P (B|Si)P (Si),

where P (Si) = pi(1− p) and P (B|Si) are

P (B|S0) = p · P (m,n− 1),

P (B|S1) = P (T ((1, 0),tn−1
i=1 (0,m),m)),

· · ·
P (B|Sm−1) = P (T ((m− 1, 0),tn−1

i=1 (0,m),m)),

P (B|Sm) = P (T ((m− 1, 0),tn−1
i=1 (0,m),m)),

P (B|Sm+1) = P (T ((m− 1, 0), (0,m− 1),tn−1
i=2 (0,m),m)),

· · ·
P (B|Sm+n−2) = P (T ((m− 1, 0),tn−2

i=2 (0,m− 1), (0,m),m)),

P (B|Sm+n−1) = P (T ((m− 1, 0),tn−1
i=2 (0,m− 1),m)),

with termination conditions given in Section 3.1 and 3.2.
The derivation of the theorem is described before this

subsection and its correctness will be proved in the fol-
lowing section. Note that the tower complexity is always
reduced by each recursion, so the entire decomposition
process will terminate for sure, and then the components
can be reassembled, as well as the connectivity back to
P (m,n).

4 PERFORMANCE EVALUATION

In this section, we first offer the complexity analysis of
the proposed method to obtain the connectivity expres-
sions of m ∗ n lattices. We then verify its correctness by
both symbolic analysis and simulation. The impact of
bond probability and lattice size on the end-to-end con-
nectivity is also discussed. In addition, we exhibit some
connectivity expressions of lattices with various sizes.
Because the connectivity expression is a function of bond
probability, by analyzing the expressions, we uncover
more insights into the impact of bond probability.

4.1 Computational Complexity

As being aforementioned, one existing approach to cal-
culating the exact square lattice connectivity with size
m∗n is to use the PIE principle. P (m,n) can be obtained
by enumerating all possible source-destination paths
(i.e.,

(
m+n
n

)
paths of m+n segments each), crosschecking

their overlapping segments, and calculating the proba-
bilities for each combination of them. The complexity is

dominated by the total number of path combinations is

(m+n
n )∑
i=1

((m+n
n

)
i

)
= 2(m+n

n ) − 1.

Because the source-destination connectivity on a lattice
is symmetric along the diagonal, i.e., P (x, y) = P (y, x),
the total complexity of the PIE approach is O(2(m+n

n )−1).
In our proposed approach, the m ∗ n lattice is decom-

posed into towers. Each tower is further decomposed
into towers of smaller scales. Thus the total complexity
of our approach is determined by the total number of
components generated from the entire decomposition
process. For each Tower, we define a Stair which is
constructed with all 2s of the Tower. In other words, a
Stair is the remaining part of a Tower when removing its
top and all 4s. The total number of different Stairs with
height i is

[(
m+i
i

)
−
(
m+i−1
i−1

)]
. Upon each Stair, there can

be 4s with height from 1 to n − i. Thus for each Stair
with a height i, there can be (m − 1) ∗ (n − i) + 1 cases
of 4s on top of the Stair. Each case, together with the
corresponding Stair, forms a Tower. Thus for the total
number Nt of the intermediate towers, which determines
the complexity of the proposed algorithm, for an m ∗ n
lattice,

Nt =

n−1∑
i=1

[(
m+ i

i

)
−
(
m+ i− 1

i− 1

)]
· [1 + (m− 1)(n− i)]

=

n−1∑
i=1

(
m+ i− 1

i

)
· [1 + (m− 1)(n− i)] .

For strip lattice cases where m� n, Nt can be calculated
explicitly, e.g., when n = 2 and n = 3, the complexity can
be expressed as

Nt(n = 2) = m2,

Nt(n = 3) =
1

2
m3 +

5

2
m2 −m.

which shows the feasibility of our approach for strip
lattices with the drop of the complexity from exponential
sense (i.e., O(2(m+n

n )−1) of the PIE approach) to polyno-
mial sense.

Because of the symmetry of the lattice structure and
for the ease of the complexity expression, analysis and
comparison, let m = n, then,

Nt =

n−1∑
i=1

(
n+ i− 1

i

)
· [1 + (n− 1)(n− i)]

=

n−1∑
i=1

(
n2 − (n− 1)(i+ 1)

)
(n+ i− 1)!

(n− 1)!i!

=
n(2n2 − n+ 1)(2n− 1)!− (n3 + 1)(n!)2

n!(n+ 1)!

=
(2n2 − n+ 1)(2n)!

2 · n!(n+ 1)!
− (n2 − n+ 1).

Applying the big O notation, the complexity of our algo-
rithm is O(n2 · (2n)!

n!(n+1)! ). We can observe that (2n)!
n!(n+1)! is
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Fig. 5: The cost estimation for n ∗ n lattices.

the nth Catalan number, which can be used to represent
the number of monotonic paths along the edges of a
lattice with n∗n square cells, without passing above the
diagonal. Asymptotically, the nth Catalan number grows
as Cn ∼ 4n

n3/2
√
π

. Thus, we claim that the complexity
of our algorithm to derive the directed connectivity
expression for an n ∗ n lattice is O(

√
n · 4n).

Verified by the simulation running time, our new ap-
proach is much more efficient than the PIE approach that
has the combinatorial on the exponent. Shown in Fig. 5,
for a 6 ∗ 6 lattice, the number of PIE basic operations,
i.e., path enumerations, has already reached a magnitude
over 10250, while the total number of Tower enumerations
that our approach needs has a magnitude below 104.
Our approach is considered to be viable, especially in
many engineering applications where one dimension of
the lattice is limited, even though the other dimension
can grow to a large number, e.g., in a VANET city block
scenario with certain traffic flow directions. In addition,
due to the recursive manner of our approach, when we
obtain P (m,n), we have also obtained all P (x, y) for
x ≤ m and y ≤ n as a byproduct, so the complexity
should be amortized over all m ∗ n lattices. Further,
during the recursion process, the connectivity of precal-
culated components can be stored for table lookup in
new decomposition branches, which will greatly reduce
the recursion depth and running time.

4.2 Symbolic Verification
4.2.1 2D Ladders
In [8], we derived the connectivity for 2D ladders, which
is the connectivity from (0, 0) to (x, 1) on lattices, using
another decomposition approach that is not extensible
to lattices of more than one layer. However, we can use
that approach to verify the new one. According to [8],
the following recursive expressions can be defined for
P (x, 1)

P (x, 1) = p[px + P (x− 1, 1)− pxθ(x)], x ≥ 1,

θ(x) = p[p+ θ(x− 1)− pθ(x− 1)], x ≥ 1,

S
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S
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Fig. 6: The decomposition of a Ladder.
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Fig. 7: All source-destination paths of a 2 ∗ 2 lattice.

where P (0, 1) = p and θ(0) = 0. By simplifying these
recursions, we can obtain the symbolic, non-recursive
expression of the 2D ladder connectivity as follows

P (x, 1) = (px+1(−px+3(1− p)x+1

−p(p((p− 2)x+ p− 3)

+2(x+ 1)) + x+ 1))/((p− 1)p+ 1)2. (5)

With the new approach, as shown in Fig. 6 for illustra-
tion purposes, we have the following recursions accord-
ing to the decomposition process of towers (essentially
of 4s)

P (T ((i, 0), x)) = px−i · P (T ((i, 0), i)),

P (T ((i, 0), i)) = p+ p · P (T ((i− 1, 0), i− 1))

−p2 · P (T ((i− 1, 0), i− 1)),

with P (T ((1, 0), 1)) = PT = p + p2 − p3. Then with the
total probability in the new approach,

P (x, 1) = px+1 +

x−1∑
i=0

P (T ((i, 0), x))pi(1− p)

+P (T ((x− 1, 0), x))px(1− p), (6)

which comes to the same expression as (5). For example,
P (0, 1) = p, obviously, P (1, 1) = 2p2 − p4, the same as
that obtained in Section 3.1 using PIE, and

P (2, 1) = p7 − p6 − 2p5 + 3p3,

P (3, 1) = −p10 + 2p9 + p8 − 2p7 − 3p6 + 4p4,

· · · . (7)

4.2.2 2*2 Lattices
Because the approach used in [8] is not capable for
lattices of more than one layer, we have to use the PIE
principle. Here we use a 2 ∗ 2 lattice as an example. To
use the PIE principle, we first identify all the paths from
the source to the destination. For the case of a 2∗2 lattice,
there are 6 paths in total, as shown in Fig. 7.

Using the PIE principle,

P (2, 2) = P (A1 +A2 +A3 +A4 +A5 +A6)

=

6∑
k=1

(−1)k+1

 ∑
1≤i1<···<ik≤6

(Ai1 · . . . ·Aik )

 (8)

= p12 − p11 + 2p10 + 4p9 + 2p8 − 4p7 − 6p6 + 6p4.

where (−1)k+1 indicates the inclusion and exclusion.
Simplifying (8), we obtain the same result as that in
Section 3.2 with the new approach.
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4.3 Simulation Verification
For ladders of more than one layer, however, there are no
symbolic results in the literature, and the PIE complexity
grows extremely quickly due to the combinatorial factor
on the exponent. Thus we have to rely on the simulation
results to verify the new approach. In addition, based
on the calculation results, we try to understand the
end-to-end connectivity from the lattice size and ratio
perspective. In the next subsection, we will look at
the connectivity problem from the viewpoint of bond
probability by analyzing the connectivity expressions.

4.3.1 Symmetric Lattices
Figure 8 shows the connectivity of symmetric lattices
whose length equals to their width. With the same bond
probability, the connectivities of lattices with different
size are plotted. The bond probabilities we choose here
are from p = 0.35 to 0.95. For all the following figures in
this subsection, the lines indicate the calculation results
by using the obtained connectivity expressions, and the
point markers show the results from the simulation.
As shown in the figure, the new approach gives very
accurate numerical results, which have a very good
match with the simulation results, but without lengthy
simulations.

Obviously, for the same lattice, the higher the bond
probability, the better the connectivity, because any ad-
jacent vertices have a higher chance to be connected.
With the same bond probability, however, the increase of
lattice size does not have the same impact on the end-to-
end connectivity. For small bond probabilities, i.e., from
0.35 to 0.65, a clear drop of connectivity can be observed.
This actually corresponds to the conclusion in [6], where
the end-to-end connectivity shows an exponential decay
and the exponent is determined by how far away the
bond probability is from the critical bond probability,
i.e., around 0.6447 for the directed bond percolation
on square lattices. But when the bond probability is
reasonably large, i.e., higher than 0.65, the connectivity
remains stable.

It is also interesting to investigate how the end-to-
end connectivity increases with the rising of the bond
probability p for the same size lattice. When p is small,
e.g., increasing p from 0.35 to 0.45, only the connectivity
for small n∗n lattices (e.g., n < 3) increases considerably,
and the increase diminishes very quickly for larger n.
However, when p is reasonably large, e.g., increasing
from 0.55 to 0.65, even though the end-to-end connec-
tivity still decreases with a large n, the increase due to
an increased p actually amplifies as n increases. When p
is further increased, e.g., from 0.65 to 0.75, the end-to-
end connectivities are no longer to decrease with n (more
obviously when p = 0.85 or 0.95). Recall that percolation
occurs around p = 0.6447 on an infinite lattice, the end-
to-end connectivity on a finite lattice also shows the
deepest gradient when p is around 0.65, illustrated by
the gap between curves of different bond probabilities
in Fig. 8.

4.3.2 Strip Lattices
In many engineering fields (e.g., VANET in a city block
scenario), we are more interested in propagating mes-
sages along certain directions (or traffic flows). In this
sense, we shall focus more on the lattices with certain
width, or strips, which are less computationally com-
plex in terms of the connectivity expression derivation.
Figure 9 shows the connectivity of lattices with different
widths (n), when n = 2, 4 and 6 as examples. For any
lattices with size m∗n, we can observe that the higher the
bond probability, the better connectivity. For each bond
probability, with the fixed lattice width and increasing
length, the connectivity first increases, followed by an
eventual decrease. The wider the lattice, the further the
peak will occur. These non-monotonic curves are very
interesting to observe and very important in engineering
fields to determine the optimal m, n and p for given
applications. It shows that there is a trade-off between
the total number of available paths and the length of
each path. For a lattice with the given width, when
the lattice length increases, the number of paths will
increase, which brings more possibilities of connections
between the source and destination. However, the length
of these extra paths increases as well, leading to a lower
probability to connect the source and destination along
each path. For the overall end-to-end connectivity, the
increase of path diversity has a positive effect, while the
increase of path length has a negative one. Considering
the curves shown in the figure, before the peak occurs,
the positive effect of the path diversity is stronger than
the negative one of path length increase, leading to the
increase of connectivity probability. However, after the
peak occurs, the negative effect of path length increase
becomes dominating, which leads to the decrease of the
overall connectivity. The peak occurs around the cases
where the lattice length equals the width, which implies
a symmetric n ∗ n lattice.

In all figures of this subsection, the numerical results
from the new approach are very accurate when com-
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Fig. 9: The connectivity of m ∗ n lattices.

pared with the simulation ones. The analytical expres-
sions obtained from the decomposition process can be
used for further manipulation, e.g., derivatives, proba-
bility distribution functions and higher-order moments.
Discussion on the expressions is presented in the next
subsection.

4.4 Analysis on Connectivity Expressions
Our proposed approach provides us with the connectiv-
ity expressions of m ∗ n square lattices [25], which are
polynomial functions of bond probability p, e.g.,

P (2, 3) = p17 − 7p16 + 15 ∗ p15 − 6 ∗ p14 − 9 ∗ p13 − 5 ∗ p12

+11 ∗ p11 + 8p10 + 4p9 − 9p8 − 12p7 + 10p5,

P (3, 3) = −p24 + 12p23 − 56p22 + 124p21 − 116p20 + 34p18

+40p17 + 11p16 − 68p15 − 22p14 + 16p13 + 25p12

+24p11 + 12p10 − 24p9 − 30p8 + 20p6,

P (4, 2) = p22 − 10p21 + 37p20 − 58p19 + 23p18 + 20p17

+15p16 − 34p15 − 16p14 + 6p13 + 15p12 + 16p11

+7p10 − 16p9 − 20p8 + 15p6.

More are available at [25]. The first and second deriva-
tives of the polynomials indicate the change rates of
the connectivity and the first derivatives with regard to
the bond probability, respectively. By computing the first
and second derivatives of such connectivity expressions,
we can reveal more insights quantitatively.

4.4.1 Symmetric Lattices
Figure 10(a) shows the n ∗ n lattice connectivity over
different bond probabilities. For the same lattice, higher
bond probabilities always help achieve better connectiv-
ity. For most values of p, smaller lattices always have
higher connectivity. However, when the bond probability
is large enough, e.g., p > 0.8, it is even possible for larger
lattices to have higher connectivity due to many more
paths.

All the connectivities increase significantly when the
bond probability is between 0.4 and 0.8, where a slight
increase of the bond probability will greatly increase
the connectivity over lattices. The sharp transition cor-
responds to the same phenomenon in percolation on

an infinite lattice, but here we have more microscopic
results on the connectivity to any vertex on the lattice.
For each curve in Fig. 10(a), the increasing slope, i.e., the
first derivative of connectivity polynomial, is large when
the bond probability is within a certain transition range.
To quantitively define the transition range, we calculate
the two inflection points of the first derivative curve. We
call the range bounded by the two inflection points the
critical transition range in this paper. Following the same
legend as shown in Fig. 10(a), Fig. 10(b) and (c) show the
first and second derivatives of connectivity expressions
of n ∗ n lattices, where n is 2, 4, 6 and 8.

From Fig. 10(b), the difference of critical transition
ranges for lattices of different size can be observed,
e.g., for 2 ∗ 2 lattice, the connectivity has a significant
increase when the bond probability falls in the range of
[0.43, 0.9]. However, with the increment of the lattice
size, the critical transition range shrinks, from [0.43, 0.9]
for a 2∗2 lattice to [0.6, 0.79] for an 8∗8 lattice. Another
property that can be noted from the figure is that, the
larger the lattice is, the higher the connectivity increase
amplitude it has, which means a sharper rise. These two
observations imply that the larger the lattice size, the less
sensitive the connectivity is to the low bond probability,
i.e., p ∈ [0, 0.4], but more sensitive to the reasonably
high bond probabilities, i.e., p ∈ [0.6, 0.8].

By calculating the solution of the second derivative
equaling to 0, we can obtain a very important bond
probability, i.e., pc(m,n), where the connectivity curve
achieves the sharpest increase. This bond probability is
also the probability where the maximum value of the
first derivate curve occurs. By calculation, we find that
the value of pc(m,n), is 0.645, 0.665, 0.668 and 0.669
for 2 ∗ 2, 4 ∗ 4, 6 ∗ 6 and 8 ∗ 8 lattices, respectively and
the values are only subject to precision. An asymptotic
behavior of bond probability could be observed since
the difference between two consecutive critical bond
probabilities reduces with the increment of the lattice
size. The critical transition range can also be obtained
from the second derivative, indicated by the range of the
bond probability from the maximum second derivative
to the minimum.
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Fig. 10: Analysis of the n ∗ n lattice connectivity expressions.
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Fig. 11: Analysis of the m ∗ 1 and m ∗ 2 lattice connectivity expressions.

4.4.2 Strip Lattices

Similarly, we investigate the connectivity expressions of
strip lattices whose width is fixed, but with variable
lengths, e.g., m ∗ 1, m ∗ 2, etc. In Fig. 11, the two rows
of figures show the connectivity expressions and their
first and second derivatives for lattices with width of 1
and 2, respectively. We choose these two lattice widths
for illustration purposes and we believe the conclusion
drawn from these figures could represent other strip
lattices. For the first row where n = 1, 20 curves of
lattices with length from 1 to 20 have been plotted. To
make a fair comparison, we let the largest lattice in each
row have the same length to width ratio, e.g., 20. Thus
in the second row where n = 2, 40 curves of lattices with
length from 1 to 40 have been plotted.

For lattices with the same width (i.e., in the same
row), conclusions similar to n ∗ n lattices could be
drawn. The connectivity increases as the bond probabil-
ity increases. However, the connectivity critical transition
range shrinks dramatically with the increase of the lattice
length, while the connectivity increase amplitude rises
significantly. In the second row of figures, the curves
of lattices with m = 1 are plotted in red color. Specif-
ically in Fig. 11(d), only the curve with m = 1 has
intersections with other curves, which means that for
smaller p, P (2, 1) > P (2,m), when m > 1 and for higher
p, P (2, 1) < P (2,m). For any m1 > m2 ≥ 2 with a
given p, P (2,m1) > P (2,m2) always holds. This could
be further generalized that given a lattice width n and
bond probability p, the monotonic increasing property of
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TABLE 1: Critical bond probability for m ∗ n lattices.

m ∗ n pc(m,n) m ∗ n pc(m,n)

5*1 0.8125 10*2 0.8283
10*1 0.9013 20*2 0.9061
15*1 0.9337 30*2 0.9359
20*1 0.9501 40*2 0.9514

P (m,n), i.e., the connectivity from origin to (m,n), only
exists when m ≥ n.

The exact critical bond probability pc(m,n) can be cal-
culated with the connectivity polynomial obtained. For
lattices with width 1 and 2, the critical bond probabilities
are shown in Table 1.

By studying the curves in Fig. 11 and numbers in
Table 1, asymptotic behaviors can be observed as the
lattice size grows and general properties for lattices with
size ϕn ∗ n, can be summarized. When the lattice length
to width ratio, i.e., ϕ, is fixed, the larger the n is, the
narrower the critical transition range is but the larger
the increase amplitude is. The critical bond probability
pc(ϕn ∗ n) is also higher as shown in the table. Similar
observations are found in the symmetric lattices as well,
where ϕ could be considered as one. On the other hand,
when n is fixed, the change of ϕ, implies the change
of the percolation direction. We see with a larger ϕ, the
critical bond probability pc(ϕn ∗ n) becomes higher.

5 APPLICATION IN URBAN VANETS

As a motivating example, we apply our approach to
obtaining the connectivity of a realistic 2D network for
urban VANETs, where a Manhattan-like road structure
is considered and each road segment can be represented
by an edge in the square lattice as shown in Fig. 13.

5.1 Problem Description

In an urban VANET system, many applications are based
on message broadcasting, e.g., collision or traffic conges-
tion messages can be propagated to notify drivers blocks
away for them to detour well in advance; parking lots,
hotels, and restaurants can advertise their availability to
potential customers, reducing the extra time and fuel
cost when the drivers are looking for empty spots.
The efficiency of broadcasting is greatly impacted by
the network connectivity with multi-hop relaying from
the message source to the destination. Because message
relaying only happens when the relay node falls within
the transmission range of the transmitting node, the
vehicle density along the road highly determines the
multi-hop relaying efficiency.

We consider the most general Manhattan-like city road
structure, which is composed of horizontal and vertical
road segments. Such a structure can be modeled as a
square lattice where each intersection is a site in the
lattice and each road segment is the bond between
sites. Vehicles move on each road segment between any

two adjacent intersections. We assume that the distances
between any two adjacent vehicles in the same lane,
i.e., inter-vehicle distances, follow an independent and
identical distribution (i.i.d.), which can be either derived
mathematically or obtained empirically through mea-
surement. Recent work [26], [27] made statistic analysis
of the empirical data collected from the real world and
found that an exponential distribution, taking vehicle
density as the only parameter, can well capture the char-
acteristics and variation of the vehicle traffic in terms of
the vehicle inter-arrival time and inter-contact time [28].
Considering the nominal speed for vehicles in the same
road segment, the exponential inter-arrival time is in fact
equivalent to the exponentially distributed inter-vehicle
distance.

By multi-hop transmissions of vehicles, the probability
for a message reaching one intersection from its ad-
jacent preceding intersection is denoted as p, i.e., the
bond probability. The detailed derivation of p under the
Manhattan-like city structure is given in the following
subsection. Once we have p, the directed connectivity of
any two intersections in such an urban VANET system
can be explored, previously by simulation in [8], and
now with the analytical expressions obtained by the
new approach. Note that, in the real world, the bond
probability p reflects the connection condition between
two neighbor intersections. Besides the following math-
ematical derivation, p can be also obtained empirically
with more realistic constraints.

Depending on the nature of a message, the message
may be propagated among vehicles in the same street
(e.g., expressway), which is the one-dimensional con-
nectivity P (x, 0) on a line. If the message can be dis-
seminated to all the intersections in the downtown area
(e.g., parking availability), then the lattice connectivity
P (x, y) for all x ≤ m and y ≤ n applies. In this paper, we
assume the message originates at the intersection (0, 0)
and the directed connectivity to all other intersections
will be obtained using our approach.

5.2 Bond Probability
To derive the bond probability p in the urban VANET
system, we borrow the method from [8]. We start by
investigating the size of the “connected vehicle cluster”,
within which all vehicles are connected via wireless
transmissions, on the one-dimensional road. We denote
the size of the cluster as a random variable (RV) C
in the following derivation. Because we consider the
one-dimensional case, the cluster is formed by vehicles
distributed in a linear road. So, C is the sum of several
inter-vehicle distance RVs, which are assumed to be
exponentially distributed. It has been widely accepted
that the sum of exponential distributed RVs follows a
Gamma distribution, so the probability density function
of C can be expressed as:

fC(x) = xk−1
e−x/θ

θkΓ(k)
, for x > 0, (9)
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where k and θ are the distribution parameters, E[C] =
kθ, V ar[C] = kθ2, and Γ(k) is the Gamma function
evaluated at k. Therefore, the distribution parameters
k and θ can be calculated with the first and second
moments of C as:

k = (E[C2]/E[C]2 − 1)−1 and θ = E[C]/k.

Then the goal is left to obtain E[C] and E[C2].
Let X1 denote the inter-vehicle distance between the

first and second vehicles in a cluster and R denote the
communication range of vehicles. Then the expectation
of the cluster size can be expressed as:

E[C] = E[C|X1 < R]× Pr{X1 < R}. (10)

The conditional expectation E[C|X1 < R] can be ex-
pressed as:

E[C|X1 < R] = E[X1|X1 < R] + E[C ′],

where E[C ′] is the expectation of the cluster size without
counting the distance X1. Because the cluster size is com-
posed of i.i.d. RVs of the inter-vehicle distance, E[C ′] =
E[C]. We know the inter-vehicle distance X1 follows the
exponential distribution, i.e., Pr{X1 < R} = 1−e−λR. Let
X ′1 denote E[X1|X1 < R] =

∫ R
0
λxe−λx/(1− e−λR)dx.

Therefore, Eqn. (10) can be simplified as

E[C] =
(
X ′1 + E[C]

)
× Pr{X1 < R},

and

E[C] = X ′1 ×
Pr{X1 < R}

1− Pr{X1 < R}

=
1− e−λR(λR+ 1)

λe−λR
. (11)

Similarly, for the second-order moment of RV C, we
have

E[C2] = Pr{X1 < R} × E[(C ′ +X1)2|X1 < R]

=
1− e−λR

e−λR
×
(

2E[C]X ′1 +X ′1
2
)
, (12)

where X ′1
2 = E[X2

1 |X1 < R] =
∫ R
0
λx2e−λx/(1−e−λR)dx.

With E[C] and E[C2] obtained, the Gamma approxi-
mation in Eqn. (9) can be derived.
p, as defined in previous subsection, is equivalent to

the “bond probability” in percolation theory. In the ur-
ban VANET scenario, p represents the connection prob-
ability of any two neighbor intersections via wireless

communication. Shown in Fig. 12, assume the distance
between any two neighbor intersections is d. Let Ve, Vs,
Vw, and Vn denote the vehicles which locate closest to the
right intersection on their road segments, respectively.
Their distances to the right intersection are de, ds, dw,
and dn, respectively. Assume the directed connection
starts from the left intersection to the right one and
Vo is the closest vehicle on its road segment to the left
intersection with distance do. To make Vo connected to
the left intersection, the distribution of do is a truncated
exponential function λe−λt/(1− e−λR), for 0 ≤ t ≤ R.

In order to connect two neighboring intersections, the
cluster, starting from Vo, should include at least one vehi-
cle of Ve, Vs and Vn, in order to start new transmissions
on the other road segments. Therefore, depending on
whether Ve is connected to Vo, two disjoint cases need
to be considered:

Case One: Ve is connected to Vo, which means the clus-
ter originating from Vo has a size larger than d−do. Also
with the consideration of Vo’s location, the probability in
this case is

p1 =

∫ R

0

∫ ∞
d−t

fC(x)dx
λe−λt

1− e−λR
dt.

Case Two: Ve is not connected to Vo, which means the
cluster size is smaller than d − do. Let Vw be the last
vehicle of the cluster. To connect to the right intersection,
either Vs or Vn or both of them need to connect to
Vw. Denote the cluster size, i.e., the distance from Vo
to Vw as x, do as t, and the distance from Vw to the
right intersection as dw, then at least one of dn and ds
should be shorter than

√
(ηR)2 − (d− x− t)2, where we

consider η ∈ (0, 1) as the shadowing effect for signal
transmissions to other perpendicular streets. Therefore,
the probability that at least one of Vs and Vn is connected
to Vw is (1− e−2λ

√
(ηR)2−(d−x−t)2). Then the probability

for this case is

p2 =

∫ R

0

∫ d−t

d−t−ηR
(1−e−2λ

√
(ηR)2−(d−x−t)2)fC(x)dx

λe−λt

1− e−λR
dt.

Considering the above two disjoint cases, p is given
by

p = p1 + p2. (13)

The above derivation has been verified through exten-
sive simulation in our previous work [8]. The bond
probability under different applications can have dif-
ferent definitions. Although the bond probability is not
the main concern of this paper, it is the foundation of
all the technical contribution and the analysis above
shows the feasibility and practicability of our solution.
We can also notice the above derivation does not take
the time into consideration, which means it does not
consider the change of p over time. This is because
the change of bond probability depends on the change
of the traffic, which is out of the scope of our main
concern in this paper. For the same reason, we assume
the bond probabilities of any neighbor road segments
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are independent. We consider the traffic on the roads
as a stationary ergodic random process, and the time
average equals the ensemble average. Thus, the bond
probability can represent both the percentage of time two
intersections being connected and the likelihood that the
two intersections being connected at a given time instant.

5.3 Connectivity of Heterogeneous Lattices

The vehicle density λ on each road segment plays an
important role affecting the bond probability. In the
simulation, we assume the distance between two adja-
cent intersections is 500 m, with the wireless transmis-
sion range of 200 m. We investigate two heterogeneous
cases to study the impact of different vehicle density
distributions on the lattice connectivity, as shown in
Fig. 13(b) and (c), respectively. All road segments are
categorized into different tiers, indicating the regions
with different traffic “popularity”. The darker the region,
the more “popular” it is, implying a higher vehicle
density, i.e., a larger λ. We assume the message origin
always locates at the intersection (0, 0). Two social spots,
e.g., commercial area or transportation hub, are set at
different locations with regard to the message origin in
different cases, shown as the darkest regions in each
figure. Different vehicle densities determine the hetero-
geneous bond probability of each road segment. We
refer to [8] for the mapping between the vehicle density
and bond probability, so road segments with different
vehicle density have corresponding bond probabilities.
For the four grey-scale regions in each heterogeneous
figure, the vehicle densities are 0.02, 0.016, 0.012, and
0.01 vehicles per meter, respectively, from dark regions to
light regions. And the corresponding bond probabilities
are 0.89, 0.76, 0.59, and 0.47. With 1, 332 vehicles in total
for each figure, Fig. 13(a) demonstrates the homogeneous
case with the identical density 0.012 and identical bond
probability over all road segments for comparison pur-
poses.

Our approach can not only calculate the connectiv-
ity of lattices with homogeneous bond probabilities, it
is also applicable to lattices with heterogeneous bond
probabilities. The message is sent out from the origin
to all other intersections within the lattice in a multi-
hop manner by vehicles. The connectivity probabilities
from (0, 0) to every other intersection are calculated
and plotted in Fig. 14(a), (b), and (c), corresponding to
Fig. 13(a), (b), and (c), respectively. X and Y coordinates
indicate the locations of intersections and the height of
each bar represents the value of connection probability
between the corresponding intersection and the source
(0, 0).

With the homogeneous vehicle density, the closer the
intersection to the message origin, the higher the con-
nection probability it has. The closer the intersection to
the diagonal of the whole lattice, the higher chance it is
connected to the message origin because there are more
paths between itself and the source according to the

nature of the directed propagation. Similar conclusions
are discussed in Section 4.

However, for the heterogeneous vehicle density cases,
the connectivity distribution can be very different. For
the first case, i.e., Fig. 13(b), the origin locates near one
of the social spots and the other social spot locates
on the diagonal of the lattice. Thus the connectivity
of social spot areas is greatly increased. For the sec-
ond case, however, the connectivities of all intersections
are considerably low because both social spots locate
far from either the origin or the diagonal. The overall
connectivity is even worse than the homogeneous case,
because the social spots attract more vehicles, leaving
the other regions with smaller vehicle densities than the
average level in the homogeneous case. Thus the high
density of the social spots in this case does not help in
improving the connectivity.

The connectivity analyses on heterogeneous bond
probability distributions give us unique and valuable
insights about some implementation details of the mes-
sage propagation. First, the choice of the message source
location can have a great impact on the end-to-end con-
nectivity. As observed from the experiment, the closer
the social spot is to the message source, the better the
connectivity can be achieved; the closer the social spot
locates to the diagonal of the two message propagation
directions, the better connectivity can be achieved. This
provides us a guideline where to choose the message
source location, i.e., the location-fixed infrastructures or
mobile vehicles which can determine the location to start
broadcasting, for a better connectivity.

On the other hand, vehicles can help to increase the
bond probability actively and wisely. Recall that the
bond probability is affected by the vehicle transmission
range. Therefore, vehicles can actively increase the trans-
mission power to enlarge the transmission range, and
further increase the bond probability. However, vehicles
do not need to do so anytime anywhere which may
cause more interference and a waste of energy. Only
when a vehicle senses the environment and detects the
bond probability of the current road segment is low, it
can consider to tune up the transmission power. It can
further consider the critical transition range of the bond
probability discussed in the previous section. Only when
the current bond probability falls within the critical
transition range, it tunes up the transmission power
in order to achieve a dramatic increase in the overall
connectivity; otherwise, the improvement brought by the
increased bond probability may not be significant.

6 FURTHER DISCUSSION

In this paper, we illustrated a new decomposition ap-
proach following the mutually exclusive events and total
probability with square lattices and the homogeneous
bond probability. The approach itself is not limited by
the size and shape of the lattice, as well as the bond
probability on each edge. The keys are the introduction
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(a) Homogeneous vehicle density (b) Heterogeneous vehicle density case 1 (c) Heterogeneous vehicle density case 2

Fig. 13: Vehicle density distribution of urban VANETs.
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(a) Homogeneous vehicle density
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(b) Heterogeneous vehicle density case 1
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(c) Heterogeneous vehicle density case 2

Fig. 14: The connectivity from (0, 0) of urban VANETs.

of mutually exclusive events in the decomposition of
the lattice, and the way being able to decompose all
components recursively. It is our intention to apply the
same technique to other directed connectivity problems
on other regular tiling lattices, including triangles and
hexagons used in many applications.

On the other hand, the new approach still encounters
an exponential complexity (which is much better than
the PIE principle that has the combinatorial factor on the
exponent) of connectivity expressions, as there indeed
exist

(
m+n
n

)
distinct paths. When both m and n are large,

this leads to a very large decomposition space. Dynamic
programming approaches can be used to leverage the
known connectivity of smaller components, but when
the analytical expressions are reassembled, it will lead to
extremely high-order polynomials (the order is as high
as 2mn+m+n). Fortunately, in most engineering prob-
lems, one dimension is often of limited size while the
other dimension can grow, which keeps the exponential
complexity manageable. Also depending on the needed
precision, polynomial truncation can be used to limit the
length and complexity of these expressions.

Although it is our goal to shed new light on the di-
rected percolation problem, since the polynomial grows
quickly if m and n go to infinity, so far it is not possible
for us to obtain the exact expressions for arbitrarily large

m and n. However, the polynomial expressions in terms
of p for small m and n are readily available [25], and we
are intended to explore more properties based on these
analytical expressions. The future work will include how
to verify the convergence behaviors mentioned in the
literature using our exact results and exploring the math
properties and coefficient patterns of the polynomials,
which can reveal more insights of the connectivity.

7 CONCLUSIONS

In this paper, by proposing a new decomposition ap-
proach based on the mutually exclusive events and total
probability, we presented a scheme to obtain the directed
connectivity on arbitrary square lattices in a recursive
manner. The results are given in polynomial expressions
as a function of the bond probability on each edge. The
approach and the obtained results are validated with
the existing approaches and numerical results, which
confirm the correctness of the new approach and the
accuracy of the analytical results without lengthy simula-
tion. Further analysis of the connectivity expressions and
the possible application of these expressions in urban
VANETs have been conducted to provide more insights
into the directed connectivity in two-dimensional lattice
networks. Our future work will focus on the issues
discussed in the last section.
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