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Abstract— Heterogeneous communication environments and
broadcast feature of safety-critical messages bring great chal-
lenges to mode selection and resource allocation problem. In this
paper, we propose a federated multi-agent deep reinforcement
learning (DRL) scheme with action awareness to solve mode
selection and resource allocation problem for ensuring quality of
service (QoS) in heterogeneous V2X environments. The proposed
scheme includes an action-observation-based DRL and a model
parameter aggregation algorithm considering local model his-
torical parameters. By observing the actions of adjacent agents
and dynamically balancing the historical samples of rewards,
the action-observation-based DRL can ensure fast convergence
of each agent’ individual model. By randomly sampling his-
torical model parameters and adding them to the foundation
model aggregation process, the model parameter aggregation
algorithm improves foundation model generalization. The gener-
alized model is only sent to each new agent, so each old agent can
retain the personality of its individual model. Simulation results
show that the proposed scheme outperforms the comparison
algorithms in the key performance indicators.

Index Terms— Heterogeneous V2X network, mode selection,
resource allocation, spectrum-energy-efficiency, deep reinforce-
ment learning.

I. INTRODUCTION

TO MEET the growing requirements for enhancing vehicle
users’ road safety, driving experience, traffic efficiency,

and infotainment experience, vehicle-to-everything (V2X)
communication technologies are emerging and supporting the
applications of intelligent transportation system (ITS). The
dedicated short-range communication (DSRC) and cellular
V2X (C-V2X) have been proposed to support V2X commu-
nications [1], [2], but C-V2X has received extensive attention

Manuscript received 8 February 2023; revised 30 December 2023;
accepted 6 February 2024; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor O. Yagan. Date of publication 13 February 2024; date
of current version 18 June 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 62272484 and
Grant 62172441. (Corresponding author: Xiaoheng Deng.)

Jinsong Gui and Xiaoheng Deng are with the School of Electronic
Information, Central South University, Changsha 410075, China (e-mail:
jsgui2010@csu.edu.cn; dxh@csu.edu.cn).

Liyan Lin is with the School of Computer Science and Engineering, Central
South University, Changsha 410083, China (e-mail: 214711026@csu.edu.cn).

Lin Cai is with the Department of Electrical and Computer Engi-
neering, University of Victoria, Victoria, BC V8P 5C2, Canada (e-mail:
cai@ece.uvic.ca).

Digital Object Identifier 10.1109/TNET.2024.3364161

because of its strong cellular infrastructure and clear evolution
route [3], [4]. C-V2X is originally built on long term evolution
(LTE) standards, so it is known as LTE-V2X. NR-V2X is
an improved version of LTE-V2X, which operates in mil-
limeter wave (mmWave) frequency bands. In the near future,
the terahertz (THz) communication as the key technology
of the sixth generation (6G) mobile communication system
will be introduced to C-V2X systems, which is called THz-
V2X. LTE-V2X can guarantee wider coverage, but it cannot
meet ultra-high-capacity demands. In contrast, NR-V2X and
THz-V2X can provide ultra-high-capacity services, but their
coverage areas are limited.

In a C-V2X-based system, there are usually four com-
munication modes (i.e., vehicle to vehicle (V2V), vehicle to
infrastructure (V2I), vehicle-to-pedestrian (V2P), and vehicle-
to-network (V2N)) and two types of messages that get the
most attention (i.e., safety-critical messages and high-capacity
messages). Usually, safety-critical messages tend to be for-
warded to nearby vehicles in V2V mode due to real-time
requirements, while high-capacity messages are transmitted
in V2N mode because of frequent access to the Internet or
V2X servers [5]. In reality, the reliability of V2V mode is not
always guaranteed in dynamic vehicular networks, so other
communication modes need to be considered. Because the time
cost of using a well-trained deep reinforcement learning (DRL)
model to make decisions is negligible, it can adapt well to
dynamic changing environments. Therefore, some works [5],
[6], [7], [8], [9], [10] focused on resource sharing problems
among V2V pairs in different communication modes and
adopted DRL tools to solve these problems. However, these
efforts are limited to traditional C-V2X environments.

In the latest C-V2X environments, there are much more
communication modes and more complex coupling relation-
ships between communication mode selection and resource
allocation in heterogeneous V2X networks. A central question
is how to design an efficient spectrum sharing architecture and
an optimal dynamic vehicular access solution when multiple
C-V2X technologies coexist, which aims to achieve high
spectrum-energy-efficiency. In addition, rigorous mathematical
methodologies are difficult to be applied to heterogeneous
V2X networks due to high mobility and environmental
dynamics. In this case, machine learning (ML) is a viable
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tool. However, supervised learning and unsupervised learning
require a large number of offline training samples, which
cannot be applied to heterogeneous V2X networks due to the
lack of prior datasets. The DRL approach can be adopted
without any prior training samples. In addition, due to the
consideration for bandwidth overhead and privacy issues, the
reference [5] integrated the DRL technique with the federated
learning (FL) [11] framework to design mode selection and
resource allocation scheme.

Although the combination of DRL and FL is promising,
its application in heterogeneous V2X networks still faces
some new challenges. First, how to make full use of multiple
communication modes in heterogeneous V2X networks to
achieve optimal system spectrum-energy efficiency is a new
challenge. Second, complex and diverse resource requirements
of different message types and time-varying resource occupa-
tion status will cause unpredictable co-channel interference.
Finally, how to design an efficient model training architecture
by combining DRL with FL, which can both train a foundation
model with good generalization and customize each local
model, is still an open issue. We address these challenges and
make the following key contributions.

1) We model communication mode selection and resource
allocation problem in a system with more heterogeneous
cellular interface technologies and diverse quality of service
(QoS) requirements, which aims to optimize system spectrum-
energy efficiency. The above system mainly involves three
cellular interface technologies, three basic V2X modes (i.e.,
V2V, V2I, and V2N), and two types of messages (i.e., safety-
critical and high-capacity messages). Unlike the most relevant
work [5], we allow V2V links to reuse both uplink and
downlink cellular resources, and consider data transmission
in broadcast rather than assuming point-to-point V2V mode.

2) We propose an action-observation-based DRL to solve
the above optimization problem, which can adapt to het-
erogeneous dynamic V2X environments by deploying it in
each vehicular user equipment (VUE) to act as an agent.
By observing the actions of adjacent agents and dynamically
balancing the historical samples with positive and negative
reward values, the convergence of individual model is acceler-
ated. Moreover, by considering each VUE as an agent instead
of regarding each V2V pair as an agent, it can substantially
reduce the number of agents in heterogeneous V2X broadcast
networks.

3) We propose a new framework combining FL framework
with distributed training-execution multi-agent DRL frame-
work to obtain a generalization model and keep the specialty
of each local model. Random sampling of historical model
parameters is added to the aggregation process to improve
model generalization, while the generalized model is only
provided to the new agents rather than the old agents to avoid
influencing the specialty of the individual model.

4) Simulation results demonstrated that the proposed solu-
tion can improve system spectrum-energy efficiency under
the constraints of data rate, delay, and reliability. Compared
with the comparison algorithms, our scheme outperforms them
in terms of system spectrum-energy efficiency, single-hop
message satisfaction rate, and satisfaction rate of multi-hop
message containing N links. Furthermore, by designing proper

dynamic equilibrium strategy for training samples, the system
spectrum-energy efficiency is improved by 92.17% under the
same number of training epochs, and also the satisfaction rate
of two types of messages is enhanced.

The rest of this paper are organized as follows. In Section II,
we review the relevant research in mode selection and resource
allocation. The system model and the problem statements are
described in Section III, while the improved DRL is given in
Section IV. Combining DRL with FL for problem solving is
described in Section V. Section VI evaluates the performance
with simulation, followed by concluding remarks and further
research issues in Section VII.

II. RELATED WORK

Many works have done to overcome various challenges
in communication mode selection and resource allocation
problems. Some works focused on mode selection or resource
allocation for traditional cellular V2X (i.e., LTE-V2X) com-
munications based on shared resource pool [12], [13], [14],
[15], [16]. The authors in [12] transformed latency and relia-
bility requirements to outage constraints, which aims to easily
solve resource sharing problem between vehicular users and
cellular users (or among different vehicular users). In [13],
the resource allocation problem when each V2I1 link shares
spectrum with multiple V2V links was investigated, which
aims to maximize the V2I links’ capacity while meeting all
the V2V links’ reliability by the proposed centralized resource
allocation and power control algorithms.

The authors in [14] investigated the impact of queue latency
in LTE-V2X communications, and proposed a centralized
scheme for opportunistic access control and mode selection.
The authors in [15] explored the impact of delayed channel
state information (CSI) in LTE-V2X communications, which
aims to find the optimal resource allocation strategy to maxi-
mize all the V2I links’ throughput while guaranteeing each
V2V link’s reliability. In [16], based on different network
load scenarios, the authors studied the joint problem of power
control and resource allocation mode selection, which aims to
maximize overall information of mixed mode of centralized
and distributed LTE-V2X communications.

Some other works focused on mode selection or resource
allocation for V2X communications by reinforcement learning
(RL) tools [17], [18], [19], [20], [21], where the RL mod-
els are generally deployed in a centralized server. In [17],
the authors proposed a Q-learning-based route selection
algorithm for multi-hop V2I communication, which aims
to realize high throughput and low latency. In [18], the
authors proposed Q-learning-based access mode selection and
convex-optimization-based spectrum allocation algorithms to
balance transmission performance and front-haul savings in
fog-computing-based vehicular networks.

Although Q-learning is a simple and effective RL method,
it cannot adapt to large-scale continuous state space. There-
fore, DRL-based methods are applied to mode selection or
resource allocation for V2X communications [19], [20], [21].

1The abbreviation V2I in Section II has the same meaning as the abbrevi-
ation V2N in Section I. In order to be consistent with the expression form in
the original literatures, we do not replace V2I in Section II with V2N.
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The authors in [19] designed a DRL-based method to opti-
mize transmission mode selection policy for battery-powered
vehicular networks. In [20], the authors designed a DRL-based
method to optimize data transmission scheduling policy for
cognitive-radio-based vehicular networks, which aims to min-
imize transmitting costs while meeting QoS requirements.
In [21], the authors proposed a DRL-based method to optimize
task offloading policy in vehicular networks with multiple edge
servers and multiple offloading modes.

Besides the above single-agent DRL-based solutions, there
are also some multi-agent DRL-based works on mode selec-
tion and resource allocation for LTE-V2X communications [5],
[6], [7], [8], [9], [10]. Their common goal is to maximize
the sum-rate of V2I links while simultaneously guaranteeing
the latency and reliability requirements for V2V links. The
authors in [5] proposed a DRL-based mode selection and
resource allocation scheme to address the severe interference
between V2I and V2V communications based on the shared
resources of traditional frequencies, which aims to maximize
V2I users’ sum capacity while satisfying V2V pairs’ latency
and reliability requirements.

In [6], the authors developed a DRL-based decentralized
approach for resource allocation in V2V communications,
where each V2V transmitter serves as an autonomous agent
to make decisions based on its local observations. In [7],
the authors introduced a multi-agent DRL-based framework
for transmission mode selection and power adaptation in
V2V communications, where multiple V2V links compete for
limited spectrum resources and form different transmission
modes by the way they occupy spectrum resources. In [8], the
authors investigated the spectrum sharing problem of vehicular
networks and solved it by fingerprint-based multi-agent deep
Q-network (DQN) method, where multiple V2V links reuse
the frequency spectrum preoccupied by V2I links.

The authors in [9] proposed a multi-agent double deep Q-
network (DDQN) scheme consisting of centralized learning
and distributed implementation processes to both maxi-
mize the sum-rate of V2I links and satisfy the reliability
and delay constraints of V2V links. In [10], authors used
the multi-agent deep deterministic policy gradient (DDPG)
method to investigate the resource allocation problem for LTE-
V2X communications, where each V2V link serves as an
agent and adopts non-orthogonal multiple access (NOMA)
technology to share the spectrum pre-allocated to V2I links.

Based on the above review, we know that, in the existing
works in terms of mode selection and resource allocation in
V2X communications, the attention of communication modes
is not comprehensive. Moreover, as analyzed and summarized
in the introduction, there are still some main challenges in
heterogeneous V2X networks, which motivate us to carry out
further research in this paper.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. Network Architecture

We consider a heterogeneous V2X communication vehicular
network, which consists of one macro base station (MBS),
multiple small base stations (SBSs) and road side units
(RSUs), and many VUEs. The MBS, SBSs, RSUs, and VUEs

Fig. 1. Information Delivering Process in Heterogeneous V2X Systems.

are equipped with three types of cellular interfaces (i.e., LTE,
mmWave, THz). Furthermore, all the above cellular interfaces
are equipped with the multiple antennas corresponding to the
number of radio frequency (RF) chains. For a VUE, each
cellular interface can work in the three communication modes
(i.e., V2V, V2I, V2N). The MBS covers the entire area shown
in Fig. 1, while each SBS covers only a portion of it.

According to the characteristics of V2X applications,
we only consider safety-critical messages and high-capacity
messages for VUEs. Safety-critical messages involve beacon
messages that are broadcast at regular intervals and emergency
messages that are triggered by events [1]. Beacon messages
are used to transmit vehicle status information (e.g., position,
speed, direction), while emergency messages are used to warn
of emergencies on the road (e.g., traffic accidents). Moreover,
beacon messages only need to be sent to nearby VUEs via
single-hop broadcast, usually V2V mode is suitable for use.
Also, emergency messages may need to be sent to other VUEs
outside the communication range of this VUE via multi-hop
broadcast, which can be achieved by combining V2V with V2I
or V2N. High-capacity messages, including high-definition
electronic map download and multimedia information transfer
based on infotainment, are clearly suitable for V2N transmis-
sion.

We assume that the MBS can manage a certain amount
of cellular bandwidth resources. These resources include the
three frequency bands (i.e., LTE, mmWave, THz) and each
frequency band can be divided into multiple cellular resource
blocks (RBs). The sets of cellular RBs in terms of LTE,
mmWave, and THz are denoted by Flte = {1, 2, . . . , |Flte|},
Fmm = {1, 2, . . . , |Fmm|}, and Fthz = {1, 2, . . . , |Fthz|},
respectively. For the convenience of the following elaboration,
let F = Flte ∪ Fmm ∪ Fthz . All the SBSs reuse the above
cellular bandwidth resources and allocate cellular RBs to the
VUEs that are requesting V2N services.

To make full use of cellular frequency band resources, each
vehicle transmitter can choose a cellular RB occupied (or
unoccupied) by a cellular user, and multiple vehicle transmit-
ters can reuse the same cellular RB with each other. Usually,
V2V, V2P, and V2I in C-V2X can use the ITS frequency
bands, and also they can multiplex cellular RBs. To simplify
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the problem without losing generality, the ITS frequency bands
are not considered in this paper. In addition, in this paper, once
a VUE has successfully applied for a RB, it can use the RB
for both uplink and downlink communications in time division
mode. The allocated RB is not automatically released until the
VUE’s transmission task is completed or the physical link is
disconnected.

The set of SBSs is denoted by S = {1, 2, . . . , |S|}, the
set of RSUs is denoted by R = {1, 2, . . . , |R|}, and the set
of VUEs is denoted by V = {1, 2, . . . , |V|}. When any VUE
(e.g., v ∈ V) is triggered to send a beacon message, it should
preferentially use its V2V long-distance communication mode
(i.e., LTE-V2X) for omnidirectional broadcasting. If the above
radio interface is occupied, anyone of its V2V short-distance
communication modes (i.e., THz-V2X, NR-V2X) is consid-
ered. If the quality of the above direct communication link
cannot be guaranteed, V2I communication mode will be
considered. These measures ensure that VUE v has always a
radio interface to send a beacon message even if it is receiving
another message.

When VUE v is triggered to send an emergency message,
it should preferentially use its V2V long-distance communica-
tion mode for omnidirectional broadcasting. If the above radio
interface is occupied, VUE v uses anyone of its V2I short-
distance communication modes (i.e., THz-V2X, NR-V2X) to
forward this emergency message to any SBS (e.g., s ∈ S), and
then SBS s should preferentially use its V2I long-distance
communication mode (i.e., LTE-V2X) for omnidirectional
broadcasting. If the above radio interface is occupied, SBS
s will use anyone of its V2I short-distance communication
modes to broadcast this emergency message. Each VUE that
receives an emergency message continues to broadcast it by
using one of its available radio interfaces, where its V2V long-
distance communication mode is preferentially considered.

When VUE v needs to send (or receive) high-capacity
messages, it will preferentially select one of its V2N communi-
cation modes (e.g., THz-V2X, NR-V2X, LTE-V2X). Because
cellular RBs will be multiplexed by V2V (or V2I) links to
transmit safety-critical messages, the cellular RBs allocated
for V2N links should be suspended at any time according to
the guaranteed delay and reliability requirements for V2V (or
V2I) links.

Because of VUEs’ high mobility, only large-scale channel
gains are easily obtained by MBS, SBSs (or RSUs), and VUEs,
which mainly include shadow fading (or slow fading) and path
loss. For a cellular RB (e.g., f ∈ F), the channel gains from
a VUE (e.g., v ∈ V) to another VUE (e.g., v′ ∈ V\v), a SBS
(e.g., s ∈ S), and a RSU (e.g., r ∈ R) are denoted by hf

v,v′ ,
hf

v,s, and hf
v,r, respectively.

In addition, we use a binary indicator variable (e.g., lfv,s) to
record whether a SBS allocates a cellular RB to a V2N link
beforehand. Also, we use a binary indicator variable (e.g., lfv,v′

(or lfv,r)) to record whether a cellular RB is reused by a V2V
(or V2I) link. For example, if the cellular RB f is allocated to
the V2N link v → s beforehand, lfv,s = 1, otherwise, lfv,s = 0.
Similarly, if it is reused by the V2V link v → v′ (or the V2I
link v → r), lfv,v′ = 1 (or lfv,r = 1), otherwise, lfv,v′ = 0 (or
lfv,r = 0).

B. Communication Modes for VUEs

We take VUE v as an example to illustrate the communi-
cation modes it can adopt and the corresponding performance
estimation formulas.

1) Cellular V2N communication mode
This mode refers to communications between a SBS and a

VUE. When VUE v sends high-capacity data to SBS s via
any RB f , the uplink signal-to-interference plus noise ratio
(SINR) at SBS s is estimated by

γ(N)
v,s =

lfv,sp
f
v,sh

f
v,s

∑
v̂∈V

∑
ŝ∈S

lfv̂,ŝp
f
v̂,ŝh

f
v̂,s+∑

v̂∈V

∑
v′∈V

lfv̂,v′p
f
v̂,v′h

f
v̂,s+∑

v̂∈V

∑
r∈R

lfv̂,rp
f
v̂,rh

f
v̂,s

+ σ2
s

(1)

where σ2
s is the noise power at SBS s; pf

v,s is the transmission
power of VUE v to SBS s at f ; pf

v̂,ŝ is the transmission power
of VUE v̂ to SBS ŝ at f ; pf

v̂,v′ is the transmission power of
VUE v̂ to VUE v′ at f ; pf

v̂,r is the transmission power of VUE
v̂ to RSU r at f . If the bandwidth for each cellular RB is wf ,
the corresponding data rate is estimated by

R(N)
v,s =

∑
f∈F

wf log2

(
1 + γ(N)

v,s

)
(2)

When SBS s sends data to VUE v via f , the downlink SINR
at VUE v is denoted by γ

(N)
s,v and the corresponding data rate is

denoted by R
(N)
s,v . It is easy to derive their estimating formulas

by referring to the formulas (1) and (2).
2) Cellular V2I communication mode
This mode refers to communications between a RSU and a

VUE. When VUE v sends data to RSU r via f , the uplink
SINR at RSU r is estimated by

γ(I)
v,r =

lfv,rp
f
v,rh

f
v,r

∑
v̂∈V

∑
s∈S

lfv̂,sp
f
v̂,sh

f
v̂,r+∑

v̂∈V

∑
v′∈V

lfv̂,v′p
f
v̂,v′h

f
v̂,r+∑

v̂∈V

∑
r̂∈R

lfv̂,r̂p
f
v̂,r̂h

f
v̂,r

+ σ2
r

(3)

where σ2
r is the noise power at RSU r; pf

v,r is the transmission
power of VUE v to RSU r at f ; pf

v̂,r̂ is the transmission power
of VUE v̂ to RSU r̂ at f ; pf

v̂,s is the transmission power of
VUE v̂ to SBS s at f . Based on γ

(I)
v,r , the corresponding data

rate is estimated by

R(I)
v,r =

∑
f∈F

wf log2

(
1 + γ(I)

v,r

)
(4)

When RSU r sends data to VUE v via f , the downlink SINR
at VUE v is denoted by γ

(I)
r,v and the corresponding data rate is

denoted by R
(I)
r,v . It is easy to derive their estimating formulas

by referring to the formulas (3) and (4).
3) Cellular V2V communication mode
When VUE v broadcasts to nearby vehicles via f , among

the receiving VUEs, we take VUE v′ as an example to estimate
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the SINR at VUE v′ as follows.

γ
(V )
v,v′ =

lfv,v′p
f
v,v′h

f
v,v′

∑
v̂∈V\v

∑
v̂′∈V

lfv̂,v̂′p
f
v̂,v̂′h

f
v̂,v′+

∑
v̂∈V

∑
s∈S

lfv̂,s

(
pf

v̂,sh
f
v̂,v′ + pf

s,v̂,h
f
s,v′

)
+∑

v̂∈V

∑
r∈R

lfv̂,r

(
pf

v̂,rh
f
v̂,v′ + pf

r,v̂hf
r,v′

)


+ σ2

v′

(5)

where σ2
v′ is the noise power at VUE v′. From the formula (5),

we show that any cellular V2V link can multiplex both V2N
uplink and downlink time slot resources, where the uplink and
downlink communication resources can be divided by time
division multiplexing mode after a cellular RB is allocated to
a V2N link. Based on γ

(V )
v,v′ , the corresponding data rate is

estimated by

R
(V )
v,v′ =

∑
f∈F

wf log2

(
1 + γ

(V )
v,v′

)
(6)

It is worth noting that the above formulas are derived from
the premise that the MBS can coordinate the synchronization
of uplink and downlink communications of all the SBSs to
avoid mutual interference between them.

C. QoS Requirements

As mentioned above, this paper considers the two types of
V2X applications for VUEs. VUEs undertake high-capacity
applications by sending (or receiving) the corresponding mes-
sages in V2N mode. Therefore, QoS requirements of each
VUE’s V2N links are defined as the minimum data rate
requirements to ensure the users’ comfortable experience.
Meanwhile, each VUE should transmit its safety-critical mes-
sages in a real-time manner, which usually ensures reliable and
timely transmission of such type of messages through V2V
links (or the combination of V2V and V2I links). We take
VUE v as an example to detail the formal expressions of these
QoS requirements as follows.

1) Data rate requirements of V2N links
The data rate requirement of VUE v’s V2N links is given

by

Rv2n
v = max

s∈S

{
R(N)

v,s

}
≥ Rv2n

min (7)

where Rv2n
min is the minimum data rate requirement of V2N

links and Rv2n
v is VUE v’s currently reachable data rate

by using V2N. For simplicity, we assume that the data rate
requirements are the same for all VUEs. The expression (7)
indicates that at least one V2N link meets the minimum data
rate requirements.

2) Delay requirements of V2V links, V2I-assisted V2V
paths, and V2N-assisted V2V paths

For cellular RBs, whether the base stations (e.g., MBS,
SBSs) are responsible for resource scheduling or the vehicle
nodes (e.g., VUEs) autonomously manage resource schedul-
ing, only transmission delay (without additional grant-based
resource scheduling delay for simplicity) is considered for

V2V links, V2I-assisted V2V paths, and V2N-assisted V2V
paths. The actual delays are estimated by

T
(V )
v,v′ =

Lv

R
(V )
v,v‘

(8a)

T
(I)
v,v′ =

Lv

R
(I)
v,r

+
Lv

R
(I)
r,v′

(8b)

T
(N)
v,v′ =

Lv

R
(N)
v,s

+
Lv

R
(N)
s,v′

(8c)

where Lv is safety-critical message size in bits, while T
(V )
v,v′ ,

T
(I)
v,v′ , T

(N)
v,v′ are transmission delays of the message Lv at V2V

link v → v′, V2I-assisted V2V path v → r → v′, V2N-
assisted V2V path v → s → v′, respectively. Based on the
above, the delay requirement of VUE v is given by

T viv
v = min


min

v′∈V\v

{
T

(V )
v,v′

}
, min
r∈R,v′∈V\v

{
T

(I)
v,v′

}
,

min
s∈S,v′∈V\v

{
T

(N)
v,v′

}


≤ T viv
max (9)

where T viv
max is the maximum tolerable delay of safety-critical

beacon messages, while T viv
v is VUE v’s current delay mea-

sure. For simplicity, we assume that the delay requirements
are the same for all the VUEs’ safety-critical applications.
The expression (9) indicates that at least one communication
mode meets the maximum delay requirement.

3) Reliability requirements of V2V links, V2I-assisted V2V
paths, and V2N-assisted V2V paths

We use bit error rate (BER) to measure reliability of V2V
links, V2I-assisted V2V paths, and V2N-assisted V2V paths.
The BER values are closely related to the SINR values of V2V
links, V2I-assisted V2V paths, and V2N-assisted V2V paths.
With the approximate relation expression between BER and
SINR described in [22], the reliability measurements in terms
of the link v → v′ as well as the paths v → r → v′ and
v → s→ v′ are estimated by

B
(V )
v,v′ = e

−0.5γ
(V )
v,v′ (10a)

B
(I)
v,v′ = 1−

(
1− e−0.5γ(I)

v,r

)(
1− e

−0.5γ
(I)
r,v′

)
(10b)

B
(N)
v,v′ = 1−

(
1− e−0.5γ(N)

v,s

)(
1− e

−0.5γ
(N)
s,v′

)
(10c)

where B
(V )
v,v′ , B

(I)
v,v′ and B

(N)
v,v′ are the BER values when the

message Lv is sent at the link v → v′ as well as the paths
v → r → v′ and v → s → v′, respectively. Based on the
above, the reliability requirement of VUE v is given by

Bviv
v = min


min

v′∈V\v

{
B

(V )
v,v′

}
, min
r∈R,v′∈V\v

{
B

(I)
v,v′

}
,

min
s∈S,v′∈V\v

{
B

(N)
v,v′

}


≤ Bviv
max (11)

where Bviv
max is the maximum tolerable BER of V2V links,

V2I-assisted V2V paths, and V2N-assisted V2V paths, while
Bviv

v is VUE v’s current BER measure. For simplicity,
we assume that the reliability requirements are the same for
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all the VUEs’ safety-critical applications. The expression (11)
indicates that at least one communication mode meets the
reliability requirements.

Unlike the delay and reliability requirements of beacon
messages that are only related to each single link or one-hop
relay via RSUs (or SBSs), those of emergency messages are
related to each multi-hop path consisting of multiple links.
If a transmission path pa of VUE v contains N links, the
corresponding path delay T viv,v

pa and path BER Bviv,v
pa are

estimated by

T viv,v
pa =

∑N

n=1
T viv,v

pa,n (12)

Bviv,v
pa = 1−

∏N

n=1

(
1−Bviv,v

pa,n

)
(13)

where T viv,v
pa,n is delay value of n-th link and Bviv,v

pa,n is BER
value of n-th link. Only when pa is the longest message
transmission path as well as T viv,v

pa and Bviv,v
pa are not more

than T viv
max and Bviv

max respectively, the transmission delay
and reliability requirements of emergency messages can be
guaranteed. For convenience, in the following text, T viv,v

pa and
Bviv,v

pa are regarded as the delay and reliability measurements
on the longest transmission path of VUE v.

D. Problem Statement
In this paper, the global goal is to find the optimal mode

selection and resource allocation scheme that maximizes the
system spectrum-energy efficiency under the constraints of
data rate requirements of each V2N link, the delay and reliabil-
ity requirements of each V2V link (or V2I/V2N-assisted V2V
path), and the delay and reliability requirements of the longest
transmission path of each VUE. To obtain the expression of
system spectral energy efficiency, we first give the estimation
formulas of the sum data rate R, the sum power consumption
P , and the sum frequency band resource consumption W as
follows. 

R =
∑

v∈V
Rv (14a)

P =
∑

v∈V
Pv (14b)

W =
∑

v∈V
Wv (14c)

where Rv , Pv , and Wv denote the data rate, power consump-
tion, and frequency band resource consumption associated
with VUE v respectively, which are estimated by

Rv =

∑
s∈S

(
R(N)

v,s

)
+
∑
r∈R

(
R(I)

v,r

)
+

∑
v′∈V\v

(
R

(V )
v,v′

)
(15)

Pv =


∑
s∈S

∑
f∈F

lfv,sp
f
v,s +

∑
r∈R

∑
f∈F

lfv,rp
f
v,r+∑

v′∈V\v

∑
f∈F

lfv,v′p
f
v,v′


(16)

Wv =


∑
s∈S

∑
f∈F

lfv,swf +
∑
r∈R

∑
f∈F

f(v, f)lfv,rwf+∑
v′∈V\v

∑
f∈F

g(v, f)lfv,v′wf

 (17)

In (17), f (∗, ∗) and g (∗, ∗) are the binary indicator func-
tions. For f (v, f), it means that its value is 1 if no SBS
allocates f to VUE v. Otherwise, f (v, f) = 0.

f (v, f) =

{
1 ,

∑
s∈S

lfv,s = 0

0 , Otherwise
(18)

Similarly, for g (v, f), it means that its value is 1 if no SBS
allocates f to VUE v and also no RSU uses f to communicate
with VUE v. Otherwise, g (v, f) = 0.

g (v, f) =

{
1 ,

∑
s∈S,r∈R

(
lfv,s + lfv,r

)
= 0

0 , Otherwise
(19)

Based on the formula (14), the system spectrum-energy
efficiency is expressed by

SEE =
R

P ·W
(20)

The optimization problem in terms of the system
spectrum-energy efficiency is formulated by

max
v,v′∈V,r∈R,s∈S

SEE

st. C1 : Rv2n
v ≥ Rv2n

min

C2 : T viv
v ≤ T viv

max, T
viv,v
pa ≤ T viv

max

C3 : Bviv
v ≤ Bviv

max, B
viv,v
pa ≤ Bviv

max

C4 :
∑
f∈F

lfv,s ≤ 1, lfv,s ∈ {0, 1}

C5 :
∑
f∈F

lfv,r ≤ 1, lfv,r ∈ {0, 1}

C6 :
∑
f∈F

lfv,v′ ≤ 1, lfv,v′ ∈ {0, 1}

C7 : 0 ≤ pf
v,s, p

f
v,r, pf

v,v′ ≤ plte
max, f ∈ Flte

C8 : 0 ≤ pf
v,s, p

f
v,r, pf

v,v′ ≤ pmm
max, f ∈ Fmm

C9 : 0 ≤ pf
v,s, p

f
v,r, pf

v,v′ ≤ pthz
max, f ∈ Fthz

(21)

where the constraints C1 ∼ C3 are the data rate, delay
and reliability requirements of each VUE, respectively. The
constraint C4 denotes that a SBS at most allocates one RB to
a VUE. The constraint C5 show that a RSU at most adopts one
RB to communicate with a VUE. The constraint C6 denotes
that a VUE’s V2V link can only use one RB. The constraints
C7 ∼ C9 show that transmission powers of each type of radio
interfaces of VUE v cannot be higher than the corresponding
maximum transmission power, respectively.

The formulated problem (21) is a mixed-integer nonlinear
programming problem, which is difficult to solve due to the
following reasons. The constraints C1 ∼ C3 and C7 ∼ C9
make the problem nonconvex, while the constraints C4 ∼
C6 result in a combinatorial problem. Therefore, rigorous
mathematical modeling tools are difficult to cope with this
problem. As mentioned earlier, ML is a viable tool, but the
ML models that require prior data are not suitable for network
environments that lack prior data. The DRL-based approach
does not require any prior dataset, but it can converge to
a solution through iterative feedback from dynamic vehic-
ular environments, which can be applied to this problem.
In addition, due to the difficulty of acquiring global CSI and
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the huge computational complexity in heterogeneous V2X
networks, the problem is more suitable to be formulated as
a multi-agent DRL model. Here, multiple VUEs concurrently
make mode selection and resource allocation decisions based
on their own observations for the purpose of optimizing
the overall long-term reward (i.e., system spectrum-energy-
efficiency) and individual rewards (i.e., data rate, delay and
reliability).

In the research works on multi-agent DRL for mixed coop-
eration and competition tasks, two typical frameworks have
attracted much attention. One is the centralized training with
decentralized execution (CTDE), and the other is the decen-
tralized one with networked agents (DONA) [23]. The former
results in a very large number of model parameters, which
makes it difficult to train models for large-scale networks,
especially when it comes to competitive tasks with discrete
action space. The latter can not only reduce the size of model
parameters through distributed training mode, but also enhance
the stability of the model through the communication between
agents to expand the observation range of agents. Therefore,
based on the DONA framework, we propose the solution
to the problem (21), which can be applied to large-scale
networks.

IV. DONA-BASED SCHEME

The formulated mode selection and resource alloca-
tion problem can be regarded as a DONA-based Markov
decision process (DONA-MDP). According to [24] and
[25], the DONA-MDP can be characterized by a tuple
(S, A, P, E, {Gt}t≥0). Here, S is the global state space, A is
the joint action space of all agents, P is the state transition
probability set, and E is the local reward function set. S is
detailed as {Sv}v∈V , where Sv is the local observation space of
VUE agent v. A is detailed as

∏|V|
v=1 Av , where Av is the action

space of VUE agent v. P is detailed as P : S×A×S→ [0, 1].
E is detailed as {Ev}v∈V , where Ev : Sv × Av → R is the
local reward function of VUE agent v. {Gt}t≥0 denotes a time-
varying network.

A. DONA-MDP Model Design
On the basis of independent DDQN, an action-observation-

based DDQN (AO-DDQN) is proposed to adapt to hetero-
geneous environments, which is deployed in each vehicle
to act as an agent. We divide time T into series of equal
time steps. In time step t, each agent independently selects
an action and annunciates it among its neighbors. Because
there may be some time differences when the agents choose
actions, the agents that choose actions later can observe the
declared results of the agents that have chosen the actions
ahead of them within the receiving range. The observed action
selection results are added to the respective observation set.
The corresponding online neural network parameters θv are
updated by minimizing the following loss function at the batch
size.

L (θv) = (yv
t −Q(sv

t ,av
t |θv)2 (22)

where yv
t = e

v
t +γmaxav

t+1
Q̂(sv

t+1,a
v
t+1|θ−v ). Here, θ−v is the

target neural network parameters, which is periodically copied

from θv and stays the same over multiple iterations. sv
t is the

local observation of VUE agent v at time step t. av
t is its action

at time step t. ev
t is the immediate reward of VUE agent v at

time step t. γ is the discount factor. The three key elements
of the DONA-MDP model specific to the problem considered
in this paper are detailed as follows.

1) Action space
For each VUE agent v ∈ V at time step t, its action a

v
t

includes the following three parts.



f⃗ ∈ Flte ×Fmm ×Fthz (23a)
m⃗ ∈ mV 2N ×mV 2I ×mV 2V (23b)

p⃗ ∈



∪N l
p

i=1

i

N l
p

plte
max×

∪Nm
p

i=1

i

Nm
p

pmm
max×

∪Nt
p

i=1

i

N t
p

pthz
max


(23c)

where (23a) indicates frequency band selection results, (23b)
indicates the communication modes (i.e., V2N, V2I, V2V)
selected by an agent, and (23c) indicates power selection
results. mV 2N , mV 2I , and mV 2V are the indicator variables
with on-negative integers. Here, mV 2N ∈ S if V2N mode
is selected, otherwise, mV 2N = 0; mV 2I ∈ R if V2I
mode is selected, otherwise, mV 2I = 0; mV 2V ∈ {0, 1},
mV 2V = 1 if V2V mode is selected, otherwise, mV 2V =
0. We assume that all the VUEs have the same number
of transmission power levels at the same radio interface
technology. However, different radio interface technologies
may have different power levels, so they are represented by
different symbols (i.e., N l

p, N
m
p , N t

p). From the action space,
we can infer that the solution space size of problem (21)
is
(
(|S|+ |R|+ 1)|F|(N l

p + Nm
p + N t

p)
)|V|

, which is also
one of the important reasons why traditional optimization
methods cannot be used to solve it. Therefore, the set of
actions managed by VUE agent v and the joint actions
of the |V| VUE agents at time step t can be respectively
expressed by

a
v
t =

{
f⃗ , m⃗, p⃗

}
, a

v
t ∈ Av (24)

at = {av
t | ∀v ∈ V} , at ∈ A (25)

2) Local observation space
The local observation of VUE agent v at time step t (i.e.,

s
v
t ∈ Sv) includes the five parts. The first part is the large-scale

channel gains on each RB of each link between VUE v and its
potential communication ends at the current time step, which
is described in (26a). The second part indicates whether there
are the remaining messages that need to be received by VUE
v at the current time step, which is described in (26b). Take
Lv,v′,c

t as an example, if there is a message that is about to send
to VUE v via RB c, Lv,v′,c

t = 1, otherwise Lv,v′,c
t = 0. The

third part is the observable actions of other agents within the
receiving range of VUE v, which is described in (26c). Here,
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the receiving range of VUE v is denoted by Rge (v) = Vv .

hv
t =

{
∪s∈S,c∈F {hv,s,c

t },∪r∈R,c∈F{hv,r,c
t },

∪v′∈V\v,c∈F {hv,v′,c
t }

}
(26a)

Lv
t =

{
∪s∈S,c∈F {Lv,s,c

t },∪r∈R,c∈F{Lv,r,c
t },

∪v′∈V\v,c∈F {Lv,v′,c
t }

}
(26b)

Ov
t = ∪v′∈Vv\v{a

v′

t } (26c)

The fourth part is the remaining time to meet the delay
threshold at the current time step, which is denoted by T v

t .
The fifth part is a triple to indicate the types of messages
that VUE v needs to send at the current time step, which
is denoted by Y v

t = (MB , ME , MH). Here, MB , ME , and
MH are the binary indicator variables, and they respectively
indicate whether VUE v transmits beacon, emergency, and
high-capacity messages at current time step. Take MB as an
example, if VUE v transmits beacon messages at current time
step, MB = 1, otherwise MB = 0. Therefore, if Y v

t =
(1, 1, 0), VUE v will transmit beacon messages and emergency
message messages at current time step, but it will not transmit
any high-capacity message at current time step. Based on the
above, the state space observed by VUE agent v can be defined
by

s
v
t = {hv

t , Lv
t , Ov

t , T v
t , Y v

t } (27)

3) Immediate reward
When all the VUE agents take the joint action at on

the heterogeneous V2X environment, they will receive an
immediate reward. Recall that the design goal in this paper
is to maximize the system spectrum-energy efficiency while
meeting each VUE agent’s requirements in terms of data rate,
delay and reliability. To this end, a sum common reward
function is proposed to measure the total performance of |V|
VUE agents, which aims to maximize the system spectrum-
energy efficiency. On the other hand, an individual reward
that measures the behavior of each VUE agent is proposed
to guarantee the basic performance requirements of individ-
uals. Therefore, we propose the following immediate reward
function for VUE v at time step t.

e
v
t = δ1H1

(∑
v∈V

Rv

PvWv

)
+ ie

v
t (28)

In (28), the first part corresponds to the spectrum-energy
efficiency of the |V| VUEs, while the second part represents
the individual reward, which is defined by

ie
v
t =

(
δ2H2

(
Rv2n

v −Rv2n
min

)
+

δ3H3

(
T viv

max − T viv
v , Bviv

max −Bviv
v

)) (29)

In (29), the individual reward consists of two parts. Here,
the first part means both the rewards and punishments for
minimum data rate requirements of V2N link, while the
second part means the impacts of the delay and reliability
requirements. The weights of the above parts are denoted
by δ1, δ2 and δ3 in turn, which aim to balance the revenue
and penalty. H1 (∗), H2 (∗), and H3 (∗, ∗) are all piecewise
functions, which are defined by

H1 (x) =

{
x, if ie

v
t > 0

0, otherwise
(30)

H2 (x) =

{
A, x > 0
x, x ≤ 0

(31)

H3 (x, y) =


B, x > 0, y > 0
x, x ≤ 0, y > 0
y, x > 0, y ≤ 0
x + y, x ≤ 0, y ≤ 0

(32)

In (30)-(32), H1 (x) means that the spectrum-energy effi-
ciency reward will be obtained only when the individual
reward is met at the same time, otherwise, no reward will
be obtained; H2 (x) means that the punishment increases
with the degree of violation of the constraint, but only one
constant reward is given when the constraint is satisfied;
H3 (x, y) means that the reward will be given only when the
delay and reliability requirements are met at the same time,
otherwise, punishment will be given according to the violation
of delay and reliability. In addition, A and B are two non-
negative numbers, which represent the reward values when
the constraints are met.

The multiple constraint equations aim to strengthen the
constraints and give the specific rewards and punishments for
each agent’s actions. The differentiated real-time rewards with
multiple constraints can guide the model training of agents
more accurately.

B. Dynamic Equilibrium Strategy for Training Samples
Most famous models in the multi-agent DRL field [26],

[27] are usually used in game scenarios. In a game scenario,
an agent needs several actions (i.e., one turn) to determine
whether it wins or loses. However, for communication sce-
narios, improper resource allocation will lead to the failure
of message transmission, so the merits of the action cannot
be judged by an episode due to the one-time operational
characteristics of action. Furthermore, due to the sparsity of
non-negative rewards and the lack of coordination between
agents in the initial exploration, it will be difficult for agents
to learn appropriate strategies. To address the above problems,
we design a dynamic equilibrium strategy for communication
scenarios, which will dynamically adjust the proportion of
good and bad samples in each batch to accelerate the con-
vergence of the model.

The DDQN model uses the experience replay pool (ERP)
mechanism to reduce the data correlation and improve the
model training efficiency. However, in our environment, the
proportion of non-negative rewards in the replay buffer is
very low in the early stages of the model training process,
which also leads to the imbalance of model training. Therefore,
we design the DDQN model with double replay buffers.
Since spectrum-energy efficiency is constrained by individual
rewards, we store non-negative individual rewards as good
samples in the balanced buffer (BB), and the rest of the
samples in the common buffer (CB). During training, the
sampling ratio of double buffers will be dynamically adjusted
according to the actual observation results.

C. Algorithm Description and Performance
Analysis of AO-DDQN

On the basis of DONA-MDP model and dynamic equilib-
rium strategy, the specific process of AO-DDQN is shown in
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Algorithm 1 AO-DDQN
Run at any VUE v

Input: ε1, ε2, γ, T, Nr, θ
Output: θv

1: t = 0
2: θv = θ; θ−v = θv

3: ∆ε = Nr(ε1−ε2)
T ; ε = ε1

4: Initialize replay memory BB, CB to capacity M
5: While t < T do
6: Update hv

t and Lv
t based on local observation

7: Get Vv based on local observation
8: Compute ∪v′∈Vv\v{av′

t } and update Ov
t

9: Update T v
t and Y v

t based on local observation
10: Get state space s

v
t = {hv

t , Lv
t , Ov

t , T v
t , Y v

t }
11: Select a random action with probability ε
12: Otherwise get action a

v
t = argmax

a
v
t
Q(sv

t ,av
t |θv)

13: Broadcast the action selection result to neighborhood
14: Observe the new state space s

v
t+1

15: Receive the immediate reward e
v
t

16: If ev
t > 0 then store (sv

t ,av
t , ev

t , sv
t+1) to BB ERP

17: Else store it to CB ERP End if
18: If the spaces for BB ERP and CB ERP are full then
19: Randomly sample bs experiences as E according

to the double buffer sampling ratio
20: For each experience in E do
21: yv

t = e
v
t + γmaxav

t+1
Q̂(sv

t+1,a
v
t+1|θ−v )

22: Compute L (θv) according to the formula (22)
23: End for
24: Update θv by executing mini-batch gradient

descent
25: If (t mod Nr) == 0) then θ−v ← θv End if
26: End if
27: t + +
28: ε = ε−∆ε
29: End while
30: return θv

Algorithm 1. An approximate optimal solution to the opti-
mization problem (21) can be obtained by having each VUE
run the AO-DDQN algorithm independently. By analyzing
the performance of the AO-DDQN algorithm, we can get the
following three propositions.

Proposition 1: The total reward of the system will not
diverge infinitely if there is no dynamic replacement of VUE
agents in the system.

Proof. From the formulas (28)-(32), we know that a VUE
agent (e.g., v) can obtain its immediate reward (e.g., ev

t ) only
when its individual performance requirements are met (i.e.,
ie

v
t > 0). In this case, the prerequisite for each VUE to obtain

a positive reward is to strive for resources to ensure that its
performance indicators meet the constraints. Here, frequency
bands are the critical resources that affect rewards. When
the supply of frequency bands is reduced and the demand
of frequency bands is increasing, some or all frequency
bands need to be shared or reused, resulting in co-channel
interference. In this case, according to Shannon formula, take
formula (2) for example, there is the possibility of positive

rewards through finding a combination of transmission pow-
ers (see pf

v,s,
⋃

v̂∈V,ŝ∈S pf
v̂,ŝ,
⋃

v̂,v′∈V pf
v̂,v′ ,

⋃
v̂∈V,r∈R pf

v̂,r in
formula (1)) among the concurrent transmitters. The greater
the number of VUEs that share a frequency band resource,
the more difficult it is to find a combination of transmission
powers that makes each VUE’s reward positive. However, the
use of additional frequency bands can effectively alleviate the
above difficulty. In the case of excessive supply of frequency
band resources relative to the number of VUEs, although it
is easier to meet the requirement that each VUE’s reward is
positive, the reward may be difficult to increase effectively
according to formula (28). Therefore, the supply should be
reduced appropriately. If dynamic replacement of VUE agents
happens all the time, the number of VUEs on each shared
frequency band may be changing, which causes the total
reward to change all the time. Otherwise, the system always
gets a convergent reward through the coordination of power
resources under a certain frequency band resource supply. This
completes the proof.

Proposition 2: There may be at least an effective solution to
the optimization problem (21) as long as sufficient frequency
band resources are available.

Proof. When very sufficient frequency band resources are
available, the AO-DDQN algorithm can pick out some RBs
from the set F to eliminate co-channel interferences of each
type of links, including those of V2N links (see formula (1)),
V2I links (see formula (3)), V2V links (see formula (5)).
Then, it can select a reasonable combination of communication
modes to lay the foundation for problem (21). In the absence of
co-channel interference, the system spectrum-energy efficiency
SEE is only treated as the function of transmission powers
according to formula (20). Therefore, formula (20) can be
roughly reduced to SEE = D1log2(1+D2P )

P , where D1 and
D2 are treated as two positive constants. The first-order
derivative of this simplified formula is expressed by ∂SEE

∂P =
D1D2

P (1+D2P ) ln 2−
D1log2(1+D2P )

P 2 . When P > 0, ∂SEE

∂P < 0, from
which it can be inferred that SEE is a monotonically decreas-
ing function. Therefore, the smaller the transmission powers,
the higher the system spectrum-energy efficiency. However,
to meet the constraints C1 ∼ C3 of problem (21), the
transmission powers cannot be infinitely reduced. Therefore,
considering the above factors, there is theoretically a suitable
set of transmission powers to optimize SEE while meeting
the constraints of problem (21). Moreover, since transmission
powers have been discretized in this paper, an exhaustive
search method can be adopted to find this specific set of
transmission powers, which constitutes an effective solution
to problem (21) together with the selected frequency band
resources and communication modes. This completes the
proof.

Proposition 3: The convergence speed of the AO-DDQN
algorithm increases with the range of notification information
received by a VUE agent from other VUE agents.

Proof: When a VUE agent has the larger receiving range,
it can observe the more other agents’ action choices. In this
way, the AO-DDQN algorithm can reduce the number of
selecting infeasible actions and thus get the desired action
results that approximates the effective solution mentioned in
Proposition 2 faster. Take VUE agent v at for example, its
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receiving range Vv determines the amount of information
about the historical actions of other VUE agents included in
its state space. We know from equation (26c) that, when all
the VUE agents are included in Vv , VUE agent v can avoid
choosing actions that may result in utility decline based on
the currently observable actions. It will increase the number
of samples in the balanced buffer pool and raise the probability
of positive samples with high spectrum-energy efficiency. This
will also have a positive impact on model training and form a
positive cycle. On the contrary, with the limited observations
from other agents, each individual agent operates in a fully
distributed manner, making it more difficult to choose a set
of actions that are less conflict with each other. This, in turn,
generates a small cumulative number of positive samples in
the balanced buffer pool (or those with poor spectrum-energy
efficiency), resulting in an under-expressed model for positive
samples. Therefore, more iterations are needed to approximate
the effective solution in Proposition 2. This completes the
proof.

V. FL-DONA-BASED ALGORITHM

Although the AO-DDQN algorithm can achieve model
convergence based on local observation, the highly dynamic
vehicle communication environment means that a new vehicle
entering a particular area needs a suitable foundation model.
By starting with a foundation model, a VUE agent using the
AO-DDQN algorithm can get an individual model quickly.
Although it is useful to apply transfer learning to save the
learning time of individual models [28], each new VUE agent
also needs to choose a suitable foundation model. FL frame-
work allows multiple devices to be loosely federated under the
coordination of a central server to participate in global founda-
tion model training [11]. Its original intention is to protect the
privacy of training datasets, but it also reduces model training
burden on a centralized server. Although the distributed trained
local model parameters need to be transferred to a centralized
server to update the global foundation model parameters,
the communication overhead is negligible when compared to
aggregating the decentralized raw datasets to the centralized
server [29]. Therefore, FL framework is a suitable framework
for designing the foundation model training scheme.

In this paper, the MBS acts as the central parameter
aggregation server of FL framework, while all the VUEs act
as the client devices to perform local model training. More
precisely, the VUEs that are only new to the MBS coverage
need to request a foundation model from the MBS, while
the VUEs that have started local model training only use
the personalized models that they have trained themselves.
However, the models locally trained to a certain accuracy are
pooled into the MBS to perform federated averaging. Different
from the existing typical FL process, this paper does not
require a process in which the parameter server periodically
distributes the currently aggregated model parameters to the
local model trainer. The federated averaging algorithm [11]
is used in our FL framework, where the minibatch-based
stochastic gradient descent method is adopted. To improve the
generalization of the aggregated model, the MBS should store
the history model parameters to participate in the aggregation
of subsequent model parameters after random sampling. With

Algorithm 2 FL-DONA-Based Algorithm
1: MBS Initializes the online Q network model with θ
2: MBS distributes this model to each VUE v ∈ V
3: For each coordination round r = 1, 2, . . . do
4: For each VUE v ∈ V do
5: VUE v executes Algorithm 1
6: VUE v uploads model parameters θv to the MBS
7: MBS computes the global model parameters

according to the formula (33) and distributes it to
each new VUE

8: End for
9: If there is any VUE that needs more newly global

model then
10: This VUE requests MBS to distribute this global

model to it
11: End if
12: End for

the local models of |V| VUE agents, the parameters of the
corresponding global model can be updated by θr+1 ←

∑
v∈V

(
φ0

θr+1
v

|V|
+ . . . + φl

θr+1−l
v

|V|

)
φ0 + . . . + φl = 1

(33)

where θr+1 is the parameters of the global Q network updated
by the MBS, while θr+1

v is the parameters of the local Q
network trained by VUE v at coordination round r+1; l is the
historical sample length after random sampling; φ0, . . . , φl are
weight coefficients, where the single value range is between
0 and 1, but the sum is equal to 1. Fig. 2 shows the
overall framework of FL-aided DONA model. In addition,
the pseudo-code of the proposed FL-DONA-based algorithm
is described in Algorithm 2. From Propositions 1 and 2,
we know that, as long as the number of VUE agents in
the MBS coverage area as shown in Fig. 1 is relatively
stable, the AO-DDQN algorithm can obtain an approximate
optimal solution. Even if any new VUE agent is added, its
personalized model will be trained quickly with the assistance
of a foundation model. Therefore, it is feasible to obtain the
approximate optimal solution in urban vehicle networks.

VI. PERFORMANCE EVALUATION

A. Experimental Parameter Settings and
Comparison Schemes

We consider a 3 × 3 km area, which consists of four
intersections. Each intersection is deployed with a SBS. The
MBS is located in the center of the area. Each road contains
two lanes in each direction. The vehicles are generated by
spatial Poisson process, and they are equipped with LTE,
mmWave and THz radio interfaces. The simulation parameters
for communication environment are listed in Table I. We use
a DDQN network with two fully connected layers, where
the number of neurons in hidden layer is 128. Pytorch (i.e.,
a deep learning framework) is adopted to build the above
DDQN network, where Relu activation function and RMSprop
optimizer are used. The simulation parameters for DRL are
listed in Table II.
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Fig. 2. FL-aided DONA framework.

TABLE I
SIMULATION PARAMETERS FOR COMMUNICATION ENVIRONMENT

To verify the efficiency of our AO-DDQN algorithm,
we consider five comparison algorithms in our simulation
experiments. The first is the DDQN-based algorithm without
action observation (WO-DDQN). WO-DDQN is the improved

TABLE II
SIMULATION PARAMETERS FOR DRL

algorithm based on the idea in [5], since the original algorithm
cannot be directly applied to solve the problem in this paper.

In [5], the communication occurs only between bound pairs
of vehicles, which only considers the V2V and V2I modes
between vehicle pairs. In order to make WO-DDQN suitable
for broadcast and multi-type messages environments, we have
extended the original algorithm from the following aspects.
First, we have extended the state space by adding the channel
gains from the transmitter to the first k potential vehicle
receivers and all the SBSs as well as message type indicators.
Second, we cancel the fixed cellular users in [5], since this
type of users can correspond to the V2N message-type users
in our environment. Finally, we change the reward function to

rt =
∑
v∈V

c1Rv +
∑
v∈V

c2H2

(
R(N)

v −Rmin

)
+
∑
v∈V

c3H2

(
γ(V )

v − γeff

)
+
∑
v∈V

c4H2

(
R(V )

v − Lv

Tv

)
(34)
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where γ
(V )
v is the SINR value of safety-critical messages

received by VUE v, while γeff is the effective outage thresh-
old; R

(V )
v is the data rate of safety-critical messages received

by VUE v, while R
(N)
v is the data rate of high-capacity

messages received by VUE v. c1, c2, c3 and c4 are weights
of each part to balance the revenue and penalty.

The other four comparison algorithms are the multi-agent
DDPG (MADDPG) [30], value decomposition network (VDN)
[31], QMIX [26], and the random selection algorithm, respec-
tively. MADDPG is a policy-based cooperative learning
algorithm, while VDN and QMIX are value-based coopera-
tive learning algorithms. However, they are based on CTDE
framework, which use the same Markov decision process as
that in this paper. In addition, the Gumbel-Softmax estimator is
adopted to make MADDPG suitable for discrete action space.
In the random selection algorithm, each vehicle randomly
chooses an action from its available actions.

B. Network Performance Versus Number of Vehicles

In this sub-section, we compare our AO-DDQN algorithm
with the other five algorithms (i.e., WO-DDQN, MADDPG,
VDN, QMIX, and Random Selection) in terms of the fol-
lowing performance indicators with the different number
of vehicles: system spectrum-energy efficiency, single-hop
message satisfaction rate, and satisfaction rate of multi-hop
messages containingN links. In particular, the two satisfaction
rate indexes all indicate the proportion of messages meeting
QoS requirements in the total number of sent messages.

From Fig. 3-Fig. 5, we can see that the proposed AO-DDQN
always performs best among the six algorithms in terms of
the two message satisfaction rates, where the number of RBs
is set to 9. In terms of system spectrum-energy efficiency,
AO-DDQN and VDN are generally superior to the other four
algorithms. Although VDN outperforms AO-DDQN when the
number of vehicles is relatively large, AO-DDQN has an
advantage over VDN when the number of vehicles is relatively
small. Overall, AO-DDQN still performs well. This is because
each agent in AO-DDQN can be aware of the actions taken by
its neighboring agents through observing the results of action
choices made by them. In this case, more different channels
are more likely to be chosen by different agents and then less
co-channel interference would be caused naturally. Therefore,
system throughput can be greatly improved.

Meanwhile, driven by the target of spectrum-energy effi-
ciency, AO-DDQN does not blindly add new frequency band
resources, but it quickly searches the appropriate transmis-
sion power parameters with the assistance of observing its
neighboring agents’ actions to achieve the target of improving
spectrum-energy efficiency. Besides, since a dynamic equi-
librium strategy and a multi-constraint reward function are
adopted in AO-DDQN, it also contributes to finding better
sub-optimal values for all the aforementioned indicators under
the same number of training epochs.

In addition, we can see from Fig. 3(a) that, when the number
of vehicles is less than 15, AO-DDQN is clearly superior to
the other five algorithms in terms of system spectrum-energy
efficiency. This is because AO-DDQN can more effectively
coordinate the use of RBs to reduce co-channel interference

Fig. 3. System spectrum-energy efficiency versus number of vehicles.

Fig. 4. Message satisfaction rate versus number of vehicles.

when the number of vehicles is small. With the increasing
number of vehicles, the fixed 9 RBs can no longer meet the
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Fig. 5. Satisfaction rate of multi-hop messages versus number of vehicles.

requirement for effective coordination, so the differences of
system spectrum-energy efficiency between the six algorithms
decreased significantly, as shown in Fig. 3(b).

From Fig. 4 and Fig. 5, we can see that, when the number
of vehicles increases, both AO-DDQN and Random Selection
algorithms show a smoother decline in the two satisfaction
rates than the other four algorithms. That is, AO-DDQN
and Random Selection show the better stability in system
performance. However, due to the blindness of the choice
of actions, Random selection algorithm is only better than
VDN when the number of vehicles is greater than 10, while
it is always worse than AO-DDQN, WO-DDQN, MAD-
DPG, QMIX. Therefore, we can make a conclusion that our
AO-DDQN algorithm not only meets the QoS requirements
mentioned in previous sections but also effectively deals with
multiple broadcast scenarios with heterogeneous technologies
and messages. Besides, we can see from Fig. 4 and Fig. 5 that
MADDPG has relatively better performance when compared
with the other four comparison algorithms. However, our
AO-DDQN algorithm has improved performance by 12%-82%
when compared to MADDPG. Since the model scale of
MADDPG is hundreds of times larger than that of AO-DDQN
proposed in this paper, it always causes huge training costs
(e.g., memory usage and power consumption) and is unsuitable
to handle the large number of vehicles.

VDN and QMIX are two DRL methods based on value
decomposition. The key objective of these algorithms is to
establish the relationship between the global value function
Qtotal and the individual value functions [Q1, Q2, . . . , Q|V|],
while satisfying ∂Qtotal

∂Qi
≥ 0 (i = 1, 2, . . . , |V|). This makes

them well-suited for fully cooperative tasks. However, in this
paper, each agent needs to prioritize the QoS requirements
of messages before maximizing spectrum-energy efficiency.
Consequently, the optimization problem (21) becomes a hybrid
task, where VDN and QMIX exhibit suboptimal performance.
Fig. 3 shows that they outperform the other three comparison
algorithms in terms of spectrum-energy efficiency, and even
exceed the AO-DDQN proposed in this paper when the
number of vehicles exceeds 10. However, Fig. 4 and Fig. 5

Fig. 6. System spectrum-energy efficiency versus the number of RBs.

Fig. 7. Message satisfaction rate versus number of RBs.

show that they cannot consistently achieve a high message
satisfaction rate. These findings demonstrate that VDN and
QMIX sacrifice some of their individual performance to opti-
mize the common goal, which is inherent to their model nature.

C. Network Performance Versus Number of RBs

Fig. 6-Fig. 8 show the performance comparison under the
different number of RBs, where the number of vehicles is
set to 10 vehicles. From the Fig. 6, we can see that the
spectrum-energy efficiency of AO-DDQN increases signifi-
cantly with the number of RBs and then it tends to flatten out.
Before the number of RBs exceeds 9 RBs, the increase of RBs
can cause rapid growth of spectrum-energy efficiency. This is
because the number of RBs is smaller than that of VUEs.
In this case, the increase of RBs can ease the competition of
vehicles for RBs. However, after the number of RBs exceeds 9,
the amount of RBs exceeds the VUEs’ demand, and thus
the spectrum-energy efficiency cannot be improved signifi-
cantly. We can further conclude that taking spectrum-energy
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Fig. 8. Satisfaction rate of multi-hop messages versus number of RBs.

efficiency as an optimization goal can significantly reduce
resource waste and achieve efficient utilization of resources.

From Fig. 7 and Fig. 8, we can see that the two satisfac-
tion rate indicators show the basic similar variation trend to
spectrum-energy efficiency. The main reasons are similar to
the above explanation for Fig. 6. We can also observe that
AO-DDQN can maintain a relatively high satisfaction rate
in both single-hop sending and multi-hop forwarding. Even
if the resources are far less than the VUEs’ requirements,
a satisfaction rate of about 90% is guaranteed. This also shows
the high efficiency and stability of AO-DDQN in the case of
resource shortage.

In addition, we can see from Fig. 7 and Fig. 8 that,
compared with WO-DDQN and MADDPG, the proposed
algorithm has improved the performance by about 36%-80%.
The boost is more pronounced when resources are scarce. This
is because AO-DDQN has more alternative communication
modes. In particular, the high propagation loss characteristics
of mmWave and THz greatly reduce co-channel interference
between VUEs and further enhance the quality of vehicle
communication.

Although both VDN and QMIX are value decomposition
networks, the global value function Qtotal of QMIX is gen-
erated through a neural network based on the global state S
instead of a simple sum of {Qi}i=1,2,...,|V| like VDN. There-
fore, QMIX better fits the relationship between Qtotal and
{Qi}i=1,2,...,|V| and outperforms VDN in terms of message
satisfaction rate. For the random selection algorithm, because
the strategy is purposeless, its performance is definitely
worse than those of AO-DDQN, WO-DDQN, MADDPG, and
QMIX. However, it still outperforms VDN.

D. Network Performance Versus Equilibrium Processing
Fig. 9-Fig. 12 show the model convergence of our

AO-DDQN algorithm with and without an equilibrium strat-
egy. From these figures, we can see that the system
performance and model convergence speed are improved when
using dynamic equilibrium strategy. We can also see from
Fig. 9-Fig. 11 that, compared with the non-use of dynamic

Fig. 9. System spectrum-energy efficiency variation trend in model training
process.

Fig. 10. Message satisfaction rate variation trend in model training process.

equalization strategy, the system spectrum-energy efficiency
is improved by 92.17%, the satisfaction rate is improved by
0.68%, and the multi-hop message satisfaction rate is improved
by 0.55%. From the change of individual reward in Fig. 12,
we can see that, the model is more stable when using the
equilibrium strategy, and the QoS requirements of various
messages can be met more quickly.

The improvements mentioned above are mainly because
the dynamic equilibrium strategy can record the history of
positive feedback during exploration. Thus, it ensures the
balance of the samples fed into the model at the beginning
of the model training, making the model training more stable
and balanced. With the increase of training epochs, the fre-
quency of non-negative rewards increases, and the strategy
can dynamically adjust the sample proportion in the batch
to ensure the diversity of samples. In this way, the model
training will become more adequate and will not be affected
by the sparseness of the non-negative reward in the early
stage. We observe that the model can also converge when
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Fig. 11. Satisfaction rate variation trend of multi-hop messages in model
training process.

Fig. 12. VUEs’ individual reward iet variation trend in model training
process.

the equilibrium strategy is not used. However, due to the
lack of good action selection records in the early exploration,
excessive negative rewards make the model less able to express
non-negative rewards at the early stage.

VII. CONCLUSION AND FUTURN RESEARCHES

In this paper, we proposed a novel communication mode
selection and resource allocation scheme by combining FL
framework with DONA framework. In the proposed scheme,
the AO-DDQN algorithm is deployed in each VUE to act
as an agent. By observing the actions of other agents and
dynamically balancing the historical samples of positive and
negative reward values, the AO-DDQN algorithm can obtain
the fast convergence results in heterogeneous V2X broadcast
networks. Also, the FL-DONA-based algorithm in our scheme
can obtain a generalization model and keep the personality of
each local model. Here, good model generalization is achieved
by randomly sampling historical model parameters to par-
ticipate in model parameter aggregation, and the generalized

model is only provided to the new agents rather than the old
agents to avoid influencing the personality of the individual
model. Simulation experimental results showed that, in most
cases, the proposed scheme has advantages over the compari-
son algorithms in terms of system spectrum-energy efficiency,
single-hop message satisfaction rate, and satisfaction rate of
multi-hop messages containing N links. We also observed
that, when using the dynamic equilibrium strategy for training
samples, the system spectrum-energy efficiency, single-hop
satisfaction rate, and multi-hop message satisfaction rate are
improved by 92.17%, 0.68%, and 0.55%, respectively.

However, in this paper, we assume that any message trans-
fer task is accomplished via single communication mode
selection. While this assumption is realistic for safety-critical
messages with short packets, it may require multiple com-
munication mode selections for a high-capacity message.
Especially in highly dynamic vehicle environments, physical
communication links may break down frequently, and the
resources determined by one communication mode selection
may quickly become unavailable. In the future, we plan to
explore the problem. In addition, to simplify the formu-
las (1)-(6), we assume that the MBS can coordinate the
synchronization of uplink and downlink communications of all
the SBSs to avoid mutual interference between them. In our
future work, we will discard this assumption and explore
the communication mode selection and resource allocation
problem under more complex mutual interference relations.
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