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Abstract— Both the edge and the cloud can provide computing
services for mobile devices to enhance their performance. The
edge can reduce the conveying delay by providing local comput-
ing services while the cloud can support enormous computing
requirements. Their cooperation can improve the utilization of
computing resources and ensure the QoS, and thus is critical to
edge-cloud computing business models. This paper proposes an
efficient framework for mobile edge-cloud computing networks,
which enables the edge and the cloud to share their computing
resources in the form of wholesale and buyback. To optimize the
computing resource sharing process, we formulate the computing
resource management problems for the edge servers to manage
their wholesale and buyback scheme and the cloud to determine
the wholesale price and its local computing resources. Then,
we solve these problems from two perspectives: i) social welfare
maximization and ii) profit maximization for the edge and the
cloud. For i), we have proved the concavity of the social welfare
and proposed an optimal cloud computing resource management
to maximize the social welfare. For ii), since it is difficult to
directly prove the convexity of the primal problem, we first
proved the concavity of the wholesaled computing resources with
respect to the wholesale price and designed an optimal pricing
and cloud computing resource management to maximize their
profits. Numerical evaluations show that the total profit can be
maximized by social welfare maximization while the respective
profits can be maximized by the optimal pricing and cloud
computing resource management.

Index Terms— Edge, cloud, computing resource sharing,
wholesale and buyback, wholesale price.

I. INTRODUCTION

MOBILE applications have changed our lives and become
more and more important to our daily living with many

new applications appeared and blossomed, e.g., virtual real-
ity, augmented reality, intelligent identification, autonomous
driving, interactive gaming, and e-Health [1]–[4]. The rapid
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increasing computing requirements of mobile applications
bring new challenges to the design of mobile devices with
limited hardware capabilities. Besides the development of
hardware technologies, both the edge and the cloud can
provide computing services for mobile devices. Generally,
the cloud has tremendous computing resources and thus can
handle a large number of computing tasks simultaneously,
while the edge can perform qualified computing closer to the
source of data and eventually improve the Quality of Service
(QoS) by reducing the conveying overhead between users and
the cloud. The cooperation of the edge and the cloud can
improve the utilization of computing resources and ensure the
QoS. Hence, establishing an efficient cooperative edge-cloud
network with an appropriate business model is necessary for
the future, especially when the development of mobile devices
cannot catch up on the growth of the application demands.

Recently, both the Mobile Edge Computing (MEC) and the
cloud networks have been extensively studied [5], including
system architecture [6]–[9], energy management [10]–[14],
data transmission [15]–[17], computing resource optimization
[18]–[22], and operation efficiency [23]–[26]. Most of the
existing works focused on the design of compatible MEC, reli-
able cloud networks, and efficient computing task processing
protocols, to improve the efficiency of the computing system.
However, the cooperation of the MEC and the cloud and the
corresponding business model, which are very important for
the commercial companies, lacks due attention and may slow
down their developments, especially in their starting stage
with time-varying and low computing requirements and high
investments.

Typically, the MEC has a high average construction and
operation cost due to the wide deployment feature. Further-
more, the profitability of the MEC is low since the com-
puting requirements at the MEC typically are time-varying
and limited, which leads to a low utilization of computing
resources. The cloud has a relatively low average construction
and operation cost due to the centralized construction feature
and the economies of scale. However, the rapid increasing
computing requirements at the cloud not only bring a challenge
to the QoS, but also increase the operation cost intensely.
In such a case, the cloud wants to obtain computing resources
with a low cost while the MEC wants to generate more profit
and can provide guaranteed services to the bursty computing
tasks. Thanks to the core networks, the MEC and the cloud can
be wired connected to share their computing resources with a
low communication delay [27], such that they can complement
each other to further improve their profitability and QoS.

Our previous work [28] designed an efficient wholesale and
buyback scheme (EWBS) for the MEC in mobile edge-cloud
computing networks to manage the wholesale and buyback
processes. Given the wholesale and buyback prices, the MEC
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servers can make a good trade-off between the wholesale
income and the buyback cost to maximize their profitability
while satisfying the QoS requirement. However, the effect
of the operation cost and the computing requirements at the
cloud on the wholesale price has not been considered. In fact,
the wholesale price is usually specified by the cloud according
to their operation cost and computing requirements. Thus,
the wholesale and buyback scheme for the MEC and the
pricing scheme for the cloud should be designed jointly.

In the form of wholesale and buyback, the edge servers
determine the wholesaled and buyback computing resources
according to the wholesale price issued by the cloud and
their computing requirements. The cloud adjusts the wholesale
price and manages its local computing resources according
to the operation cost and the QoS penalty. Considering the
case that the edge and the cloud belong to the same entity,
we have proved that the social welfare is a concave function
of the cloud computing resources and selecting an optimal
cloud computing resource can maximize the social welfare.
Considering the other case that the edge and the cloud belong
to different entities, since it is difficult to directly prove the
convexity of the whole problem due to the wholesale, we have
proved the concavity of wholesaled computing resources with
respect to the wholesale price firstly and then designed an
optimal pricing and cloud computing resource management to
maximize the profits of the MEC and the cloud. Such that,
the profitabilities of the edge and the cloud can be improved
by the proposed efficient computing resource sharing schemes.
The contributions of our work can be summarized in the
following:

• We propose an efficient framework for mobile edge-cloud
computing networks, where the MEC and the cloud can
share their computing resources with each other in the
form of wholesale and buyback.

• We formulate the computing resource management at the
MEC and the cloud as profit maximization problems,
which are coupled by the wholesale and buyback process.

• We solve the computing resource management problems
from two perspectives: i) social welfare maximization
by the optimal cloud computing resource management
and ii) profit maximization for the MEC and the cloud
by the optimal pricing and cloud computing resource
management.

• Simulation results show that the proposed computing
resource sharing schemes can maximize the total profit by
social welfare maximization and the profits of the MEC
and the cloud by the optimal pricing and cloud computing
resource management.

The rest of the paper is organized as follows: Section II
introduces the related works and Section III proposes an effi-
cient framework for mobile edge-cloud computing networks
and formulates computing resource management problems for
the MEC and the cloud. Section IV considers the computing
resource management for the same entity without profit trans-
fers and designs an optimal computing resource management
to maximize the social welfare. Section V considers the
computing resource management for different entities with
profit transfers and proposes an optimal pricing and cloud
computing resource management to maximize the respective
profits. Section VI demonstrates the efficiency of the proposed
algorithm via simulations. Finally, Section VII concludes our
work and introduces our future work.

II. RELATED WORKS

We introduce the related works from two perspectives:
i) system design and ii) system optimization.

System Design

A comprehensive survey of MEC systems, including their
architectures and technical enablers, has been presented by
[6]. For the network access technology, [8] proposed heuristic
link-path formulations, which can design mobile access net-
works in a reasonable time and [24] proposed an MEC-based
object detection architecture via wireless communications for
real-time surveillance applications. Taking the scarce energy
into consideration, [10] proposed a microwave power transfer
based solution for MEC to enable computation in passive low-
complexity devices. From the perspective of the construction
cost, [25] proposed a heuristic solution to minimize the
deployment cost of datacenters under service level objective
constraints. Considering the mobility of mobile devices, [7]
proposed a novel air-ground integrated mobile edge network
(AGMEN) using UAVs to assist the communication, caching,
and computing of the edge network, and [17] proposed a
two-level edge computing architecture for automated driving
services. However, few works consider the combination of
computing resources between the MEC and the cloud, which
provides an opportunity to substantially enhance the system
performance.

System Optimization

Considering the energy limit, [20] proposed a unified design
of MEC and wireless power transfer to enhance computation
capability and energy supply of mobile devices. Reference [22]
proposed an energy-efficient computing offloading manage-
ment scheme to minimize the energy consumption of mobile
devices.

From the perspective of energy consumption, [11] proposed
an optimal workload allocation scheme to make a tradeoff
between power consumption and transmission delay; [12]
proposed an energy-aware offloading scheme to optimize com-
munication and computing resource allocation jointly; [16]
proposed an offloading scheme to minimize the overall users’
energy consumption under latency constraints. Reference [19]
proposed a locally optimal algorithm with the univariate search
technique to minimize the energy consumption and the execu-
tion latency. [14] and [13] proposed energy-efficient resource
allocation schemes for synchronous and asynchronous MECO
systems, respectively, to minimize the mobile energy con-
sumption under the constraint on computation latency.

To improve the user experience, [15] designed a joint radio
and computational resource allocation scheme to optimize the
system performance and improve user satisfaction. Reference
[18] proposed a heuristic algorithm to optimize the offloading
decision, communication resources, and computing resources
jointly. Reference [21] designed truthful, polynomial–time
auctions for virtual machines allocation to achieve social wel-
fare maximization and/or the provider’s profit maximization.
Reference [23] proposed a game-based multi-user comput-
ing offloading scheme to maximize multiple users’ various
interests. Reference [26] designed a family of distributed
dynamic cloud network control algorithms, which can jointly
schedule computation and communication resources for flow
processing and transmission without knowledge of service
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Fig. 1. The architecture for mobile edge-cloud computing networks.

demands, to ensure the stability of the cloud networks and
minimize their cost. However, how to jointly optimize the
computing resource management of the MEC and the cloud
to further improve the utilization of computing resources and
their profitability remains an open issue.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Considering a mobile edge-cloud computing network,
in which there are N1 MEC servers and N2 cloud servers.
Typically, the MEC servers are built with cellular base stations
and provide computing services to the local mobile users
while the cloud servers are located around the world and
usually provide computing services to the remote users via
core networks. Generally, the volume of computing tasks at the
cloud is much higher than that at each MEC server, and their
latency-sensitivity is typically lower. To guarantee the QoS,
the MEC servers need to accomplish the received computing
tasks with a tight deadline while the cloud needs to accomplish
the received computing tasks as soon as possible.

The MEC servers and the cloud are connected via wired
core networks and can share their computing resources with
each other based on their computing requirements. Specifi-
cally, when the computing resources of the MEC servers are
abundant, they can wholesale part of their computing resources
to the cloud to improve their profitability. Correspondingly,
the cloud can buy computing resources from the MEC servers
with a low wholesale price and decrease the cloud computing
resources to reduce the high operation cost and improve the
QoS. When the computing requirements at the MEC servers
are high, they can buy some computing resources back from
the cloud with a high buyback price to ensure their QoS.1 Cor-
respondingly, the cloud needs to satisfy the buyback requests
of the MEC servers to increase the profitability. In such a way,
the cloud can obtain computing resources from MEC servers
by the wholesale scheme with a low wholesale price while
the MEC servers can guarantee the delay performance of local
bursty traffic and the emergencies by the buyback scheme with
a high buyback price. Both the MEC servers and the cloud
can be benefited by sharing their computing resources. The
architecture for mobile edge-cloud computing networks can
be found in Fig. 1.

1Paying a higher price can guarantee a high priority of the buyback
computing resources [29].

Fig. 2. The operation scheme of mobile edge-cloud computing networks.

A. Operation of Mobile Edge-Cloud Computing Networks

To manage the computing resource sharing processes
between the MEC servers and the cloud, we design an efficient
framework for mobile edge-cloud computing networks, which
is shown in Fig. 2. In this system, there are two different
time scales: the first one is time slot and the other is time
interval. Typically, one time slot can be tens of minutes
while one time interval can be hundreds of milliseconds.
At each time slot, the MEC servers can wholesale part of their
computing resources to the cloud, which cannot be adjusted
during the time slot. At each time interval, the MEC servers
can buy some computing resources back from the cloud, which
should be satisfied immediately. In this way, the MEC servers
need to guarantee the wholesaled computing resources for
the cloud and can adjust their buyback computing resources
based on their computing requirements. The cloud can utilize
the wholesaled computing resources from the MEC during
the time slot and need to guarantee the buyback computing
resources for the MEC servers during each time interval.

The operation scheme of mobile edge-cloud computing
networks will be implemented as follows: At the end of the
previous time slot, the cloud needs to issue the wholesale price
to the MEC servers. Then, each MEC server determines the
wholesaled computing resources and estimates the buyback
computing resources. During the time slot, the wholesaled
computing resources of the MEC servers are managed by
the cloud. If the reserved computing resources at one MEC
server cannot satisfy its computing requirements, the MEC
server will adjust the buyback computing resources during the
coming time intervals by sending a buyback request to the
cloud. Then, the cloud will allocate the buyback computing
resources to the corresponding MEC server accordingly.

Let t denote the t-th time slot. Divide one time slot into
K time intervals and let k denote the k-th time interval
during one time slot. Due to the different time granularities
of the wholesale and the buyback scheme, the MEC servers
need to determine the wholesaled and the buyback comput-
ing resources separately [28]. The cloud needs to determine
the wholesale and buyback prices and the cloud computing
resources at the beginning of each time slot. For simplicity,
we assume that the buyback price is given while the wholesale
price is adjustable in this paper.

B. Operation Model of MEC Server

The computing resources at each MEC server can be divided
into two parts. The first part is reserved by the MEC server
and works as a computation server to process the received
computing tasks. The second part is wholesaled to the cloud
and works as a flexible computation server to process the
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Fig. 3. The computing resource model of the MEC server.

computing tasks from the cloud. Given the randomness of
computing tasks, the reserved computing resources may not be
sufficient to accomplish all the computing tasks in time, so the
MEC server needs to buy some computing resources back
from the cloud. Thus, the available computing resources at
the MEC server are determined by its wholesale and buyback
scheme. The available computing resource at each MEC server
is shown in Fig. 3.

Remark: Note that, when the wholesale/buyback event
occurs, the computing tasks at the cloud/MEC server will be
offloaded to the corresponding MEC servers or/and the cloud
for processing. The buyback computing resources for each
MEC server can be from itself, other MEC servers, or/and the
cloud servers. If the buyback computing resources are from
itself, the corresponding amount of wholesaled computing
resources will be released to the MEC server, such that all
the computing tasks will be processed locally. Otherwise, part
of the computing tasks at the MEC server will be offloaded to
other MEC servers or/and the cloud for processing. Typically,
the cloud will release the wholesaled computing resources
back to the MEC servers to reduce the communication over-
head. It means that, when an MEC server sends a buyback
request to the cloud, the cloud will release the corresponding
amount of wholesaled computing resources back to the MEC
server if the local computing resources are enough; otherwise,
part of computing resources from other MEC servers/the cloud
will be allocated to the MEC server.

Generally, the communication delay among the MEC
servers and the cloud can be negligible for the following
reasons: i) The computing tasks processed locally at the MEC
server have no communication delay. ii) Due to the wired
connections among the MEC servers and the cloud, the com-
munication delay among them is relatively low compared
with that using wireless communications [30], [31]. iii) An
offloading computing task may enter a queue of the target
server which is busy in serving other computing tasks, so the
communication delay can be absorbed by the queueing delay
[32]. When the communication delay is significant and cannot
be omitted, the MEC server can put the buyback requests
forward according to the communication delay to ensure that
the overall delay for both computing and communications
satisfies the QoS requirement.

Let Ce,t denote the total available computing resources, CI
e,t

the reserved computing resources, and CC
e,t the wholesaled

computing resources, at MEC server e during time slot t,
respectively. We have

Ce,t = CI
e,t + CC

e,t. (1)

Let Ĉe,k and ĈB
e,k denote the total available computing

resources and the buyback computing resources at MEC server
e during time interval k, respectively. Thus, we have

Ĉe,k = ĈI
e,k + ĈB

e,k, (2)

where ĈI
e,k = CI

e,t since the reserved computing resources
always are available during the entire time slot.

Without loss of generalization, we assume that the arrivals
of computing tasks at MEC server e follow a Poisson dis-
tribution with an expected value λe,t during time slot t and
the computing workload of each computing task follows an
exponential distribution with an expected value of Rt. The
MEC servers process the computing tasks under the first
come first serve (FCFS) policy [33]. Under the FCFS policy,
the computation delay of one computing task depends on its
arrival time, its computing workload, the prior unprocessed
computing workloads, and the available computing resources
at the MEC server.

Let Ŵe,k denote the computing workloads that are arrived
at MEC server e during time interval k and Q̂e,k denote the
cumulative unprocessed computing workloads at MEC server
e at the end of time interval k, respectively. Thus, we have

Q̂e,k = max(0, Q̂e,k−1 + Ŵe,k − Ĉe,k), (3)

Here, the computing workloads are transferred into the require-
ments of computing resources, i.e., GHz in this paper.

Under the FCFS policy, the computing tasks in Q̂e,k will
be accomplished at time interval k + m if

∑k+m−1
k′=k+1 Ĉe,k <

Q̂e,k ≤ ∑k+m
k′=k+1 Ĉe,k, where

∑k+m
k′=k+1 Ĉe,k denotes the total

available computing resources for MEC server e during the
upcoming time intervals [k + 1, k + m]. Let D̂e,k denote the
maximal computation delay (including the queueing delay) for
the computing tasks in Ŵe,k. For simplicity, the computation
delay D̂e,k is defined as

D̂e,k =

{
m, if

∑k+m−1
k′=k+1 Ĉe,k < Q̂e,k ≤ ∑k+m

k′=k+1 Ĉe,k;
1, if Q̂e,k ≤ Ĉe,k+1,

(4)

where k′ denotes an upcoming time interval at current time
interval k. Here, the accuracy of the computation delay D̂e,k

depends on the time scale of time interval. To guarantee the
QoS at MEC server e, there exists an upper bound on the
computation delay D̂e,k, denoted by D̄e,t. Hence, the follow-
ing constraint should be satisfied:

D̄e,t ≥ D̂e,k. (5)

Since the available computing resources {Ĉe,k′ , k′ ∈ [k+1, k+
m]} determine the computation delay D̂e,k, the MEC server
can guarantee the QoS by managing the wholesaled and the
buyback computing resources.

C. Operation Model of the Cloud

The available computing resources at the cloud include two
parts: i) the computing resources at the cloud servers and ii)
the computing resources from the MEC servers. In general,
the first part depends on the cloud computing resources at the
cloud servers, which can be managed by the cloud. The second
part depends on the wholesale and buyback scheme of MEC
servers, which is affected by the wholesale price.

Let Cc,t denote the total available computing resources at
the cloud servers during time slot t and Ĉk denote the total
available computing resources at the cloud during time interval
k, respectively. The value of Ĉk can be given by

Ĉk = Ĉc,k +
∑

e

(ĈC
e,k − ĈB

e,k), (6)
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Fig. 4. The computing resource model at the cloud.

where Ĉc,k = Cc,t and ĈC
e,k = CC

e,t hold since the computing
resources at the cloud servers and the wholesaled computing
resources from the MEC servers always are available during
time slot t. The available computing resource at the cloud is
shown in Fig. 4. Generally, there exists an upper bound on
the cloud computing resources Cc,t, denoted by C̄c,t. Thus,
we have

0 ≤ Cc,t ≤ C̄c,t. (7)

In this paper, the arrivals of computing tasks at the cloud
follow a Poisson distribution with an expected value λc,t

during time slot t and the computing workload of each
computing task follows an exponential distribution with an
expected value of Rt. Considering diverse performance goals
of heterogeneous applications at the cloud, priority assignment
for various application is one of the popular approaches to
improve the efficiency of computing resources [34]. How to
assign the priorities of computing tasks is out of the scope of
this paper. In this paper, we focus on the average computation
delay at the cloud.

Taking the average computation delay as the QoS require-
ment at the cloud, there exists an upper bound on the average
computation delay, denoted by D̄c,t. Generally, D̄c,t > D̄e,t

always holds. Let D̂c,t denote the average computation delay
at the cloud. We have

D̂c,t ≤ D̄c,t. (8)

Here, the computation delay D̂c,t depends on the arrival of
computing workloads and the available computing resources
Ĉk. Given the arrival of computing workloads, more comput-
ing resources Ĉk lead to lower computation delay D̂c,t, which
means better QoS.

D. Profit Model of the MEC and the Cloud

For each MEC server, its profit includes four parts: i) the
operation cost, ii) the income for processing computing tasks
of users; iii) the income for wholesaling computing resources
to the cloud; and iv) the cost for buying computing resources
back from the cloud. There exist several important factors
for the operation cost of the MEC servers and the cloud.
We consider these factors, e.g., energy consumption, routine
maintenance, and daily expense, as part of the operation cost.
For simplicity, we treated the operation cost of each MEC
server as a constant depending on the computing resources.
Thus, we only consider the last three parts as the profit of
MEC servers in this paper.

Let a1,t denote the service fee for processing one unit
computing workload during time slot t. Let U I

e,t denote the
income for processing computing tasks at MEC server e during
time slot t. We have

U I
e,t =

∑
k

a1,tŴe,k, (9)

since all the computing tasks should be accomplished in time.

Let a2,t denote the wholesale price for wholesaling one
unit computing resource to the cloud and US

e,t denote the total
income for wholesaling computing resources during time slot
t, respectively. The value of US

e,t is given by

US
e,t = a2,tKCC

e,t. (10)

Let g(ĈB
e,k) denote the buyback cost of MEC server e for

buying ĈB
e,k unit computing resources back from the cloud

during time interval k. To avoid large amount of the buyback
computing resources, g(ĈB

e,k) usually is an increasing and
convex function of ĈB

e,k [35]. Specifically, we set g(ĈB
e,k) =

c1Ĉ
B
e,k + c2(ĈB

e,k)2 in this paper. Let UB
e,t denote the total

buyback cost of MEC server e during time slot t. We have

UB
e,t =

K∑
k=1

g(ĈB
e,k). (11)

Let Ue,t denote the total profit of MEC server e during time
slot t. According to the profit model of the MEC, we have

Ue,t = U I
e,t + US

e,t − UB
e,t. (12)

It can be found that the total profit Ue,t depends on the
wholesaled and buyback scheme of MEC server e.

The profit of the cloud includes four parts: i) the profit for
processing computing tasks at the cloud; ii) the local operation
cost at the cloud servers; iii) the cost for trading computing
resources with the MEC servers, which is given by

∑
e US

e,t−
UB

e,t; and iv) the QoS penalty due to the computation delay.
Let Ŵc,k denote the computing workloads that are arrived at

the cloud during time interval k. We assume that the service
fee at the cloud is the same as the MEC. Thus, the profit
for processing computing tasks at the cloud, denoted by U I

c,t,
is U I

c,t =
∑

k a1,tŴc,k.
Let ĝ(Cc,t) denote the local operation cost at the cloud dur-

ing time slot t. Typically, ĝ(Cc,t) is assumed as an increasing
and convex function of Cc,t. Specifically, we set ĝ(Cc,t) =
c3Cc,t + c4(Cc,t)2 in this paper. The cloud can determine its
local operation cost ĝ(Cc,t) by managing the cloud computing
resources Cc,t at the cloud servers.

According to the operation model of MEC servers, the cost
for trading computing resources with the MEC servers is∑

e US
e,t − UB

e,t and the computing resources obtained by the
cloud during time interval k is

∑
e ĈC

e,k − ĈB
e,k.

At the cloud, computation delay is an important parameter
of the QoS. Thus, we define a QoS penalty of computation
delay at the cloud, denoted by U(D̂c,t), in this paper. Typ-
ically, U(D̂c,t) is an increasing and convex function of the
average computation delay D̂c,t.

Thus, the total profit of the cloud, denoted by Uc,t, can be
given by

Uc,t = U I
c,t − ĝ(Cc,t) − U(D̂c,t) −

∑
e

(US
e,t − UB

e,t). (13)

The cloud needs to make a trade-off between the operation
costs and the QoS penalty.

E. Problem Formulation

In mobile edge-cloud computing networks, both the MEC
servers and the cloud have their operation models and goals.
The goal of MEC servers is to maximize their total profit by
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trading computing resources with the cloud while guaranteeing
the QoS. The goal of the cloud is to maximize the total profit
by making a good trade-off between the operation cost and
the QoS penalty. Due to their different operation models, their
computing resource management problems will be different.

For MEC server e, due to the uncertainty of computing
workloads, the MEC server needs to make a trade-off between
the wholesale income and the buyback cost. The computing
resource management problem for MEC server e can be
formulated as

P_1: max
CC

e,t,Ĉ
B
e,k

∑
t

Ue,t (14)

s.t. Ce,t = CI
e,t + CC

e,t, ∀t, (15)

D̄e,t ≥ D̂e,k, ∀k, t, (16)

ĈB
e,k ≥ 0, ∀k. (17)

The objective is to maximize the total profit of the MEC server
and the variables are wholesaled and buyback computing
resources. The first constraint defines the available range of
the wholesaled computing resources. The second constraint
ensures that all the computing tasks should be accomplished
in time. The third constraint gives the available range of the
buyback computing resources at each time interval. Due to the
different time granularities of the wholesale and the buyback
scheme, the MEC server needs to design the wholesale scheme
and the buyback scheme separately.

For the cloud, the computing resources from the MEC
servers will be affected by the wholesale price and that from
the cloud servers determine the local operation cost. All the
available computing resources determine the QoS penalty.
To maximize the profit, the cloud needs to make a trade-off
among the cloud computing resources, the wholesale price
and the QoS penalty. The computing resource management
problem for the cloud can be formulated as

P_2: max
a2,t,Cc,t

∑
t

Uc,t (18)

s.t. 0 ≤ Cc,t ≤ C̄c,t, ∀t, (19)

D̂c,t ≤ D̄c,t, ∀t, (20)

a2,t ≥ 0, ∀t. (21)

The objective of the cloud is to maximize the profit and the
controllable variables are the wholesale price and the cloud
computing resources. The first constraint defines the available
range of the cloud computing resources Cc,t at cloud servers.
The second constraint gives the QoS requirement. The third
constraint shows the range of the wholesale price. Generally,
the available computing resource depends on the wholesale
price a2,t and the cloud computing resources Cc,t. Thus,
the cloud needs to determine the wholesale price a2,t and
cloud computing resources Cc,t jointly.

From problems P_1 and P_2, it can be found that the
computing resource management for the MEC servers and
the cloud are associated by the wholesale and buyback
scheme via the wholesale price. To maximize their profits,
the MEC servers and the cloud should optimize their comput-
ing resource managements jointly. In this paper, we solve the
above optimization problems from two perspectives: 1) there
is no profit transfers between the MEC servers and the cloud,
such that the computing resource management problems for

the MEC servers and the cloud can be combined and the social
welfare will be maximized; 2) the computing resource sharing
happens only when the profit transfers occur, such that the
MEC and the cloud need to design their computing resource
managements based on each others’ decision. We introduce
the solutions one by one in the following sections.

IV. WHOLESALE AND BUYBACK SCHEME WITHOUT

PROFIT TRANSFERS

If all the MEC servers and the cloud belong to the same
entity, the profit transfers, e.g.,

∑
e UB

e,t −US
e,t, will not affect

the total profit of the entity. Thus, the computing resource
management problem can be formulated by combining the
objectives and the constraints in problems P_1 and P_2
together, which can be rewritten as

P1: min
CC

e,t,ĈB
e,k,Cc,t

∑
t

ĝ(Cc,t) + U(D̂c,t)

s.t. (15) − (17), (19) − (20), (22)

since {U I
e,t, ∀e, t} and {U I

c,t, ∀t} are constants and total profit
transfers {∑e(U

S
e,t − UB

e,t), ∀t} for the entity is zero. The
objective of problem P1 is to minimize the local operation cost
and the QoS penalty at the cloud. Furthermore, constraint (21),
e.g., a2,t ≥ 0, can be omitted since there is no profit transfer
between the MEC servers and the cloud. To solve this problem,
we need to model the relationship between variables and the
average computation delay D̂c,t for the computing tasks at the
cloud.

For problem P1, we have the following lemma:
Lemma 1: The optimal wholesaled computing resources

CC
e,t for problem P1 is CC

e,t = Ce,t.
This is because the single queue multiple server model is
better than the multiple queue multiple server model given
the multiplexing gain [36]. It is better for the MEC servers
and the cloud to manage the computing resources uniformly.
Since all the MEC servers can connect with the cloud via
the wired core networks, setting CC

e,t = Ce,t can improve the
system performance.

It means that the computing resources at both the MEC
servers and the cloud servers can be managed by the cloud,
such that all the computing tasks will be processed under the
management of the cloud. We first model an M/M/N queue-
ing system, in which, N = N1+N2, the arrivals of computing
tasks follow a Poisson process with λ = λc,t+

�
e λe,t

N during

time slot t and the average service rate is μ = Cc,t+
�

e Ce,t

NRt
.

To ensure the stability of the queueing system, we have the
following Lemma:

Lemma 2: The cloud computing resources Cc,t should sat-
isfy Cc,t > (λc,t +

∑
e λe,t)Rt −

∑
e Ce,t.

Proof: According to queueing theory, the necessary con-
dition for the queueing system to be stable is that ρ = λ

μ < 1.
Otherwise, both the queueing length and the computation delay
will go infinity. Hence, Cc,t +

∑
e Ce,t > (λc,t +

∑
e λe,t)Rt

should be satisfied. Then, we have Cc,t > (λc,t+
∑

e λe,t)Rt−∑
e Ce,t for the cloud computing resources Cc,t.

Given the arrival of computing tasks λ and the service rate μ,
the average computation delay Dc,t can be given by

Dc,t = [
(λ/μ)Nμ

(N − 1)!(Nμ − λ)2
]P0 +

1
μ

, (23)
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where

P0 = [
N−1∑
n=0

(Nλ)n

n!μn
+

(Nλ)N

N !μN

μ

μ − λ
]−1. (24)

Here, Dc,t is the expected computation delay for the comput-
ing tasks at both the MEC servers and the cloud servers.

Note that, the computing tasks at the MEC servers and the
cloud have different QoS requirements. For the computing
tasks at the MEC servers, all of them should be accomplished
before their deadlines. For the computing tasks at the cloud,
they should be accomplished as soon as possible. Given the
set of computing tasks and their distributions of computing
workloads, the average computation delay for both the MEC
servers and the cloud servers is given by Dc,t. However, it is
difficult to obtain the average computation delay D̂c,t for the
computing tasks at the cloud servers directly. Thus, we make
the following task scheduling and approximation:

Task Scheduling

When the computation delays (including the queueing
delays) of all the computing tasks at the MEC servers are
within their maximum tolerable delay bounds, all the comput-
ing tasks will be processed under the FCFS policy. Otherwise,
it will be processed with a high priority at other MEC
servers/the cloud to ensure that all the computing tasks at the
MEC servers can be accomplished in time. Since the cloud
is assumed to have sufficient resources to handle all requests,
no computing task will be blocked. Hence, the average com-
putation delay for the computing tasks at MEC server e can
be estimated by min{Dc,t, D̄e,t}. According to Little’s law
[37], the long-term average number of computing tasks in a
stationary system is equal to the long-term average effective
arrival rate λc,t +

∑
e λe,t multiplied by the average time Dc,t

that a computing task spends in the system. As there is no
blocked task in the queueing system, the average computation
delay D̂c,t for the computing tasks those arrival at the cloud
can be estimated by

D̂c,t≈ Dc,t(λc,t+
∑

e λe,t)−
∑

e λe,t min{Dc,t, D̄e,t}
λc,t

. (25)

It can be found that D̂c,t can be treated as a linear function
of the average computation delay Dc,t.

Let Q̂k denote the cumulative unprocessed computing work-
loads from both the MEC and the cloud in the M/M/N
queueing system. Let k′ denote an upcoming time interval
at current time interval k. We can find a k′ that satisfies(

k′−1
)(

Cc,t+
∑

e

Ce,t

)
≤ Q̂k ≤ k′

(
Cc,t+

∑
e

Ce,t

)
. (26)

To ensure that all the computing tasks at the MEC can be
accomplished before their deadlines, the buyback computing
resources ĈB

e,k can be set by{
ĈB

e,k+D̄e,t
= Ŵe,k, if k′ ≥ D̄e,t;

ĈB
e,k′ = Ŵe,k, otherwise.

(27)

when Ŵe,k ≤ ĈC
e,k. Otherwise, computing resources Ŵe,k −

ĈC
e,k will be bought from other MEC servers/the cloud during

time interval k+D̄e,t−δ, where δ is the communication delay

for the computing task offloading. It means that the computing
tasks at the MEC servers will be given a higher priority only
when they cannot be accomplished in time under the FCFS
policy.

By now, the optimal CC
e,t and ĈB

e,k have been obtained and
the problem P1 can be rewritten as

P1’: min
Cc,t

∑
t

ĝ(Cc,t) + U(D̂c,t) (28)

s.t. 0 ≤ Cc,t ≤ C̄c,t, ∀t, (29)

D̂c,t ≤ D̄c,t, ∀t, (30)

The objective is to minimize the local operation cost and the
QoS penalty at the cloud while the controllable variable is the
cloud computing resources Cc,t. Since ĝ(Cc,t) is an increasing
and convex function of Cc,t, we needs to analyze the convexity
of U(D̂c,t) with respect to Cc,t.

First, we analyze the convexity of the average computation
delay Dc,t with respect to the cloud computing resources Cc,t

and have the following lemma:
Lemma 3: The average computation delay Dc,t is a deceas-

ing and convex function of the cloud computing resources Cc,t.
Proof: According to the definition of Erlang’s C formula,

the probability, denoted by C(N, λ/μ), that an arriving com-
puting task should wait in the queue since all the servers are
busy, can be given by

C(N, λ/μ) =
(λ/μ)Nμ

(N − 1)!(Nμ − λ)
P0, (31)

which has proved to be an increasing and convex function
of λ/μ [38]–[40]. Thus, ∂C(N,λ/μ)

∂(λ/μ) > 0 and ∂2 C(N,λ/μ)
∂(λ/μ)2 > 0

hold. We can derive that ∂C(N,λ/μ)
∂μ < 0 and ∂2 C(N,λ/μ)

∂μ2 > 0.
According to (23), Dc,t can be rewritten as

Dc,t =
C(N, λ/μ)
Nμ − λ

+
1
μ

. (32)

Thus, we have

∂Dc,t

∂μ
=

∂C(N,λ/μ)
∂μ (Nμ − λ) − NC(N, λ/μ)

(Nμ − λ)2
− 1

μ2
. (33)

and

∂2 Dc,t

∂μ2
=

∂2 C(N,λ/μ)
∂μ2

Nμ − λ
−

2N ∂C(N,λ/μ)
∂μ

(Nμ − λ)2
+

NC(N, λ/μ)
(Nμ − λ)3

+
2
μ3

.

It can be found that ∂Dc,t

∂μ < 0 and ∂2 Dc,t

∂μ2 > 0. Thus, Dc,t is a
decreasing and convex function of μ. Since μ is an increasing
and linear function of Cc,t, the average computation delay Dc,t

is a deceasing and convex function of the cloud computing
resources Cc,t.

According to (25), since D̂c,t can be treated as a linear
function of Dc,t, D̂c,t is a decreasing and convex function
of Cc,t. Since U(D̂c,t) is an increasing and convex function
of D̂c,t, U(D̂c,t) is a decreasing and convex function of
Cc,t. Since both the objective function and the constraints
are convex with respect to Cc,t, problem P1’ is a convex
optimization problem, which can be solved by the existing
tools, e.g., Fmincon in Matlab.

By now, the optimal CC
e,t, ĈB

e,k and Cc,t have been obtained:
CC

e,t is Ce,t, ĈB
e,k is obtained by (27), and the optimal Cc,t
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Algorithm 1 Optimal Cloud Computing Resource Man-
agement (Social Welfare Maximization)

1 Input: (λe,t, Rt, D̄e,t) for computing tasks, (Ce,t, K, T )
for each MEC server, and (C̄c,t, D̄c,t) for the cloud;

2 Output: {Cc,t, C
C
e,t∀t} and {ĈB

e,k∀k};
3 for each time slot t do
4 1) Set CC

e,t = Ce,t;
5 2) Calculate optimal Cc,t by solving problem P1’

using Fmincon;
6 for each time interval k do
7 Set ĈB

e,k by Eq. (27);
8 end
9 end

is obtained by solving problem P1’, respectively. Such that,
the social welfare can be maximized by the optimal cloud
computing management, sketched as Algorithm 1. However,
in this scenario, the entity needs to build both the MEC and
the cloud, which is costly and even infeasible. Thus, we study
the wholesale and buyback scheme with profit transfers.

V. WHOLESALE AND BUYBACK SCHEME WITH PROFIT

TRANSFERS

Generally, the MEC and the cloud belong to different enti-
ties or different departments in a entity with their own profit
objectives. To achieve their respective objectives, the MEC
and the cloud can share their computing resources with profit
transfers. In this paper, the MEC intends to maximize the
profit by providing computing services to mobile users and
wholesaling their abundant computing resources to the cloud,
while the cloud intends to provide better computing services
to their customers and reduce the operation cost by buying
computing resources from the MEC servers and managing
the cloud computing resources. From problems P_1 and P_2,
it can be found that the MEC servers determine their wholesale
and buyback scheme while the cloud determines the wholesale
price and the cloud computing resources. These two problems
are coupled by profit transfers under the wholesaled and
buyback scheme. In addition, due to profit transfers, it is
difficult to prove the convexity of these two problems.

According to the operation scheme of mobile edge-cloud
computing networks in Fig. 2, the cloud needs to issue a
wholesale price to the MEC servers, and then the MEC servers
determine their wholesaled computing resources. To solve
these problems, we first analyze the relationship between the
wholesale price and the wholesaled computing resources from
the MEC servers. Then, we drive a necessary condition for
the optimal available computing resources. Finally, we design
an optimal pricing and the cloud computing resource man-
agement to maximize the profits of the MEC and the cloud
simultaneously.

Note that, in this section, the expected computation delays
for all the computing tasks can be calculated by two kinds
of queueing systems. The first one is for the computing tasks
that are processed by the reserved computing resources at each
MEC server, which can be modeled as an M/M/1 queueing
system. Another one is for the computing tasks uploaded by
the MEC servers and those arrival at the cloud, which can be
modeled as an M/M/N queueing system in Section IV.

A. Relationship Between Wholesale Price and Wholesaled
Computing Resources

Given the arrival of computing tasks, the wholesaled and the
buyback computing resources are coupled by the computation
delay D̂e,k. Given the reserved computing resources CI

e,t and
the deadline D̄e,t, the expected buyback computing resources
during time slot t, denoted by C̄B

e,t, can be obtained by

C̄B
e,t = K

λe,tR
2
t

(CI
e,t − λe,tRt)D̄e,t

e(λe,t−
CI

e,t
Rt

)D̄e,t , (34)

and the minimal expected buyback cost UB
e,t, denoted by ŪB

e,t,
can be given by (35), as shown at the bottom of the page,
[28]. Both of C̄B

e,t and ŪB
e,t are decreasing and convex function

of the reserved computing resources CI
e,t [28]. Since CC

e,t =
Ce,t − CI

e,t, ŪB
e,t is an increasing and convex function of the

wholesaled computing resources CC
e,t.

Based on the relationship between ŪB
e,t and CC

e,t, we analyze
the relationship between the wholesaled computing resources
CC

e,t and the wholesale price a2,t, and have the following
theorem:

Theorem 1: Given the arrival of computing tasks,
the wholesaled computing resources CC

e,t is a non-decreasing
function of the wholesale price a2,t.

Proof: According to the profit model, Ue,t includes three
parts: U I

e,t, US
e,t, and −UB

e,t, given by (9)-(11), respectively.
U I

e,t can be treated as a constant since the arrival of computing
tasks and their expected workloads are given. Given the value
of a2,t, US

e,t is a linear and increasing function of CC
e,t since

US
e,t = a2,tKCC

e,t. −UB
e,t is a decreasing and concave function

of CC
e,t. Thus, according to the results in [28], the total profit

Ue,t is a concave function of CC
e,t and the optimal CC

e,t satisfies⎧⎪⎪⎨
⎪⎪⎩

CC
e,t = Ce,t − λe,tRt, if ∂Ue,t

∂CC
e,t

|CI
e,t=λe,tRt

> 0;

CC
e,t = 0, if ∂Ue,t

∂CC
e,t

|CI
e,t=Ce,t

< 0;
∂Ue,t

∂CC
e,t

= 0, otherwise.

(36)

With the increase of a2,t,
∂Ue,t

∂CC
e,t

increases and the correspond-

ing CC
e,t is non-decreasing for the following reason: For the

first case in (36), CC
e,t is a constant since it has reached its

maximal value; For the second case in (36), CC
e,t will increase

when ∂Ue,t

∂CC
e,t

|CI
e,t=Ce,t

> 0; For the third case in (36), CC
e,t will

increase to make sure that ∂Ue,t

∂CC
e,t

= 0. Thus, the wholesaled

ŪB
e,t = Ke(λe,t−

CI
e,t

Rt
)D̄e,t

( c1λe,tR
2
t

(CI
e,t − λe,tRt)D̄e,t

+
2c2λe,tR

3
t C

I
e,t(

(CI
e,t − λe,tRt)D̄e,t

)2

)
(35)
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computing resources CC
e,t is non-decreasing with the increase

of the wholesale price a2,t.
It means that, when the cloud increases the wholesale price
a2,t, the wholesaled computing resources from the MEC
servers will not decrease. Based on Theorem 1, we have the
following lemma:

Lemma 4: Given the arrival of computing tasks, the whole-
saled computing resources CC

e,t is an increasing and concave
function of the wholesale price a2,t when CC

e,t ∈ (0, Ce,t −
λe,tRt).

Proof: According to (36), ∂Ue,t

∂CC
e,t

= 0 is the sufficient

condition for optimal CC
e,t when CC

e,t ∈ (0, Ce,t − λe,tRt).

For the components of total profit Ue,t, we have
∂UI

e,t

∂CC
e,t

= 0,
∂US

e,t

∂CC
e,t

= a2,t,
∂ŪB

e,t

∂CC
e,t

> 0, and
∂2ŪB

e,t

∂(CC
e,t)

2 > 0. For the optimal

CC
e,t, we have a2,t = ∂ŪB

e,t

∂CC
e,t

. Since
∂2ŪB

e,t

∂(CC
e,t)

2 > 0,
∂ŪB

e,t

∂CC
e,t

is an increasing function of CC
e,t. It means that, with the

increase of CC
e,t,

∂ŪB
e,t

∂CC
e,t

will be much higher. Thus, a2,t is

an increasing function of CC
e,t. Let CC

e,t(a2,t), CC′
e,t(a

′
2,t) and

CC′′
e,t (a′′

2,t) denote the optimal wholesaled computing resources
with the wholesale prices a2,t, a′

2,t and a′′
2,t = 2a′

2,t − a2,t,
respectively. We have CC′

e,t(a′
2,t) > 1

2 (CC
e,t(a2,t)+CC′′

e,t (a′′
2,t)).

Thus, CC
e,t is an increasing and concave function of a2,t when

CC
e,t ∈ (0, Ce,t − λe,tRt).
Given the wholesale and buyback prices and the arrival

of computing tasks, the optimal reserved and wholesaled
computing resources CI

e,t and CC
e,t can be obtained by (36)

and the expected buyback computing resources C̄B
e,t can be

obtained by (34). Note that, for the third case in (36), problem
P_1 is a convex optimization problem and can be solve by
the existing tools, such as Bisection method in [28] and sub-
gradient methods in [41].

B. Minimal Operation Cost for the Cloud

Besides the wholesaled computing resources from the
MEC servers, the cloud can generate computing resources
by their own servers. The total computing resources at the
cloud Ĉk during time interval k is given by (6), in which
Ĉc,k is determined by the local operation cost ĝ(Cc,t)
while

∑
e(Ĉ

C
e,k − ĈB

e,k) are determined by the wholesale
price a2,t. Note that, the expected

∑
k ĈB

e,k is given by
C̄B

e,t in (34).
For the cloud, the available computing resources from MEC

server e during time slot t is CC
e,t − C̄B

e,t. For the value of
CC

e,t − C̄B
e,t, we have the following lemma:

Lemma 5: The available computing resources CC
e,t − C̄B

e,t

is an increasing and concave function of CC
e,t when CC

e,t ∈
(0, Ce,t − λe,tRt).

Proof: It can be proved that the buyback computing
resources C̄B

e,t is an increasing and convex function of CC
e,t.

Comparing (34) and (35), it can be found that ŪB
e,t = (c1 +

c2RtCI
e,t

(CI
e,t−λe,tRt)D̄e,t

)C̄B
e,t. According to the proof of Theorem 1,

a2,t = ∂ŪB
e,t

∂CC
e,t

is a sufficient condition for optimal CC
e,t when

CC
e,t ∈ (0, Ce,t−λe,tRt). Since

∂ŪB
e,t

∂CC
e,t

> c1
∂C̄B

e,t

∂CC
e,t

and c1 > a2,t,

∂C̄B
e,t

∂ĈC
e,t

< 1 always holds. Thus, CC
e,t−C̄B

e,t is an increasing and

concave function of CC
e,t when CC

e,t ∈ (0, Ce,t − λe,tRt).
Given the wholesale price a2,t, the expected computing

resources from MEC servers can be given by
∑

e(C
C
e,t−C̄B

e,t).
For the relationship between the available computing resources
CC

e,t − C̄B
e,t and the wholesale price a2,t, we have

Lemma 6: The available computing resources CC
e,t − C̄B

e,t

is an increasing and concave function of the wholesale price
a2,t when CC

e,t ∈ (0, Ce,t − λe,tRt).
Proof: According to Lemma 4, when CC

e,t ∈ (0, Ce,t −
λe,tRt), the wholesaled computing resources CC

e,t is an
increasing and concave function of the wholesale price a2,t.

Thus, we have
∂CC

e,t

∂a2,t
> 0 and

∂2 CC
e,t

∂a2
2,t

< 0. According

to Lemma 5, the available computing resources CC
e,t −

C̄B
e,t is an increasing and concave function of the whole-

saled computing resources CC
e,t. We have

∂CC
e,t−C̄B

e,t

∂CC
e,t

>

0 and
∂2 CC

e,t−C̄B
e,t

∂(CC
e,t)

2 < 0. Then, we can derive that
∂CC

e,t−C̄B
e,t

∂a2,t
=

∂CC
e,t−C̄B

e,t

∂CC
e,t

∂CC
e,t

∂a2,t
> 0 and

∂2 CC
e,t−C̄B

e,t

∂a2
2,t

=
∂2 CC

e,t−C̄B
e,t

∂(CC
e,t)

2 (
∂CC

e,t

∂a2,t
)2+

∂CC
e,t−C̄B

e,t

∂(CC
e,t)

∂2 CC
e,t

∂a2
2,t

< 0. Thus, the avail-

able computing resources CC
e,t − C̄B

e,t is an increasing and
concave function of the wholesale price a2,t when CC

e,t ∈
(0, Ce,t − λe,tRt).
It means that, with the increase of the wholesale price a2,t,
the available computing resource

∑
e CC

e,t − C̄B
e,t is non-

decreasing and concave.
The cost for the cloud to obtain the computing resources∑
e CC

e,t − C̄B
e,t from MEC servers is

∑
e a2,tC

C
e,t − ŪB

e,t and
the local operation cost for the cloud servers to generate Cc,t

is ĝ(Cc,t). Let pe,t(a2,t) and pc,t(Cc,t) denote the minimal
cost for obtaining more computing resources from the MEC
and the cloud servers, respectively. Then, we have

pe,t(a2,t) =

∑
e(U

S′
e,t − ŪB′

e,t ) −
∑

e(U
S
e,t − ŪB

e,t)∑
e(C

C′
e,t − C̄B′

e,t ) −
∑

e(C
C
e,t − C̄B

e,t)
, (37)

pc,t(Cc,t) =
∂ĝ(Cc,t)
∂Cc,t

, (38)

where {US′
e,t, Ū

B′
e,t , C

C′
e,t , C̄

B′
e,t} are the parameters with the

wholesale price a′
2,t satisfying a′

2,t > a2,t, and
∑

e(C
C′
e,t −

C̄B′
e,t ) −

∑
e(C

C
e,t − C̄B

e,t) is a small enough constant.
To minimize the total operation cost, we have the following

theorem:
Theorem 2: There exists an Equilibrium point satisfying

pe,t(a2,t) = pc,t(Cc,t) when Cc,t < C̄c,t.
Proof: Defined ε as a small enough constant. To obtain

ε unit computing resources from MEC servers, the wholesale
price should be increased from a2,t to a′

2,t and the cost for
buying ε unit computing resources is pe,t(a2,t). To generate
ε unit computing resources by the cloud servers, the local
operation cost can be treated as pc,t(Cc,t). Given the total
available computing resources Ĉk, pe,t(a2,t) = pc,t(Cc,t)
always holds when Cc,t < C̄c,t for the following reason: 1)
If pc,t(Cc,t) > pe,t(a2,t), it means that there exists a higher
wholesale price a2,t for the cloud to buy more computing
resources from MEC servers to reduce the total operation
cost. 2) If pc,t(Cc,t) < pe,t(a2,t), it means that the cloud
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can generate more cloud computing resources to reduce the
total operation cost while reducing the wholesale price a2,t.
Thus, there exists an Equilibrium point satisfying pe,t(a2,t) =
pc,t(Cc,t) when Cc,t < C̄c,t.

According to Theorem 2, with the increase of the total
available computing resources Ĉk, the costs pe,t(a2,t) and
pc,t(Cc,t) will increase simultaneously until Cc,t = C̄c,t.
However, when the cloud computing resources Cc,t reaches
its upper bound C̄c,t, the cloud only can obtain the computing
resources from the MEC by increasing the wholesale price
a2,t. Thus, we have the following lemma:

Lemma 7: The operation solution satisfies pe,t(a2,t) ≥
pc,t(Cc,t) when Cc,t = C̄c,t.

Proof: To minimize the total operation cost, according
to Theorem 2, the cloud will adjust a2,t and the Cc,t to
make sure pe,t(a2,t) = pc,t(Cc,t) until the cloud computing
resources Cc,t reaches its upper bound C̄c,t. If the QoS penalty
U(D̂c,t) is very high or the constraint D̂c,t ≤ D̄c,t cannot
be satisfied, the cloud has to buy more computing resources
from MEC servers by increasing the wholesale price a2,t.
Since pe,t(a2,t) is an increasing function of a2,t, we have
pe,t(a2,t) ≥ pc,t(Cc,t) when Cc,t = C̄c,t.

C. Optimal Pricing and Cloud Computing Resource
Management

Given the wholesale price a2,t, the value of
∑

e(C
C
e,t−C̄B

e,t)
is determined. Thus, given any wholesale price a2,t, we can
calculate the optimal cloud computing resources Cc,t by
solving the following problem:

P2_1: min
Cc,t

ĝ(Cc,t) + U(D̂c,t)

s.t. 0 ≤ Cc,t ≤ C̄c,t, ∀t,

D̂c,t ≤ D̄c,t, ∀t.

The objective function is to minimize the total local operation
cost and the QoS penalty at the cloud while the constraints
defining the ranges for the cloud computing resources Cc,t

and the computation delay D̂c,t.
Given the wholesale price a2,t and the cloud computing

resources Cc,t, the expected computation delay D̂c,t can
be calculated by (23) via setting λ = λc,t and μ =
Cc,t+

�
e(CC

e,t−C̄B
e,t)

Rt
. Similar to Lemma 3, we can derive that

the computation delay D̂c,t is a decreasing and convex func-
tion of the cloud computing resources Cc,t. Since ĝ(Cc,t) is
an increasing and convex function of Cc,t, Problem P2_1
is a convex optimization problem with respect to the cloud
computing resources Cc,t. Thus, when Cc,t < C̄c,t, we can
search for the optimal wholesale price a2,t and the optimal
cloud computing resources Cc,t by the dichotomy method
comparing with the costs pe,t(a2,t) and pc,t(Cc,t), sketched
as steps 6–18 in Algorithm 2.

However, when the cloud computing resources Cc,t reaches
its upper bound C̄c,t, the cloud should select an optimal
wholesale price a2,t to make a trade-off between the operation
cost and the QoS penalty. Thus, the optimal wholesale price
a2,t can be calculated by solving the following problem:

P2_2: min
a2,t

∑
e

(US
e,t − UB

e,t) + U(D̂c,t)

s.t. a2,t ≥ 0, ∀t,

D̂c,t ≤ D̄c,t, ∀t.

The objective function is to minimize the operation cost for
buying computing resources from the MEC servers and the
QoS penalty at the cloud while the constraints defining the
ranges for the wholesale price a2,t and the computation delay
D̂c,t.

According to Theorem 1, the available computing resources∑
e(C

C
e,t − C̄B

e,t) is a non-decreasing and concave function of
the wholesale price a2,t. Since the computation delay D̂c,t is
a decreasing and convex function of total available computing
resources Ĉk, U(D̂c,t) is a non-increasing and convex function
of a2,t. Thus, we proposed a heuristic algorithm based on the
dichotomy method to find the optimal wholesale price a2,t,
sketched as steps 19–35 in Algorithm 2.

Algorithm 2 Optimal Pricing and Cloud Computing
Resource Management

1 Input: (λe,t, Rt, D̄e,t) for computing tasks, (Ce,t, K, T ) for
each MEC server, and (C̄c,t, D̄c,t) for the cloud;

2 Output: {a∗
2,t, C

∗
c,t,∀t};

3 for each time slot t do
4 1) Set a2,t = pc,t(C̄c,t);
5 2) Calculate optimal C∗

c,t by solving problem P2_1;
6 if C∗

c,t < C̄c,t, Set a2,t = 0 and a2,t = a2,t, then

7 1) Set a2,t =
a2,t+a2,t

2
;

8 2) Update optimal C∗
c,t by solving problem P2_1;

9 if pe,t(a2,t) < pc,t(C
∗
c,t) then

10 Set a2,t = a2,t and go step 7;
11 end
12 if pe,t(a2,t) > pc,t(C

∗
c,t) then

13 Set a2,t = a2,t and go step 7;
14 end
15 if pe,t(a2,t) = pc,t(C

∗
c,t) then

16 a∗
2,t = a2,t, Break;

17 end
18 end
19 if C∗

c,t = C̄c,t, Set a2,t = a2,t, then
20 1) Set a2,t = (1 + ε)a2,t and update the cost Uc,t;
21 while Uc,t|a2,t < Uc,t|a2,t

do
22 Set a2,t = a2,t and update Uc,t|a2,t by step 20;
23 end
24 2) Set ā2,t = a2,t when Uc,t|a2,t ≥ Uc,t|a2,t

;

25 3) Set a2,t =
a2,t+a2,t

2
and update the cost Uc,t;

26 if Uc,t|a2,t > Uc,t|a2,t
then

27 Set a2,t = a2,t and go step 27;
28 end
29 if Uc,t|a2,t < Uc,t|a2,t

then
30 Set a2,t = a2,t and go step 27;
31 end
32 if Uc,t|a2,t = Uc,t|a2,t

then
33 a∗

2,t = a2,t, Break;
34 end
35 end
36 Calculate the optimal CC∗

e,t and ĈB∗
e,k by EWBS in [28].

37 end
38 where ε is a small-size step.

Convergence Analysis

When C∗
c,t < C̄c,t, based on the dichotomy method,

the available range for the wholesale price a2,t will be nar-
rowed by steps 7–14 until pe,t(a2,t) = pc,t(C∗

c,t), which means
that the optimal wholesale price a∗

2,t has been obtained. Since
the total operation cost will be decreased by each step, steps
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TABLE I

THE NUMBER OF MEC SERVERS WITH DIFFERENT ARRIVAL RATES

6–18 will converge to a unified solution. When C∗
c,t = C̄c,t,

it means that the total operation cost maybe decreased by
increasing the wholesale price a2,t. Thus, steps 20–24 are used
to find the range of the optimal wholesale price a∗

2,t. With the
increase of the wholesale price a2,t, the total operation cost
will go to infinity. Thus, there exists a unified upper bound
ā2,t to maximize the total profit of the cloud. Similarly, steps
25–34 will narrow the range of the optimal wholesale price
a∗
2,t. Since the total operation cost will be decreased at each

step, steps 19–34 will converge to a unified solution. Thus,
the proposed algorithm 2 will converge to a unified solution.

VI. NUMERICAL EVALUATIONS

We evaluate the proposed social welfare maximization and
the optimal pricing and cloud computing resource management
(named optimal pricing scheme in the simulation section) in
mobile edge-cloud computing networks and show numerical
results and analysis in this section. The evaluation setting is
given as follows: There are 40 MEC servers, each of which has
Ce,t = 3.2GHz computing resources, and 10 cloud servers at
the cloud with an upper bound on computing resources C̄c,t =
200GHz. The costs for cloud computing resources are c3 =
$0.02487/(GHz*hour) and c4 = $0.002487/(GHz*hour)2.
We assume that the arrival of computing tasks at MEC servers
are located in [6, 12] per second and that at the cloud is
λc,t = 500 per second. To characterize the time-varying
computing workloads at MEC servers, the specific distribution
of λe,t in low, middle and high statuses can be found in Table I.
The expected computing workload of each computing task
is 100Kb and each bit needs about 2000 cycles computing
resources to be processed [42]. We assume that the service
fees at the MEC servers and the cloud are the same, e.g.,
a1,t = $0.2764/Gb. The parameters for buying computing
resources back are c1 = $0.2736/(GHz*hour) and c2 =
$0.8208/(GHz*hour)2. The deadline for the computing tasks
at MEC servers are D̄e,t = 2s and that at the cloud is D̄c,t =
4s. The QoS penalty is U(D̂c,t) = $104D̂c,t. To evaluate
the performance of the proposed algorithm, we compare the
simulation results with the following two schemes: 1) the
MEC servers cannot share their computing resources to the
cloud and may buy computing resources from the cloud to
guarantee their QoS, named “no sharing”; 2) the wholesale
price is a constant, i.e., a2 = $0.2487/(GHz*hour), named
“constant price”. Note that, for the social welfare maximiza-
tion, we assume that the income for the MEC and the cloud
is the service fee for them providing computing services and
no profit of the cloud will be transferred to the MEC.

A. Simulation Results and Performance Analysis

The trajectories of the variables in the proposed algorithm
are shown in Fig. 5. It can be found that the proposed algo-
rithm will find the solution within 15 iterations. Furthermore,

Fig. 5. The trajectories of the variables: (a) the wholesale price a2,t, (b) the
wholesaled computing resources Cc,t, and (c) the wholesaled and (d) the buy-
back computing resources CC

e,t and C̄B
e,t for the MEC server with λe,t = 9.

with the increase of the computing tasks at the MEC servers,
all of the parameters, including the wholesale price a2,t,
the cloud computing resource Cc,t, as well as the wholesaled
computing resource CC

e,t and the expected buyback computing
resources C̄B

e,t (with given arrival rate of computing tasks),
will increase. The reason can be summarized as follows: with
the increase of the computing tasks at the MEC, 1) the MEC
servers need to reserve more computing resources to satisfy
their computing requirements and reduce the buyback cost; 2)
for the cloud, since the wholesaled computing resources from
the MEC servers decrease, it needs to increase the wholesale
price and/or the cloud computing resources to make a good
trade-off between the operation cost and the QoS penalty;
3) for the MEC server with λe,t = 9, since the wholesale
price increases, it will wholesale more computing resources to
the cloud to generate more profit and the buyback computing
resources will increase to guarantee the QoS.

The optimal cloud computing resources C∗
c,t under different

schemes and the corresponding profits of the MEC and the
cloud are shown in Fig. 6. From Fig. 6(a), it can be found that
“no sharing” obtains the highest cloud computing resources
since all the computing tasks at the cloud will be processed
by the cloud computing resources while the social welfare
maximization has the lowest cloud computing resources since
all the available computing resources at the MEC servers will
be utilized to reduce the local operation cost of the cloud.
Furthermore, “constant price” has a lower computing resources
than the optimal pricing scheme. This is because the wholesale
price under “constant price” is a2,t = $0.02487/(GHz*hour),
which is much higher than optimal wholesale prices a∗

2,t =
{$0.05388, $0.06790, $0.07908}/(GHz*hour), and thus “con-
stant price” will obtain more computing resources from the
MEC with a higher operation cost.

From Figs. 6(b)-6(d), it can be found that, with the increase
of the arrival rates at the MEC servers, the total profits for all
the schemes will increase. The social welfare maximization
obtains the highest total profit and highest profit of the
cloud since most of the computing resources are from the
MEC without any profit transfer. Thus, the social welfare

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on December 12,2020 at 06:04:27 UTC from IEEE Xplore.  Restrictions apply. 



1238 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 3, JUNE 2020

Fig. 6. The cloud computing resources C∗
c,t and the corresponding profit.

Fig. 7. The wholesaled computing resources CC
e,t and the buyback computing

resources C̄B
e,t for the MEC servers with different arrival rates.

maximization obtains the lowest profit of the MEC servers.
Obviously, the “no sharing” obtain the lowest total profit and
the lowest profit of the cloud since the cloud has a high
operation cost for the cloud computing resources. “constant
price” has a higher total profit than the optimal pricing scheme.
However, “constant price” has a lower profit of the cloud
than the optimal pricing scheme. Thus, the proposed optimal
pricing scheme can improve the profitability of cloud, which
is much preferred by the cloud. Furthermore, comparing with
“no sharing” and the social welfare maximization, the optimal
pricing scheme can improve the profitability of the MEC.

The wholesale and the buyback computing resources at the
MEC servers are shown in Fig. 7. It can be found that, with
the increase of total computing workload, the MEC server with
a given arrival rate will wholesale more computing resources
to the cloud to obtain more profit. To satisfy the computing
requirements, the MEC server with a higher arrival rate will
wholesale fewer computing resources to the cloud. Also, with
the increase of total computing workload, the MEC server with
a lower arrival rate will buy a little more computing resources
back from the cloud since they can generate more profit by
wholesaling more computing resources to the cloud. Note that,
the buyback computing resource is very small compared with
the wholesaled computing resources since the buyback cost is
very large compared with the wholesale price.

B. Performance Analysis of System Parameters

Generally, the optimal decision, e.g., the optimal whole-
sale price a∗

2,t, the cloud computing resource Cc,t, and the

Fig. 8. The effects of system parameters on the optimal decision.

wholesaled and buyback computing resources CC
e,t and C̄B

e,k,
is affected by several system parameters, e.g., the arrival of
computing tasks at the cloud λc,t, the arrival of computing
tasks at the MEC servers λe,t, the cost parameters for gen-
erating computing resources at the cloud, etc. In this paper,
we analyze the effects of several system parameters on the
optimal decision and show the results in Fig. 8. From these
figures, it can be seen that the cloud computing resources
C∗

c,t(Social) under the social welfare maximization is always
smaller than C∗

c,t(pricing) under the optimal pricing scheme
since more computing resources from the MEC can be utilized
by the cloud under the social welfare maximization.

Effects of Computing Workload at the Cloud λc,t

As shown in Fig. 8(a), with the increase of computing
workload λc,t at the cloud, all of the variables, e.g., C∗

c,t under
the social welfare maximization and C∗

c,t, a∗
2,t and

∑
CC

e,t

under the optimal pricing scheme, are non-decreasing. This is
because the increasing computing workload λc,t at the cloud
may increase the demand of computing resources to achieve
a good trade-off between the operation cost and the QoS
penalty. It can be found that there exists a threshold for λc,t.
When the computing workload λc,t is below the threshold, C∗

c,t

under both the social welfare maximization and the optimal
pricing scheme and the wholesale price a∗

2,t will keep at their
lowest levels due to the low QoS penalty. When the computing
workload λc,t exceeds the threshold, C∗

c,t under the social
welfare maximization and the optimal pricing scheme and the
wholesale price a∗

2,t under the optimal pricing scheme increase
nearly linearly. Note that, the growth of the cloud computing
resources C∗

c,t is much larger than that of the wholesaling price
a∗
2,t and the wholesaled computing resources

∑
CC

e,t due to
the high buyback cost and QoS guarantee at the MEC.

Effects of Computing Workload at the MEC λe,t

As shown in Fig. 8(a), with the increase of computing work-
load λe,t at MEC servers, the wholesaled computing resources∑

CC
e,t will decrease while the cloud computing resources C∗

c,t

and the wholesale price a2,t increase. This is because the MEC
servers need to reserve more computing resources to guarantee
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the QoS when the computing requirements are higher. Due to
the decrease of the wholesaled computing resources

∑
CC

e,t,
the cloud has to increase the cloud computing resource C∗

c,t

and the wholesale price a∗
2,t to make a good trade-off between

the operation cost and the QoS penalty. Thus, with the increase
of λe,t, the operation cost at the cloud will be increased while
the profit of the MEC will be increased, which have been
shown in Fig. 6.

Effects of Cost Parameters c3 and c4

As shown in Figs. 8(c)-8(d), with the increase of cost
parameters c3 and c4, the wholesaling price a∗

2,t will increase
and the effect of c4 is much higher than that of c3 due to
the big value of (Cc,t)2. With the increase of c3, the com-
puting resources C∗

c,t under both social welfare maximization
and optimal pricing scheme and the wholesaled computing
resource

∑
CC

e,t remains basically the same since the cloud
increases the wholesale price a∗

2,t a little bit to make a good
trade-off between the operation cost and the QoS penalty.
With the increase of c4, the wholesale price a∗

2,t will increase
quickly due to the high operation cost when the cloud com-
puting resources C∗

c,t is large. Note that, when the value of
c4 is very small, the cloud computing resources C∗

c,t with
optimal pricing scheme will be much higher due to the low
cost parameters. Thus, building a cloud with a low c4 can
generate profit much easier.

VII. CONCLUSIONS

In this paper, we proposed an efficient framework for the
MEC and the cloud to share their computing resources with
each other to improve their profitabilities. We formulated the
computing resource management for the MEC and the cloud as
their respective profit maximization problems. Then, we solve
these problems considering two cases: i) social welfare maxi-
mization by assuming that both the MEC and the cloud belong
to the same entity and the computing resource sharing happens
without profit transfers; ii) the respective profit maximization
by assuming that the MEC and the cloud belong to different
entities and the computing resource sharing only happens with
profit transfers. For the first case, we proved that the social
welfare only depends on the cloud computing resources and
the concavity of the social welfare maximization problem.
For the second case, we analyze the relationship between the
wholesale price and the available computing resources from
the MEC and then designed an optimal pricing and cloud
computing resource management to maximize the total profit.
Numerical evaluation shows that the proposed algorithms can
maximize the social welfare and the respective profits of the
MEC and the cloud separately. Furthermore, we analyze the
effects of system parameters on the system performance and
show that the cost parameter c4 affects the wholesale price
more substantially.

In this paper, we assume that all the MEC servers have the
same computing resources and all the computing tasks with
similar QoS requirements. In our future work, we will consider
the computing resources sharing in large-scale mobile edge-
cloud computing networks, in which there are several MEC
servers belong to different entities with various computing
resources and QoS requirements and several cloud networks to
compete for the wholesale computing resources from the MEC

servers simultaneously. The cloud can issue different prices to
different entities to improve its benefit. Furthermore, we will
take the communication delay between the MEC server and
the cloud/other MEC servers, as well as the effects of energy
consumption, into consideration to manage the computing
resource sharing in mobile edge-cloud computing networks.
Also, we will further discuss the design of admission control
when the arrival of computing tasks exceeds the full capacity
of the MEC servers and the cloud.
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