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Decoupled Association With Rate Splitting Multiple
Access in UAV-Assisted Cellular Networks Using

Multi-Agent Deep Reinforcement Learning
Jiequ Ji , Lin Cai , Fellow, IEEE, Kun Zhu , Member, IEEE, and Dusit Niyato , Fellow, IEEE

Abstract—In unmanned aerial vehicles (UAVs) assisted cellular
networks, user association plays an important role in interference
control and spectrum efficiency. In this paper, we study the perfor-
mance of uplink-downlink decoupled (UDDe) user association in a
multi-UAV assisted network in which each user can associate with
different UAVs or the macro base station (MBS) for uplink (UL)
and downlink (DL) transmissions. Since some popular data may
be requested by multiple users, grouping these users and applying
multicasting can significantly improve spectral efficiency. Unlike
traditional linear precoding that treats interference entirely as
noise, we propose a rate-splitting multiple access (RSMA) policy
that employs rate splitting at the transmitter and successive inter-
ference cancellation (SIC) at the receiver. To be specific, the trans-
mitted signal is split into a common part and a private part, and the
interference is partially decoded and partially treated as noise. In
this context, we formulate a joint optimization problem of UL-DL
association and beamforming for maximizing the sum-rate of users
in UL and that of multicast groups in DL under the constraints of
UAV backhaul capacity and power budget. Since the formulated
problem is non-convex with intricate states and an individual UAV
may not know the rewards of other UAVs, we convert it into a robust
partially observable Markov decision process (POMDP). Then we
resort to multi-agent deep reinforcement learning (MADRL) that
enables each UAV to learn and optimize its policy in a distributed
manner. To achieve an optimal policy, we further propose an im-
proved clip and count-based proximal policy optimization (PPO)
algorithm to train actor and critic networks. Simulation results
demonstrate the superiority of the proposed decoupled association
strategy with RSMA and the MADRL learning algorithm.
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I. INTRODUCTION

UNMANNED aerial vehicle (UAV)-assisted cellular sys-
tems have attracted increasing interest for 5 G and beyond

networks [1]. To support high data rate and extended wireless
coverage, UAVs can be deployed as aerial base stations (ABSs)
to assist the macro base station (MBS) in service provisioning.
In particular, the traffic load of the macro-cell can be offloaded
to multiple UAV-cells to alleviate the burden on the MBS [2].
However, since UAVs do not have any wired connectivity, the
backhaul from the MBS to UAVs may become a bottleneck. In
addition, in services such as video conferencing, the traffic is
bidirectional so it is critical to ensure high quality of services
for both uplink (UL) and downlink (DL). With limited back-
haul and spectrum resources, uplink-downlink user association
should be carefully designed for the performance improvement
of UAV-assisted cellular networks.

Most existing works on user-UAV association assume that
a user is associated with the same UAV in both UL and DL
transmissions [3], [4], [5]. Although such a coupled association
is effective in single-tier networks, it may not guarantee optimal
performance in multi-UAV cellular networks due to the non-
uniform traffic loads and variable transmit powers of different
UAVs for DL and UL transmissions. For example, a user may ob-
tain a higher UL rate if it associates to a nearby UAV rather than
a far-away MBS. This is because the UL rate of a user is affected
by its own transmit power and its distance to the UAV. However,
the DL rate from the MBS may be higher since its high transmit
power, high backhaul capacity, etc. To this end, the concept
of UL-DL decoupled (UDDe) association is introduced, which
enables each user to associate with different UAVs or the MBS
for DL and UL [6]. With UDDe association in UAV-assisted
cellular networks, if using traditional time-division duplex to
avoid UL/DL mutual interference, strict time synchronization
and scheduling among all UAVs, MBS and users are needed,
but difficult to achieve. It is desirable to have the flexibility of
full-duplex (FD) transmission to relax the strict requirements.
Using advanced self-interference (SI) cancellation techniques,
FD becomes feasible [7]. Therefore, it is possible that each user
can use the same frequency-band for UL and DL transmissions
with the same or different BSs simultaneously. In the DL, since
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many users may request the same information at the same time,
multicasting the same message to a group of users can improve
spectral efficiency. However, decoupled user association and the
co-existing of unicast and multicast make interference manage-
ment much more complicated and challenging.

To mitigate interference, many techniques have been intro-
duced. For example, [8] proposed a bidirectional scheduling
transmission scheme to alleviate interference. However, DL-
to-UL interference is typically much stronger than UL-to-UL
inter-cell interference due to the strong transmit power of BSs
and line-of-sight (LoS) links among UAVs. With the use of rate
splitting precoding at transmitters and successive interference
cancellation (SIC) at receivers, rate splitting multiple access
(RSMA) has been emerging as a prospective policy to mitigate
interference and improve spectral efficiency [9], [10], [11]. The
idea of this policy is to split each message into a common part
to be decoded at all receivers and a private part to be decoded
only at the intended receiver. For a receiver, SIC is used so
that the common part can be first decoded and canceled, then
the remaining private part from other users is treated as noise.
Particularly, the split of common and private signals can be
flexibly adjusted to partially treat the interference as noise.

Inspired by the advantage of RSMA as a flexible NOMA, we
propose an RS-based UDDe transmission mode for multi-UAV
cellular networks in FD communication. Specifically, two users
with different channel gains are paired to perform RS in UL,
where the user with stronger channel splits its signal into two
parts and transmits a superimposed encoded stream, while the
weak-user transmits a single stream. On the other hand, in the
DL, since many users are interested in the same data, they can
form a multicast group and be served by multiple UAVs. Given
the existence of multiple multicast groups, the message of each
group is split into a common part and a private part. All the
common parts are packed together and encoded into a common
stream shared by all groups, while the private parts are encoded
into private streams for each group independently.

In this context, we formulate a joint optimization problem of
UL-DL association and beamforming design for maximizing
the sum-rate of users in UL and that of multicast groups in
DL, considering limited power budget and backhaul capacity.
However, the resultant problem is a non-convex programming
problem with a highly non-linear objective function and non-
convex constraints. In addition, since RS introduces a large
number of precoded streams, increasing the complexity of the
network environment, our formulated problem is often hard to
solve and may not converge using traditional algorithms.

Recently, deep reinforcement learning (DRL) has emerged
as a powerful approach for solving high-complexity and non-
convex problems, which has been widely used in UAV-assisted
networks, i.e., trajectory design and channel control [12], [13],
[14], [15]. [15] proposed a DRL-based anti-jamming framework
to learn jamming channel selection in UAV-aided cellular net-
works. The objective of DRL is to learn decisions iteratively
though interaction with a dynamic environment so as to maxi-
mize the cumulative reward. However, most DRL approaches
for solving non-convex problems consider only single-agent
learning frameworks, which are not appropriate for our problem.

The reason is that the large number of beamforming decisions
leads to a highly-complicated training process. In addition, since
an individual UAV-agent may not have global knowledge for the
rewards from other agents (i.e., due to estimation uncertainty),
single-agent learning will become non-stability. Therefore, we
model our problem as a robust partially observable Markov
decision process (POMDP) to deal with the environment un-
certainty and resort to multi-agent deep reinforcement learning
(MADRL) so that each UAV selects its policy in a distributed
manner. To encourage lethargic agents to actively explore and
address the problem of serious deviations between new and old
policies due to actions with negative advantages, we propose a
new clip-and-count based proximal policy optimization (PPO)
algorithm to solve our robust POMDP.

The main contributions of this paper can be summarized as
follows:
� This paper studies the precoder design problem of achiev-

ing the maximum sum rate in DL and UL for a multi-
UAV cellular network with decoupled user association. For
UL and DL, we propose a beamforming policy based on
RSMA. In DL, users are grouped into multiple multi-cast
groups given the sameness of requested data. This is the
first work to combine RSMA with UDDe association for
multigroup multicast.

� We formulate a joint UL-DL association and beamforming
design for maximizing the sum-rate of users in UL and
multicast groups in DL subject to per-UAV transmit power
and backhaul capacity constraints. Due to its non-convexity
and reward uncertainty, the formulated problem is modeled
as a robust POMDP. Specifically, each UAV is treated as an
agent that can adjust its associated user and beamforming
matrix using its local observations from the time-varying
network environment.

� A distributed MADRL-based framework is developed to
solve our robust POMDP problem and an improved clip-
and-count based PPO algorithm is proposed to achieve a
near-optimal policy. To be specific, we design an intrinsic
reward to motivate exploration and a new clip distribution
to tackle the deviations between old and current policies.

� Simulation results show that our proposed algorithm con-
verges to an optimal policy up to 29.4% faster than the
standard PPO algorithm. In addition, our proposed RSMA
transmission scheme outperforms state-of-the-art trans-
mission schemes in term of sum-rate.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. Section III introduces the system
model and formulates a joint association and beamforming
problem. Section IV models our problem as a robust POMDP
and proposes a MADRL-based algorithm to solve. Simulation
results are presented in Section V to show the performance of
the proposed RSMS scheme. Section VI concludes our work.

II. RELATED WORK

There have been a few studies on user association in UAV-
assisted communication networks [16], [17], [18], [19]. In [16],
the association selection and UAV deployment were jointly
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Fig. 1. An illustration for UL-DL decoupling association in a full-duplex
wireless network consisting one MBS and multiple UAVs.

optimized to maximize the total rate of DL and UL. In [18],
a learning-based UL-DL association scheme for rate fairness
among users was proposed in dynamic multi-UAV systems. In
addition, [19] numerically verified the feasibility of a decou-
pled association paradigm in UAV-assisted cellular networks.
However, existing transmission techniques (e.g., non-orthogonal
multiple access (NOMA) and space-division multiple access
(SDMA)) used in these works are not efficient for scenarios with
complex and diverse interference due to FD communications.

In contrast to NOMA that completely decodes interference
and SDMA that treats interference as pure noise, RSMA can
efficiently mitigate interference by making it partially decoded
and partially treated as noise. There are a lot of studies on
RSMA, which are categorized into downlink transmission [20],
[21], [22], [23], [24] and uplink transmission [25], [26], [27]. A
linear precoding rate splitting technique was considered in [20]
for multi-user multi-antenna networks, and an optimal precoder
with a guaranteed maximum weighted sum rate was derived. The
minimum rate among users was maximized in [21] by jointly
optimizing the message splitting, BS clustering and coordinate
beamforming. [22] and [23] investigated the energy efficiency
maximization problem for RSMA and NOMA schemes. In [24],
the optimal rate allocation and power control were studied for
maximizing the total rate of ground devices. Existing research
efforts on RSMA mainly focus on the downlink rather than on
the uplink. In [25], the outage performance was studied for
uplink RSMA communications. In [26], a joint BS decoding
order design and user power control algorithm was presented
to maximize the total uplink rate. An efficient joint scheme
of beamforming in the user side with rate splitting uplink
NOMA was developed in [27] to improve the spectral efficiency.
However, there is no work investigating the rate performance
of combining RSMS transmission and UDDe association in
full-duplex multi-UAV networks.

Notations: The following notations are used. A is a set, A
is a matrix, a is a scalar, and a is a column vector. In addition,
CM×N represents the complex space of dimension M ×N .

III. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider the uplink and downlink of
a cellular network comprised of multiple UAVs acting as aerial

TABLE I
NOTATIONS AND DEFINITIONS

BSs and one MBS covering the entire target region. We use
M = {0, 1, . . . ,M} and U = {1, . . . , U} to denote the set of
BSs (i.e., UAVs and MBS) and the set of users, respectively.
All the UAVs are connected to the MBS by capacity-limited
backhaul links that are orthogonal to each other and different
from the radio links between BSs and users. The MBS has Na

transmit antennas and each UAV is equipped with Nb antennas.
For UL, a user is associated with at most one BS. As such, we
introduce binary variables {AUL

u,m,m ∈ M, u ∈ U} to indicate
the user association states for UL, where AUL

u,m = 1 when user
u associates with BS m on UL and otherwise AUL

u,m = 0. For
DL, users interested in the same information are clustered into
a multicast group and served cooperatively by multiple BSs.
Note that a user requesting unicast services can be regarded as
a multicast group with one user. We define the set of multicast
groups as N = {1, . . . , N}. Then the set of users belonging to
the n-th group is denoted by Gn. Each user only belongs to at
most one multicast group per transmission interval. Therefore,
we have

∑
n∈N Gn = U and Gi ∩ Gj = ∅ for ∀i, j ∈ N and i �=

j. We model the BS selection as {ADL
m,n,m ∈ M, n ∈ N}, with

ADL
m,n = 1 means that the m-th BS is selected to serve the n-th

multicast group and otherwise ADL
m,n = 0.

We consider that both BSs and users perform in-band FD
transmission to promote efficient spectrum reuse. However, FD
transmission introduces self-interference (SI) between simulta-
neous UL and DL of each user or BS [28], which may lead
to performance degradation. Thanks to recent breakthroughs in
hardware design (e.g., digital baseband signal processing), SI
can be reduced to near the noise level for low-power devices.
Table I summarizes the main symbols used in this paper.

B. Channel and Association Model

Denote the multiple-input multiple-output (MIMO) channel
vectors from user u to BS m as hu,m ∈ C1×Nk , from user u to
user i as hu,i ∈ C1×1, from BS j to BS m as hj,m ∈ CNk×Nk ,
and from BS m to user zn as hm,zn ∈ CNk×1 for any j ∈ M
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and i ∈ U , where zn is a user in the n-th multicast group and
k ∈ {a, b}. These propagation channel vectors can be modeled
by path-loss, shadowing and small-scale fading. On this basis,
the received signal at BS m for UL is given by

yUL
m =

∑
u∈U

AUL
u,mhu,mxUL

u,m +
∑

j∈M\m

∑
n∈N

ADL
j,nhj,mxDL

j,n︸ ︷︷ ︸
DL-to-UL interference

+
∑

j∈M\m

∑
u∈U

AUL
u,jhu,mxUL

u,j︸ ︷︷ ︸
UL-to-UL interference

+Iself
DL + nm, (1)

where xUL
u,m ∈ C1 and xDL

m,n ∈ CNk are the transmitted signals
at user u towards BS m for UL and at BS m towards user u for
DL, respectively; Iself

DL = hmxDL
m,n denotes the residual SI at BS

m due to simultaneous UL and DL transmissions, where hm is
the SI channel that can be modeled as independent identically
distributed Gaussian entries hm ∼ CN (0, δ2m) and 1

δ2m
is the

SI cancellation capability for the BS1. nm ∼ CN (0, σ2
m) is the

additive white Gaussian noise (AWGN) at BS m. The transmit
power for BS m and user u satisfies that

∑N
n tr(PDL

m,n) ≤ Pmax
m

and tr(PUL
u,m) ≤ Pmax, where Pmax and Pmax

m are the peak power
of each user and BS m, respectively. Similarly, the received
signal of user zn in DL is written as

yDL
zn

=
∑
m∈M

ADL
m,nhm,znx

DL
m,zn

+
∑
m∈M

∑
u∈U\zn

AUL
u,mhu,znx

UL
u,m︸ ︷︷ ︸

UL-to-DL interference

+
∑
m∈M

∑
j∈N\n

ADL
m,jhm,znx

DL
m,j︸ ︷︷ ︸

DL-to-DL interference

+Iself
UL + nm,zn . (2)

where nm,zn ∼ CN (0, σ2
zn
) denotes the AWGN at user zn and

Iself
UL = hznx

UL
zn,m

. Also, hzn follows CN (0, δ2zn).

C. Rate Splitting Transmission

Suppose that BSs can separate the signals of users through
beamforming for UL and DL transmissions. In our model, we
employ a linear precoding rate-splitting (RS) to mitigate inter-
cell interference. The main idea of RS is to split the transmitted
signal into common and private parts and enable the common
signal to be decoded and removed from the original received
signal by successive interference cancellation (SIC) to partially
reduce interference. Note that the RS-enabled transmission is
different in UL and DL, which is described in detail below.

1) RS-Uplink: To facilitate signal encoding and decoding
operations, two users with different channel gains are paired to
perform RS-enabled uplink NOMA [32], which are associated
with the same BS. The channel gains for users are sorted in
decreasing order, i.e., h1 ≥ h2 ≥, . . . ,hU . In addition, the user
pairing follows (h1,hU

2 +1), (h2,hU
2 +2), . . . , (hU

2 −1,hU ). We

1.Different interference mitigation methods such as antenna cancellation and
balun cancellation were proposed to alleviate the loss caused by SI [29], [30],
[31].

Fig. 2. An example of RS: (a) and (b) are the signal constellations of messages
Sf,s1 and Sf,s2 ; (c) is the signal constellation of transmitted signal Sf,s.

define F = {1, . . . , F} as the set of user-pairs, which are pair-
wise disjoint and |F| = |U|

2 . The f -th user-pair is denoted by
Φf = {Φf,s,Φf,w}, where Φf,s and Φf,w are the strong-user
with superior channel gain and the weak-user with inferior
channel gain in the f -th user-pair, respectively. In each user-pair,
only one user needs to split its message [33]. Specifically, the
strong-user splits its message into two messages and sends Sf,s1

andSf,s2 to its associated BSmwith powerPf,s1 andPs2, while
the weak-user only sends a single stream Sf,w to the same BS
m with power Pf,w. As shown in Fig. 2, RS is performed via
assigning two different powers to these two split parts. By using
SIC, the m-th BS decodes the signals received from the f -th
user-pair in the order of Sf,s1 → Sf,w → Sf,s2.

2) RS-Downlink: Since users interested in the same message
are in the same multicast group for DL, the message of the
n-th multicast group is split into a common message Wn,c and
a private message Wn,p for n ∈ N based on the RS policy,
i.e., Wn → {Wn,c,Wn,p}. All the common messages from N
multicast groups are then packed into a concatenated message
Wc → {Wn,c}n∈N and encoded into a single common stream
{W1,c,W2,c, . . . ,WN,c} → Sc. Meanwhile, private messages
are individually encoded as separate private streams for each
multicast group Wp → {S1, S2, . . . , SN}. Therefore, the mes-
sage stream vector S = [Sc, S1, S2, . . . , SN ]T ∈ C(N+1)×1 is
precoded by using the precoder matrix P = [pc,p1, . . . ,pN ],
where pn ∈ CNk×1 and pc ∈ CNk×1 are the precoder vectors
for the m-th group’s private stream and the common stream,
respectively. At the beginning of decoding, the common stream
Sc is decoded at each user by treating all the private streams as
noise. After Sc has been decoded, each group of users decode
their desired private stream by removing Sc from the received
signal via SIC while treating the other private streams as noise.

D. Received Signal and Interference

Based on the above RS transmission model, we describe the
received signal and interference for UL and DL.

1) Uplink: Let hs
f,m∈C1×Nk and hw

f,m∈C1×Nk denote the
channel vectors from users Φf,s and Φf,w in the f -th user-pair
to BS m, respectively. In addition, we define a binary variable
AUL

f,m, which indicates that users Φf,s and Φf,w in the f -th user-
pair are associated with BSm for UL ifAUL

f,m = 1 and otherwise
AUL

f,m= 0. For DL, we use q ∈{0, 1}M×U to denote the BS
selection vector, where qDL

m = 1 indicates that the m-th BS is
selected to transmit the common stream and otherwise qDL

m = 0.
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As a results, the received signal at BS m is given by

yUL
m =

∑
f∈F

AUL
f,m[hs

f,m(
√

Pf,s1Sf,s1 +
√

Pf,s2Sf,s2)

+ hw
f,m

√
Pf,wSf,w] + IUL-UL + IDL-UL + IDL

self + nm,

(3)

where Sf,j for f ∈F and j ∈{s, w} satisfies E{Sf,jS
H
f,j} = I;

IUL-UL and IDL-UL denote the interference from other users and
BSs, respectively; and IDL

self is the residual SI at BS m. Let J
denote the set of user-pairs except those associated with the
m-th BS, where |J | = F −∑f∈F AUL

f,m, ∀m ∈ M. Therefore,
IUL-UL is written as

IUL-UL =
∑

m′∈M\m

∑
j∈J

AUL
j,m′

[
hw
j,m

√
Pj,wSj,w

+ hs
j,m

(√
Pj,s1Sj,s1 +

√
Pj,s2Sj,s2

)]
. (4)

Moreover, IDL-UL is expressed as

IDL-UL =
∑
n∈N

∑
m′∈M\m

ADL
m′,nhm′,m

√
Pm′,nSn︸ ︷︷ ︸

Private stream interference

+
∑

m′∈M\m
qDL
m′
√

Pm′,cSchm′,m︸ ︷︷ ︸
Common stream interference

. (5)

Finally, IDL
self is written as

IDL
self =

∑
n∈N

ADL
m,n

√
Pm,nSnhm + qDL

m

√
Pm,cSchm. (6)

Upon receiving these encoded symbols, each BS and user-pair
constructs their transmit signals by employing a superposition
of linear precoded streams with beamforming weight matrices
Wm = {wm,c,wm,1,wm,2, . . . ,wm,N} ∈ CNk×1 andWf =
{wf,s1,wf,s2,wf,w} ∈C1×Nk , respectively. Since each trans-
mitted symbol stream has unit energy, the transmit power of
strong-user Φf,s and BS m for ∀f ∈ F and ∀m ∈ M is the
energy cost of the beamforming. We thus have

PΦf,s
= ‖wf,s1‖2 + ‖wf,s2‖2, (7a)

Pm =
∑
n∈N

‖wm,n‖2 + ‖wm,c‖2. (7b)

Thus, IDL-UL and IDL
self are rewritten as follows:

IDL-UL =
∑
n∈N

∑
m′∈M\m

ADL
m′,nhm′,mwm′,nSn

+
∑

m′∈M
qDL
m′hm′,mwm′,cSc,

(8)

IDL
self =

∑
n∈N

ADL
m,nhmwm,nSn + qDL

m wm,chmSc. (9)

Based on the above interference analysis, the output signal of
the f -th user-pair at BS m is expressed as

yUL
f,m = hs

f,m(wf,s1 +wf,s2) + hw
f,mwf,w

+

F∑
i=1,i�=f

(hs
i,m(wi,s1 +wi,s2) + hw

i,mwi,w)

+ IDL-UL + IDL
self + nm. (10)

Since the decoding order of Sf,s1 → Sf,w → Sf,s2 is used
to decode the received signal, the output signal-to-interference-
plus-noise ratio (SINR) for decoding Sf,s1 is written as

γs1
f,m=

|hs
f,mwf,s1 |2

|hs
f,mwf,s2 |2+ |hw

f,mwf,w|2+Ii+IDL-UL+ IDL
self + σ2

m

(11)
where Ii =

∑F
i=1,i�=f (|hs

i,m|2(|wi,s1 |2 + |wi,s2 |2) + |hw
i,m

wi,w|2) denotes the total interference from other user-pairs.
Similarly, the SINRs of decoding Sf,w and Sf,s2 are expressed
as

γw
f,m =

|hw
f,mwf,w|2

|hs
f,mwf,s2 |2 + Ii + IDL-UL + IDL

self + σ2
m

, (12)

γs2
f,m =

|hs
f,mwf,s2 |2

Ii + IDL-UL + IDL
self + σ2

m

. (13)

Therefore, the received rates for streams Sf,s1, Sf,s2 and Sf,w

are expressed as

Rs1
f,m = log2(1 + γs1

f,m),

Rs2
f,m = log2(1 + γs2

f,m),

Rw
f,m = log2(1 + γw

f,m). (14)

Then the sum rate from both strong and weak users in the f - th
user-pair is given by Rf,m = Rs1

f,m +Rs2
f,m +Rw

f,m.
2) Downlink: For DL, the transmitted signal of BSm is given

by

sm = wm,cSc +

N∑
n=1

wm,nSn. (15)

In addition, the zn-th user in the n-th multicast group receives
superimposed signals from multiple BSs, such as its intended
common and private signals or interference signals from other
multicast groups n′�=n or UL streams from other users. User zn
is assumed to be a strong user in the k-th user-pair for UL. The
received signal of the zn-th user is written as

yzn=
∑
m∈M

qDL
m hm,znwm,cSc︸ ︷︷ ︸

Desired common signal

+
∑
m∈M

ADL
m,zn

hm,znwm,znSn︸ ︷︷ ︸
Desired private signal

+
∑

j∈N\n

∑
m∈M

ADL
m,jhm,znwm,jSj︸ ︷︷ ︸

Private interference

+ IUL-DL + IUL
self + σ2

zn

(16)

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:20:53 UTC from IEEE Xplore.  Restrictions apply. 



JI et al.: DECOUPLED ASSOCIATION WITH RATE SPLITTING MULTIPLE ACCESS IN UAV-ASSISTED CELLULAR NETWORKS 2191

for ∀zn∈Gn and ∀n∈N , where IUL
self = hs

k,zn
(wzn,s1Szn,s1 +

wzn,s2Szn,s2) + hw
k,zn

wk,wSk,w is the residual SI at user zn,
hs
k,zn

and hw
k,zn

follow CN (0, δ2zn). Also IUL-DL denotes the
interference from other user-pairs, which can be written as

IUL-DL =
∑

f∈F\k
[hs

f,zn
(wf,s1Sf,s1 +wf,s2Sf,s2)

+ hw
f,zn

wf,wSf,w]. (17)

By using a linear precoded RS, each user recovers its desired
message stream from the received signal based on a two-step
decoding. In the first step, the common stream Sc is decoded at
each user by treating all private streams as noise. The SINR for
decoding common stream Sc at user zn is given by

γzn,c =

∑
m∈M qDL

m |hm,znwm,c|2
Izn,c + IUL-DL + IUL

self + σ2
zn

, (18)

where Izn,c =
∑

n∈N
∑

m∈M ADL
m,n|hm,znwm,n|2 denotes the

interference caused by all the private streams. The achievable
rate of decoding Sc at user zn is written as

Rzn,c = log2(1 + γzn,c). (19)

After Sc is successfully decoded, it will be cancelled from the
original received signal yzn by means of SIC. Meanwhile, each
group of users Gn can decode their intended private stream Sn

by treating the irrelevant private streams as noise. The SINR for
decoding private stream Sn at user zn is given by

γzn,p =

∑
m∈M ADL

m,n|hm,znwm,zn |2
Izn,p + IUL-DL + IUL

self + σ2
zn

, (20)

where Izn,p =
∑

j∈N\n
∑

m∈M ADL
m,j |hm,znwm,j |2 denotes

the interference caused by the private streams of other groups.
The achievable rate of decoding Sn at user zn is expressed as

Rzn,p = log2(1 + γzn,p). (21)

Due to the fact that each user should be able to successfully
decode the common part first, the achievable transmit rate with
the common stream shall not exceed Rc, which is written as

Rc = min
∀zn∈Gn,∀n∈N

log2(1 + γzn,c). (22)

Since Rc is shared among all multicast groups, we have

Rc =
∑N

n=1
Cn, (23)

where Cn is the common rate allocated to the n-th multicast
group, which is defined as

Cn =
L(Wn,c)∑N
n=1 L(Wn,c)

Rzn,c, (24)

where 0 ≤ L(Wn,c)
∑N

n=1 L(Wn,c)
≤ 1 is the splitting ratio and L(·) is

the length of message. In the n-th multicast group, the private
stream Sn shall be decoded by all users in Gn. Thus, the private
rate Rn of the n-th multicast group is determined by its worst
user, which is given by

Rn = min
∀zn∈Gn

log(1 + γzn,p), ∀n ∈ N . (25)

To this end, the total rate of the n-th multicast group is written
as R̃n = Cn +Rn.

Due to the wireless backhaul link is orthogonal to the radio
access link, there is no interference among them. Accordingly,
the achievable backhaul rate of UAV m is given by

Rback
m = log2

(
1 +

|h0,mw0,m|2
σ2
m

)
. (26)

E. Problem Formulation

Motivated the aforementioned analysis, we formulate a joint
optimization problem of common rate allocation, beamforming
design, and decoupled association. The objective is to maximize
the sum rate of user-pairs in UL and that of multicast groups in
DL while ensuring user fairness within each group subject to
the constraints of user-BS transmit power and UAV backhaul
capacity. Mathematically, this problem is written as

P0: max
A,q,C,wm,wf

∑
f∈F

∑
m∈M

AUL
f,mRf,m +

∑
n∈N

R̃n (27a)

s. t. Cn ≥ 0, ∀n ∈ N , (27b)

N∑
n=1

Cn ≤ Rc, (27c)

Pf,s1+Pf,s2 ≤ Pmax, Pf,w ≤ Pmax, ∀f ∈ F , (27d)

Pm,c +

N∑
n=1

Pm,n ≤ Pmax
m , ∀m ∈ M, (27e)

qDL
m ∈ {0, 1}, ∀m ∈ M, (27f)

(1− qDL
m )wm,c = 0, ∀n ∈ N , (27g)

ADL
m,n ∈ {0, 1}, ∀n ∈ N , ∀m ∈ M, (27h)

(1−ADL
m,n)wm,n = 0, ∀m ∈ M, ∀n ∈ N , (27i)

AUL
f,m ∈ {0, 1},

M∑
m=1

AUL
f,m ≤ 1, ∀f ∈ F , (27j)

AUL
f,m(1−wf,j) = 0, ∀f ∈F , j∈{s1, s2, w}, (27k)∑

f∈F
AUL

f,mRf,m +
∑
n∈N

qDL
m Cn

+
∑
n∈N

ADL
m,nRn ≤ Rback

m ,m ∈ M \ 0, (27l)

where C ={C1, . . . , CN} is the common rate allocation vector.
Constraint (27b) guarantees that the assigned common rate
of each group is non-negative, while constraint (27c) ensures
that the received common rate of all groups cannot exceed the
achievable common rate of any group. Constraints (27d) and
(27e) describe the transmit power limitations for users and BSs.
Constraints (27f)–(27i) mean that the beamforming vector is
zero if the corresponding BS is not selected. Constraint (27j)
ensures that each user-pair only associates with one BS for UL.
Constraint (27k) means that the beamforming vector is zero if
the user-pair does not associate with the BS. Constraint (27l)
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restricts the number of users associated to each UAV for UL and
DL to avoid the backhaul overload.

IV. LEARNING-BASED ASSOCIATION AND BEAMFORMING

A. Methodology

The formulated optimization problem P0 is non-convex and
challenging to get a global optimal solution. Meanwhile, some
binary decision variables make it more hard to solve. Existing
studies simplify such a non-convex problem as several different
subproblems and then alternately optimize the variables of each
subproblem during each iteration until convergence. Such an
approach makes this non-convex problem easy to solve at the
cost of optimality. In addition, the computational complexity
greatly increases with the introduction of beamforming design
and decoupling association. Deep reinforcement learning (DRL)
has received considerable attention due to its ability to transform
intractable optimization problems into maximizing cumulative
rewards through reward design. There are a few studies on
using DRL-based centralized solutions to solve high complexity
problems in multi-agent scenarios. However, such solutions may
lead to poor fault tolerance and flexibility as the network scale
becomes larger. Fortunately, multi-agent DRL (MADRL) is
able to provide a distributed solution for a multi-agent prob-
lem, where each agent makes decisions based on its own local
information, which thus can keep the state space and action
space from increasing with the size of the network. However, an
individual agent may not be able to get complete and accurate
knowledge from the training model, which is also known as
model uncertainty. Inspired by the aforementioned facts, we de-
velop a robust MADRL-based framework to solve our problem
in a distributed manner.

To be specific, we model the original problem P0 as a robust
partially observable Markov Decision Process (POMDP). The
network settings in this paper are treated as the environment
and each UAV is treated as a controller (i.e., agent) that learns
and updates its experience from the environment based on a
distributed MADRL framework and until reaching an optimal
policy. To overcome the instability in MADRL-based learning
systems due to model uncertainty, we propose a new clip and
count-based Proximal Policy Optimization (PPO) algorithm to
facilitate agents to continuously train neutral networks.

B. Preliminaries of POMDP

Since the target of problem P0 is to maximize the sum rate
of user-pairs on UL and that of multicast groups on DL in a
time-varying full-duplex decoupled system, we formulate it as
a POMDP, which is denoted by

Ω = 〈S,O,A, P0,R, γ,P〉, (28)

where S denotes the set of states describing the environment;
O and A are the observation and action spaces, respectively.
R is the reward function that maps the network state and
the joint actions of agents to rewards; P0 denotes the initial
environment state distribution function; γ∈ [0, 1] denotes the
discount factor related with future rewards; and P is a state

transition function. In particular, Pst,st+1
(at) is the probability

that state st enters a new state st+1 after executing action at.
At decision time slot t, each agent k gets a local observation
from its state sk(t) ∈ S and takes an action ak(t) ∈ A with a
policy π : S → A. Then it obtains a reward and the environment
moves to the next state sk(t+ 1) according to the probability
P (sk(t+ 1)|sk(t), ak(t)). For our problem, these elements are
described in detail below.

1) State and Observation Space: We use st to denote the state
at time slot t, which reveals the current conditions of each user
and UAV and contains four parameters, namely, rate of decoding
common stream Rc, private rate of the n-th multicast group Rn,
backhaul rate of each UAV Rback

m , sum-rate of users in the f -th
user-pair Rf,m, which can be defined as

st = {Rback
m , Rf,m, Rn, Rc}, ∀n∈N , f ∈F ,m∈M\0. (29)

The state space is then denoted as S = {st|t = 1, . . . , T}. At
time slot t, each agent observes its own state information so as
to make an efficient decision. However, the rate between each
user and UAV is determined by link information such as inter-
cell interference and channel gain, which can only be observed
locally and not known to other user-UAV pairs. According to
the rate expression, the observation of agent m is given by

omt = {Rback
m , Rf,m, Rn, Rc, γ

s1
f,m, γs2

f,m, γw
f,m,

γzn,c, γzn,p}, ∀n∈N , f ∈F ,m∈M\0. (30)

Thus the set of the observation space is given by O = {omt |t =
1, . . . , T,m ∈ M\0}.

2) Action Space: At time slot t, each UAV is responsible for
associating with suitable users and determining the beamform-
ing as well as the power and common rate allocation. To this
end, the action of the m-th UAV is written as

amt =
{
Pm,n, Pf,m,wf,m,wm,n, Pf,m,wm,c, Cn, q

DL
m ,

AUL
f,m, ADL

m,n

}
, ∀n∈N , f ∈F ,m∈M\0. (31)

We define A = {amt |t = 1, . . . , T,m ∈ M\0} as the set of the
action space.

3) Reward Design: In a DRL-based framework, each agent
aims at exploring a policy that maximizes its expected reward
from the environment every decision time slot. Therefore, our
formulated difficult-to-optimize objective can be simplified as
maximizing the expected cumulative reward through effective
reward design.

The objective of problem P0 is to maximize the total rate of
multicast-groups and user-pairs in both DL and UL. In general,
the cumulative reward corresponds to the objective function.
However, it should be considered that constraints in P0 are not
satisfied during the training phase when designing the reward
function. In order to avoid backhaul capacity overload, we can
introduce a penalty term to the original objective function. In
particular, a specific reward function is defined as follows:

r(t) = R(t)− ω1χback(t)− ω2χpower(t), (32)

where the first term R(t) =
∑

f∈F
∑

m∈M AUL
f,m(t)Rf,m(t) +∑

n∈N R̃n(t) denotes the immediate data rate and the latter two
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terms are penalty functions on the overloaded backhaul capacity
(27l) and the excess transmit power (27e). Moreover, the weights
ω1 and ω2 are positive constants used to evaluate the importance
of constraints.χback(t) andχpower(t) are binary indicators, where
χback(t) = 0means that the UAV backhaul capacity is satisfied at
time slot t and χback(t) = 1 otherwise. Similarly, χpower(t) = 0
if the transmit power is satisfied at time slot t and χpower(t) = 0
otherwise. Thus, we have r(t) = {rmt ,m ∈ M \ 0}.

Each agent continuously observes the environment and its
interaction process can be represented via a Markov chain ζ =
s1,a1, r1, s2,a2, r2, . . . , sT ,aT , rT . Thus, the probability of
each interaction process is given by

P (ζ) = s1

T∏
t=1

π(s1,a1)P (st+1|at, st), (33)

whereπ(st,at) = P (at|st) is a stochastic policy. Then the state
transition probability from s to s′ ∈ S′ ⊆ S after taking action
a is expressed as

P (st+1 ∈ S′) =
∫
S′
Ψ(s,a, s′)ds′, (34)

where Ψ(s,a, s′) denotes the transition function [34]. Starting
from state s, each agent can evaluate and improve its policy
by maximizing the state-value function V π(s) and action-value
function Qπ(s,a), which can be written as

V π(s) = Eζ∼P (s1)

(
T∑

t=1

γt−1r(t)|ζs1
= s

)
, (35)

Qπ(s,a) = Es′∼P (s′ |s,a)(r(s,a, s′) + γV π(s′)), (36)

where Qπ(s,a) is also the expected cumulative reward and γ
is the discount factor reflecting the weight of future rewards.
Considering that each agent’s objective is to search a policy π
that takes an action a at state s so as to maximize the expected
discounted reward, the objective function of POMDP is given
by

J(π) = EsPrπ(s)
∑

π(s,a)Aπ(s,a), (37)

where Prπ(s) is the probability distribution of selecting policy
π under state s. Aπ(s,a) = Qπ(s,a)− V π(s) is an advantage
function that evaluates how good a specific action is compared
to other available actions.

C. Robust POMDP

It is obvious that the objective of POMDP is to maximize the
expected cumulative reward, which depends on the behavior of
all agents. In practice, an individual agent may not be able to
get complete and accurate information from the environment,
such as transition probability function (34) and reward func-
tion (32). Specifically, each UAV selects an individual action
with-out fully understanding the rewards and joint transitions
of other UAVs. In this case, poor system performance may be
experienced in practice. To tackle this issue, the trained policy
needs to be robust to possible uncertainties of POMDP [35].
In particular, we transform the original problem into a robust

POMDP, which is described as follows:

Ω̃ = 〈S,O,A, P̃s, P0, r̃s, γ〉, (38)

where P̃s and r̃s are the uncertainty sets of possible transition
probability functions and expected rewards at state s, respec-
tively. The behavior of an individual agent (i.e., natural agent
are indexed by 0) is used to characterize uncertainty, which is
mutually resistant to the behavior of all other agents. Hence, the
set of policies is given by

πθ0 = {πθ0,m |m ∈ M \ 0}, (39)

where θ0 = (θ0,1, θ0,2, . . . , θ0,M ), which indicates that differ-
ent agents have varying uncertainty sets. Furthermore, the joint
policies for all individual and natural agents are parameterized
by θ = (θ0, θ1, . . . , θM ). For our robust POMDP, the state-
action and state-value functions are respectively expressed as

Q̃π(s,a) = Es′∼P̃ (s′|s,a)(r̃(s,a, s
′) + γV π(s′)), (40)

Ṽ π(s) = Eζ∼P̃ (s1)

(
T∑

t=1

γt−1r̃(t)|ζs1
= s

)
. (41)

We define the the natural-agent objective function J(πθ0,m)
and the individual-agent objective function J(πθm) as follows:

J(πθ0,m) = EsPrπθ0,m (s)
∑

π(θ0,m), (42)

J(πθm) = EsPrπθm (s)
∑

π(s,a)Ãπθm (s,a), (43)

where Ãπθm (s,a) = Q̃πθm (s,a)− Ṽ πθm (s) is the advantage
function. Next, we develop a distributed MADRL framework to
learn the optimal policy for each agent.

D. Distributed Multi-Agent DRL

Note that finding the optimal policy for our robust POMDP
using a simple RL-based method is challenging due to its large
and complex state space. In order to overcome this challenge,
we consider a MADRL framework with local states and define
deep neural networks (DNNs) as function approximators. To
be specific, each UAV acts as an agent that interacts with the
network environment and learns its experience independently,
which can be used to optimize the joint policy of beamforming
allocation and decoupled association. This indicates that each
agent may need to explore the optimal policy without complete
information about all agents. As shown in Fig. 3, our proposed
MADRL framework adopts centralized training and distributed
execution to address model uncertainty due to individual agent
training. Specifically, each agent has an actor-network and a
critic-network, where the actor network makes decisions based
on its local observations while the critic network evaluates the
output of the actor-network.

1) Centralized Training: In this phase, each UAV-agent has
to learn the association with users, control the transmit power
and common stream rate, and determine the beamforming. In
addition, experience replay techniques are used to increase the
training stability for the optimal policy. The state transition
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Fig. 3. Illustration of multi-agent DRL framework for full-duplex networks.

samples of each agent are stored into a replay buffer with size B,
which consists of the tuple {s,a, r, s′} and is implemented on
the MBS. In the learning phase, the neural network is updated
via randomly sampling mini-batch experiences from the replay
buffer, which breaks the correlation between sequential samples
and alleviates the learning oscillation.

At the beginning of each episode, each UAV-agent observes
the state st ={Rback

m , Rf,m, Rn, Rc}, ∀n∈N , f ∈F ,m∈M\0
and the received information is then stored in the replay buffer.
Next, the actor network of agent m takes its local observations
O = {s,a, r, s′} from the replay buffer as the input and then
outputs the policy probability distribution. In other words, the
actor network is responsible for generating a sequence of actions
through optimizing J(πθm), i.e., the objective function of the
robust POMDP defined in (43). Based on this purpose, the actor
network will generate the following policy

πθA(s,a) =
1√

2π
̂(s)
exp

(
−a− μ̂(s)

2
̂(s)2

)
, (44)

where θA denotes the parameters of actor networks; μ̂(s) and

̂(s) denote the mean and standard deviation for the generated
actions, which are expressed respectively as


̂(s) = f�̂(θ
As� + κ), (45)

μ̂(s) = fμ̂(θ
As� + κ), (46)

where κ denotes the bias vector; fμ̂ and f�̂ are the activation
functions of the output layer and the hidden layer of the actor
network. The critic network is responsible for computing the
centralized advantage function Ãπθm (s,a), which can be used
to guide the gradient of the actor to move toward the direction
with low cost. Moreover, the advantage function is constantly
updated as the training progresses.

Since the MBS has a significant computational advantage over
UAVs in the network, the training of our MADRL frame-work
can be conducted centrally on the MBS in an offline way.
After sufficient training, the resulting training model is directly
utilized in the distributed execution phase.

2) Distributed Execution: In this phase, each UAV employs
a trained actor network to generate the corresponding action
sequences with its own observations in each learning step. As
a results, each UAV is able to adjust its common stream and
transmit power allocation as well as beamforming to provide

better services for associated users. Although the actions of all
UAVs may be updated simultaneously, it is also possible for an
individual UAV to have no knowledge of the actions taken by
other UAVs.

Based on the above analysis, the MADRL approach for joint
decoupled association and beamforming and common rate al-
location is summarized as Algorithm 1. At the beginning, the
actor-critic network, the parameter settings for our multi-UAV
assisted cellular network and the replay memory are initialized.
Each training episode is set to have T time slots. At time slot t,
agent m ∈ M observes the state omt to receive the common and
private stream rates and the rate from the user-pair to the UAV
through importance sampling. Note that only the actor network
works in this step. Then the sequence of states is fed into the
corresponding actor-network to calculate the actions that receive
the reward rm(t+ 1). Finally, each agent stores the transition
tuples {omt , amt , rm(t+ 1), omt+1} into the replay memory and
then exploits the proposed Algorithm 2 to train the actor-critic
network.

E. Training With Clip and Count-Based PPO

It is clear that the action space defined in (31) includes both
discrete and continuous variables. Although conventional DRL
algorithms (i.e., policy-based learning or value-based learning)
can provide corresponding policies for actions that are either
all continuous or discrete, they can not tackle the hybrid ac-
tion space. To overcome this issue, a basic policy gradient
approach is introduced, namely, trust region policy optimization
(TRPO) [36]. Then the objective function is rewritten as

J(θ) =
∑
s

Pπθold

∑
a

πθold(s,a)
πθ(s,a)

πθold(s,a)
A(s,a),

= Es∼P
πθold ,a∼πθold

πθ(s,a)

πθold(s,a)
A(s,a), (47)

where πθold and πθ are the old and current politics, respectively.
The Kullback-Leibler (KL) divergence is used to restrict the
step of the policy update in (47) to ensure the training stability
of TRPO. We have

Es∼P
πθold [DKL(πθold(·|s)‖πθ(·|s))] ≤ ϑ, (48)

where DKL(·) is the KL divergence function. ϑ is a constant
ensures that there is no significant difference between the new
and old policies. However, since the second-order optimization
of TRPO is inadequate, it is time-consuming to train [37]. As
a results, we develop a clip-and-count based Proximal Policy
Optimization (PPO) algorithm to train actor-critic networks,
which uses a clipping function to ensure that undesirable actions
do not corrupt its training. The probability ratio between the
current and old policies is given by

Υ(θ) =
πθ(a|s)
πθold(a|s)

, (49)

where θ denotes the policy parameter, which is updated based
on the following loss function,

L(s,a, θold, θ) = E
[
min

(
Υ(θ)Ãπθold

(s,a),
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Algorithm 1: MADRL-Based Association and Beamform-
ing.

1: Initialize: the actor-critic network; the network
parameter settings; the replay memory.

2: Input: Observation space O; action space A; number
of episodes Nept; discount factor γ; network update
period T ; minibatch size D.

3: Output: Optimal action sequences on user-UAV
association, beamforming and transmit power
allocation.

4: for each episode do
5: while UAVs are located in the range of the MBS do
6: Update the rates of user-pairs to UAVs; common

and private stream rates; backhaul rate of each UAV
7: Obtain an initial state s1
8: for t = 1, 2, . . . , T do
9: for each UAV-agent do
10: Observe omt and select action amt through

importance sampling the density function
11: end for
12: Receive a reward rmt and transit the next state

st+1 for the current action and state
13: Each agent executes action at and interacts with

the environment for receiving their reward r(t+1)

14: for each agent m do
15: Calculate the reward function rm(t+ 1)
16: Store the tuple {omt , amt , rm(t+ 1), omt+1} in

the experience replay memory
17: end for
18: end for
19: end while
20: for each agent m do
21: Use Algorithm 2 to train actor and critic networks

of each agent
22: end for
23: end for

clip(Υ(θ), 1− ε, 1 + ε)Ãπθold

)]
, (50)

where Ãπθold
(s,a) denotes the estimated advantage function;

ε denotes the threshold and the function clip(Υ(θ), 1− ε, 1 +
ε) is used to indicate that the reward will be canceled if Υ(θ)
is outside [1 + ε, 1− ε]. However, a fixed clip threshold ε will
result in poor feasibility of the standard PPO [37]. In order to
tackle this issue, ε is designed to follow the normal distribution
ε ∼ CN (μ̂, 
̂2), where 
̂ and μ̂ are the standard deviation and
expected value, respectively. Such modification allows agents to
be limited to a larger exploration range during training based on
the differences between the current and old policies. Since the
difference gradually decreases with the training, we add a small
in-scope limit to each agent to speed up convergence.

To deal with the instability risk brought by the uncertainty of
the model, this paper introduces extrinsic and intrinsic rewards.
The former is a discount reward R̃(t) = γt−1r(t), which is
defined in (35). The latter is used to motivate agents to expand

Algorithm 2: Clip and Count-Based PPO.
1: Input: Initialized policy parameters θ0 and value

function parameters φ0.
2: for m = 0,1,2,... do
3: Collect {sm,am, rm} for m ∈ M
4: Calculate extrinsic reward R̃(t)
5: Estimate advantage function Aπk(st,at) based on

the current value function Vφm

6: Set ε ∼ CN (μ̂, 
̂2)
7: Update the policy parameter using ε and (50):
8: θm+1=argmaxθ

1
|Dm|N

∑
τ∈Dm

∑T
t=0 min(Υ(θ)

×Ãπθm
(st,at), g(ε, Ãπθk

(st,at))), where g(·) denotes
the stochastic gradient policy

9: Count Ct and calculate intrinsic reward R̂(t)
10: Update the value function parameter by Ct and (52):
11: φm+1= argminφ

1
|Dm|T

∑
τ∈Dm

∑T
t=0(Vφ(st)−

(R̃(t)+R̂(t)))2

12: end for

their exploration before receiving any extrinsic rewards, which
is denoted by

R̂(t) =

{
λ̂ 1
Ct

, if the countCt > 0,

0, otherwise,
(51)

where λ̂ ∈ [0, 1] is a constant and Ct denotes the total number
of counts allocated to the beamforming wm(t) corresponding
to action at before time slot t. There are more counts used to
allocate the same beamforming, the less intrinsic reward can
be obtained. To this end, each UAV-agent tends to explore the
same beamforming with as few counts as possible for a larger
cumulative reward, which enhances its exploration capability.
Finally, we employ an improved PPO in which the parameters
of actor and critic networks are shared. In addition, we add a
mean-squared-error term to the value-estimation function (47) to
facilitate full exploration. On this basic, the mean-squared-error
loss of the critic network is denoted by

L(s,a, φold, φ) = (Vφold(s,a)− (R̃(t) + R̂(t)))2, (52)

whereφ denotes the value function parameter. Our proposed clip
and count-based PPO is summarized as Algorithm 2.

F. Practical Implementation

1) Communication Signal Between UAVs and Users: In our
distributed system, each UAV is responsible for making opti-
mal decisions about decoupling association and beamforming
allocation by interacting with the environment. Consequently,
we focus on the transmission signals between users and UAVs
rather than between MBS and UAVs. In practice, only a small
amount of information is needed when calculating the signals
between UAVs and users, such as inter-cell interference and
channel gain. Particularly, each UAV uses its control channel to
interact with the transmitted signals in UL and DL [38].

2) Computational Complexity and Scalability: Our devel-
oped MADRL is an actor-critic algorithm and uses centralized
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training and distributed execution in each learning episode. In
the training phase, the actor network of each agent inputs local
observations and then makes an action. As each actor and critic
network has three fully connected hidden layers, the computa-
tional complexity of centralized training is O(

∑I
i=1 ni · ni−1),

where ni denotes the number of neurons in hidden layer i[39].
However, the computational overhead of Algorithm 1 mainly

comes from each critic network evaluating the actions of all
agents, i.e., decoupling association, beamforming and common
rate allocation. According to (31) and (43), the computational
complexity of taking action and evaluating the output of each
actor network is calculated as O(U ·M · T ).

In terms of implementation, this MADRL framework can
be easily scaled up as the number of UAVs increases. This is
because we use only one experience pool for storing historical
experience, and increasing the number of UAVs only requires
expanding the size of this experience pool.

V. SIMULATION RESULTS

This section presents extensive simulation results to demon-
strate the performance of our proposed RS-based transmission
scheme. We first introduce the simulation setting and network
architecture. We then compare the algorithm in this paper with
several baselines and analyze experimental results.

A. Simulation Setup

We consider a full-duplex system with U = 30 users that are
randomly and uniformly distributed within an area of 2×2 km2.
Then 4 UAVs are deployed in fixed positions to assist the MBS
to provide services for users.2 The MBS has Na = 6 antennas,
while each UAV has Nb = 4 antennas. The maximum transmit
powers of the MBS and each UAV and user are set as 43 dBm,
33 dBm and 23 dBm, respectively. The receiver noise power
is set as σ2 = −120 dBm. The self-interference cancellation
capabilities of BSs and users are set as 1

δ2m
= 1

δ2zn
= 100 dB.

We use a wireless model similar to [41] for BS-to-user links.
Therefore, the channel between antenna Na = 1, . . . , Na of the
MBS and user u is expressed as

hna
0,u = �

na
0,u

√
G0βd

−α
0,uξ0,u, (53)

where �
na
0,u ∼ CN (0, 1) is the Rayleigh fading coefficient; G0

is the MBS antenna gain; ξ0,u is the shadowing coefficient; and
βd−α

0,u accounts for the path-loss effect, which is given by

�0,u(dB) = 128.1 + 37.6 log10(d0,u), (54)

where d0,u is the distance between the MSB and user u. The
path losses of user-to-user links are given as

�u,u′(dB) = 98.4 + 20 log10(du,u′). (55)

The UAV-to-user wireless channel is dominated by the proba-
bilistic line-of-sight (LoS) and non-line-of-sight (NLoS) links.

2.Similar to [40], users are randomly clustered into 5 multicast groups for
downlink transmission

TABLE II
NUMERICAL CALCULATION PARAMETER SETTINGS

Thus, the path-loss from UAV m to user u is given by

�m,u = P LoS
m,u�

LoS
m,u + PNLoS

m,u �NLoS
m,u , (56)

where the probabilities of LoS and NLoS links are denoted
as P LoS

m,u = 1
1+c1 exp(−c2(θmu−c1))

and PNLoS
m,u = 1− P LoS

m,u, re-
spectively. Also, c1 and c2 are environment-related constants
(e.g., rural and dense urban) and θmu=

180
π arcsin( H

dm,u
) is the

elevation angle. In addition, �LoS
m,u = 20 log(

4πfcdm,u

vc
) + χLoS

and �NLoS
m,u = 20 log(

4πfcdm,u

vc
) + χNLoS are the LoS and NLoS

path losses between user u and UAV m, respectively, where
vc is the light speed; fc denotes the carrier frequency; dm,u

is the distance; χLoS and χNLoS are shadowing factors. The
channel coefficient hnb

m,u, nb ∈ Nb = 1, . . . , Nb for the UAV-
to-user link is described similarly to (53). The UAV-to-UAV
channel is dominated by LoS link. Hence, the channel coefficient
hnb

m,m′ from UAV m to UAV m′ is given by hnb

m,m′ = ρd−α
m,m′ ,

where ρ = −60 dB is the channel gain at the reference distance
d = 1m. As shown in Table II, the parameters related to wireless
communication are set according to 3GPP standard [42].

B. Network Architecture

This simulation is performed on a server with an NVIDIA
GTX 2080 GPU. The proposed MADRL-based joint optimiza-
tion algorithm is composed of two neural networks, namely,
actor network and critic network, which are trained based on a
Python 3.6 platform with PyTorch. In addition, each actor and
critic network is built with three hidden layers. All the three
hidden layers have an equal number of neurons, i.e., e = 64.
Each hidden layer neural network is activated based on the
rectified linear unit (ReLU) function fReLU(x) = max{0, 1}.
The parameters of each actor and critic network are updated
through an Adam optimizer with a learning rate of 0.001. The
clip parameter is set to ε = 0.2. We set the discount factor
used to calculate the expected reward as γ = 0.999. Two neural
networks are trained every Nept = 15000 episodes, while the
number of time slots in an episode is set to T = 250. The
weights ω1 and ω2 are set as 40 and 60, respectively. The size
of experience replay buffer is set as B = 50000.
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Fig. 4. Convergence of MADRL-based training with different algorithms.

C. Result Analysis

1) Comparison of Different Learning Algorithms: To evalu-
ate the effectiveness of the MADRL-based learning framework
with the improved PPO algorithm, we consider the following
four policy gradient-based RL algorithms:
� Vanilla policy gradient (Vanilla-PG) [44]: It is trained in

an on-policy way and a stochastic gradient ascent is used
to approximate a high-return policy.

� Trust region policy optimization (TRPO) [36]: It uses an
off-policy training manner and the KL divergence is used
to control the policy update step for each iteration.

� Standard PPO [37]: It is trained in an off-policy manner
and simplifies TRPO based on a clip function.

� Proposed improved PPO: It is trained in an off-policy way
and a new clip distribution is proposed to cope with the
constraints between old and current policies.

Fig. 4 shows the cumulative reward versus iteration number
for the above four algorithms. It is clear that a monotonically
increasing reward can be obtained by training the actor-critic
network using our proposed algorithm. Comparing the curves
of the four algorithms, it is not difficult to find our proposed
training algorithm converges after about 1600 iterations. This
means that our developed intrinsic reward and clip distribution
can efficiently train each actor and critic network. In addition,
the cumulative reward of the proposed algorithm is lower than
that of the standard PPO algorithm before point D, while it is
always maximum after this point. This is due to the increased
computational complexity for calculating the intrinsic reward
after revising the procedure of the standard PPO. On the other
hand, the revised performance gain gradually makes up for the
loss of complex computations with the number of iterations.

2) Comparison of Different Association Modes: To evaluate
the performance of our proposed DFA association mode, four
association modes are considered and listed in the following:
� CHA: For both uplink and downlink, one user associates

with the same UAV using time-division half-duplex.
� DHA: For both uplink and downlink, one user associates

with two UAVs using time-division half-duplex.
� CFA: One user associates with the same UAV for simulta-

neous uplink and downlink.

Fig. 5. System performance under different user association modes.

Fig. 6. System performance under different transmissions modes.

� DFA: One user associates with two different UAVs for
simultaneous uplink and downlink.

In Fig. 5, we compare the reward achieved by the above four
association modes. It can be observed from Fig. 5 that the reward
of DHA is higher than that of CHA, while DFA is not superior to
CFA until point E. The reason is that the additional interference
generated by the decoupled mode reduces the transmission rate.
As the iteration proceeds, the rate gain from the decoupled
association is sufficient to compensate for the reduction due to
the additional interference. In addition, DFA (CFA) achieves sig-
nificant higher rewards compared to DHA (CHA). This indicates
that the user-UAV association with full-duplex outperforms the
one with half-duplex. This is because although the inherent
self-interference in simultaneous uplink and downlink reduces
the data rate, the total transmission time is halved. This means
that correlation costs can be reduced, e.g., by leasing radio
resources for associations, which fully compensates for the rate
reduction caused by self-interference.

3) Comparison of Different Transmission Modes: To evalu-
ate the performance of our proposed RSMA association mode,
we consider the following three baseline transmission modes:
SDMA [45]; NOMA [46] and TDMA [26].3 Fig. 6 depicts the
convergence behaviour of our proposed algorithm for different

3.The channel allocation for SDMA, power allocation for NOMA, and time
allocation for TDMA are solved by our proposed algorithm.
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Fig. 7. Uplink sum-rate versus maximum user transmit power.

transmission modes. As expected, the rewards achieved by the
four transmission modes increase quickly with the number of
iterations and eventually converge. It can be observed that the
convergence speed of our proposed RSMA mode is slightly
slower than that of the other three transmission modes. This
is because our proposed RSMA mode results in a large number
of common streams, which increases the training complexity
of Algorithm 1. However, our proposed RSMA mode achieves
the highest reward and increases up to 20.7% compared to the
SDMA mode. Such results are able to make up for the loss of
computational effort due to rate-splitting precoding.

4) Different Transmit Power: Fig. 7 plots the uplink sum-rate
achieved by the various transmission modes versus maximum
user transmit power Pmax. It is clear that the sum-rates of all
multiple access modes linearly increase with the maximum
transmit power of each user. The reason is that the sum-rate is a
logarithmic function of the user transmit power. In addition, our
proposed RSMA mode can increase up to 7.14%, 12.3% and
19.6% sum-rate compared to SDMA, NOMA and TDMA for
Pmax = 30 dBm, respectively. The reason is that our proposed
RSMA mode can adjust the splitting power of two messages
for each strong-user so as to control the interference decoding
thus optimizing the sum-rate of all users, while there is no power
splitting in other three multiple access modes. AsPmax increases,
the proposed RSMA mode always achieves the highest sum-rate,
while the TDMA mode has the worst sum-rate. In Fig. 8, we
depict the downlink sum-rate achieved by the various association
modes versus maximum UAV transmit powerPmax

m . The trend of
curves in Fig. 8 is similar with Fig. 7. For Pmax

m = 34 dBm, our
proposed RSMA mode can achieve sum-rate of up to 2.94%,
7.69% and 12.9% higher than those of SDMA, NOMA and
TDMA, respectively.

Fig. 9 plots the sum-rate achieved by the various association
modes versus maximum UAV transmit power Pmax

m . It is clear
that the sum-rate increases for the four association modes as
Pmax
m becomes large. For Pmax

m ≤ 31 dBm, the curves of DFA
and CFA modes are very close to each other, while the former
achieves a little higher sum-rate. Similarly, the curves of DHA
and CHA modes are close to each other when Pmax

m ≤ 34 dBm.
This is because when Pmax

m is small, each user may associate to
the same node for UL and DL transmissions. In addition, the

Fig. 8. Downlink sum-rate versus maximum UAV transmit power.

Fig. 9. System sum-rate versus maximum UAV transmit power.

Fig. 10. System sum-rate versus maximum MBS transmit power.

rate gaps between DFA and CFA and between DHA and CHA
become large with increasing Pmax

m . The reason is that as Pmax
m

increases, a user may achieve better UL rate by associating to
a nearby UAV and the same user may receive higher DL rate
from other multiple high-power UAVs. Such results show the
superiority of decoupled uplink and downlink associations.

Fig. 10 plots the sum-rate achieved by the various transmis-
sion modes versus maximum MBS transmit power Pmax

0 . As
shown in (26), the maximum backhaul rate is proportional to
the maximum MBS transmission power. With limited backhaul
rate, our proposed RSMA transmission mode can significantly
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Fig. 11. Max-min fairness rate versus number of users per group.

improve the sum-rate. By mitigating the inter-cell interference
more efficiently using RS, the performance improvement of our
proposed RSMA mode is more obvious asPmax

0 increases. When
Pmax
0 ≤ 44 dBm, the curves of our proposed algorithm and the

PPO-based algorithm are close to each other, while the former
has a higher sum-rate. However, the rate gap between the two
algorithms increases as Pmax

0 grows. The reason is that the PPO
algorithm may converge a near-global optimal policy when the
MBS transmit power is almost expanded.

5) Increased Number of Users Per Group: Fig. 11 plots the
max-min fairness rate (MMFR) among users in each multicast
group for DL versus the number of users per group. It can be
observed that the MMFR decreases for the four transmission
modes as the number of users per group grows. The reason is
that each group has only one precoder for its private stream, so
users within a group need to share this precoder even though they
all have different channels. Therefore, the user with the worst
SINR will then affect its group rate dramatically. Despite this
performance degradation, our proposed RSMA mode is still able
to provide gains of up to 13.4%, 19.4% and 26% compared to
SDMA, NOMA and TDMA for the number of users per group is
equal to 14, respectively. The reason is that our proposed RSMA
mode enables the receiver to decode the interference partially,
while the other three modes treat the interference as noise and
neglect their specific characteristics.

6) Increased Number of Multicast Groups: Fig. 12 plots the
sum-rate achieved by the various transmission modes versus
the number of multicast groups. All the curves in this figure
increase with the number of multicast groups. In addition, our
proposed RSMA mode can still achieve the highest sum-rate
thanks to its ability to alleviate inter-cell interference. However,
this also comes with the cost of a large number of common
streams, which increases the computational complexity of the
proposed algorithm. The performance improvement of RSMA
is not significant when fewer multicast groups are scheduled.
The reason is that the other three transmission modes are able
to neutralize the intergroup interference by carefully steering
the precoding. The rate gaps between our proposed RSMA
mode and other transmission modes gradually increase when
scheduling more groups. The reason for this gap is that when
the number of groups exceeds the number of UAV antennas,

Fig. 12. System sum-rate versus number of multicast groups.

Fig. 13. Sum-rate versus UAV altitude for different number of antennas.

multiple access modes without RS may saturate. However, our
proposed RSMA mode avoids the rate saturation phenomenon.
Such results further indicate that rate splitting has a significant
impact on the sum-rate improvement.

7) Impact of UAV Height on Sum-Rate: In Fig. 13, we show
the sum-rate versus UAV altitude H for different number of
antennas Nb. In this simulation, we only change the altitude of
each UAV. It can be observed that the sum-rate first increases
rapidly and then decreases gently for all different number of
antennas as H increases. The optimal altitude values leading
to a maximum sum-rate are around 130 m, 140 m, 150 m
and 160 m for Nb = 5, 4, 3 and 2 antennas, respectively. The
sum-rate increases as the number of antennas increases, while
the curves for the 5 and 4 antenna systems are very close to
each other. This means that using more than four antennas to
increase the sum-rate is not a viable option. This is caused by
UAV power limitations and limited backhaul rates. In addition,
increasing the number of antennas helps UAVs to improve the
procedure of data stream transmission by carefully designing
the beamforming vector. In the regime of 110 ≤ H ≤ 180 m,
the sum-rate is guaranteed to be greater than 80 bit/sec/Hz for
Nb ≥ 3. This is because higher altitude leads to low channel
gains, while lower height cannot guarantee high beanmforming
gains.
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VI. CONCLUSION

In this paper, we studied the performance of UDDe association
in a full-duplex multi-UAV network. Based on the fact that
the decoupled UL-DL association can bring the network new
types of interference, we proposed a RSMA policy to mitigate
inter-cell interference and formulated a sum-rate maximization
problem. To achieve this objective, we jointly optimize the
user association with beamforming and message splitting under
the constraints of transmit power and backhaul capacity. Due
to the resulting problem is non-convex and there exist model
uncertainty for an individual agent, we modeled our problem
as a robust POMDP and proposed a distributed MADRL-based
framework. To motivate agents to continually explore and deal
with significant policy deviations due to negative advantaged
actions, we proposed a clip and count-based PPO algorithm
to solve POMDP. Simulation results shown that our proposed
algorithm outperforms traditional learning algorithms in terms
of reward and convergence. In addition, our proposed RSMA-
based decoupled association scheme achieved significant rate
gains over other multi-access schemes. In terms of future work,
the proposed idea can be future extended by considering UAV
mobility with the resource allocation to improve the sum-rate of
UL and DL in full-duplex multi-UAV networks.
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