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Abstract—In this paper, we investigate the content transmission
in a heavy-crowded multiple access cellular network, whose data
traffic is offloaded through the combination of edge caching and
unmanned aerial vehicle (UAV) communication. In this context,
we formulate a novel optimization problem, which minimizes the
sum content acquisition delay of users by optimizing the multius-
er association and cache placement jointly with UAV trajectory
and transmission power over a given flight duration. However,
due to the uncertainty of the environment (e.g., random content
requests and dynamic UAV positions), it is often difficult and
impractical to solve the formulated problem using conventional
optimization methods. To this end, we model our problem as a
partially observable stochastic game where the macro base station
(MBS) and UAVs act as agents to collectively interact with the en-
vironment to receive distinctive observations. Moreover, we take
advantage of the Proximal Policy Optimization (PPO) learning
strategy and propose a novel Dual-Clip PPO-based algorithm to
solve the converted problem. To guide agent exploration, a new
exploration criterion is proposed in which each UAV agent can
obtain an intrinsic reward when it explores beyond the boundary
of explored regions (BeBold). Note that the MBS agent has the
extrinsic reward given by the environment only. Numerical results
reveal that the proposed algorithm outperforms the standard
PPO-based deep reinforcement learning algorithm. Moreover, the
proposed joint design scheme can achieve a dramatic reduction of
content acquisition delay compared with the benchmark schemes.

Index Terms—Unmanned aerial vehicle, edge caching, trajec-
tory design, cache placement, reinforcement learning.

I. INTRODUCTION

RECENTLY, unmanned aerial vehicles (UAVs) have been
widely utilized in various industries due to their high mo-

bility and cost-effectiveness [1]. The inherent characteristics of
UAVs enable them to effectively solve problems in convention-
al terrestrial communications, such as high deployment costs
and poor adaptability to exceptional situations. Consequently,
UAVs can be employed as aerial base stations (ABSs) to assist
traditional infrastructure-based cellular networks [2]. The main
application scenarios of UAV-assisted communications include
high-speed wireless connection in hotspots, reliable emergency
communication, flexible data transmission and so on [3]. With
the rapid proliferation of smart mobile devices and emerging
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mobile applications, data traffic has shown an explosive growth
in recent years. The latest Cisco report predicts that global
mobile data traffic will reach 77 exabytes per month by 2022,
of which about 79 percent is used for content transmission [4].
Edge caching, by which popular contents can be prestored at
base stations (BSs) or user equipments (UEs) before being re-
quested by mobile users, has emerged as an efficient technique
for alleviating the network traffic load [5]–[7].

To alleviate the traffic pressure of BSs in cellular networks
and satisfy the demand of data volume of content transmission,
cache-enabled UVAs are deployed to offload part of the traffic
from hotspots during peak hours [8], which is a fast and low-
cost deployment way for content transmission with low deliv-
ery delay and high data rate requirements. It is worth noting
that content acquisition delay is an intuitive evaluation of the
user experience [9]. In this paper, we study the minimum sum
content acquisition delay of all users in UAV-assisted cellular
networks for content transmission. One practical application
scenario is a stadium that hosts a large-scale concert, in which
multiple cache-enabled UAVs are deployed above the theater
to provide wireless coverage and help BSs offload data traffic.

A. Related Works

Extensive research works have been recently devoted to
the filed of UAV communications. In particular, many re-
searchers have discussed several crucial problems in UAV-
enabled communication systems, such as UAV deployment,
UAV trajectory design, cache placement, resource allocation,
and secure data transmission. The relative position between
the UAV and users has a great impact on the performance of
content transmission. There have been many studies on UAV
deployment in different scenarios [10]–[13]. The work in [10]
considered a UAV-relaying system for malfunctioning BSs,
where the capacity of the relay network was maximized by
optimizing the UAV deployment. The optimal deployment of
multiple UAVs was studied in [11] to maximize the downlink
coverage. The work in [12] studied a dual-UAV-enabled secure
communication system, where the UAV trajectory and user
scheduling were jointly optimized to maximize the minimum
worst-case secrecy rate over all users. In [13], a joint trajecto-
ry design and communication resource allocation algorithm
was proposed to maximize the minimum user throughput
for multi-UAV enabled networks. In addition, some works
have been conducted in UAV scheduling and non-orthogonal
multiple access (NOMA) precoding to improve the network
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performance of UAV-enabled cellular networks [14]–[16]. An
efficient UAV scheduling framework was proposed in [14] to
provide uninterrupted services for multiple events. The work
in [15] studied a UAV-assisted NOMA network, where a UAV
and a BS cooperatively serve ground users. To maximize the
sum rate of all ground users, a joint optimization of UAV
trajectory and NOMA precoding was proposed in [15].

Edge caching has always been an interesting research topic
in traditional cellular networks. The work in [6] studied a joint
design of cache placement and content delivery for achieving
secure transmission against eavesdropping attacks. In [7], an
optimal content placement strategy was developed to improve
the transmission efficiency of the network. In addition, a few
recent research has focused on cache-enabled UAV networks
[17]–[23]. The main purpose of deploying caches at UAVs is to
cache hot popular contents during off-peak periods so that the
contents requested by ground users can be directly transmitted
without wireless backhaul when they exist in local caches of
UAVs. The work in [17] proposed a cache placement strategy
based on the prediction of content request distribution and user
mobility. The optimal placement of cached contents and UAV
locations was studied for maximizing the minimum throughput
of all IoT devices in [18]. In [19], a joint content caching and
transmission algorithm was proposed to improve the reliability
of wireless devices. In [22], cache-enabled secure transmission
for UAV-helped scalable videos in hyper-dense networks was
studied, where cache-enabled UAVs were used as mobile BSs
to transmit video streams to the users together with small base
stations (SBSs). The work in [23] studied a joint optimization
of UAV trajectory and time scheduling for maximizing the
security of UAV-relayed wireless networks with caching.

B. Motivation and Contribution

Note that content acquisition delay, as an important indicator
for evaluating network performance, has not been well investi-
gated in the above works on cache-enabled UAV networks. In
this paper, we take minimum content acquisition delay as our
optimization objective of trajectory design and communica-
tion resource allocation in cache-enabled multi-UAV cellular
networks. The content acquisition delay is directly related to
the transmission distance between the UAV and ground users.
Adjusting the trajectories of UAVs can not only establish short-
distance transmission links for these desired UAV-user pairs,
but also extend the jamming channel distance of all undesirable
UAV-user pairs to alleviate the co-channel interference. If the
content requested by the user does not exist in local caches of
UAVs, the UAV firstly fetches the content from the macro base
station (MBS) over a wireless backhaul link and then sends it
to the associated user. Obviously, the cache placement plays a
vital role in the content acquisition delay. Although trajectory
design and cache placement have been widely investigated, to
the best of our knowledge, few research works have combined
these two aspects to fully exploit their respective strengths. It is
worth noting that the joint design of UAV trajectory and cache
placement is also affected by user scheduling and association.
Motivated by the aforementioned facts, we study the content
acquisition delay minimization in a cache-enabled multi-UAV

network by jointly optimizing the multiuser association, cache
placement, UAV trajectory and transmission power in a given
finite period. The formulated problem is a mixed-integer non-
convex problem with a highly nonlinear objective function and
thousands of binary variables and time-varying UAV trajectory
variables. Moreover, since the uncertainty in the environment,
it is often impractical to solve applying traditional alternating
algorithms based on the block coordinate descent method.

Recently, reinforcement learning (RL) [24] has emerged as a
powerful tool for solving non-convex optimization problems in
UAV-assisted networks [25]–[27]. In particular, those hard-to-
optimize problems can be simplified as maximizing cumulative
rewards through a series of proper reward design and training
mechanisms. The work in [25] proposed a deep deterministic
policy gradient (DDPG)-based algorithm to solve the coopera-
tive jamming and trajectory design problem in the multi-UAV
enabled network. The work [26] developed a deep Q-learning-
based deployment algorithm to control the hovering positions
of UAVs. The work in [27] proposed a RL framework based on
proximal policy optimization (PPO) to find the optimal altitude
and scheduling policy of UAVs that minimizes the weighted
sum age of information. However, these RL works may not be
always suitable to handle the continuous and high-dimensional
action spaces in our formulated joint optimization problem.
To this end, we model our problem as a partially observable
stochastic game and then propose a Dual-Clip Proximal Policy
Optimization (DC-PPO) algorithm to solve. Intuitively, the
ceiling of performance can be broken if there is additional
supervised information provided to guide the agent learning.
Therefore, we introduce intrinsic rewards to motivate agents
to explore before obtaining extrinsic rewards. Since the state
transition in our environment is reversible, our simple use of
intrinsic rewards to guide exploration may cause each UAV
agent to switch back and forth between the new state and the
previous state. In order to tackle this issue, we propose a novel
criterion for intrinsic rewards that encourages each UAV agent
to explore beyond the boundary of explored regions (BeBold).

The main novelty and contributions of this paper are sum-
marized as follows:
• We propose a novel framework of cache-enabled multi-

UAV cellular networks for multimedia content dissemi-
nation of users in the hotspot area. Then we minimize the
sum content acquisition delay of all users by optimizing
the UAV flight trajectory and transmission power jointly
with user association and cache placement.

• In order to model the uncertainty of the environment (e.g.,
random content requests and dynamic UAV positions), we
formulate our problem as a partially observable stochastic
game. The action taken by the MBS agent corresponds to
the user association, while the actions taken by each UAV
agent correspond to the cache placement, UAV trajectory
and power control.

• We propose a DC-PPO algorithm using the BeBold-based
exploration criterion to solve the converted problem. To
the best of our knowledge, there is no literature that uses
the BeBold-based exploration criterion to encourage each
UAV agent to gradually expand the area of exploration.

• Simulation results reveal that the proposed cache-enabled

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3181308

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 26,2023 at 04:34:21 UTC from IEEE Xplore.  Restrictions apply. 



3

multi-UAV system outperforms the traditional multi-UAV
systems without caching in term of content acquisition
delay. Besides, the proposed joint design scheme achieves
lower content acquisition delay compared to the benchm-
ark schemes without power control and trajectory design.

The rest of this paper is structured as follows. In Section II,
we introduce the system model and formulate the optimization
problem for content achieving delay minimization. In Section
III, we build a learning system to solve our proposed problem.
Section IV describes the algorithm design in details. Numerical
results and analysis are presented in Section IV. Finally, we
conclude the paper in Section V.

II. SYSTEM MODEL

We consider the downlink transmission of a cellular wireless
network as shown in Fig. 1, where one MBS and M moving
UAVs cooperatively transmit contents for a group of U ground
users, denoted by b, m ∈ M = {1, 2, . . . ,M} and u ∈ U =
{1, 2, . . . , U}, respectively. It is worth noting that each user is
under the overlapping coverage of the MBS and UAVs. We use
i ∈M∪{b} to index the access node (i.e., MBS or UAV). The
MBS is connected to the core network via a wired fiber link,
while each UAV communicates with the MBS via a wireless
backhaul link. Suppose that the wireless backhaul link and the
radio access link are allocated orthogonal frequency bands. As
a result, there is no interference between the radio access link
from the MBS (or UAV) to the user and the wireless backhaul
link from the MBS to the UAV. In addition, the radio access
link of each UAV is orthogonal to that of the MBS in order
to avoid co-channel interference between them.

A. UAV Mobility Model

We assume that the locations of the MBS and all the users
are fixed on the ground with altitude zero. Thus, a 2D cartesian
coordinate system is used with all the dimensions measured in
meters. Let wb = [xb, yb] and wu = [xu, yu]u∈U denote the
horizontal coordinates of the MBS and user u, respectively. All
UAVs fly at a fixed height H and provide services for U users
in a cyclical TDMA manner, i.e., the channel time between
the UAV and the users it serves is divided into slots, and each
slot is allocated to a user. Let qm(t) = [xm(t), ym(t)]Tm∈M
denote the horizontal plane coordinate of UAV m at time
instant t ∈ [0, T ]. For ease of exposition, we further quantize
the continuous time T as N time slots with equal duration dt,
i.e., T = dtN and n ∈ N = {1, 2, . . . , N}. It is worth noting
that the value of dt should be sufficiently small to ensure that
the position of each UAV can be considered to be static within
each time slot. Thus, the horizontal trajectory of UAV m can
be approximately denoted by a sequence of discrete points as
qm[n] = [xm[n], ym[n]]Tn∈N .

At the beginning of time slot n, UAV m flies in a horizontal
direction determined by the angle of ϑm[n] ∈ (0, 2π], distance
of dm[t] ∈ [0, dmax], where dmax denotes the maximum flying
distance that each UAV can travel during a time slot. Thus, we
use xm[n] = xm[0] +

∑n
n=0 dm[n] cos(ϑm[n]) and ym[n] =

ym[0] +
∑n
n=0 dm[n] sin(ϑm[n]) to denote the coordinate of

UAV m at time slot n. Any two UAVs should keep a minimal

Core network

Radio link Interference link Backhaul link Fiber link

UAV trajectory

Fig. 1. An illustration of downlink data transmission for a cellular network
with multiple cache-enabled UAVs.

safe distance to ensure collision avoidance among them in each
time slot. Besides, each UAV cannot fly beyond the boundary
of the target area, which is given by [0, xmax]× [0, ymax]. Then
the following trajectory constraints should be satisfied

0 ≤ ϑm[n] ≤ 2π, ∀m,
0 ≤ xm[n] ≤ xmax, ∀m,
0 ≤ ym[n] ≤ ymax, ∀m,
0 ≤ dm[n] ≤ dmax, ∀m,
‖qm[n]− qk[n]‖ ≥ dmin, ∀k 6= m,∀n,

(1)

where dmin denotes the minimal inter-UAV distance.

B. Cache Placement Model

Note that each UAV can provide content transmission only
by connecting to the MBS via wireless backhaul. Due to the
limited capacity of wireless backhaul, the transmission rate of
each UAV is also limited, which will degrade the quality of
user experience at peak-traffic period. To tackle this problem,
caching can be used for UAV transmission to alleviate network
congestion. Specifically, each UAV is equipped with a cache
device with limited capacity to prestore some popular contents
so that the traffic at the backhaul can be shifted from the peak
time to the off-peak time. If a content requested by a user exists
at the local cache of its associating UAV, the content can be
directly delivered to the user over a radio link. Otherwise, the
UAV fetches the requested content from the MBS through a
wireless backhaul link for the associated user.

In this cache model, we consider a content library contain-
ing F contents denoted by F = {1, 2, . . . , F}. Moreover, each
content is assumed to have the same size of S bits. Actually,
this assumption of equal-size contents is reasonable since each
content can be divided into blocks of the same size. We define
a content request matrix x ∈ {0, 1}NU×F , where each element
xu,f [n] = 1 means that user u requests content f at time slot
n and otherwise xu,f [n] = 0. Note that the request probability
of each user for a content is affected by the popularity of this
content. The popularity of content f in a period T is assumed
to be static and follow a Zipf distribution [28].

We define a cache placement matrix y ∈ {0, 1}NF×M , where
each element yf,m[n] = 1 means that UAV m caches content
f in time slot n and otherwise yf,m[n] = 0. All contents are
available in the MBS, while each UAV only stores a subset
of the total contents due to its limited cache capacity. We use
S×Cm to denote the storage capacity of UAV m. To increase
the diversity of cached contents, we also assume that content
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f can only be cached on at most Lf UAVs, where Lf ≤M .
Then the following cache placement constraints should satisfy∑F

f=1
yf,m[n] ≤ Cm,∀m,∑M

m=1
yf,m[n] ≤ Lf ,∀f.

(2)

C. Transmission Channel Model
Due to the height characteristics of UAVs and the complexi-

ty of environment, the UAV-to-user and MBS-to-UAV wireless
channels are more likely to be dominated by the probabilistic
line-of-sight (LoS) and non-line-of-sight (NLoS) links [29].

1) UAV-to-user: We use a statistical propagation model for
calculating the path loss between a UAV and a user. Similar
to [30], the LoS and NLoS path losses of UAV m sending a
content to user u at time slot n are given by

hLoS
m,u[n] = 20 log

(
4πfcdm,u[n]

vc

)
+ χLoS,

hNLoS
m,u [n] = 20 log

(
4πfcdm,u[n]

vc

)
+ χNLoS,

(3)

where fc denotes the carrier frequency; vc is the speed of light;
dm,u[n] is the distance from UAV m to user u at time slot n;
χLoS and χNLoS are two different shadowing factors due to the
LoS and NLoS links, respectively.

The probability of establishing a LoS connection between
UAV m and user u at time slot n is expressed as

P LoS
m,u[n] =

1

1 + c1 exp(−c2(θmu[n]− c1))
, (4)

where c1 and c2 are environment-related constant values (e.g.,
rural and dense urban); θmu[n] = 180

π arcsin( H
dm,u[n]

) is the el-
evation angle between UAV m and user u at time slot n. Then
the NLoS probability is given by PNLoS

m,u [n] = 1−P LoS
m,u[n]. As

a result, the average path loss from UAV m to user u at time
slot n is expressed as

h̃m,u[n] = P LoS
m,u[n]h

LoS
m,u[n] + PNLoS

m,u [n]hNLoS
m,u [n]. (5)

2) MBS-to-UAV: The UAV is connected to the MBS to fetch
the required content of the user from the core network but that
is not stored in the local cache. Since the distance of the MBS-
to-UAV link may be larger compared with the distance of the
UAV-to-user link, the cellular band can provide a smaller path
loss compared to the mmWave channel. In such a model, NLoS
links experience higher attenuations than LoS links due to the
shadowing and diffraction loss. According to [31], the average
path loss from the MBS to UAV m at time slot n is given by

h̃b,m[n] = P LoS
b,m[n]hLoS

b,m[n] + PNLoS
b,m [n]hNLoS

b,m [n], (6)

where hLoS
b,m[n] = d−αb,m[n] and hNLoS

b,m [n]= ηd−αb,m[n] are the LoS
and NLoS path losses from the MBS to UAV m at time slot n,
respectively; η is the additional path loss factor of the NLoS
link; db,m[n] is the distance between the MBS and UAV m at
time slot n; and α is the path loss exponent. Similar to (4),
the LoS connection probability between the MBS and UAV
m at time slot n is given by

P LoS
b,m[n] =

1

1 + c1 exp(−c2(θbm[n]− c1))
, (7)

where θbm[n]= 180
π arcsin( H

db,m[n]) and PNLoS
b,m [n]=1−P LoS

b,m[n].
3) MBS-to-user: Referring to the 3GPP standard in [32],

the path loss from the MBS to user u is calculated as

hb,u = 15.3 + 37.6 log10(db,u), (8)

where db,u is the distance from the MBS to user u.
We use Pm[n] to index the transmission power of UAV m at

time slot n, which is subject to both peak and average power
constraints, denoted by Pavg and Pmax. Then we have

Pm[n] ≤ Pmax, ∀m,n,
1

N

∑
n∈N

Pm[n] ≤ Pavg, ∀m.
(9)

According to the above analysis, the signal-to-interference-
plus-noise ratio (SINR) of MBS-to-user link, UAV-to-user link
and MBS-to-UAV link at time slot t can be expressed as

γb,u[n] =
Pb

σ210hb,u/10
,

γm,u[n] =
Pm[n]10−h̃m,u[n]/10

σ2 +
∑
i∈M,i6=m Pi[n]10

−h̃i,u[n]/10
,

γb,m[n] =
Pb

σ210h̃b,m[n]/10
,

(10)

where σ2 is the noise power and Pb is the transmission power
of the MBS.

D. User Association Model

When a user associates with a UAV, the transmission delay
mainly consists of two parts: one is the downlink transmission
delay from the UAV to this user and the other is the backhaul
transmission delay from the MBS to UAV. Moreover, since all
contents are stored in the MBS, we only consider the downlink
transmission delay when a user associates with the MBS. We
define a user scheduling matrix z ∈ {0, 1}NU×M , where each
element zu,m[n] = 1 means that user u is connected to UAV
m at time slot n and otherwise zu,m[n] = 0.

With limited endurance, each UAV will be allocated a quota
for the number of associated users in each time horizon T to
ensure the quality of user experience. We use Qm[n] to denote
the quota of UAV m at time slot n. Since the MBS can supply
power continuously on the ground, we consider that its quota
at time slot n is equal to the number of users in the cell, i.e.,
Qb[n] = U . Thus the following constraints need to be satisfied∑

i∈M∪{b}
zu,i[n] ≤ 1, ∀u ∈ U ,∑

u∈U
zu,i[n] ≤ Qi[n], ∀i ∈M∪ {b}.

(11)

Suppose that the radio link bandwidth of the MBS and each
UAV is equal. Let W and B denote the radio link bandwidth
and the backhaul link bandwidth, respectively. Since this paper
does not focus on the bandwidth allocation of the radio access
link and the backhaul link, W and B are assumed to be equally
divided among their associated users and UAVs, respectively.
At time slot n, the downlink transmission rate from access
node i (i ∈M∪ {b}) to user u is given by

Ri,u[n] =
W
∑
f∈F xu,f [n]zu,i[n]∑

u∈U
∑
f∈F xu,f [n]zu,i[n]

log2(1 + γi,u[n]). (12)
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In addition, the backhaul data transmission rate from the MBS
to UAV m for user u at time slot n is given by

Rb,m,u[n] = log2(1 + γb,m[n])

×
B
∑
f∈F xu,f [n]zu,m[n](1− ym,f [n])∑U

u=1

∑F
f=1

∑M
m=1xu,f [n]zu,m[n](1−ym,f [n])

,
(13)

when zu,m[n] = 1 and
∑
f∈F xu,f [n](1− ym,f [n]) ≥ 1. The

downlink transmission delay from access node i to user u and
the backhaul transmission delay from the MBS to UAV m for
user u are respectively expressed as

T down
i,u [n] =

S

Ri,u[n]
, T back

m,u [n] =
S

Rb,m,u[n]
. (14)

Accordingly, the delay for user u associated with the MBS (or
UAV m) to obtain all of its required contents in F within one
period T can be expressed as

Db,u =
∑
n∈N

∑
f∈F

xu,f [n]zu,b[n]T
down
b,u [n],

Dm,u =
∑
n∈N

∑
f∈F

xu,f [n]zu,m[n]

[T down
m,u [n] + (1− ym,f [n])T back

m,u [n]].

(15)

E. Problem Formulation
Let q = {qm[n],∀m,n} and p = {Pm[n],∀m,n}. Comb-

ing with the aforementioned analysis, our goal is to minimize
the sum content acquisition delay for all the users in the cell
over the whole period T . To achieve this goal, we formulate an
optimization problem by jointly designing the user association
z, cache placement y, power allocation p, UAV trajectory q.
Mathematically, this problem can be written as

P1: min
q,p,y,z

∑
u∈U

∑
i∈M∪{b}

Di,u (16a)

s. t
∑

f∈F
ym,f [n] ≤ Cm,∀m (16b)∑

m∈M
ym,f [n] ≤ Lf ,∀f (16c)∑

i∈M∪{b}
zu,i[n] ≤ 1,∀u, (16d)∑

u∈U
zu,i[n] ≤ Qi[n],∀i ∈M∪ {b}, (16e)

1

N

N∑
n=1

Pm[n] ≤ Pavg, Pm[n] ≤Pmax,∀m, (16f)

0 ≤ ϑm[n] ≤ 2π, ∀m, (16g)
0 ≤ xm[n] ≤ xmax, ∀m, (16h)
0 ≤ ym[n] ≤ ymax, ∀m, (16i)
0 ≤ dm[n] ≤ dmax, ∀m, (16j)
‖qm[n]− qi[n]‖ ≥ dmin, ∀i 6= m,∀n, (16k)

where (16b) and (16c) denote the cache capacity of each UAV
and limitation of the number of UAVs for each cached content;
(16d) and (16e) indicate that each user is associated with up to
one node and each node serves Qi[n] users in each time slot;
(16f) represents the transmission power constraint; (16g)-(16k)
describe the movement policy of each UAV.

The presented problem is shown to be a mixed-integer non-
convex programming problem, which may be difficult to solve

since it includes tremendous binary discrete decision variables
and a highly non-convex objective function. To solve such non-
convex optimization problems, most works quantize them into
several convex subproblems and then solve these subproblems
alternately in an iterative manner until the algorithm converges.
Such quantization makes the original problem easier to tackle
but at the cost of accuracy. Moreover, the optimized results are
only applicable to the current environment, while the standard
iterative algorithm using the block coordinate descent method
will fail when the environment changes. In the following sec-
tion, we model our problem as a partially observable stochastic
game and propose a Dual-Clip Proximal Policy Optimization
(DC-PPO)-based algorithm to solve, which falls into the actor-
critic framework composed of an interactive pair of policy and
value networks. The DC-PPO-based algorithm is effective to
tackle the uncertainties in the dynamic environment since it
can learn and estimate values through observations.

III. LEARNING SYSTEM FOR MULTI-UAV COOPERATED
CACHING AND COMMUNICATION

In this section, we will build a learning system to solve the
formulated non-convex optimization problem. In order to cope
with the changing UAV positions, we use a stochastic game to
model the formulated problem first and then propose a novel
DC-PPO-based algorithm to solve it.

A. Game Formulation

Since the optimization objective of the formulated problem
is to minimize the sum content acquisition delay of users in a
dynamic content transmission system, we model problem (16)
as a stochastic game. In general, the stochastic game model is
expressed by a tuple 〈K,S,O,A,P,R, γ〉, where K is the set
of agents; S denotes the state space; O denotes the observation
space;A denotes the action space;R denotes the reward space;
P denotes the state transition probability; and γ∈ [0, 1] denotes
the reward discount factor.

At each coherence time slot n, the environment state is given
by s[n] where s[n] ∈ S. Accordingly, each agent k receives a
local observation ok[n] of the environment, determined by the
observation function ok[n] , b(s[n], k), and then chooses an
action according to the observation ak[n] , π(ok[n]), forming
a joint action A[n], where πk(·) represents the policy function
of agent k. In order to encourage cooperation between agents,
multiple agents operate with the same reward. After choosing
A[n], each agent receives a reward rk[n] based on the reward
function R[n], where r1[n] = r2[n] = · · · = rK [n]. The envi-
ronment then turns to the next state s[n+1] based on the transi-
tion probability function P (s[n+1]|s[n], a1[n], · · · , aK [n]). In
our stochastic game model, serval key elements are described
below in detail.

B. Agent

In this learning system, we define the controller in both the
MBS and each UAV as an agent. Each agent has its own actor
network and critic network, which are served as the execution
policy and the policy evaluator, respectively. As shown in Fig.
2, each agent receives a local observation and takes an action
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Fig. 2. The framework of Dual-Clip Proximal Policy Optimization (DC-PPO)-based algorithm for multi-UAV cooperative networks.

based on its policy. The environment gives each agent a reward
after taking A[n] and then evolves to its next state.

C. State and Observation Space
Each agent can only obtain the information about the current

environment state by running an observation function.
1) UAV-agent: As mentioned earlier, the content acquisition

delay is directly related to the channel condition between users
and UAVs. It is very difficult to acquire accurate channel state
information in practice due to the high mobility of UAVs. In
contrast, each UAV can easily obtain the locations of all users1.
Accordingly, the observation of each UAV contains its own
location and the locations of all the users at the current time
slot and the request distribution of each user for all required
contents at the current time slot. In particular, the observation
space om[n] of UAV m at time slot t is described as

om[n] ={xm[n], ym[n], {xu[n]}u∈U ,
{yu[n]}u∈U , {xu,f [n]}u∈U∪f∈F}.

(17)

Similar to [33], we normalize the variables in (17), which are
rewritten as follows

om[n] ={xm[n], ym[n], {xu[n]}u∈U ,
{yu[n]}u∈U , {xu,f [n]}u∈U∪f∈F}.

(18)

where xm[n] = xm[n]/xmax, ym[n] = ym[n]/ymax, xu[n] =
xm[n]/xmax, and yu[n] = ym[n]/ymax.

2) MBS-agent: The observation of the MBS agent includes
the locations of all users and UAVs at the current time slot, and
the location of the MBS at the current time slot. Consequently,
the observation space of the MBS is given as

ob[n] ={xb[n], yb[n], {xu[n]}u∈U , {yu[n]}u∈U ,
{xm[n]}m∈M, {ym[n]}m∈M}.

(19)

Similarly, we normalize the variables in (18), which are further
reexpressed as

ob[n] ={xb[n], yb[n], {xu[n]}u∈U , {yu[n]}u∈U ,
{xm[n]}m∈M, {ym[n]}m∈M}.

(20)

D. Action Space
Existing research shows that if each agent only learns con-

servative feasible solutions, its exploration becomes daunting.

1The positions of all users can be reported to the MBS by the user (equipped
with GPS). Then the MBS shares the position information with all UAVs.

In this learning system, we introduce an Action-Mask module
as shown in Fig. 2, which can transform the solution that does
not satisfy the constraint into a feasible solution by modifying
the actions of each agent for training. In particular, when a
UAV agent is flying out of a given boundary, we can modify
its actions to keep it within the trajectory constraints.

1) UAV: At each time slot n, each UAV needs to choose its
own proper trajectory to provide content transmission services
for ground users. Besides, each UAV decides how much power
is required for content transmission and which content should
be cached. Accordingly, the action space am[n] of UAV m at
time slot n is given by

am[n] ={ym,f [n], dm[n], ϑm[n], Pm[n]}. (21)

2) MBS: Consider that the MBS intensively controls which
node should be selected by each user to establish a connection,
the action space ab[n] of the MBS at time slot n is given by

ab[n] ={{zu,i[n]}i∈b∪M,u∈U}. (22)

It is worth noting that the action definitions in (21) and (22)
include discrete variables and continuous variables, which can
not be directly tackled by our learning algorithm. The reason is
that conventional reinforcement learning algorithms can only
resolve problems where all action definitions are either discrete
or continuous, but can not address the hybrid action space.

In order to address this issue, we convert the discrete action
variables ym,f [n] and zu,i[n] to continuous ones. Specifically,
we use ym,f [n]∈ [0, 1] to denote the cache placement indicator
and UAV agent m can select the dym,f [n]∗F e-th content for
caching when it preforms ym,f [n] for cache placement, where
d·e denotes the ceiling function. In addition, we use zu,i[n] ∈
[0, 1] to denote the user association indicator and the MBS can
control user u to choose the dzu,i[n] ∗ (1 +M)e-th node as
the access node when it takes zu,i[n] for user access selection.
We normalize the variables dm[n], ϑm[n] and Pm[n] in order
to facilitate the elimination of the impact of large differences
among variables on model performance. As a result, the action
space am[n] is rewritten as

am[n] ={ym,f [n], dm[n], ϑm[n], Pm[n]}. (23)

where dm[n] = dm[n]/dmax, ϑm[n] = ϑm[n]/ϑmax, and
Pm[n] = Pm[n]/Pmax.

Many experiments reveal that each UAV has poor mobility
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when it moves within the horizontal distance dm∈ [0, dmax] and
direction ϑm[n]∈ [0, 2π]. To tackle this issue, we introduce an
experience setting and change the range of movement distance
and direction for each UAV as [−dmax, dmax] and [−π, π].

E. Reward Design

The definition of the reward is mandatory in order to prompt
each agent to take proper action. After executing those selected
actions, each agent can obtain an immediate reward in a certain
state at each time slot. There have been many works suggesting
the use of intrinsic rewards to motivate agents to explore before
receiving any extrinsic rewards [34]. In this system, the reward
of each UAV agent at each time slot n consists of the extrinsic
reward and the intrinsic reward, which is expressed as

Rm[n] = RExtr[n] + εRIntr
m [n],∀m ∈M, (24)

where RExtr[n] denotes the extrinsic reward provided by the en-
vironment; ε denotes the scaling hyperparameter; and RIntr

m [n]
denotes the intrinsic reward of each UAV from the exploration
criterion. Since the action selections of UAV-agents not only
affect each other but also the action selection of the MBS agen-
t, all agents share the same reward to encourage cooperation
among them for action selection.

1) Extrinsic Reward: It is clear that the extrinsic reward is
generally related to the objective function. According to (16),
we find that the optimization objective is to minimize the sum
content acquisition delay of users within a given flight period
T . Therefore, the extrinsic reward function at each time slot
n is defined as

RExtr[n] = L−
∑

i∈{b}∪M

∑
u∈U

Di,u[n],∀i ∈ {b} ∪M, (25)

where L is a large value to ensure that the extrinsic reward is
greater than 0. Note that minimizing the cost is equivalent to
maximizing the reward. In addition, Db,u[n] and Dm,u[n] are
formulated as

Db,u[n] =
∑
f∈F

xu,f [n]zu,b[n]T
down
b,u [n],∀i ∈ {b}, (26)

Dm,u[n] =
∑
f∈F

xu,f [n]zu,m[n][T down
m,u [n]

+ (1− ym,f [n])T back
m,u [n]],∀i ∈ {M}.

(27)

2) Intrinsic Reward: In this learning system, we design the
intrinsic reward to motivate each agent to constantly learn from
the environment. In an environment where the state transition
is reversible, simply using intrinsic reward to guide exploration
will result in agents going back and forth between novel states
s[n+1] and their previous states s[n]. To deal with this issue,
the BeBold-based exploration criterion [35] uses an aggressive
restriction in which each agent is rewarded only when it visits
the state s[n] for the first time in an episode. Thus, the intrinsic
reward of each UAV agent m at time slot n is defined as

RIntr
m [n] = 1{Ne(xm[n+ 1], ym[n+ 1]) = 1}

∗max

(
1

N(xm[n+1], ym[n+1])
− 1

N(xm[n], ym[n])
, 0

)
,

(28)

where Ne(xm[n+1], ym[n+1]) represents the episodic state
count and will be reset every episode.

Compared with UAV-agents, the decision of the MBS-agent
only involves user scheduling and association, so the action
space is discrete and its dimension is not significantly large.
Therefore, we assume that the reward of the MBS agent at each
time slot only contains the extrinsic reward, which is expressed
by (25). The aim of this learning system is to find an optimal
policy π∗, which maximizes the cumulative discounted reward
under the discount factor γ. Hence, the cumulative discounted
reward is expressed as

Rcumu =
∑N

n
γiRi[n],∀i ∈ {b} ∪M. (29)

F. Transition Probability

We use P (s[n+ 1]|s[n], a1[n] · · · , aI [n]) for i ∈ {b} ∪M
to denote the state transition probability, which indicates the
probability distribution of the next state after all agents execute
their corresponding actions under the current state.

IV. DC-PPO-BASED JOINT OPTIMIZATION ALGORITHM

Based on the above-mentioned stochastic game model, it is
difficult for the MBS and UAVs to receive enough information
to specify their state transition functions. Therefore, we need a
model-free algorithm that does not require a priori information
of all state transition functions to solve the resulting problem.
Since the association control for the MBS and the transmission
position and cache placement of each UAV are continuous-
valued, the action space of the stochastic game defined in the
above section is infinite, which makes tabular-value-based al-
gorithms, such as Q-learning [36], unsuitable for this problem.
In addition, policy-based algorithms such as deep deterministic
policy gradient (DDPG) [37] may not be able to properly solve
this problem, since it may suffer from high variance when the
policies of multiple agents are optimized simultaneously. Ther-
efore, we resort to the Dual-Clip Proximal Policy Optimization
(DC-PPO) algorithm to solve our formulated stochastic game
problem, which follows the actor-critic architecture that com-
poses of an interactive pair of policy and value networks. There
are several reasons for choosing the DC-PPO-based algorithm
to solve the proposed joint optimization problem. Firstly, the
DC-PPO-based algorithm has been recognized as a promising
algorithm for the trajectory design of UAVs in [38]. Secondly,
the DC-PPO-based algorithm has outstanding performance and
lower computational complexity.

In this section, we propose a DC-PPO-based algorithm for
cache placement, user association, power allocation, and UAV
trajectory design. We first provide a simple introduction for the
DC-PPO-based algorithm that is a deep reinforcement learning
(DRL) algorithm based on the actor-critic framework [39]. We
then describe the proposed DC-PPO-based algorithm in detail.

A. Preliminaries

PPO is a model-free, on-policy, policy-gradient, actor-critic
reinforcement learning algorithm designed at OpenAI [40]. In
addition, PPO-based algorithms can be roughly classified into
two categories: Penalty-PPO and Clip-PPO. The former adopts
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the Kullback-Leibler (KL) divergence to exchange the policy
[41], while the latter used in our formulated learning system
relies on a specific clipping technique in the objective function.
It is clear that the Clip-PPO-based algorithm can approximate
the hard constraints applied to the PPO-based learning system
by using much more effortless equations. Thus, the Clip-PPO-
based algorithm is much simpler algorithm that demonstrates
its significant efficiency.

In the learning system, we use π to index the policy network
which is optimized with respect to its parameterization θ. The
policy network takes the local observation o as its input and
then outputs an action a, consisting of the user association,
cache placement, UAV location, and transmission power. For a
continuous action space, the policy network is tasked to output
the moment of a probability distribution, where the mean and
variance of a multivariate Gaussian can be derived from the set
of actions. In the training phase, actions are sampled randomly
according to this distribution to increase exploration, while the
mean is taken as the action when the training is completed.

Due to each agent directly learns the action policy, the DC-
PPO-based algorithm is returned to the class of policy gradient
algorithms developed in the past decade. The policy gradient
algorithm works by iteratively updating the policy parameters
using the stochastic gradient update technique. Similar to [42],
the gradient is estimated in a Monte Carlo manner by running
the policy in the environment to obtain the sample of the policy
loss J(θ) and its gradient, which are respectively given by

J(θ) = Eo,a∼πθ

[∑
t

R(st,at)

]
= Eo,a∼πθ [Rt],

∇θJ(θ) = Eo,a∼πθ

[( T∑
t=1

∇θ log πθ(at|st)
)
Rt

]
.

(30)

The main challenge of the policy gradient algorithm lies in
reducing the variance of policy gradient estimates. We propose
a series of policy gradient estimators that substantially reduce
variance while maintaining a tolerable level of bias. Moreover,
we call this variance reduction scheme parameterized by γ ∈
[0, 1] and λ ∈ [0, 1] as the generalized advantage estimation.
According to [43], we define the generalized advantage estima-
tion as the exponentially-weighted average of l-step estimators,
which is expressed as

Ât(γ, λ) =

∞∑
l=1

(γλ)lδVt+1

=

∞∑
l=1

(γλ)l(Rt + γV (st+l+1)− V (st+l)),

(31)

where γ corresponds to the discount factor used in the cumu-
lative discounted reward function (29). It is worth noting that
the generalized advantage estimation for λ ∈ [0, 1] can make
a fundamental bias-variance tradeoff.

B. Learning Algorithm Design

The proposed DC-PPO-based algorithm for the cache place-
ment and multiuser association jointly with the UAV trajectory
design is summarized in Algorithm 1. We consider an episodic

Algorithm 1 DC-PPO-based algorithm
1: Input:
2: Environment E;
3: Observation Space O;
4: Action Space A;
5: Process:
6: Initialize policy parameter θ0i , state-value function pa-

rameter φ0i and episode buffer Di for each agent i;
7: for each episode do
8: # Collect experiences of all agents
9: for time slot n = 0, . . . , N do

10: for each agent i ∈ {b} ∪M do
11: Observe space oi[t] and choose action ai[n] by

running its policy function πi[n] = π(oi[t]).
12: end for
13: All agents perform a joint action At and interact

with the environment to receive a global extrinsic
reward RExtr[n] according to (25).

14: for each UAV agent m do
15: Compute its intrinsic reward RIntr

m [n] according
to (28) and get its total immediate reward Rn[t]
according to (24).

16: Store τm[n] = (om[n],am[n],Rm[n],om[n+ 1])
into the episode buffer Dm.

17: end for
18: end for
19: # Perform reinforcement learning algorithm
20: for each agent i do
21: Compute reward R̂i[n] in the episode buffer Di;
22: Compute generalized advantage estimates Â[n] ba-

sed on the current value function Vφn ;
23: Update the policy by maximizing the Dual-Clip

PPO objective typically through stochastic gradient
ascent with Adam:

θi[n+1]=argmax
θ

1
|Di|N

∑
τ∈Di

N∑
n=0

max
(
min
(
Â
θ
(n)
i

[n]

r(θ), clip(r(θ), 1−ε, 1+ε)Â
θ
(n)
i

[n]
)
, cÂ

θ
(n)
i

[n]
)
.

24: Fit value function by minimizing the mean-squared
error through the stochastic gradient algorithm:

φi[n+ 1] = argmin
φ

1
|Di|N

∑
τ∈Di

N∑
n=0

(Vφi[n](oi[n])− R̂i[n]).
25: end for
26: end for
27: Output: the learned policies π of all agents.

setting with each episode spanning each UAV battery lifetime
constraint T . Each episode begins with a randomly initialized
environment state (determined by the initial location and cache
placement of each UAV, the initial user association, etc.) and
continues until the end of T . The high mobility of UAVs leads
to the transition of the environment state and makes each agent
adjust its action. The proposed DC-PPO-based algorithm uses
the paradigm of centralized training and distributed learning.
Each agent receives its own observation Oi[n], i ∈M ∪ {b}
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Fig. 3. (a) Standard PPO-based algorithm (clip with ε) and (b) Dual-clip
PPO-based algorithm (clip with ε and c where Âθold (s, a) < 0).

at time slot n and then selects the action generated from the
joint policy πθ, where the policy is trained with experiences
collected simultaneously by all agents. The training process al-
ternates between collecting experiences by running the policy
in parallel. The MBS agent and each UAV agent leverages the
shared policy, where the MBS agent controls the association
and scheduling of users, while each UAV agent stores content
within its limited cache capacity and controls its trajectory
and transmitted power. All agents generate a joint action A[n]
to interact with the environment and receive a global reward
R[n+1]. Each agent obtains Ri[n+1], i∈M∪{b} depending
on the content acquisition delay of all users according to (25).
The reward is used to verify which actions are beneficial and
update the critic network. The actor network outputs the policy
and the critic network evaluates the current policy by accessing
the observation and action of each agent during the centralized
training phase. There are two types of PPO: standard PPO and
Dual-Clip PPO, both of which use gradient clipping to ensure
that poor actions do not disrupt the training.

1) Standard PPO-based Algorithm: The output of the critic
network is a component of the loss function for the actor. We
use the sampled experiences to construct the loss that contains
two parts: the loss of the critic network LPPO

value(φ) and the loss
of the actor network LPPO

policy(θ). The network structure of the
state-value function Vφ(si[n]) is the same as that of the policy
function πθ, except that the former has only one unit in its last
layer with a linear activation. The state-value function can be
used to estimate the advantage Âi[n] based on the generalized
advantage estimation [43]. We construct the squared-error loss
LPPO

value(φ) as follow

LPPO
value(φ) = (Vφi[n](si[n])−Ri[n])

2, (32)

which is optimized with the Adam Optimizer. The PPO-based
algorithm receives the expectation of samples collected from
the old policy πθold under the new policy that needs to refine
πθ. The probability ratio between the old policy and the new
policy is expressed as

r(θ) =
πθ(a|s)
πθold(a|s)

, (33)

Since the probability ratio r(θ) may be large, the maximization
of the surrogate objective function may result in an excessive
policy deviation. To tackle this issue, the standard PPO-based
algorithm imposes the constraint by forcing r(θ) to stay within
a small interval around 1, denoted by [1−ε, 1+ε], where ε is a
hyperparameter that penalizes extreme changes in the policy,

which is described as

LPPO
policy(θ) =E

[
min

(
r(θ)Âθold(s, a),

clip(r(θ), 1− ε, 1 + ε)Âθold(s, a)
)]
,

(34)

where the function clip(r(θ), 1− ε, 1+ ε) makes the ratio not
greater than 1 + ε and not less than 1− ε.

2) Dual-Clip PPO-based Algorithm: In the proposed large-
scale training environment, we find that the use of actions with
negative advantage functions will cause a negative impact on
the policy. In particular, when πθ(a|s)�πθold(a|s), the ratio
r(θ) is a larger value. When Âθold(s,a) < 0, such a large ratio
will lead to an unbounded variance due to r(θ)Âθold(s,a)� 0.
It is clear that the old policy and the new policy will diverge,
which makes it challenging to ensure the policy convergence.
Hence, we propose a dual-clip PPO-based algorithm to support
our formulated large-scale training environment, which clips
the ratio r(θ) with a lower bound of the value r(θ)Âθold(s,a).
Fig. 3 shows the clipping of the standard PPO-based algorithm
and the Dual-Clip PPO-based algorithm. When Âθold(s,a) <
0, the new objective function of the proposed dual-clip PPO
algorithm is expressed as

LDC-PPO
policy (π) = E

[
max

(
min
(
r(θ)Âθold(s,a),

clip(r(θ), 1− ε, 1 + ε)Âθold(s,a)
)
, cÂθold

)]
,

(35)

where c > 1 is a constant that indicates the lower bound.

V. SIMULATION RESULTS

In this section, we provide simulation results to demonstrate
the content distribution performance of our proposed DC-PPO-
based algorithm with the joint design of the user association,
cache placement, UAV trajectory and transmission power.

A. Simulation Setup

We consider a cache-enabled UAV-assisted cellular network
where U = 10 users are arbitrarily and fixedly distributed in
a square area with the size of 1.8 km × 1.8 km.2 There are
a static MBS and M = 4 UAVs deployed to jointly provide
content transfer services for users within this area. Based on
the 3GPP recommendation [44], we set the height of the MBS
as Hb = 10 m. The coordinate of the MBS is [1000, 800, 10].
The departure direction of each UAV is randomly generated in
an angle interval of [0, 2π]. The initial horizontal locations of
the four UAVs are [800, 1200], [1200, 1200], [800, 600] and
[1200, 600], respectively. All UAVs fly at a given altitude
H = 200 m within a finite flight period T = 100 s. For con-
venience, the flight period T is partitioned into multiple time
slots with the duration of dt= 0.5 s. The initial transmission
power of each UAV is set as the maximum transmission power
Pmax = 1 W. The average power budget of each UAV is fixed
to Pavg = 0.25 W. To avoid collisions between UAVs, the
minimum safe distance is set as Dmin = 1 m. In addition, the
maximum distance that each UAV can travel during one time

2According to the Euclidean distances of UAV-to-user links, the height of
each user is significantly smaller than the flight altitude of each UAV, which
can be neglected for simplicity.
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TABLE I
NUMERICAL CALCULATION PARAMETER SETTINGS

Description Symbol Value

MBS transmission power Pb 2 W

Radio link bandwidth W 10 MHz

Backhaul link bandwidth B 20 MHz

Speed of light vc 3 ∗ 108

Carrier frequency fc 2 GHz

Shadowing factor χLoS, χNLoS 6dB, 20dB

Environmental factor c1, c2 11.9, 0.13

Additional path loss factor η 20 dB

Path loss exponent α 2

Noise variance σ2 −100 dB/Hz

Quota of each UAV Qm 4

Quota of MBS Qb 20

slot is dmax = 25 m. At each time slot n, each user randomly
requests one content f from the content library consisting of
F = 30 contents with probability xu,f [n]. The size of each
content is equal and is set as S = 10 Mbits. We assume
that each user makes a request for a content as per the Zipf
distribution, which has been widely used to model the content
popularity [45]–[47]. Thus, the probability that user u requests
content f at time slot n can be expressed as

xu,f [n] =

1
fκ∑F
f=1

1
fκ

, (36)

where the Zipf parameter κ is fixed to κ = 0.8, which reflects
the skewness of each user’s preference for each content. Each
content f can only be stored on at most Lf = 2 UAVs. Each
UAV m is required to have a limited cache memory with a
capacity of Cm contents, which will increase from 3 to 7. Note
that the setting of communication-related parameters follows
the 3GPP specification [48], which are shown in Table I.

In order to illustrate the effectiveness of the formulated joint
design scheme, we consider the following several benchmark
schemes with stochastic cache placement and user association
or without power and trajectory optimization:
• Stochastic cache placement scheme: UAV trajectory and

transmission power as well as user association are jointly
optimized with stochastic cache placement;

• Stochastic user association scheme: UAV trajectory and
transmission power as well as cache placement are jointly
optimized with stochastic user association;

• Fixed UAV trajectory: cache placement and user associ-
ation as well as transmission power are jointly optimized
with given UAV trajectory where each UAV flies along a
circle trajectory defined in [49].

B. Network Architecture

We conduct the experimental simulations using a server with
an NVIDIA GTX 2080 Ti GPU. The software platform of the
experiment is Python 3.6 with PyTorch [50]. It is clear that
the proposed DC-PPO-based algorithm consists of the actor-
network and critic-network, each of which has one input layer,
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Fig. 4. Optimized UAV trajectory for a two-UAV assisted cellular network
under the period T = 100 s.
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Fig. 5. Optimized UAV trajectory for a four-UAV assisted cellular network
under the period T = 100 s.

two hidden layers and one output layer. Moreover, each hidden
layer is assumed to have the same number of neurons and is
set as e = 64. We use the rectified linear unit (ReLU) function
fReLU(x) = max{0, 1} to describe the activation function in
each hidden layer. The Adam optimizer can be used to update
the actor network and critic network. The learning rate for both
neural networks is set as 0.0001. The clip parameter and the
discount factor in our proposed algorithm are set as ε = 0.2
and γ = 0.999, respectively. In addition, the training process
of our proposed algorithm has Nept = 20000 episodes, each
of which contains N = 100 or N = 200 time slots.

C. Result Analysis

In Fig. 4, we investigate two UAVs case where one MBS and
M = 2 UAVs cooperatively provide content transfer services
for U= 20 ground users. Fig. 4 shows the trajectories of UAV1

and UAV2 projected onto the horizontal plane for T = 100 s.
All users are assumed to be uniformly distributed in this figure
and the MBS is located at [1000, 800]. We use the black circle
to denote the positions of ground users. As can be seen, UAV1

and UAV2 begin from [600, 800] and [1400, 800], respectively,
which are marked with blue stars. Although all the users are
randomly distributed in this square area, it can be seen from
Fig. 4 that the optimized trajectories of the two UAVs can well
match the distribution of all users. During the flight period T ,
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Fig. 7. Heatmaps for the location of UAV3 agent learnt with different algorithms in the four-UAV environment at 500K training steps. The color depth
reflects the number of visitation counts for the location of UAV3 agent.
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Fig. 6. Optimized UAV trajectory for a four-UAV assisted cellular network
under the period T = 200 s.

UAV1 and UAV2 constantly learn and update their movement
policies to provide better channel conditions and lower delay
content transfer services for ground users. As expected, UAV1

and UAV2 fly to the ground users and stay near their serving
users for a certain amount of time. In addition, the two UAVs
try to stay as far away from each other as possible to alleviate
the co-channel interference.

In Fig. 5 and Fig. 6, we investigate four UAVs case in which
one MBS and M = 4 UAVs are employed to transmit contents
to U = 20 users. Fig. 5 and Fig. 6 depict the trajectories of the
four UAVs obtained by the proposed DC-PPO-based algorithm
under T = 100 s and T = 200 s, respectively. Similar to Fig. 4,
the black circle and magenta square index the positions of the
MBS and users, respectively. Then the four UAVs begin from
their initial positions, which are provided in Section V-A. By
optimizing the trajectories of the four UAVs, we cannot only
establish high-quality wireless links for the desired UAV-user
pairs, but also enlarge the interfering channel distance between
those undesired UAV-user pairs to reduce the co-interference.
Therefore, the proposed algorithm attempts to make a tradeoff
between the co-channel interference and the good channel. It
can be observed from Fig. 5 and Fig. 6 that the four UAVs fly
near to their respective serving users and hover above each of
them for a period of time. As expressed, all UAVs continuously
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Fig. 8. Cumulative reward versus the number of iterations for a four-UAV
system with different algorithms.

adjust their trajectories to achieve a better reward as the reward
is directly related to the air-to-ground channel conditions. It is
clear that with the increase of T , each UAV has more freedom
to move closer to the users to obtain better channel conditions,
which results in the decrease in terms of the content acquisition
delay.

In the execution phase, when a user makes a service
request, the associated UAV would cache the requested content
initiatively based on its own remaining cache capacity, then fly
to the designed location and send it to the user. For clarification
purpose, we provide the adopted action in the execution phase
at time slot n = 200, including the cache placement, user
association, power allocation and UAV trajectory design, as
shown Table II. Taking UAV2 as an example, it can be
seen that users u14 and u15 are associated to UAV2, the
contents cached in UAV2 are f1, f23, f22, f10 and f25, the
power allocated is 0.369 W, and the current coordinate of its
position is [1306, 847].

To study how different algorithms affect the exploration of
each UAV agent, we analyze the visualized results of visitation
counts for the location of UAV3 agent in the four-UAV system
environment. The target for each UAV agent is to constantly
learn and update its policy to provide content delivery services
with minimum total content acquisition delay for 20 ground
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TABLE II
ACTIONS PERFORMED BY EACH AGENT AT TIME SLOT n = 200.

Associated users Cached contents Power allocation Current UAV position

UAV1 {u7, u8} {f13, f8, f6, f27, f17} 1.01 [591, 1281]

UAV2 {u14, u15} {f1, f23, f22, f10, f25} 0.369 [1306, 847]

UAV3 {u1, u3, u4, u17, u18, u19} {f17, f3, f15, f28, f11} 1.989 [1547, 1274]

UAV4 {u6, u9, u10} {f7, f26, f14, f27, f15} 1.848 [1029, 1528]
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Fig. 9. The content acquisition delay versus the number of users for a four-
UAV system with different cache capacities Cm.

users randomly distributed in a square area 1.8 km× 1.8 km.
We define the number of visitation counts N(s) at every state
as the metric to evaluate the effectiveness of the BeBold-based
exploration criterion. Fig. 7 depicts the heatmap of visitation
counts for the location of UAV3 agent at 500K training steps
with different algorithms. It can be observed from Fig. 7 that
the color depth area of the standard PPO-based algorithm is
obviously smaller than that of the DC-PPO-based algorithm +
the BeBold-based exploration criterion. The reason is that the
standard PPO-based algorithm only uses the extrinsic reward
to guide exploration, which thus leads to the UAV3 agent going
back and forth between the new state s3[n+1] and its previous
state s3[n]. Moreover, the BeBold-based exploration criterion
is capable of providing an intrinsic reward to the UAV3 agent
when it explores beyond the boundary of explored areas, which
motivates the UAV3 agent for exploration before its extrinsic
reward is received.

In Fig. 8, we show the cumulative reward versus the number
of iterations under the following algorithms: (i) the DC-PPO-
based algorithm; (ii) the standard PPO-based algorithm; and
(iii) the DC-PPO-based algorithm + the BeBold-based explo-
ration criterion. The received reward of each agent contains the
intrinsic reward from the exploration criterion and the extrinsic
reward given by the environment. Moreover, the BeBold-based
exploration criterion can help each agent explore Beyond
the Boundary of explored regions. With the increase of the
number of iterations, we find that the cumulative rewards of
the three algorithm have an obvious tendency to increase and
converge. It is notable that the proposed DC-PPO+BeBold
algorithm is guaranteed to nearly converge at 65 iterations,
while the DC-PPO-based and the standard PPO-based algo-
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Fig. 10. The content acquisition delay versus the number of contents for a
four-UAV system with different cache capacities Cm.

rithm converge after 85 and 75 iterations, respectively. It can
also be seen that the proposed DC-PPO+BeBold algorithm
achieves a significant higher cumulative reward than the DC-
PPO-based algorithm and the standard PPO-based algorithm,
which further verifies the superiority of the DC-PPO+BeBold
algorithm.

In Fig. 9, we show the relationship between the total content
acquisition delay and the number of users under varying cache
capacity, where M = 4 and F = 40. It can be seen from Fig.
9 that the total content acquisition delay for the three different
cache capacities increases monotonically with the number of
users. It should be noted that the state space and action space
increases largely as the number of users increases, which thus
decreases the probability that the optimal legal action is taken.
It can also be seen from Fig. 9 that the total content acquisition
delay in the case of Cm = 7 is significantly smaller than that
in the case of Cm = 3. The reason is that as the cache capacity
becomes large, each UAV m can prestore more contents in its
cache memory and users associated with this UAV have more
possibilities to directly access their requested contents.

In Fig. 10, we plot the total content acquisition delay versus
the number of contents with different cache capacities, where
M = 4 and U = 20. It can be seen from Fig. 10 that the total
content acquisition delay increases monotonically for the three
different cache capacities as the number of contents increases.
The reason is that increasing the number of contents largely
increases the state space and legal action space, which results
in the decrease of the probability that the optimal legal action
is taken. It is clear that the case of Cm = 7 contents achieves
significantly smaller delay as compared with the two cases of
Cm = 3 and Cm = 5 contents. This is because when Cm = 7,
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Fig. 11. Computation of the content acquisition delays achieved by different
design schemes for a four-UAV system, where F = 40.
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Fig. 12. Computation of the content acquisition delays achieved by different
optimization algorithms for a four-UAV system, where F = 40.

most of the multimedia contents requested by the ground users
can be stored at different UAVs instead of being fetched from
the MBS using the backhaul links of the UAVs.

Fig. 11 compares the content acquisition delay achieved by
the following schemes: (i) the proposed joint design scheme;
(ii) the stochastic cache placement scheme; (iii) the stochastic
user association scheme; and (iv) the fixed trajectory scheme.
It can be seen from Fig. 11 that the content acquisition delays
of all the four schemes increase largely as the number of users
increases. In addition, we note that the curves of the stochastic
cache placement scheme and the fixed UAV trajectory scheme
are very close to each other in the regime of U ≤ 23, while
the former scheme obtains lower content acquisition delay than
the latter scheme when U ≥ 23. Such results suggest that the
cache placement optimization is more important for reducing
the content acquisition delay when the number of ground users
is smaller, while the trajectory optimization is more prominent
with increasing U . Note that the proposed joint design scheme
always achieves great gain compared with the three benchmark
schemes in term of the content acquisition delay, which further
verifies the effectiveness of the proposed joint design scheme.
It is clear that the performance gaps between the proposed joint
design scheme and the three benchmark schemes increase with
the number of users. This means that the proposed joint design
scheme is more capable of providing efficient and low-delay
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Fig. 13. The content acquisition delays for different number of contents and
different optimization algorithms under a four-UAV system, where U = 20.
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maximum transmission power Pmax.

content transfer services for users. All those results in Fig. 11
show that our proposed joint design scheme on UAV trajectory
and power control, user association, and fully using the storage
capacity per UAV, has a prominent impact on minimizing the
content acquisition delay.

In Fig. 12, we compare the content acquisition delay brought
by the following algorithms: (i) the DC-PPO-based algorithm;
(ii) the standard PPO-based algorithm; and (iii) the proposed
DC-PPO+BeBold algorithm. It is observed that the proposed
algorithm always achieves the lowest content acquisition delay
as compared with the standard PPO-based algorithm and the
DC-PPO-based algorithm, which verifies the superiority of the
proposed algorithm. It is notable that the content acquisition
delay gaps between the proposed algorithm and the other two
algorithms increases with the increase of the user number. The
reason is that the increase of the number of users results in a
lager state action and action space, which hence increases the
difficulty in finding an optimal policy for the MBS and each
UAV. For different values of U , the content acquisition delay
achieved by the standard PPO-based algorithm is observed to
be much less than that achieved by the proposed algorithm.

In Fig. 13, we show the impact of the number of contents on
the content acquisition delay under different algorithms. In ad-
dition, we compare the proposed DC-PPO+BeBold algorithm
with the standard PPO-based algorithm and the DC-PPO-based
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algorithm. It is clear that the proposed DC-PPO+BeBold algo-
rithm can achieve a great performance improvement compared
with the other two algorithms in terms of content acquisition
delay. In the presence of F ≤ 40 contents, the standard PPO-
based algorithm can achieve a content acquisition delay close
to the DC-PPO-based algorithm, while the former achieves a
little lower delay. In addition, we can observe that the content
acquisition delay increases gradually for the three algorithms
as the total number of contents grows. It can also be seen that
the performance gaps between the proposed algorithm and the
other two algorithms become larger with increasing F . All the
numerical results in Fig. 12 and Fig. 13 confirm the superiority
of the proposed DC-PPO+BeBold algorithm.

Fig. 14 shows the content acquisition delays of different
schemes versus maximum transmission power Pmax. It is clear
that the content acquisition delays of all the four schemes
decrease as Pmax becomes large. In addition, we note that
the proposed joint design with power control scheme always
achieves the lowest content acquisition delay, while the fixed
UAV trajectory without power control scheme has the highest
content acquisition delay. When Pmax ≤ 0.7 W, we observe
that the proposed joint design without power control scheme
significantly outperforms the fixed UAV trajectory with power
control scheme in terms of content acquisition delay. In con-
trast, when Pmax > 0.7 W, the latter scheme has lower content
acquisition delay than the former. Such results suggest that
in the low transmission power regime, trajectory optimization
is more important for improving the content acquisition delay,
while the in the high transmission power regime, power control
is more significant.

VI. CONCLUSIONS

In this paper, we investigated multimedia content delivery in
UAV-assisted cellular networks where one MBS and multiple
cache-enabled UAVs were deployed to provide content transfer
services to ground users. We formulated a delay minimization
problem by optimizing the cache placement and multiuser as-
sociation jointly with UAV trajectory and transmission power.
To cope with the uncertainty in the high mobility environment,
we transformed the delay minimization problem as a partially
observable stochastic game model in which the MBS and each
UAV acted as an agent and the total content acquisition delay
of users was defined as the extrinsic reward. In addition, the
actions taken by the MBS were related to the user association,
while the actions taken by each UAV corresponded to the UAV
trajectory, cache placement and power control. We proposed
a DC-PPO+BeBold algorithm to solve our joint optimization
problem. Extensive simulation results shown that the proposed
joint design scheme can achieve significant performance gains
compared to the benchmark schemes. Our results also indicat-
ed that the proposed DC-PPO+BeBold algorithm is capable of
outperforming the DC-PPO-based algorithm and the standard
PPO-based algorithm in terms of content acquisition delay.
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