
3376 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Downlink Scheduler for Delay Guaranteed Services
Using Deep Reinforcement Learning

Jiequ Ji , Xiangyu Ren , Student Member, IEEE, Lin Cai , Fellow, IEEE, and Kun Zhu , Member, IEEE

Abstract—In this article, we propose a novel scheduling scheme
to guarantee per-packet delay in single-hop wireless networks for
delay-critical applications. We consider several classes of pack-
ets with different delay requirements, where high-class packets
yield high utility after successful transmission. Considering the
correla-tionship of delays among competing packets, we apply a
delay-laxity concept and introduce a new output gain function for
scheduling decisions. Particularly, the selection of a packet takes
into account not only its output gain but also the delay-laxity
of other packets. In this context, we formulate a multi-objective
optimization problem aiming to minimize the average queue length
while maximizing the average output gain under the constraint of
guaranteeing per-packet delay. However, due to the uncertainty in
the environment (e.g., time-varying channel conditions and random
packet arrivals), it is difficult and often impractical to solve this
problem using traditional optimization techniques. We develop a
deep reinforcement learning (DRL)-based framework to solve it.
Specifically, we decompose the original optimization problem into
a set of scalar optimization subproblems and model each of them
as a partially observable Markov Decision Process (POMDP). We
then resort to a Double Deep Q Network (DDQN)-based algorithm
to learn an optimal scheduling policy for each subproblem, which
can overcome the large-scale state space and reduce Q-value overes-
timation. Simulation results show that our proposed DDQN-based
algorithm outperforms the conventional Q-learning algorithm in
terms of reward and learning speed. In addition, our proposed
scheduling scheme can achieve significant reductions in average
delay and delay outage drop rate compared to other benchmark
schemes.

Index Terms—Resource allocation, packet selection, delay and
network utility optimality, deep reinforcement learning.

I. INTRODUCTION

THE increasing popularity of intelligent mobile devices is
spurring the development of wireless networks and the

emergence of new mobile applications with advanced features
such as unmanned driving, extended reality, telemedicine and

Manuscript received 23 January 2023; revised 14 April 2023; accepted 4 May
2023. Date of publication 16 May 2023; date of current version 6 March 2024.
This work was supported in part by the National Natural Science Foundation of
China under Grant 62071230, in part by Natural Sciences and Engineering Re-
search Council of Canada, and Compute Canada. Recommended for acceptance
by N. Zhang. (Corresponding authors: Lin Cai; Kun Zhu.)

Jiequ Ji and Kun Zhu are with the College of Computer Science and Tech-
nology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China (e-mail: jiequ@nuaa.edu.cn; zhukun@nuaa.edu.cn).

Xiangyu Ren and Lin Cai are with the Department of Electrical and Computer
Engineering, University of Victoria, Victoria, BC V8W 3P6, Canada (e-mail:
jamesrxy@uvic.ca; cai@ece.uvic.ca).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3276697, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3276697

automatic navigation. Moreover, these applications are time-
critical and typically have a stringent delay requirement to
guarantee their quality of experience (QoE) which is not fully
addressed in existing wireless networks [1]. How to effectively
manage premium network resources to ensure QoE for time-
critical applications is an open issue.

The resource scheduling problem of wireless networks has
been extensively studied in various contexts, where throughput
and delay are the main performance index [2], [3], [4]. For the
case when the traffic is inside the capacity region, the throughput
is equal to the arrival rate and then the throughput maximization
problem reduces to a network stability problem. The network
can be stabilized by a max-weight policy that schedules links
per time to maximize a weighted sum of transmission rates,
where the weights are queue backlogs [5]. This is typically
shown by the Lyapunov drift theory [6]. For a general case when
the traffic is either inside or outside of the capacity region, the
max-weight policy can be combined with a flow control policy
to jointly maximize the throughput and stabilize the network [7],
[8], [9]. In [10] and [11], a delay-based Lyapunov function was
proposed, where the delay of the head-of-queue packet is served
as a weight of the max-weight decision. In [12], the Lyapunov
optimization theory was used to transform the service delay
minimization while ensuring long-term accuracy requirements
into minimizing a drift-plus-cost.

Although there are few works that use delay-based scheduling
to solve joint stability and utility optimization problems, it is
not suitable for applications with stringent delay requirements.
For many delay-critical applications, packets arriving late are as
severe as being dropped. Existing works achieved maximum
throughput utility by minimizing the average queue backlog
based on the assumption that all packets in the same flow have
the same delay requirement and then yield the same utility after
successful transmission [13], [14], [15], [16]. However, for many
emerging applications where packets of the same flow may have
different delay requirements and thus have different utilities after
successful transmission. Moreover, suffering excessive delay
packets should be dropped early in the network to avoid wasting
unnecessary network resources.

To fill the gap, we propose a delay-aware scheduling policy to
guarantee the delay of any nondropped packet. Specifically, we
consider a single-hop downlink network in which each packet re-
quires transmission over only one link. Moreover, arriving pack-
ets have different delay requirements and are divided into several
classes. When a packet exceeds its delay budget, it is dropped
in advance before being scheduled. To describe the utility of

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0728-5662
https://orcid.org/0000-0003-3505-2938
https://orcid.org/0000-0002-1093-4865
https://orcid.org/0000-0001-6784-5583
mailto:jiequ@nuaa.edu.cn
mailto:zhukun@nuaa.edu.cn
mailto:jamesrxy@uvic.ca
mailto:cai@ece.uvic.ca
https://doi.org/10.1109/TMC.2023.3276697

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3377

different classes of packets, we define an output gain function
where packets with high delay requirements yield high output
gain. Although scheduling high delay requirement packets can
obtain high output gain, it may result in packets in lower classes
being dropped unnecessarily due to excessive delay. Therefore,
a new delay-laxity concept is introduced where packets with the
least laxity are prioritized. In this context, we formulate a multi-
objective optimization problem aiming to minimize the average
queue length while maximizing the average output gain under
the constraints of guaranteeing per-packet delay and achieving
fairness among users. Although dynamic programming methods
can solve this problem, if the environment changes over time, the
solution (i.e., optimal scheduling policy) has to be recalculated
which may take a similar amount of time as the initial solution.

Recently, reinforcement learning (RL) has emerged as an
effective solution for dealing with environmental uncertainty
thanks to its capability to learn an optimal policy by interact-
ing with the environment without any prior knowledge [17],
[18], [19]. However, these RL-based algorithms perform poorly
during the training process as the parameters to be trained are
initialized with random values. Such a setup directly affects the
exploration-exploitation dilemma as an inefficient exploration
policy will take more suboptimal actions, which thus results in
poor performance. To this end, it may not be feasible to directly
employ standard RL-based algorithms to solve our problem.
We provide a new framework for solving this multi-objective
optimization problem through deep reinforcement learning. We
decompose it into a set of scalar subproblems using a weighted
sum approach and solve each subproblem cooperatively with
other subproblems through a neighborhood-based parameter
transfer strategy. We then model each subproblem as a partially
observable Markov Decision Process (POMDP) and resort to
a double deep Q network (DDQN)-based scheduling algorithm
to learn. Moreover, our proposed DDQN-based algorithm can
address the curse of dimensionality with large state and action
spaces and reduce Q-value overestimation.

The main contributions of this paper can be summarized as
follows:
� We propose a delay-aware scheduling policy for random

arriving packets with different delay requirements, where
delay-outage dropping is considered. Moreover, we define
an output gain function that combines the delay laxity and
priority of different packets to show the penalty for drop-
ping packets and the reward for successful transmission.

� We formulate a multi-objective optimization problem that
minimizes the average queue backlog while maximizing
the average output gain under the constraints of achieving
fairness among users and guaranteeing per-packet delay.
A DRL framework is proposed to solve this intractable
problem via decomposing it into a set of subproblems.
Then we model each subproblem as POMDP and explore
a DDQN-based algorithm to solve it.

� Simulation results show that our proposed DDQN-based
algorithm converges to an optimal policy at a speed 16
and 20 iterations faster than Q-learning and DQN-based
algorithms, respectively. Moreover, our proposed schedul-
ing scheme outperforms other benchmark schemes without
admission control and packet selection.

The rest of the paper is organized as follows. In Section II, we
discuss existing works on learning-based resource management
and traffic control in wireless networks. In Section III, we
introduce our system model and formulate a multi-objective
optimization problem. To efficiently solve it, we propose a DR-L
framework in Section IV. Section V describes the algorithm
design in detail. Simulation results are presented in Section VI
to evaluate the performance of our scheduling policy and algo-
rithm. Finally, we conclude our work in Section VII.

II. RELATED WORKS

There have been many studies on wireless resource manage-
ment using stochastic optimization. In particular, the theory
of Lyapunov drift and optimization has been used to ensure
network stability and utility optimization [20]. When the arrival
rate is within the capacity region, the throughput optimization
problem reduces to the network stability problem and then the
Lyapunov drift technique has been employed to stabilize the
network by greedily minimizing the Lyapunov drift every time
slot. The max-weight or backpressure algorithm was first used
for link and server scheduling in [21] and [22] and has since
become a promising solution for dealing with stability in various
network domains [23], [24], [25]. In a more general case when
the arrival rate is either inside or outside of the capacity region,
the Lyapunov drift-plus-penalty technique is used to solve joint
network stability and utility optimization problems [26], [27],
[28]. It is shown that although the max-weight algorithm can
achieve throughput optimality, it results in high network delay
due to the long queue length [27].

Recently, reinforcement learning has been actively used to
tackle network problems such as network traffic and resource
control [29], [30], [31], [32]. In [29], a deep Q-learning algo-
rithm based on recurrent neural networks was proposed to learn
a scheduling solution for queuing delay optimization by inter-
acting with the environment. In [30], an RL-based scheduling
framework was proposed that is capable of selecting different
scheduling rules based on the instantaneous scheduler state to
minimize packet delays and packet drop rates for applications
with strict quality of service (QoS) requirements. In [31], a new
learning-based proactive resource sharing policy was proposed
for next generation core communication networks. It aims to
proactively allocate available forwarding resources on switches
to traffic flows to maximize the efficiency of resource utilization
with delay satisfaction. The work in [32] proposed a learning-
based resource management algorithm that tackles the large
queue backlog problem of the max-weight algorithm while
achieving throughput optimality. However, most RL works
may not be always suitable to address the discrete and high-
dimensional action spaces in our formulated multi-objective op-
timization problem with delay guarantees and utility-optimality.

III. SYSTEM MODEL

A. Network Model

We consider the downlink scheduling problem of a single-hop
wireless network as shown in Fig. 1, which consists of one base
station (BS) and U ground users. Let U = {1, . . . , U} denote

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

3378 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 1. Illustration of a single-hop downlink scheduling network.

the set of users that are associated with the BS. The single-hop
network is assumed to operate in discrete time with normalized
time slots t∈{0, 1, . . .}. We consider three classes of packets
with different delay requirements. We let the application in
the end system specify the delay requirement which is carried
in each packet header, and the intermediate nodes can make
routing and scheduling decisions accordingly to ensure the delay
requirement, following the SET architecture [33]. For simplicity,
we assume that each packet has the same size and that at most
one packet arrives at each downlink at each time slot. The sets
of packets with high, medium, and low delay requirements are
denoted asH,M and L, respectively, whereK � H ∪M∪L.
We define A(t) ∈ {0, 1}U×K as the packet admission matrix,
and its element Au,k(t) ∈ {0, 1} denotes the binary indicator,
i.e., Au,k(t)=1 when packet k is admitted to link u at time slot
t and otherwise Au,k(t) = 0, which is subject to the constraint∑

K Au,k(t)≤1 for u ∈ U . The packet arrival matrix A(t)
is assumed to be independent and identically distributed over
time slots. In addition, we assume that the arrival processes for
different users and packets in each time slot are independent.
Unlike most works that consider the first-in-first-out (FIFO)
queue management, our proposed scheduling model selects the
optimal packet in all queues for service by jointly considering
link conditions and network-utility maximization. We refer this
as the packet-selection process, which is discussed in detail in
Section III-E. Table I summarizes the notations and definitions
used frequently in this paper.

B. Association and Transmission Model

Let S(t) = {S1(t), . . . , SU (t)} be the downlink scheduling
vector, and its element Su(t) ∈ {0, 1} represents the binary
variable, i.e., Su(t) = 1 if the BS serves user u at time slot t
and otherwise Su(t) = 0. Suppose that the BS serves at most
one user device at each time slot, which yields the following
constraints

Su(t) ∈ {0, 1}, ∀u, t,∑
u∈U

Su(t) = 1, ∀t. (1)

For simplicity, we assume that at most one packet is trans-
mitted per time slot over the selected downlink. Therefore, we
introduce binary variables η(t) � {ηu,k(t), u ∈ U , k ∈K} to

TABLE I
NOTATIONS AND DEFINITIONS

indicate the transmission states of packets, namely, ηu,k(t) = 1
means that packet k is transmitted to user u at time slot t and
otherwise ηu,k(t) = 0. Then the transmission constraints are
given by

ηu,k(t) ∈ {0, 1}, ∀u, k, t,∑
k∈K

ηu,k(t) ≤ 1, ∀u, t. (2)

Note that the probability of successful packet transmission
for each time slot is affected by the channel conditions of the
corresponding downlink. Let C(t) = {C1(t), . . . , CU (t)} be
the channel vector from the BS to each user, which is assumed
to be known by the BS at the beginning of each time slot. Given
vectors ηu,k(t) and Cu(t), the probability of successful packet
transmission over downlink u is expressed as

Pr(downlink u success|η(t),C(t)) = Φu(η(t),C(t)), (3)

where the probability function Φu(η(t),C(t)) for u ∈ U takes
only real numbers between 0 and 1. Moreover, we introduce an
auxiliary variable 1u(t) to indicate the successful transmission
of downlink u

1u(t) =

{
1, with probability Φu(η(t),C(t)),
0, with probability 1− Φu(η(t),C(t)).

(4)

It should be noted that the successful or failed transmission
over each downlink can be fully described by a joint success
distribution function Φ(η,C) of all 2U possible successes and
failures [34]. However, since the network capacity region is
independent among each downlink [34], the maximum utility
point is also independent of the interlink success correlations.
Thus, it suffices to use only the marginal distribution function

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3379

Φu(η(t),C(t)) for each u ∈ U . Then the discrete transmission
variable ηu,k in (2) can be rewritten as

η̂u,k(t) = ηu,k(t)1u(t). (5)

We define Q(t) = {Q1(t), . . . , QU (t)} as the set of packets
currently backlogged in network queue for each user. Note that
each packet is marked with its integer arrival time slot, which
is useful for determining its queuing delay in the system. Let
xuk(t) denote the sojourn time of packet k in queue u at time
slot t. In addition, the maximum tolerable queuing delay for
the three classes of packets is denoted as ThH , ThM , and ThL,
respectively. It is clear that packet k will be dropped when its
sojourn time in queue u is larger than its maximum tolerable
queuing delay. Hence, we introduce discrete binary variables
{Du,k(t), u ∈ U , k ∈ K} to indicate the queuing state of each
packet, namely, Du,k(t) = 1 means that packet k in queue u
is dropped at time slot t and otherwise Du,k(t) = 0. Then the
following queuing constraints need to be satisfied

Du,k(t) =

{
1, if xuk(t) ≥ Thk,
0, if xuk(t) < Thk,

∀k ∈ H ∪M∪L. (6)

To sum up, the packet queuing dynamic of each queue can be
expressed as

Qu(t+ 1)=max

{
Qu(t)−Su(t)η̂u,j −

∑
i�=j,i∈Qu(t)

Du,i(t), 0

}

+Au,k(t), ∀j ∈ Qu(t), k ∈ H ∪M∪L. (7)

C. Scheduling and Gain Model

Given the sojourn time of packet k in queue u∈U , we define
the delay laxity [35] as follows:

Luk(t) = Thk − xuk(t), ∀k ∈ Qu(t), ∀t, k ∈ H ∪M∪L,
(8)

which measures the remaining queue delay budget. To reduce
the packet drop rate per queue, we expect to select the packet
with the minimum delay-laxity for transmission. Since the BS
only transmits at most one packet per time slot, we can obtain
different output gains after successful transmission of different
classes of packets. We define the gain weights of packets with
high, medium and low delay requirements as ωH , ωM and ωL,
respectively, where ωH > ωM > ωL. In addition, we consider
the discounted potential output gain for all packets backlogged
in each queue, which is given as

Gu(t) = ρ
∑

k∈Xu(t)

ru,k(t), ∀u ∈ U , k ∈ H ∪M∪L, (9)

where ru,k(t) =
ωk

Luk(t)
; ρ ∈ [0, 1] denotes the discount factor;

and Xu(t) denotes the set of remaining packets in queue u per
time slot after the packet-drop decision is executed. If packet
k in queue u is transmitted by the BS in time slot t, the gain
received by queue u can be expressed as

Gu,k(t) = ru,k(t)

+ ρ

⎛
⎝ ∑

i�=k,i∈Xu(t)

ru,i(t)+
∑

u′ �=u,u′∈U

∑
j∈Xu′ (t)

ru′,j(t)

⎞
⎠ .

(10)

Hence, the average achievable gain of all queues at each time
slot can be expressed as

G(t) =
1

U

∑
u∈U

[∑
k∈Xu(t)

ωk

Luk(t)
(Su(t)η̂u,k

+ Su(t)ρ(1− η̂u,k) +

U∑
u=1

(1− Su(t))ρ)

]
. (11)

D. Problem Formulation

We define a scheduling problem that considers per-packet
delay requirement, network utility, average queuing delay, and
admission fairness among users. The gain model introduced in
the previous section is defined as the network utility function.
Let F (Ā) be a concave and non-decreasing function of the U -
dimensional vector Ā = {Ā1, . . . , ĀU}, where Āu is used to
denote the time-average admission of queue u ∈ U (in unit of
packets/slot). The following function is useful for addressing
network fairness when attributing Āu to be non-negative [36]:

F (Ā) =

U∑
u=1

Fu(Āu) =

U∑
u=1

log(1 + νuĀu), (12)

where νu is a positive constant. This example is useful because
each component function log(1 + νuĀu) has a diminishing
return property as Āu increases and becomes 0 when Āu = 0.
The average queuing delay is proportional to the average queue
length. Therefore, we formulate a multi-objective optimization
problem aiming to minimize the average queue length while
maximizing the average output gain under the constraints of
achieving fairness among users and guaranteeing per-packet
delay. Mathematically, this problem is written as

P1: max
A,S,η,D

{
− 1

T

T∑
t=0

∑
u∈U

E[Qu(t+ 1)],
1

T

T∑
t=0

G(t)

}

(13a)

s.t.
U∑

u=1

Fu(Āu) ≥
U∑

u=1

F (γ̄u), (13b)

Āu ≤ 1

T

T∑
t=0

E[Su(t)η̂u,k(t)], ∀u ∈ U (13c)

Su(t) ∈ {0, 1}, ∀u ∈ U ,
∑
u∈U

Su(t) = 1, (13d)

ηu,k(t) ∈ {0, 1},
∑

k∈Xu(t)

ηu,k(t) ≤ 1, ∀u, t, (13e)

Du,k(t)=

{
1, if xuk(t) ≥ Thk,
0, if xuk(t) < Thk,

∀k∈Xu(t). (13f)

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

3380 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 2. Implementation of priority-based single-queue packet selection.

where Āu = 1
T

∑T
t=0 E[Au(t)] denotes the average number of

packets admitted to queue u over all time slots and γ̄u ∈ {0, 1}
denotes the auxiliary variable that is important for achieving
fairness among users with random arrival rate [21]. Constraint
(13c) guarantees the mean rate stability. In addition, constraint
(13d) indicates that the BS only serves at most one user at each
time slot while constraint (13e) is used to limit the number of
packets transmitted by the BS in each time slot. Constraint (13f)
shows the value of Du,k(t) should be either 0 or 1.

E. Reduced-Complexity Scheduling Model

The implementation of the proposed scheduling model may
be inefficient in practice, especially for queue maintenance and
packet selection. To address this issue, the single-queue model
can be replaced by a set of FIFO priority queues as shown in
Fig. 2. The number of priority queues is determined by the delay
budget of packets with different delay requirements such that
packets in the same priority queue follows the sequence of delay
laxity Luk from small to large. Instead, the output gain ru,k of
packets in each queue follows a descending order from large
to small since the weight wk of the same queue remains the
same. Thus, only the first packet of the same queue needs to be
considered for scheduling in each packet-selection process. In
addition, only the head of queues should be checked for dropping
as well. In our example, three priority queues are designed where
wu,H > wu,M > wu,L. Furthermore, packets enqueued in the
same queue have the same delay budget, i.e., Thk

u,1 = Thk
u,2 =

. . . = Thk
u,Qu,k

for k ∈ {H,M,L}, where Qu,k is the queue
length of priority queue k in downlink u. The potential sojourn
time of packet i in priority queue k of downlink u is denoted by
xk
u,i for i = 1, 2, . . . , Qu,k, which follows xk

u,1 > xk
u,2 > · · · >

xk
u,Qu,k

, while the output gain of all packets in this queue has

rku,1 > rku,2 > · · · > rku,Qu,k
. Note that the number of queues

with the same weight can be further extended to meet the time
granularity requirements at the cost of memory space. However,
the problem formulation remains the same as shown in P1.

IV. DRL-BASED THROUGHPUT AND DELAY OPTIMALITY

The presented problem P1 is difficult to solve mainly per-
taining to the following reasons. First, the downlink selection
and packet scheduling variables are binary and thus (13d) and
(13e) involve integer constraints. Second, in problem P1, the
first objective minimizing the average queue length and the
second objective maximizing the output gain involve conflicts.

Although there are several classical optimization algorithms
(e.g., dynamic programming and multi-objective genetic local
search) that can be used to solve this problem, they have high
computational complexity, especially in large-scale scenarios.
In addition, due to the curse of uncertainty (i.e., random arrival
of packets), it is difficult and impractical to solve using dynamic
programming-based algorithms in practice. To this end, we
propose a deep reinforcement learning (DRL)-based method to
solve this multi-objective optimization problem, which is used
to learn policies by interacting with the environment without
any prior knowledge to maximize the cumulative rewards from
experiences. Specifically, we decompose problem P1 into a set
of scalar optimization subproblems by using the weighted sum
approach [37]. We then model each subproblem as a partially
observable Markov decision process (POMDP) and explore an
efficient double deep Q network (DDQN)-based algorithm to
solve it. In particular, we collaboratively optimize the network
parameters of all subproblems by applying the neighborhood
parameter transfer method [38] and the proposed DDQN-based
training algorithm.

A. DRL for Multi-Objective Optimization

In this subsection, we decompose the multi-objective opti-
mization problem into a set of scalar subproblems. There are
many scalarizing methods that can be used for decomposition,
such as the weighted sum method and the penalty-based bound-
ary intersection method [39]. For simplicity, we use the weighted
sum method in which a set of uniformly distributed vectors
λ1, . . . , λN is given, e.g., (1, 0), (0.99, 0.01), . . . , (0, 1) for a
bi-objective problem. Note that λn = {λn1, . . . , λnL}, where L
is the number of objectives. Thus the original multi-objective
problem is transformed into N scalar subproblems and each
subproblem is solved collaboratively with other subproblems
through the neighborhood-based parameter transfer strategy.
Note that solving each scalar subproblem usually results in
a Pareto optimal solution and the desired Pareto Front can
be obtained when all the scalar optimization subproblems are
solved in sequence. In particular, the objective function of the
nth subproblem is expressed as

max λn × f =

L∑
l=1

λnl × fl. (14)

To solve these subproblems by DRL, we model each of them
as a neural network. Then the N scalar subproblems are solved
collaboratively according to the neighbourhood-based parame-
ter transfer strategy and the proposed DDQN-based algorithm.
From (14), two neighbouring subproblems may have very close
optimal solutions since their weight vectors are adjacent [40].
In this case, each subproblem can be solved faster by leveraging
the knowledge of its neighbouring subproblems. In specific,
the parameters of the neural network model of the (n− 1)th
subproblem is described as [ωλn−1 , bλn−1], where [ω∗, b∗] denotes
the optimal parameters of the neural network model and [ω, b]
denotes the parameters that have not been optimized. Once
the (n− 1)th subproblem has been solved, i.e., its network
parameters obtained by the proposed algorithm are close to

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3381

Fig. 3. Illustration of the decomposition and parameter-transfer strategy.

optimal. The best network parameters [ωλn−1 , bλn−1] obtained
for the (n− 1)th subproblem are set as the starting point of the
network training for the nth subproblem. Accordingly, the net-
work parameters are transferred sequentially from the previous
subproblem to the next subproblem as shown in Fig. 3, which
can save a considerable amount of time compared with training
all subproblems.

The DRL framework for solving our proposed optimization
problem P1 is summarized in Algorithm 1, which consists of
the multi-objective decomposition and the neighborhood-based
parameter transfer strategy. In this algorithm, each subproblem
is modeled as a POMDP and solved by the proposed DDQN
algorithm and all the subproblems can be solved sequentially
by transferring the network weights. Hence, we can obtain an
approximate Pareto solution by solving each subproblem using
Algorithm 1. Finally, the desired Pareto Front is obtained when
all the subproblems are solved sequentially.

The proposed DRL framework has two main advantages: i)
The first is its simplicity and modularity for use, i.e., any of
the recently proposed novel DRL-based solvers (including the
improved DQN algorithm) can be integrated into the proposed
DRL framework to solve multi-objective optimization problems;
ii) Once the trained model is available, we can obtain the desired
Pareto Front directly by a simple forward propagation of the
model.

The DRL framework acts as an outer-loop. The next issue is
how to model and solve those decomposed scalar subproblems.
In the next subsection, we first formulate each subproblem as a
POMDP and then resort to a value iterative-based reinforcement
learning algorithm, named Q-learning, to solve it.

B. Preliminaries of POMDP

In our learning framework, we consider the controller on the
BS as an agent to learn how to perform data admission control,
downlink service scheduling, and packet selection in the system.
In addition, since the admission and delivery of each packet
may be affected by the current network environment and the
actions of the BS, the learning task of the BS-agent can satisfy the
Markov property. In this case, we model each scalar optimization
subproblem as a POMDP, which is described by the following
tuple:

Ω = {S,O,A,P,R, γ}, (15)

Algorithm 1: DRL Framework for Multi-Objective Opti-
mization Problems.

1: Input: The model of the subproblem M = [ω, b] and
weight vectors λ1, . . . , λN

2: Process:
3: Random initialize [ωλ1 , bλ1];
4: for n = 1, . . . , N do
5: if n == 1 then
6: Solve the first subproblem using DDQN algorithm

and obtain the network parameters [ω∗
λ1 , b∗λ1]

7: else
8: [ω∗λn , b∗λn]← [ω∗

λn−1 , b∗λn−1]
9: Solve the nth subproblem using DDQN algorithm

and obtain the network parameters [ω∗λn , b∗λn]
10: end for
11: Output: Pareto Front can be directly computed by

[ω∗, b∗]

where S denotes the set of states describing the environment;
O denotes the observation space; A denotes the action space;
R denotes the reward function that maps the network state and
the joint actions of the agent to rewards; P denotes the state
transition function with Pst,st+1

(at) being the probability that
the current state st transfers to the next state st+1 when action
at is performed; and γ ∈ [0, 1] denotes the discount factor. At
time slot t, the agent observes a state st ∈ S and chooses an
action at ∈ A according to a certain policy π : S → A, which
receives a reward rt = r(st, at) and produces a new state st+1

with the transition probability P (st+1|st, at).
The detailed definitions of POMDP for the nth subproblem

with weight λn = (λn1, λn2) are given below.
1) State and Observation Space: At each time slot t, the

BS-agent observes the state information of the environment so
as to determine the corresponding policy. The state space at
time slot t is denoted by st and it contains four elements: the
successful transmission probability 1u(t), queue length Qu(t),
packet sojourn time xu,k(t) and delay budget laxity Luk(t),
which can be expressed as

st={1u(t), Qu(t), xu,k(t), Luk(t)}, ∀u ∈U , k ∈Qu(t). (16)

Thus the state space is expressed as S = {st|t = 1, . . . , T}.
For the state space, the probability of successful transmission
for each user depends on the channel conditions that can only
be observed locally and not known by other association pairs.
Therefore, according to (4), the observation space at time slot t
can be summarized as

ot={Cu(t), Qu(t), xu,k(t), Luk(t)}, ∀u∈U , k ∈Qu(t). (17)

Accordingly, the observation space of the BS-agent is given by
O = {ot|t = 1, . . . , T}.

2) Action Space: At each slot, the BS-agent determines
whether and what types of packets are admitted in each queue.
Then the BS chooses which user is served and which packet is
transmitted in the queue corresponding to the associated user. In
addition, if the sojourn time of the packet exceeds its maximum

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

3382 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 4. Illustration of DDQN framework for resource schedule in networks.

tolerable queuing delay, it will be dropped. Thus, the action of
the BS-agent at time slot t is expressed as

at={Au,k(t), Su(t), ηu,k(t), Du,k(t)}, ∀u ∈ U , k ∈ K. (18)

Thus the action space is expressed as A = {at|t = 1, . . . , T}.
3) Reward Design: In a DRL-based framework, the learn-

ing process is driven by the generated reward and the agent
makes its policy decision by interacting with environment in
terms of maximizing the designed reward. Thus, the reward
design is crucial for problems with multiple objectives, while
the performance of the system largely depends on the reward.
It is obvious that network reward is generally related to the
objective function. According to the presented problem P1, our
objective has twofold: minimizing the average queue length and
maximizing the average output gain. As a result, the immediate
network reward is defined as

r(st, at) = λn2
1

T

T∑
t=0

G(t)− λn1
1

T

T∑
t=0

∑
u∈U

E[Qu(t+ 1)].

(19)
As shown in Fig. 4, the learning system establishes the re-

lationship between the optimal criterion and the optimal policy
by introducing a value function consisting of a state-value func-
tion and an action-value function. Specifically, the state-value
function Vπ(s) is defined by the discounted cumulative reward
Rt =

∑T
t=0 γrt of the agent in state s, which is used to measure

the quality of an available state-action pair. Given a policy π, we
define the state-value function as

Vπ(s) = Eπ[Rt|st = s] = Eπ

[(
T∑

t=0

γrt

)
|st = s

]
, (20)

where Eπ[·] denotes the expectation under the policy π. Based
on the Bellman equation [41], Vπ(s) is converted as follows

Vπ(s) =
∑
a∈A

π(a|s)(r(s, a) + γ
∑
s′

Ps,s′(a)Vπ(s
′)), (21)

where π(a|s) is the action distribution under state s and s′ is
the state at the next time slot. Similarly, the Q-value function is
defined as the expected sum of discounted rewards obtained by
performing action a at state s and following policy π in the next

state, which is given by

Qπ(s, a)=r(s, a) + γ
∑
s′

Ps,s′(a)
∑
a′∈A

π(a′|s′)Qπ(s
′, a′). (22)

There is an optimal state-value function when the optimal policy
is used among all of those possible state-value functions. We use
V ∗(s) = max

π
Vπ(s) to denote the optimal state-value function.

Moreover, the optimal state-value function V ∗(s) in state s can
be estimated by the Q-value function Q(s, a). Thus we have

V ∗(s) = max
a

Q(s, a). (23)

The agent continuously improves its policy with the accumu-
lation of experience to search an optimal policy that yields a
maximum value of Q(s, a) for all available states and actions.
Overall, the optimal Q-value function is easily obtained when
the optimal policy π∗(s) = max

π
Qπ(s, a) that maps the set of

states and actions is satisfied. The Bellman optimality equation
is used to express the optimal Q-value function, which can be
mathematically written as

Q∗(s, a) = r(s, a) + γ
∑
s′

Ps,s′(a)max
a′

Q∗(s′, a′), (24)

In addition, the optimal Q-value function can be estimated by
iteratively updating the following expression at each time slot
based on the recursive method.

Qnew(s, a) = (1− α)Q(s, a)

+ α(r(s, a) + γmax
a′

Q(s′, a′)), (25)

where α ∈ (0, 1) denotes the learning rate.

C. Optimize With Lyapunov Function

We consider two cases where the traffic is inside or outside
of the capacity region, i.e., underload or overload. For the first
case, the admission rate is equal to the arrival rate and then
the network utility is maximized with an optimal scheduling
policy that transmits as many packets as possible under the
network stability constraint [34]. Moreover, all queues in the
network can achieve stability simultaneously by maximizing the
weight difference between the output gain and the average queue
length, which is demonstrated in Proposition 1. Inspired by these
facts, if the optimal objective (13a) is achieved, both constraints
(13b) and (13c) are satisfied simultaneously. Thus, the original
problem P1 is converted into the following form by introducing
a negative Lyapunov drift term−ν1(Qu(t+ 1)2 −Qu(t)

2) into
the objective function

P2: max
A,S,η,D

{
λn2

1

T

T∑
t=0

G(t) + λn1
1

T

T∑
t=0

∑
u∈U

E[−Qu(t+ 1)

− ν1(Q
2
u(t+ 1)−Q2

u(t))]

}
(26a)

s.t. ν1 > 0, (26b)

Su(t) ∈ {0, 1}, ∀u ∈ U ,
∑
u∈U

Su(t) = 1, (26c)

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3383

ηu,k(t) ∈ {0, 1},
∑

k∈Xu(t)

ηu,k(t) ≤ 1, ∀u, t, (26d)

Du,k(t)=

{
1, if xuk(t) ≥ Thk,
0, if xuk(t) < Thk,

∀k∈Xu(t). (26e)

Although the objective function is changed, we can still obtain
an optimal solution that maximizes the average output gain and
minimizes the average queue length while making all queues in
the network stable. It is clear that the Lyapunov drift term is the
increment of queue backlog from time slot t to the next time slot
t+ 1. As expected, each queue can be pushed to a low congestion
state by minimizing it, which guarantees network stability [21].
Moreover, all queues will not diverge if they are stable, which
indicates that the drift term converges to 0 as t tends to infinity
and the objective function leaves only the average output gain
and the average queue length.

Proposition 1: There exists an optimal policy for problem
P2 that makes all queues in the network stable under the inner
capacity region while maximizing the average output gain and
minimizing the average queue length.

Proof: See Appendix A, available online.
Proposition 1 indicates that the optimal solution of problem

P1 is the same as that of problem P2.
Next, we consider a more general case where the traffic is

outside of the capacity region. Since all users in our model
share limited resources, it is essential to solve the network
utility maximization problem in order to fairly allocate network
resources while stabilizing the network. For this overload case,
the admission rate will no longer be equal to the arrival rate.
According to the Lagrangian method [42], the original problem
P1 is transformed as follows

P3: max
A,S,η,D

{
λn2

1

T

T∑
t=0

G(t)− λn1
1

T

T∑
t=0

∑
u∈U

E[Qu(t+ 1)]

+ ν2

U∑
u=1

Fu(Āu)

}
(27a)

s. t ν2 > 0, (27b)

Āu ≤ 1

T

T∑
t=0

E[Su(t)η̂u,k(t)], ∀u ∈ U , (27c)

Su(t) ∈ {0, 1}, ∀u ∈ U ,
∑
u∈U

Su(t) = 1, (27d)

ηu,k(t) ∈ {0, 1},
∑

k∈Xu(t)

ηu,k(t) ≤ 1, ∀u, t, (27e)

Du,k(t)=

{
1, if xuk(t) ≥ Thk,
0, if xuk(t) < Thk,

∀k∈Xu(t). (27f)

According to the two transformed problems P2 and P3, the
reward function (19) is rewritten as

r(st, at) = λn2
1

T

T∑
t=0

G(t) + λn1
1

T

T∑
t=0

∑
u∈U

E[−Qu(t+ 1)

− ν1(Q
2
u(t+ 1)−Q2

u(t))] (28)

for the arrival rate lied inside the capacity region and

r(st, at) = λn2
1

T

T∑
t=0

G(t)− λn1
1

T

T∑
t=0

∑
u∈U

E[Qu(t+ 1)]

+ ν2

U∑
u=1

Fu(Āu) (29)

for the arrival rate lied outside the capacity region.

V. ALGORITHM DESIGN

Although Q-learning has emerged as a prospective learning
algorithm based on value, it relies heavily on a set of records
in the sample when searching the optimal policy. Therefore, it
is susceptible to the training variance and even the convergence
of the Q-value function. The work [43] showed that Q-learning
algorithms are very flexible for low-dimensional reinforcement
learning problems. However, in our considered time-varying
model, the complex and large state-action space can easily trap
the table of Q-value functions in the curse of dimensionality,
which will waste a lot of time and resources and even exceed
the memory size for maintaining this table.

In order to address the above problems, many scholars have
focused on the deep Q-network (DQN) algorithm based on the
combination of neural networks and Q-learning, which mainly
takes the state and action as the input of the neural network
to approximate the Q-value function instead of maintaining the
Q-table [44]. To be specific, the Q neural network receives an
input state s and outputs the estimated Q-value functions for
all optional actions, i.e., Q(s, a;θ) ≈ Q(s, a), a ∈ A, where θ
represents the vector of the weights of a Q neural network. In
this algorithm, the agent aims to continuously learn an optimal
policy for optimizing the Q-value function by minimizing the
loss function Loss(θ), which is expressed as

Loss(θ) = E[(y(t)−Q(s, a;θ))2], (30)

where y(t) denotes the target Q-value and can be mathematically
written as

y(t) = r(s, a) + γmax
a′

Q(s′, a′;θ). (31)

According to (30), the Q neural network is trained by iteratively
updating its weights θ to optimize the approximation of the
Q-value function. The parameter update equation of the Q neural
network can be written as

θ = θ + αE[(y(t)−Q(s, a;θ))∇Q(s, a;θ)]. (32)

It is worth noting that the DQN-based framework has an expe-
rience replay pool and is usually used to store the experiences
collected by the agent denoted by (st, at, rt, st+1), from which
a group of experiences can be randomly selected and used to
train the neural network. Moreover, this framework employs a
dual network approach to further improve the learning stability
and algorithm efficiency, which means that there is also a target
network with weights θ′ in the training process. Accordingly,
the target Q-value y(t) in (31) can be described in a new way as

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

3384 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

follows

y(t) = r(s, a) + γmax
a′

Q(s′, a′;θ′). (33)

It is easy to see from the Q-value function that DQN uses
a single max mathematical estimator to select and evaluate an
action. However, this manner tends to make agents sometimes
confused about the selection and evaluation of actions, which
leads to estimated Q-values that may be higher than the true
values. Note that these overestimation problems are caused by
the positive bias of the max operator used in DQN to update its
Q-value function.

A. DDQN-Based Solution

To address this overestimation problem, we explore a double
deep Q network (DDQN)-based method, which decouples the
action selection and Q-value calculation into two separated max
function estimators to avoid overestimation [45]. Evidently, the
maximum Q-value function is computed by the state of the next
time slot and all possible actions in the current neural network,
DDQN first finds the optimal action under that Q-value function
and then uses this action to predict the target Q-value from the
target network. Due to the mutual constraints between the dual
estimators, they can eliminate the maximum deviation.

Similar to DQN, DDQN also has two neural networks namely
online network Q(s, a;θ) and target network (Q(s, a;θ′). The
weight vector of the target network θ′ is copied from the online
network in several previous iterations. Inspired by this, the target
Q-value for DDQN is replaced as follows

y(t) = r(s, a) + γQ(s′, argmax
a′

Q(s′, a′;θ);θ′). (34)

Note that the selection and evaluation of an action follows an
arg max operator, which is defined by a set of weights θ. This
means that we estimate the value of the greedy policy based on
the current Q-value defined by θ. Then another set of weights θ′

is used to evaluate the value of this policy. The agent selects an
action based on the ε-greedy policy to balance its exploitation
and exploration, where ε is a diminishing value for exploration.
Particularly, the agent selects an action that can maximize the Q-
value with probability (1− ε), while randomly choosing other
actions with probability ε, which can be described as

a(t) =

{
random action, probability ε,
argmax

a′
Q(s′, a′;θ), probability 1− ε. (35)

The loss function defined in (30) is written as

Loss(θ) = E[(r(s, a) + γQ(s′, argmax
a′

Q(s′, a′;θ);θ′)

−Q(s, a;θ))2]. (36)

In order to reduce the loss value, the gradient descent method is
used to update the weights of the target network. The update of
θ can be expressed as

θ = θ + αE[(r(s, a) + γQ(s′, argmax
a′

Q(s′, a′;θ);θ′)

−Q(s, a;θ))∇Q(s, a;θ)]. (37)

Algorithm 2: DDQN-Based Training Algorithm.
1: Input: Action set A; number of episodes E; learning

rate α; network update period F ; discount factor γ;
minibatch size B; random selection probability ε.

2: Output: Optimal policy π∗ and maximum reward R
3: Initialize: the relay memory M with the capacity of C
4: Initialize: the online Q-network Q(s, a;θ) with weight

θ
5: Initialize: the target Q-network Q(s, a;θ′) with θ′ = θ
6: for each episode do
7: Initialize the environment and obtain an initial state s1
8: for each iteration of an episode do
9: Observe ot and take an action at from A with a

random probability � based on the ε-greedy policy
10: if � < ε then
11: Randomly choose an action at;
12: else
13: Choose an action at = argmax

a′∈A
Q(st, a

′;θ);

14: end if
15: Execute action at and receive a reward r(s, a)
16: Get the next state st+1 for the current action and state
17: Update the input to Qt+1 based on the observed state
18: Store the current experience tuple

{st, at, ot, rt, st+1, ot+1} in the experience relay
memory

19: Randomly choose a minibatch of experiences
{st, at, ot, rt, st+1, ot+1} from the experience relay
memory

20: Calculate the target Q-value by the learning step
with optimizer

21: if an episode terminates at iteration t+ 1 then
22: y(t) = r(s, a);
23: else
24: y(t) = r(s, a) + γQ(s′, a′;θ);θ′);
25: a′ = argmax

a′∈A
Q(st, a

′;θ);

26: end if
27: Update the weight of the online network by

minimizing the loss function as
28: Loss(θ) = E[(y(t)−Q(s, a;θ))2]
29: Perform a gradient descent step on Loss(θ) relative

to the weight of the online network θ
30: Update the weight of the target network based on the

weight of the online network θ
31: Rest the target network Q′ ← Q after F iterations
32: end for
33: end for

B. Implementation of DDQN-Based Algorithm

According to the above analysis, we summarize the detailed
procedure of our proposed DDQN-based algorithm for solving
problems P2 and P3 as Algorithm 2. Specifically, the first step
is to input the various parameters of Algorithm 2. The training
purpose of Algorithm 2 is to output the optimal policy and the
maximum reward.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3385

Fig. 5. Training process of DDQN-based algorithm for solving P1 and P2.

Before training, we initialize the experience replay memory
and the weights of the online network and the target network.
In particular, the weight of the target network is initialized to
be the same as that of the online network, i.e., θ′ = θ. As
shown in Fig. 5, we develop two neural networks to illustrate
the correlation between each state-action pair (s, a) and its
value function Q(s, a). Hence, it is crucial to preprocess the
admission control and output selection and user association
of the downlink network for a sufficiently long time with a
random policy. On this basis, the estimation of Q(s, a) can be
obtained by means of some state transition information, which
is then stored in the experience replay memory. Moreover, we
train the neural network with the input state-action pair (s, a)
and the outcome Q(s, a). After that, the action selection and
Q-value can be achieved. More specifically, in each decision
episode, the network environment is initialized and the agent
observes the initial state space {Cu(t), Qu(t), xu,k(t), Luk(t)}
from the environment simulator. Then, we adopt the ε-greedy
policy with the greedy factor ε ∈ [0, 1] to select the execution
action a. For a random probability � < ε, the online network
randomly selects an action from the action space A. Oth-
erwise, the action with the largest Q-value function derived
from the online network with the input of the state-action pair
(s, a) is selected. After selecting an action a, the environ-
ment simulator provides the corresponding reward r(s, a) to
the agent and the state is transferred from st to the next state
st+1.

To improve training stability, we use the experi-
ence replay memory to store the experience tuple
{st, ot, at, rt, st+1, ot+1} and randomly select a minibatch
of B experiences to train the weights of the online
network and the target network at each iteration. During
the learning process, the online network and the target
network compute the optimal values Q(s′, a′;θ) and
Q(s′, a′;θ′), respectively. Given the current reward r(s, a)
and the discount factor γ, the target network yields a target

value y(t) =

{
r(s, a),
r(s, a) + γQ(s′, argmax

a′
Q(s′, a′;θ);θ);θ′),

which is then compared with the estimated value of the online
network to obtain the loss value Loss(θ). Moreover, the weight
of the online network is updated by using a gradient descent
step of [∂Loss(θ)/∂θ]. The weight of the target network does

not need to be updated iteratively and it can copy θ from the
online network after a certain number of iterations. Note that
the value of the loss function gradually decreases by constantly
updating the weight of the online network. When the loss value
reaches the global minimum, our proposed algorithm outputs
the corresponding optimal policy. Fig. 5 describes the detailed
procedure of the proposed DDQN-based algorithm for finding
the optimal packet scheduling policy for the BS-agent.

VI. SIMULATION RESULTS

In this section, we present simulation results to demonstrate
the effectiveness of our proposed DDQN-based algorithm. We
first introduce our simulation setup and network architecture.
We then compare the algorithm in this paper with several other
algorithms and analyze the simulation results under different
scheduling policies.

A. Simulation Setup

We consider a single-hop downlink system in which U = 4
ground users are associated with a single BS. In this system, the
packet scheduling matrix is selected every time slot within the
queue corresponding to each user u ∈ U , so that at most one
packet is served per input and per output at each time slot.1 The
arrival process for each queue follows a Bernoulli distribution,
which is independently and identically distributed over time slots
with the arrival rate ruk. A total ofK = 2000 packets consisting
of various delay requirements, i.e.,H = 400,M = 600 andL =
1000, arrives at the BS over a period of time. The maximum
tolerable queuing delays of the three classes of packets are set
as ThH = 10, ThM = 20 and ThL = 30, respectively, with the
unit of time slots. In addition, the output gain weights of the three
classes of packets are set as ωH =0.5, ωM =0.3 and ωL =0.2,
respectively. The discount factor of the potential output gain is
set as ρ = 0.3.

We conduct the experimental simulations using a server with
an NVIDIA GTX 2080 Ti GPU. The software platform of the
experiment is Python 3.6 with PyTorch [46]. Our developed
DDQN-based algorithm consists of the online-network and
target-network, each of which has one input layer, two hidden
layers and one output layer. Moreover, each hidden layer is
assumed to have the same number of neurons and is defined
as e = 64. We use the rectified linear unit (ReLU) function
fReLU(x) = max {0, 1} to describe the activation function in
each hidden layer. The Adam optimizer is used to update the
weights of the online network and the target network. Besides,
the target network is updated by the online network every 100
training iterations. The learning rates of both neural networks
are set as α = 0.0001 to ensure that the training process does
not miss all possible local solutions. The discount factor is set as
γ = 0.999. During the training process, the ε-greedy policy is
used where the value of ε is set as 0.9 at the beginning and then
gradually decreases to 0.1. The training process of our proposed
DDQN-based algorithm has E = 2000 episodes. The capacity

1The proposed solution can be easily extended to the system to schedule
packets for multiple orthogonal channels

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

3386 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 6. Pareto-Front achieved by the proposed DRL-based framework.

of the experience replay memory is set asC = 2000 and the size
of each minibatch sampled from this experience replay memory
is set as B = 64.

B. Result Analysis

Based on the proposed DRL framework, the multi-objective
problem of scheduling and association can be solved by using the
neighborhood-based parameter transfer strategy. In Fig. 6, we
illustrate the Pareto front obtained by the proposed DRL-based
method and the NSGA-III method [47]. It can be seen from Fig. 6
that the performance of the DRL-based method is close to that of
the NSGA-III method when the weight valuesλ1 andλ2 are close
each other (e.g., λ1 = 0.4 and λ2=0.6). When the difference
between λ1 and λ2 is significant (e.g., λ1 = 0.01 and λ2 = 0.99),
the DRL-based method tends to spare most of its effort in training
only one of the objective functions. The obtained policy will
then perform relatively poor on the other objective function.
Whereas the DRL-based method shows its advantage over the
NSGA-III method in terms of computing time since it only needs
a very simple forward progression after the training process is
completed. This advantage becomes more prominent when the
complexity of the multi-objective problem increases, e.g., the
objective contains multiple integer decision variables.

To demonstrate the convergence of the proposed algorithm
and the other two algorithms, Fig. 7 plots the learning curves of
these three algorithms in the case where the arrival rate is outside
of the capacity region. With the increase of the number of iter-
ations, the cumulative rewards obtained by the three algorithms
have an obvious tendency to increase and converge. It is clear that
the proposed DDQN-based algorithm always outperforms the
other two algorithms in terms of cumulative reward. The reason
is that the proposed algorithm can prevent the overestimation of
the action-value function by decoupling the Q-target. Besides,
the convergence speed of the proposed DDQN-based algorithm
and the DQN-based algorithm is substantially higher than that
of the Q-learning algorithm. This is because both the proposed
DDQN-based algorithm and the DQN-based algorithm use the
neural network Q(s, a;θ) to approximate the target Q-value
Q∗(s, a), which can greatly reduce the time of searching the
maximum value.

Fig. 7. Convergence of different algorithms for the overload case.

Fig. 8. Delay versus traffic intensity for the inner capacity case.

1) Delay Performance: Fig. 8 shows the delay performance
of different algorithms versus traffic intensity �2 when the arrival
rate is within the capacity region. The solid and dash lines
indicate the average delay calculated based on the observed
delay (real delay) and the maximum tolerable delay per packet
(upper bound), respectively. The average delay achieved by our
proposed algorithm and the other two algorithms increases with
the increase of traffic intensity � and eventually diverges when
� > 1, i.e., outside the capacity region. In addition, we observe
that our proposed DDQN-based algorithm achieves 9% and 20%
delay reduction compared with the DQN-based algorithm and
the Q-learning algorithm, respectively.

Fig. 9 shows the delay performance versus traffic intensity �
for the general case. As can be seen from Fig. 9, for the three
algorithms, the average delays increases with � and eventually
becomes saturated when � is sufficiently large. In addition, our
proposed DDQN-based algorithm shows up to 6% and 13%
delay reduction compared to the DQN-based algorithm and
the Q-learning algorithm, respectively. From Figs. 8 and 9, we
observe that our proposed DDQN-based algorithm outperforms
the other two algorithms in terms of average delay, which
demonstrates the effectiveness of our proposed algorithm. It is

2The traffic intensity � is defined as the ratio of the arrival rate to the capacity
region boundary [32] to measure the average resource occupancy.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3387

Fig. 9. Delay versus traffic intensity for the overload case.

Fig. 10. Delay versus traffic intensity for different design schemes.

obvious that the real average delay gradually approaches the
upper bound as � becomes large in both cases. The reason is
that as � grows, the queue length of each user increases leading
to longer queue delay, and thus packets reach their maximum
tolerable queuing time. On the other hand, it shows that our
proposed model guarantees per-packet delay.

In order to demonstrate the superiority of the proposed joint-
scheduling model, we consider the following three schemes: (i)
scheme 1 jointly optimizes user association and packet selection
but without admission control [32]; (ii) scheme 2 jointly opti-
mizes admission control and user association but with FIFO
queue management [34]; and (iii) scheme 3 adopts random
packet admission and user association as well as FIFO queue
management. Note that all schemes are solved by the proposed
DDQN-based algorithm.

Fig. 10 depicts the average delay achieved by the various
schemes versus traffic intensity �. Despite the average delay of
all the four schemes increases as the traffic intensity � increases,
the proposed joint scheduling scheme always achieves the lowest
delay. In addition, we note that only our proposed scheme and
scheme 1 shows the trend of convergence when � exceeds the
capacity region, while the others diverge. The reason is that
the packet-selection process becomes more crucial for better
control of packets with different delay requirements when � is
large. The comparisons between the proposed joint scheduling

Fig. 11. Drop rate versus traffic intensity for the overload case.

Fig. 12. Drop rate versus traffic intensity for different design schemes.

scheme and scheme 1, and scheme 2 and scheme 3 also show the
importance of admission control. In addition, we conclude that
the packet-selection process plays an essential role in reducing
average delay by comparing our proposed scheme and scheme 2.
Overall, our scheme achieves a delay reduction up to 30%.

2) Delay Outage Drop Performance: Since the proposed
model guarantees per-packet delay by dropping delay outage
packets, minimizing the drop rate is one of the key metrics in
evaluating the performance. Fig. 11 plots the delay outage drop
rate achieved by the three algorithms versus traffic intensity
� in the case where the arrival rate is outside of the capacity
region. It is obvious that the drop rate increases for the three
algorithms as � becomes large. The reason is that high traffic
intensity leads to longer queue lengths where packets with high
delay requirements are more likely to be dropped. On the other
hand, the proposed DDQN-based algorithm achieves a much
slower increase in terms of drop rate, i.e., a better scheduling
policy is achieved. In spite of the increase, all algorithms show
the trend of convergence when � > 1 thanks to the adoption
of the packet-selection process which avoids unnecessary delay
outage drops within each queue.

Next, we compare the drop rate performance of our proposed
scheduling model with the three benchmark schemes as shown
in Fig. 12. The proposed joint scheduling achieves a significantly
lower drop rate up to 60% than the other three schemes. In

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

3388 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

Fig. 13. Goodput versus traffic intensity for the overload case.

Fig. 14. Goodput of each queue versus traffic intensity.

addition, we observe that the growth trend for our proposed
scheme and scheme 1 in Fig. 12 is similar to that in Fig. 10. This
is because the packet-selection process allows as many packets
as possible to be transmitted before reaching their maximum
tolerable queuing time. The increasing gap between the proposed
joint design scheme and schemes 2 and 3 also indicates the
significance of the packet-selection process in our design.

3) Throughput Performance: As the results presented in
the previous theoretical analysis, our proposed algorithm can
achieve utility maximization while guaranteeing per-packet de-
lay. Here, we consider goodput, i.e., the number of successfully
received packets over the total measured time period. Fig. 13
plots the goodput performance of different algorithms versus
traffic intensity�. For the three algorithms, the goodput increases
with � and eventually converge to 1 when � is sufficiently large.
This is because the BS serves at most one user per time slot, i.e.,
at most one packet is transmitted per time slot. In other words,
since the link capacity is 1 packet/time-slot, the goodput has
an upper bound of 1 packet/time-slot. The proposed DDQN-
based algorithm is observed to substantially outperforms the
Q-learning algorithm and the DQN-based algorithm in terms
of goodput, which further demonstrates the effectiveness of the
proposed algorithm.

In order to demonstrate fairness among users, Fig. 14 plots
the goodput per queue versus traffic intensity � for the outside

Fig. 15. Goodput versus traffic intensity for different design schemes.

capacity region case. It can be seen that the goodput of all the
queues increases as � becomes large. For different values of �,
the total goodput of the four queues is equal to the goodput
corresponding to the blue curve in Fig. 13. It can also be seen
that the values of the four queues are very close to each other,
which confirms that our formulated model can achieve fairness
among users.

In Fig. 15, the goodput achieved by the four schemes versus
traffic intensity ρ is plotted. As expected, the goodput increases
for the four schemes as ρ becomes large and eventually tends
to 1 when ρ is sufficiently large. For different values of ρ, our
proposed scheme always achieves the highest goodput, while
scheme 3 has the lowest goodput. In addition, we observe that
the curve of scheme 1 is closer to the curve of our proposed
scheme than that of scheme 2. These results further indicate that
packet transfer control is more effective than admission control
in improving goodput.

VII. CONCLUSION

In this article, we investigated the scheduling problem to
guarantee per-packet delay in a single-hop wireless network for
delay-critical applications. All arriving packets have different
delay requirements, which were divided into three categories.
In addition, packets with high delay requirements are prioritized
and yield high utility after successful transmission. To differen-
tiate the utility of different packets, we introduced a novel output
gain function. In addition, a scheduling policy based on the delay
laxity and output gain was proposed which transmits one packet
with the minimal delay laxity and the maximal output gain every
time slot. Note that any packet that stays in the queue longer than
its delay budget needs to be dropped. In this context, we formu-
late a multi-objective optimization problem that minimizes the
average queue length while maximizing the average output gain
under the constraint of guaranteeing per-packet delay. To cope
with the uncertainties in the environment (e.g., random packet
arrivals and dynamic channel conditions), we transformed our
problem into a POMDP and proposed a Q-learning algorithm to
solve it. To avoid the curse of dimensionality of Q-learning in
large-scale networks and alleviate Q-value overestimation, we
proposed a DDQN-based algorithm to derive the joint policy of

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

JI et al.: DOWNLINK SCHEDULER FOR DELAY GUARANTEED SERVICES USING DEEP REINFORCEMENT LEARNING 3389

link scheduling and packet selection. Simulation results show
a better performance of our proposed DDQN-based algorithm
than that of the Q-learning and DQN algorithms. However, many
other issues in practice, e.g., wireless link dynamics, were not
considered in the current model. In future work, more effort
will be addressed on incorporating environmental dynamics to
improve the scalability of our model.

REFERENCES

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, May/Jun. 2020.

[2] X. Lan, Y. Chen, and L. Cai, “Throughput-optimal H-QMW scheduling
for hybrid wireless networks with persistent and dynamic flows,” IEEE
Trans. Wireless Commun., vol. 19, no. 2, pp. 1182–1195, Feb. 2020.

[3] Y. Chen, X. Wang, and L. Cai, “On achieving fair and throughput-optimal
scheduling for TCP flows in wireless networks,” IEEE Trans. Wireless
Commun., vol. 15, no. 12, pp. 7996–8008, Dec. 2016.

[4] M. J. Neely, E. Modiano, and C. E. Rohrs, “Dynamic power allocation and
routing for time-varying wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 23, no. 1, pp. 89–103, Jan. 2005.

[5] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and
cross-layer control in wireless networks,” Found. Trends Netw., vol. 1,
no. 1, pp. 1–149, Oct. 2006.

[6] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length-based scheduling and congestion control,” IEEE
Trans. Netw., vol. 15, no. 6, pp. 1333–1344, Dec. 2007.

[7] J. Lee, R. Mazumdar, and N. Shroff, “Opportunistic power scheduling for
dynamic multi-server wireless systems,” IEEE Trans. Wireless Commun.,
vol. 5, no. 6, pp. 1506–1515, Jun. 2006.

[8] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali, “Routing
without routes: The backpressure collection protocol,” in Proc. IEEE/ACM
9th Int. Conf. Inf. Process. Sensor Netw., 2010, pp. 279–290.

[9] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, and R. Vijayakumar,
“Scheduling in a queuing system with asynchronously varying service
rates,” Probab. Eng. Inf. Sci., vol. 18, no. 2, pp. 191–217, Apr. 2004.

[10] M. J. Neely, “Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24, no. 8,
pp. 1489–1501, Aug. 2006.

[11] L. Hai, Q. Gao, J. Wang, H. Zhuang, and P. Wang, “Delay-optimal back-
pressure routing algorithm for multihop wireless networks,” IEEE Trans.
Veh. Technol., vol. 67, no. 3, pp. 2617–2630, Mar. 2018.

[12] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-guaranteed
collaborative DNN inference in industrial IoT via deep reinforcement
learning,” IEEE Trans. Ind. Inform., vol. 17, no. 7, pp. 4988–4998,
Jul. 2021.

[13] Y. Cui, R. Wang, H. Huang, and S. Zhang, “A survey on delay-aware
resource control for wireless systems large deviation theory, stochastic
lyapunov drift, and distributed stochastic learning,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1677–1701, Mar. 2012.

[14] G. R. Ghosal, D. Ghosal, A. Sim, A. V. Thakur, and K. Wu, “A deep
deterministic policy gradient based network scheduler for deadline-driven
data transfers,” in Proc. IFIP Netw. Conf., 2020, pp. 253–261.

[15] S. Chilukuri, G. Piao, D. Lugones, and D. Pesch, “Deadline-aware TDMA
scheduling for multihop networks using reinforcement learning,” in Proc.
IFIP Netw. Conf., 2021, pp. 1–9.

[16] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Trans. Commun.,
vol. 64, no. 9, pp. 3746–3758, Sep. 2016.

[17] F. Tang, Y. Zhou, and N. Kato, “Deep reinforcement learning for dynamic
uplink or downlink resource allocation in high mobility 5G HetNet,” IEEE
J. Sel. Areas Commun., vol. 38, no. 12, pp. 2773–2782, Dec. 2020.

[18] L. Yang, Y. E. Sagduyu, J. Zhang, and J. H. Li, “Deadline-aware scheduling
with adaptive network coding for real-time traffic,” IEEE/ACM Trans.
Netw., vol. 23, no. 5, pp. 1430–1443, Oct. 2015.

[19] M. K. Sharma, T. P. Hui, E. Kurniawan, and S. Sumei, “Packet drop
probability-optimal cross-layer scheduling: Dealing with curse of sparsity
using prioritized experience replay,” in Proc. IEEE Int. Conf. Commun.,
2021, pp. 1–6.

[20] Z. Jiao, C. Li, and H. T. Mouftah, “Backpressure-based routing and
scheduling protocols for wireless multihop networks: A survey,” IEEE
Wireless Commun., vol. 23, no. 1, pp. 102–110, Feb. 2016.

[21] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 37, no. 12,
pp. 1936–1948, Dec. 1992.

[22] G. D. Celik, L. B. Le, and E. Modiano, “Dynamic server allocation over
time-varying channels with switchover delay,” IEEE Trans. Inf. Theory,
vol. 58, no. 9, pp. 5856–5877, Sep. 2012.

[23] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” IEEE Trans. Commun.,
vol. 47, no. 8, pp. 1260–1267, Aug. 1999.

[24] M. Marsan, E. Leonardi, and F. Neri, “On the stability of local scheduling
policies in networks of packet switches with input queues,” IEEE J. Sel.
Areas Commun., vol. 21, no. 4, pp. 642–655, May 2003.

[25] E. Leonardi, M. Mellia, and F. Neri, “Bounds on average delays and queue
size averages and variances in input-queued cell-based switches,” in Proc.
IEEE Int. Conf. Comput. Commun., 2001, pp. 1095–1103.

[26] M. McConley, B. Appleby, M. Dahleh, and E. Feron, “A computationally
efficient Lyapunov-based scheduling procedure for control of nonlinear
systems with stability guarantees,” IEEE Trans. Autom. Control, vol. 45,
no. 1, pp. 33–49, Jan. 2000.

[27] M. J. Neely, E. Modiano, and C.-P. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 2, pp. 396–409, Apr. 2008.

[28] A. Ferragut and F. Paganini, “Network resource allocation for users with
multiple connections: Fairness and stability,” IEEE/ACM Trans. Netw.,
vol. 22, no. 2, pp. 349–362, Apr. 2014.

[29] T. Zhang, S. Shen, S. Mao, and G.-K. Chang, “Delay-aware cellular
traffic scheduling with deep reinforcement learning,” in Proc. IEEE Glob.
Commun. Conf., 2020, pp. 1–6.

[30] I. S. Comsa et al., “Towards 5G: A reinforcement learning-based schedul-
ing solution for data traffic management,” IEEE Trans. Netw. Serv. Manag.,
vol. 15, no. 4, pp. 1661–1675, Dec. 2018.

[31] J. Chen, P. Yang, Q. Ye, and X. Li, “Learning-based proactive resource
allocation for delay-sensitive packet transmission,” IEEE Trans. Cogn.
Commun. Netw., vol. 7, no. 2, pp. 675–688, Jun. 2021.

[32] J. Bae, J. Lee, and S. Chong, “Learning to schedule network resources
throughput and delay optimally using Q-learning,” IEEE/ACM Trans.
Netw., vol. 29, no. 2, pp. 750–763, Apr. 2021.

[33] L. Cai, J. Pan, W. Yang, X. Ren, and X. Shen, “Self-evolving and trans-
formative (SET) protocol architecture for 6G,” IEEE Wireless Commun.,
early access, Aug. 22, 2022, doi: 10.1109/MWC.003.2200022.

[34] M. J. Neely, “Delay-based network utility maximization,” IEEE/ACM
Trans. Netw., vol. 21, no. 1, pp. 41–54, Feb. 2013.

[35] S. Oh, A. Khil, and S. Yang, “A modified least-laxity first scheduling
algorithm for reducing context switches on multiprocessor systems,” J.
Comput. Syst. Theory, vol. 30, no. 12, pp. 68–77, Feb. 2003.

[36] M. J. Neely, “Stochastic network optimization with application to commu-
nication and queueing systems,” Synth. Lectures Commun. Netw., vol. 3,
no. 1, pp. 1–211, Jan. 2010.

[37] M. Kaisa, Nonlinear Multiobjective Optimization, vol. 12. Norwell, MA,
USA: Kluwer, 1999.

[38] X. Ma, Y. Yu, and X. Li, “A survey of weight vector adjustment methods
for decomposition-based multiobjective evolutionary algorithms,” IEEE
Trans. Evol. Comput., vol. 24, no. 4, pp. 634–649, Aug. 2020.

[39] R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Localized
weighted sum method for many-objective optimization,” IEEE Trans.
Evol. Comput., vol. 22, no. 1, pp. 3–18, Feb. 2018.

[40] L. Ke, Q. Zhang, and R. Battiti, “MOEA/D-ACO: A multiobjective
evolutionary algorithm using decomposition and antcolony,” IEEE Trans.
Cybern., vol. 43, no. 6, pp. 1845–1859, Dec. 2013.

[41] V. Mnih, K. Kavukcuoglu, D. Silver, and J. Veness, “Human-level con-
trol through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015.

[42] E. Altman, Constrained Markov Decision Processes. Norwell, MA, USA:
Kluwer, 1999.

[43] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process. Mag.,
vol. 34, no. 6, pp. 26–38, Nov. 2017.

[44] J. Huang, Y. Yang, and G. He, “Deep reinforcement learning-based
dynamic spectrum access for D2D communication underlay cellu-
lar networks,” IEEE Commun. Lett., vol. 25, no. 8, pp. 2614–2618,
Aug. 2021.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/MWC.003.2200022

3390 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 4, APRIL 2024

[45] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. 30th AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[46] A. Paszke, S. Gross, F. Massa, and A. Lerer, “PyTorch: An imperative
style, high-performance deep learning library,” in Proc. 33rd Int. Conf.
Neural Inf. Process. Syst., 2019, pp. 8026–8037.

[47] K. Deb and H. Jain, “An evolutionary many-objective optimization algo-
rithm using reference-point-based nondominated sorting approach, Part
I: Solving problems with box constraints,” IEEE Trans. Evol. Comput.,
vol. 18, no. 4, pp. 577–601, Aug. 2014.

Jiequ Ji received the PhD degree from the College of
Computer Science and Technology, Nanjing Univer-
sity of Aeronautics and Astronautics, Nanjing, China,
in 2021. From October 2018 to January 2020, she
was a research assistant with Nanyang Technologi-
cal University, Singapore, with Prof. Dusit Niyato.
She was a research fellow with the Department of
Electrical and Computer Engineering, University of
Victoria, Canada, from 2021 to 2022. She is currently
a post-doctoral research fellow with the Pillar of
Information Systems Technology and Design, Sin-

gapore University of Technology and Design, Singapore. Her research interests
include UAV-enabled wireless communications, wireless content caching, re-
source allocation in 5G and beyond, mobile edge computing, and physical layer
security.

Xiangyu Ren (Student Member, IEEE) received the
BSc degree from the Department of Automation
Engineering, University of Electronic Science and
Technology of China, Chengdu, China, in 2019. He is
currently working toward the PhD degree in electrical
engineering with the Department of Electrical and
Computer Engineering, University of Victoria, Vic-
toria, BC, Canada. He is the recipient of the Graduate
Student Fellowship Award from the University of Vic-
toria, in 2021. His research interests include determin-
istic networks, software-defined network, vehicular

networks, machine learning, and optimization with applications in networking.

Lin Cai (Fellow, IEEE) received the MASc and PhD
degrees (awarded Outstanding Achievement in Grad-
uate Studies) in electrical and computer engineering
from the University of Waterloo, Waterloo, Canada,
in 2002 and 2005, respectively. Since 2005, she has
been with the Department of Electrical and Computer
Engineering, University of Victoria, and she is cur-
rently a professor. She is an NSERC E.W.R. Steacie
Memorial fellow, an Engineering Institute of Canada
(EIC) fellow. In 2020, she was elected as a member
of the Royal Society of Canada’s College of New

Scholars, Artists and Scientists, and a 2020 “Star in Computer Networking
and Communications” by N2Women. Her research interests span several areas
in communications and networking, with a focus on network protocol and
architecture design supporting emerging multimedia traffic and the Internet of
Things. She was a recipient of the NSERC Discovery Accelerator Supplement
(DAS) Grants, in 2010 and 2015, respectively. She has co-founded and chaired
the IEEE Victoria Section Vehicular Technology and Communications Joint
Societies Chapter. She has been elected to serve the IEEE Vehicular Technology
Society Board of Governors, 2019–2024.

Kun Zhu (Member, IEEE) received the PhD degree
from the School of Computer Engineering, Nanyang
Technological University, Singapore, in 2012. He was
a research fellow with the Wireless Communications
Networks and Services Research Group, University
of Manitoba, Canada, from 2012 to 2015. He is
currently a professor with the College of Computer
Science and Technology, Nanjing University of Aero-
nautics and Astronautics, China. He is also a Jiangsu
specially appointed professor. His research interests
include resource allocation in 5G, wireless virtualiza-

tion, and self-organizing networks. He has published more than fifty technical
papers and has served as TPC for several conferences. He won several research
awards including IEEE WCNC 2019 Best paper awards, ACM China rising star
chapter award.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:25:37 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

