
1

A Dynamic Water-filling Method for Real-Time
HVAC Load Control Based on Model Predictive

Control
Kan Zhou, Student Member, IEEE and Lin Cai, Senior Member, IEEE

Abstract—Heating Ventilation and Air-Conditioning (HVAC)
system can be viewed as elastic load to provide demand response.
Existing work usually used HVAC to do the load following
or load shaping based on given control signals or objectives.
However, optimal external control signals may not always be
available. Without such control signals, how to make a tradeoff
between the fluctuation of non-renewable power generation and
the limited demand response potential of the elastic load, while
still guaranteeing user comfort level, is still an open problem.
To solve this problem, we first model the temperature evolution
process of a room and propose an approach to estimate the key
parameters of the model. Second, based on the model predictive
control, a centralized and a distributed algorithm are proposed
to minimize the fluctuation and maximize user comfort level. In
addition, we propose a dynamic water level adjustment algorithm
to make the demand response always available in two directions.
Extensive simulations based on practical data sets show that the
proposed algorithms can effectively reduce the load fluctuation.

Index Terms—Model Predictive Control, Demand Response,
Smart Grid

I. INTRODUCTION

Demand response, aided by the current information and
communication technologies, is anticipated to improve the grid
stability and efficiency by interacting with the elastic load at
users’ side. By changing the elastic load w.r.t. both renewable
energy generation and inelastic load variation, demand re-
sponse can reduce the fluctuation of the non-renewable power
generation and thus cut down the power generation cost.

To achieve this goal, existing works can be classified into
two categories. In the first category, the authors assumed that
how much demand response needed in each time slot is already
known. Therefore, the aim of the algorithms is to use demand
response to do a load following or load shaping according to a
given control signal or control objective [1], [2]. However, in
practice, it may be difficult to obtain the optimal control signal,
in other words, to know exactly how much demand response
is needed for each time slot in the future. As a result, the
works in the second category usually assume the availability of
some prediction information to help decide how much demand
response may be needed. The key problem is that the amount
of elastic load that can be adjusted at certain time (we call it
“elastic load potential”) may be limited. If we use too much
elastic load to flatten the non-renewable power generation at
the beginning, there may not be enough elastic load to use
at a later time. Therefore, a tradeoff must be made between
the fluctuation of non-renewable power generation and elastic
load potential.

Existing work, such as [3], usually needs accurate long-term
load and renewable energy generation information to obtain
the optimal non-renewable energy generation, which is called
the water level, for each time slot. So how much elastic load
is allowed in each time slot in the future can be obtained
by simply calculating the difference between the water level
and the predicted non-elastic load. The traditional water filling
approach is to make the elastic load in each time slot as close
to this difference as possible so that the non-renewable energy
generation can reach the optimal value. However, without such
accurate long-term estimation, we do not know the optimal
water level and thus do not know how much elastic load should
be adjusted in each time slot.

In this paper, we consider the situation that the amount of
elastic load to be used is limited, which is more practical at the
early stage of demand response application, and only short-
term (10 minutes to half an hour) renewable energy prediction
is available. The HVAC systems in large buildings or houses
are used as the elastic load. Due to the temperature variation
constraints of each room, the HVACs cannot always provide
demand response. To efficiently use the limited elastic load
potential, we propose a dynamic water-filling approach based
on model predictive control (MPC) to schedule the HVACs.
Different from the previous works, we dynamically adjust the
water level, which is the remaining load (described later) plus
the reference of the HVAC load, to help reduce the fluctuation
of non-renewable power generation while still keep the elastic
load potential for future use. In addition, we use a different
HVAC control strategy other than the existing dead band based
control policy [4].

The main contributions of this paper can be summarized as
follows. First, we propose a centralized algorithm to control
heterogeneous HVACs in a micro-grid. The objective of this
algorithm is to reduce non-renewable energy generation fluc-
tuations while still guarantee user comfort level. An approach
to estimate heterogeneous HVAC model parameters is also
proposed. Second, we extend the centralized algorithm to
a distributed one, which has a much lower computational
complexity and is more scalable. Third, we further extend
the proposed algorithms to support HVAC ON/OFF control
modes other than adjusting the HVAC power level. Fourth,
since the elastic load potential provided by HVACs is limited
compared to the unlimited control time, a dynamic water
level adjustment algorithm is proposed to reserve this elastic
load potential for future demand response. Finally, extensive
simulations using practical data sets obtained from Eirgrid
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[5] have been conducted to evaluate the performance of the
proposed algorithms. The results demonstrate the advantages
of the proposed algorithms comparing to existing ones.

The rest of the paper is organized as follows. Section II
discusses the existing demand response approaches and the
application of MPC. A general description of the system
architecture and HVAC model is given in Section III. Then
we discuss the design details of the proposed centralized MPC
algorithm, and the dynamic water level adjustment approach
in Section IV, and propose a distributed MPC algorithm in
Section V. How to support HVAC ON/OFF state control
is presented in Section VI. Performance evaluation is given
in Section VII, followed by concluding remarks and future
research issues in Section VIII.

II. RELATED WORK

Since load fluctuation usually adds cost to power generation
and raises requirements on frequency control [6], smoothing
or flatting the non-renewable power generation using demand
response is one of the most important objectives.

For centralized demand response control, [3] proposed a
water-filling approach to flatten the overall load assuming that
perfect future load information is available. In [7], Koutsopou-
los et. al introduced two online demand scheduling policies
based on dynamic programming to minimize the long-term
average power grid operation cost, without considering the
variation of base load and renewable energy. He et. al pro-
posed a Plug-in Hybrid Electrical Vehicle (PHEV) scheduling
algorithm to minimize the total cost of electrical vehicles using
a sliding window algorithm in [7]. In their algorithms, all the
local controllers were coordinated by the same predicted base
load model with accurate prediction in the whole time scale.
[4] is similar to our work in that it aimed to smooth non-
renewable electricity supply by controlling the set point and
ON/OFF states of all HVACs. The algorithms proposed above
try to avoid or minimize fluctuations, so they all need accurate
long-term prediction information to make control decisions.
They also assumed the availability of enough elastic load
to perform the demand response. On the other hand, there
are also some existing works which make control decisions
after the power imbalance happens, so no future prediction
information is needed. For example, [8]–[10] used an energy
storage system to provide primary frequency control to the
power grid based on the current requirement or historical
data. Although the capacity of the primary frequency control
system is limited, the secondary frequency control system will
help reduce their burden in time. The proposed MPC based
algorithms belong to the first group. Taking one step further,
our work considers the situation of limited elastic load, and
only short-term prediction information is needed.

Thermostatically controlled appliances, such as HVACs
have been widely used for demand response in smart grid.
In [11], [12], HVAC is used to minimize the economic cost
by scheduling its operation time. The application of MPC to
HVACs can be found in [13], with an objective to minimize
the user discomfort level while keeping the economic cost
within a given budget. Karmakar et. al introduced an online

algorithm which maintained the thermal comfort-bands while
keeping the total HVAC load under peak energy consumption
constraint [14]. In [1], [2], HVAC is used to provide intra-
hour load balancing or load following according to given
control signals. Different from the existing work, our control
objective is to minimize the fluctuation of the non-renewable
power generation without external control signals, which is
more challenging.

MPC has been used to solve various control problems
in smart grid. [15] proposed an economic MPC algorithm
to minimize the total cost of distributed power generation
plants. The control actions are adjusting the amount of power
generation from each plant. In [16], an aggregator utilizes
MPC strategy to track a secondary frequency control signal
by controlling heterogenous elastic loads. Different from the
previous approaches, the proposed dynamic water level adjust-
ment algorithm will make a tradeoff between the fluctuation
of non-renewable power generation and elastic load potential
reservation.

III. SYSTEM MODEL

A. System Architecture

The investigated system represents a micro-grid with a high
renewable energy penetration. It consists of a control center,
customers with HVAC installed, and a communication network
that connects them together.

The electricity power supply comes from two types of
sources: conventional power generators and renewable power
generators. Due to its stochastic feature, instantaneous renew-
able power generation is time-varying, while a good prediction
over a short time period is possible [17], especially with the
help of large energy buffers (batteries).

The relationship between load and power supply is shown
in (1), where Sn(t) is the power generation from conventional
power plants at time t, Sr is the renewable energy generation,
Lb is the non-HVAC load (also called base load), and Lh is
the load from all HVACs.

Sn(t) = Lb(t)− Sr(t) + Lh(t). (1)

In (1), Lh(t) is the elastic load at time t which can be changed
in each time slot; Lb(t)−Sr(t) is the non-elastic load minus re-
newable energy generation (we call it “remaining load”). Due
to the intermittent nature of renewable energy, the renewable
power generation always contains a lot of fluctuations which
directly affect the remaining load. As a result, the conventional
power companies will need high spinning reserve or buy extra
frequency regulation service to do the frequency control in
the micro-grid which usually has a high cost [6]. Therefore, in
this paper, we are motivated to make Sn(t) change slowly and
smoothly by controlling the elastic load in each time slot so
the conventional power companies can save cost and improve
the system efficiency.

To determine the optimal HVAC load, we also need to
know the future base load. Although there is no long-term
load prediction algorithm with good accuracy, short-term load
prediction algorithms do exist [18]. In this work, we assume
that inelastic load can be predicted in a short-term.
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Fig. 1. HVAC model [19]

B. HVAC Model

In this paper, the HVAC model is obtained from [19] and
is briefly reviewed as follows.

A simple HVAC model is illustrated in Fig. 1. In this model,
Ph represents the power consumed by the HVAC in the unit of
Watt; Pl represents the amount of heat transferred outdoors
through the house boundaries in the unit of Watt; T and To

represent the indoor and outdoor temperature respectively in
the unit of Kelvin; C represents the effective heat capacity,
which is the product of air heat capacity and air quantity in a
house, in the unit of Joule/Kelvin; G represents the thermal
insulation level of a house and is in the unit of Watt/Kelvin.

In this paper, time is divided into slots with a fixed duration
of t. Define Ti(k) as the indoor temperature of the house
with HVAC i at the k-th time slot, and P i

h, Gi, Ci as
the corresponding parameters for this specific house. Then
the indoor temperature evolves according to the following
equation [19]:

Ti(k+1) =

(
Ti(k)−

P i
h(k)

Gi
− To(k)

)
e
−Gi

Ci
t
+
P i
h(k)

Gi
+To(k).

(2)
The parameters Ti, P i

h, Gi, Ci, Qi in this subsection are
all related to the specific house with HVAC i, and in the
following, we drop the subscription or superscription of i to
simplify the notation.

Since G/C is very small (usually < 10−5 [19]) and the
indoor temperature changes during one slot is typically less
than 0.5 degree, we approximate the above nonlinear model
w.r.t. slot duration t by a linear one using Taylor’s equations:

T (k + 1) = T (k)−∆Toff (k) +QPh(k), (3)

where
∆Toff (k) =

Gt

C
(T (k)− To(k)), (4)

and
Q =

t

C
. (5)

Q is the conversion coefficient from power to temperature in
a time slot for a specific room with the unit of K/J.

Since the tolerable indoor temperature variation is relatively
small compared to the difference of T (k) and To, ∆Toff can
be approximated as a constant:

∆Toff (k) =
Gt

C
(Tr − To(k)) (6)

where Tr is the set point temperature of an HVAC.
In this work, we consider houses and HVACs with different

parameters. That is, the parameters C and G for each house

may be different, and each HVAC can have a different set
point Tr and a different maximum power. In addition, although
our HVAC model may not be fully accurate, since the rooms’
actual temperatures will be updated in each time slot, error
will not be accumulated.

IV. CENTRALIZED DYNAMIC WATER-FILLING ALGORITHM

The design objective of the centralized dynamic water-
filling algorithm is to reduce the fluctuation of the power
demand for conventional power plants by controlling the
load of HVACs while guaranteeing HVAC user comfortable
requirements.

A. Plant Model Design

(3) shows the relationship between the room temperature
and the amount of power consumed by HVAC for a single
house. Let the indoor temperature of each house and the total
load of HVAC be the state of the plant (X), ∆Toff for each
house be the measured disturbance (V), the input power for
each HVAC be the control actions (U), and Y be the output
of the plant model. The state space model of the plant is:

X(k + 1) = AX(k) +BuU(k) +BvV (k), (7)

Y (k) = CxX(k) +DuU(k) +DvV (k), (8)

where

X =


T1

...
Tn

Lh

 , U =


P 1
h

...
Pn
h

 , V =


∆T 1

off

...
∆Tn

off

 , (9)

A, Bu, Bv, Cx, Du, and Dv are coefficients, k is the time
slot index, n is the total number of houses with HVACs. The
values of these coefficients are omitted due to space limitation.
More details can be found in our technical report [20].

B. Heterogenous HVAC Parameters Estimation

To obtain the parameters for heterogeneous HVAC models,
there are sensors in each house and a communication network
exists between these sensors and the control center.

Let Ph = 0 in (3), and we can estimate ∆Toff when the
HVAC is turned off as below:

∆T̂off (k) = T (k)− T (k + 1), (10)

where ∆T̂off is the estimated value of ∆Toff .
In practice, ∆Toff may change during different time slots,

so we use the following exponentially weighted moving aver-
age (EWMA) algorithm to update ∆Toff for an HVAC model.

∆Toff (tj) = α ·∆T̂off (tj) + (1− α) ·∆Toff (tj−1), (11)

where α is the weight, and tj is the parameter update
time. Note that ∆Toff (tj) is updated based on the current
estimation and its last value, rather than the average of all
the former values. The reason is that the status of the room
may be different at different time, so the last value may be
more accurate. The relationship between k, t and tj is shown
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in our technical report [20]. The time duration between two
parameter estimations, tj − tj−1, is determined by the control
center. For example, the control center will choose the time
slot when the HVAC is off to estimate ∆T̂off (tj).

Similarly, from (3) we can estimate the value of Q as
mentioned in our technical report [20].

Through this process, the control center is able to model
heterogeneous HVACs by estimating different ∆Toff or Q
for each HVAC. In the proposed work, we assume that these
parameters are already available through estimation. Although
this work only uses HVAC as the elastic load to provide
demand response, the parameters of other elastic load can also
be estimated in a similar way to provide demand response.

C. Controller Design

The objective of our control algorithm is to reduce the
fluctuation of the conventional power plants’ supply and
guarantee user comfort level. Therefore, the objective function
of the controller can be formulated as follows:
Problem I (P1)

min
P i

h
(k)

:
∑
k∈N

{
(Lh(k)− rw(k))

2 + λ2
∑
i∈S

(Ti(k)− ri(k))
2

}
,

(12)
subject to: ∑

i∈S

P i
h(k) = Lh(k), (13)

ri(k)−∆Tl ≤ Ti(k) ≤ ri(k)+∆Tu, ∀i ∈ S, ∀k ∈ N, (14)

0 ≤ P i
h(k) ≤ umax

i , ∀i ∈ S, ∀k ∈ N, (15)

where rw(k) is the reference value of HVAC load in slot
k; P i

h(k) is the consumed power by HVAC i assigned by
the control center in slot k; ri is the temperature set-point
for HVAC i; ∆Tl and ∆Tu represent the maximum allowed
temperature decrement and increment from the set point ri in
a house, respectively; Ti(k) is the indoor temperature of the
house with HVAC i in slot k; S is the set of all the HVACs;
N is the prediction horizon; umax

i is the maximum power
consumption of the i-th HVAC; λ is the weight, and is squared
to make the weight always positive.

The first part of the objective function (12) represents the
deviation of the actual HVAC load from the reference HVAC
load (rw). The second part represents the sum of temperature
deviation from the set-point in each house, which not only
represents the influence to users’ comfortableness, but also
the elastic load potential because the HVAC can only provide
one dimensional demand response if the room temperature
reaches the upper or lower bound. Of course, we would like
the room temperature be close to the set-point so the HVAC
can either be turned on or off. This is quite different from the
dead band based control policy which does not consider the
demand response potential of HVACs [4]. λ is used to make a
tradeoff between these two parts. Constraints (14) means that
the controlled indoor temperature of each house should stay
within a certain range of the set point during each time slot.
(15) ensures that the power of each HVAC is bounded.

By solving this optimization problem, the controller can
obtain a sequence of control actions corresponding to each
time slot of the prediction horizon. Since the plant model is
not accurate and there might be unmeasured disturbance or
noise in this system, the actual indoor temperature of each
house and the real load may not be the same as predicted
after implementing the obtained control actions. Therefore
the controller only executes the control actions in the first
time slot, then it will update all the parameters and solve the
optimization problem again.

D. Dynamic Water level Adjustment Algorithm

To solve the convex optimization problem (P1), the ref-
erence value of HVAC load in slot k, rw(k), is needed. If
rw(k) is not set appropriately, the controller may not be able to
flatten the load effectively. Besides, the energy buffer capacity
provided by elastic HVAC load will be consumed when all the
indoor temperatures reach their upper or lower bounds. As a
result, the HVACs will turn into inelastic load and lose the
function of providing demand response.

In addition, since the size of energy buffer is relatively small
and limited compared to the remaining load and unlimited
control horizon, the value of rw(k) should not be constant.
Instead, rw(k) should change according to the main trend
of the remaining load so that the energy buffer will never
be totally full or empty and the HVACs can always perform
demand response to reduce the remaining load fluctuation.

To adjust rw(k) appropriately, we propose a dynamic water
level adjustment algorithm stated as follows. In slot k, the sum
of rw(k) and remaining load Lb(k)−Sr(k) is the water level
Wl(k), and then we can calculate the reference HVAC load
for each time slot according to

rw(k) = Wl(k)− (Lb(k)− Sr(k)). (16)

Actually, the water level Wl(k) is the reference value for
the total load of the conventional power plants. If we can
keep the water level constant, then the total load is constant.
However, due to the limited elastic capacity of HVAC, this
is impossible. Therefore, we have to change the water level
slowly and smoothly to minimize load fluctuations. Assuming
a given water level for time slot k (which may not be optimal),
by solving the centralized MPC problem (P1) we can obtain
the predicted system states X(k + N) for time slot k + N ,
where N is the prediction horizon. Then the water level for the
next time slot Wl(k + 1) can be obtained using Algorithm 1.
The main idea is that we adjust the water level whenever one
of the room temperature may reach the upper or lower bound
in the predicted future.

In Algorithm 1, rw represents the average reference value
of HVAC load for the following N slots; Ps =

∑n
i=1

∆T i
off

Qi

is the total amount of power needed to counteract all the
houses’ temperature decrease in each time slot; c is the change
to the water level; climit is the maximum allowed water
level change in each time slot, which is determined by the
power company; µ is the water level change rate and can be
determined empirically.
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Algorithm 1 Water Level Adjustment
Require: X(k +N)

1: flag ← 0
2: for all i ∈ n do
3: if Ti(k +N) = ri(k) + ∆Tu then
4: flag ← 1
5: break
6: else if Ti(k +N) = ri(k)−∆Tl then
7: flag ← −1
8: break
9: end if

10: end for
11: if flag ̸= 0 then
12: c← µ · (rw − Ps)
13: if |c| > climit then
14: c← climit · flag
15: end if
16: Wl(k + 1)←Wl(k)− c
17: end if

The relationship of the MPC algorithm and the water level
change can be summarized as follows: we use the MPC to
predict the system status in the future. If the prediction results
show that the total elastic load potential will be depleted in
the future, we adjust the water level slightly to avoid the
occurrence of this situation. Of course, with longer accurate
prediction horizon, we can avoid unnecessary water level
adjustment and therefore reduce the fluctuation.

V. DISTRIBUTED DYNAMIC WATER-FILLING ALGORITHM

The centralized dynamic water-filling algorithm described in
section IV relies on a centralized controller, which may have
high computational complexity when the number of HVACs is
large. To be scalable, a distributed architecture is preferable.

A. Distributed Control Architecture

Different from the centralized algorithm which has only
one control center, the distributed algorithm relies on a hier-
archical architecture with one central controller and several
local controllers. The central controller tries to flatten the
total load by adjusting the amount of power used by each
local controller. The local controller will assign the amount
of power designated by the central controller to each HVAC
and maximize user comfort level. Note that if the population
changes overtime, we can simply resize the group 1, and the
algorithm still works.

B. Central Controller Design

Other than flattening the total load, the central controller
should guarantee that the amount of power assigned to the
local controllers in each time slot will not make any HVAC

1The groups can be resized at two levels. First, the number of HVACs in
a group can be increased or decreased. Second, if the number of HVACs in
each group changes too much, we can reconfigure all the groups to balance
the group size.

Energy leakPower assigned state

0Cap

Pa
Pb

Pg

Fig. 2. Local Group Model

under that local controller violate the temperature constraints.
Since there is no direct control between the central controller
and the HVACs, we need a new plant model for the hierarchi-
cal MPC problem.

We consider the local controller with all the corresponding
HVACs as a group. Each group has different size of the energy
buffer provided by its HVACs. The model of a local group is
shown in Fig. 2. The unit of all the variables in this model is
J , and the group index j is omitted to simplify the notation.
In each time slot, there is a total amount of energy Pb leak
from all the houses, and Pa is the amount of energy assigned
by the central controller to this local group. Pg represents the
energy buffer state of this group. Then the evolution process
of Pg can be shown as follows:

Pg(k + 1) = Pg(k) + Pa(k)− Pb(k). (17)

When all the indoor temperatures in the group decrease by
∆Tl from their set-points, the state of the energy buffer is
0; on the other hand, when all the indoor temperatures reach
their upper bounds, the state Pg equals Cap. The energy buffer
capacity can be obtained from:

Cap = (∆Tl +∆Tu)
∑
i∈m

Ci, (18)

where m is the group size, Ci is the effective heat capacity of
the house with HVAC i in the unit of Joule/Kelvin, which
can be obtained from Qi [20].

The central controller must guarantee the states of all
the local controllers between 0 and their Cap. In this state
space model of the MPC problem, the control actions are the
amount of power assigned to all the local controllers. The
measured disturbance is the vector containing each Pb for the
corresponding group, and the output is the vector including all
the group states and the load of all HVACs. The exact state
space model formulas are similar to (7), (8) and are omitted
due to space limitation.

The objective function of the central controller is formulated
as follows:
Problem II (P2)

min
P j

a(k)
:

∑
k∈N

(Lh(k)− rw(k))
2 + λ2

∑
j∈M

(P j
g (k)−Rj(k))

2

 ,

(19)
subject to: ∑

j∈M

P j
a (k) = Lh(k), (20)

0 ≤ P j
g (k) ≤ Capj , ∀j ∈M, ∀k ∈ N, (21)

0 ≤ P j
a (k) ≤ Umax

j , ∀j ∈M, ∀k ∈ N, (22)
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where M is the number of groups; Rj is the reference value
of the state for group j, and we set it to half of the energy
buffer capacity Capj/2; Umax

j =
∑

i∈m umax
i is the maximum

amount of power allowed to be assigned to local group j in
each time slot.

The first part of the objective function (19) represents
the deviation of the actual HVAC load from the reference
HVAC load (rw). The second part represents the sum of the
energy buffer state deviation from the reference state for each
local group, which indirectly represents the impact on users’
comfortableness. λ is used to make a tradeoff between these
two parts. Constraint (21) requires that the state of each group
should be bounded between 0 and Cap. (22) ensures that the
power assigned to each group is bounded.

Similarly, the central controller will follow the receding
horizon principle and update the states of all the groups after
each time slot.

C. Local Controller Design

After the local controller receives the power quota Pa

assigned by the central controller for the next time slot, it
assigns this amount of power to all the HVACs by maximizing
user comfort level. Note that the energy buffer state of the local
group is guaranteed to be bounded by the central controller,
as a result the temperatures of all the houses will not violate
the temperature constraint (14).

The local controller determines the amount of power for
each house by solving the following optimization problem.
Problem III (P3)

min
P i

h
(k)

:
∑
i∈Sl

(Ti(k + 1)− ri(k + 1))2, (23)

subject to: ∑
i∈Sl

P i
h(k) = Pa, (24)

ri(k + 1)−∆Tl ≤ Ti(k + 1) ≤ ri(k + 1) + ∆Tu, ∀i ∈ Sl,
(25)

0 ≤ P i
h(k) ≤ umax

i , ∀i ∈ Sl, (26)

Ti(k + 1) = Ti(k)−∆T i
off (k) +QiP

i
h(k), ∀i ∈ Sl, (27)

where Sl is the set of HVACs under the local controller.
Since the distributed algorithm has a hierarchical architec-

ture, the computation complexity of the central controller can
be greatly reduced. However, the central controller cannot
control each HVAC directly, neither can it know the exact
status of each HVAC. As a result, it may lead to some fairness
problems to the HVACs because HVACs under different local
controllers may be treated differently. In addition, the control
variables for the central controller are reduced (from the
number of HVACs to the number of local controllers), so
the control precision may not be as good as the centralized
algorithm. We will compare the performance of the distributed
algorithm with the centralized one in Section VII.

VI. HVAC ON/OFF STATE CONTROL

In problems P1, P2 and P3, we assume that the consumed
power for any HVAC in each time slot can be adjusted
continuously. However, this may not be true in practice. For
instance, some HVACs can only be turned on or off. Therefore,
we consider how to change the proposed algorithms to support
this kind of control actions.

For the proposed centralized MPC control algorithm, in
order to support HVAC ON/OFF control, we can simply
replace (15) with (28) in P1.

P i
h(k) ∈ {0, umax

i }, ∀i ∈ S, ∀k ∈ N. (28)

W.r.t. the distributed MPC algorithm, we can replace (26)
with (29) in P3, and let the local controller report the total
amount of energy actually used, to the central controller which
then updates the original control actions.

P i
h(k) ∈ {0, umax

i }, ∀i ∈ Sl, (29)

This turns the original problems into multiple integer prob-
lems (MIP) which usually have much higher computational
complexity. Therefore, we propose an heuristic algorithm
which can obtain the control actions in polynomial time.

Algorithm 2 Determine HVAC State
Require: Pa

1: PState[1, 2, · · · ,m]← OFF
2: sort PState according to the difference between room

temperature and the set-point from low to high
3: sum← 0
4: for all i ∈ m do
5: if T−

i (k + 1) ≤ ri(k)−∆Tl then
6: sum← sum+ P i

h

7: PState(i)← ON
8: end if
9: end for

10: for all i ∈ m do
11: if PState(i) = OFF and sum < Pa and T+

i (k+1) ≤
ri(k) + ∆Tu then

12: if Pg(k) ≤ R(k) then
13: sum← sum+ P i

h

14: PState(i)← ON
15: else if sum+ P i

h < Pa then
16: sum← sum+ P i

h

17: PState(i)← ON
18: end if
19: end if
20: end for

In Algorithm 2, m is the number of HVACs in the group;
PState is an vector which stores the state of all the HVACs;
T−
i (k + 1) represents the temperature of house i in the next

time slot if the state of the HVAC is OFF; T+
i (k+1) represents

the temperature of house i in the next time slot if the state of
the HVAC is ON; R(k) is the reference value of the state in
the current time slot.

Line 2 guarantees that the houses with lower temperature
have a higher priority. Lines 4 to 9 of Algorithm 2 set the
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state of HVAC whose house temperature is very close to the
lower bound to be ON. Lines 10 to 20 set the HVAC state
to be ON if the total amount of power used is less than Pa.
More details can be found in our technical report [20].

After obtaining the ON/OFF states of each HVAC, the local
controller will report the actually used energy and the actual
group state to the central controller. The central controller will
update the model states and move to the next time slot.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms and compare them with the algorithm in [4] (we
call it “SPDW” algorithm, which is the combination of the first
letters of all the authors’ names, for easy reference) and the
uncontrolled one. To achieve a flatten overall non-renewable
power generation, the SPDW algorithm tries to minimize the
difference of the load between the current and the last time
slot by adjusting the set-points of HVACs. The parameters
of our algorithms are tuned using the existing approaches for
MPC [21], which aims to minimize (30). After tuning, the
values of the weights in our simulation are set to 3.3 and
0.28 for centralized MPC algorithm (CMPC) and distributed
MPC algorithm (DMPC), respectively. The control interval
is set to 2 minutes. The communication latency between the
controllers and HVACs is negligible and can be ignored. For
the data gathering time delay, we assume that the users will
send their states to the controller at the beginning of each
time slot. Without considering the communication latency
and the transmission error, all the data should be obtained
within seconds. With respect to the computation time of the
proposed algorithms, the proposed CMPC algorithm does need
a long time. However, the proposed DMPC is much faster.
For example, To apply the DMPC algorithm to a community
with 1000 HVACs, we can divide it into 20 groups with 50
HVACs in each group. The computation of either the central
controller and the local controller for one time slot is below
0.4s. Since the room temperature will not change significantly
within several seconds, the influence of the data gathering
time and the computation time of the proposed algorithm are
both tolerable. The wind energy generation data and users’
load are obtained from Eirgrid [5]. While these data have a
resolution of 15 minutes, we use shape-preserving piecewise
cubic interpolation [22] to interpolate them into a resolution
of 2 minutes. Besides, we scaled them down to fit a micro-
grid with a population size of 1000 and let the wind energy
penetration take about 50% of the total load.

For the HVAC and house model, we assume that each
house only has one room and one HVAC for simplicity,
and the decrement of room temperature in each time slot
follows a normal distribution, with an average of 0.2 Celsius,
and a standard deviation of 0.03 Celsius. The parameter Q
also follows a normal distribution, with an average value
of 1.65 × 10−4 and a standard deviation of 0.25 × 10−4.
The maximum power of each HVAC is uniformly distributed
between 4kW and 6kW . Note that the HVAC power used in
our simulation may be different from that in practice, but it
will not affect the effectiveness of the proposed algorithms.
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Fig. 3. Load for conventional power plants

The parameters ∆Tl and ∆Tu are both set to one Celsius.
The indoor set-point is uniformly distributed from 20 Celsius
to 22 Celsius. Initially, all the indoor temperatures are scatted
around their set-points by at most 0.5 degree.

In this simulation, the prediction horizon in the proposed
CMPC is set to 30 minutes. Due to the computation complex-
ity of the controller, the number of controlled HVAC in this
simulation is only 40. We will show the simulation result with
more HVACs using the DMPC later, which is much faster. The
reason is that DMPC has a hierarchical architecture, so either
the central controller or the local controller has much fewer
variables to optimize in each time slot.

Fig. 3 shows a typical time period of the power provided
by conventional power plants. As illustrated in the figure,
both SPDW and CMPC can make the load smoother and
flatter. Notice that the SPDW algorithm can flatten the load
for a while (from minute 750 to 770), then the load suddenly
decreases and is kept flat for another period of time (from
minute 770 to 800) before another increase. The reason is that
the SPDW algorithm will keep the load as flat as possible by
adjusting the ON/OFF state of all the HVACs until the elastic
capacity of all the HVACs is no longer enough to provide
further demand response. Then it will make a dramatic load
change to push the HVAC away from the temperature bound so
they can continue to provide demand response. For example,
around minute 770, the majority of HVACs have reached the
temperature upper bound so they are all turned off which
make the load decrease tremendously. The opposite situation
happens around minute 800. The proposed CMPC algorithm
predicts the status of all the rooms in the future and changes
the water level beforehand so that the overall load change is
much smoother.

To measure the performance of different algorithms nu-
merically, we define a criterion “average fluctuation (AF)” to
represent the amount of load fluctuation as follows (similar
criterion can be found in [2]):

AF =
1

N − 1

N−1∑
i=1

|data(i+ 1)− data(i)|
data(i)

, (30)
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Fig. 4. Room temperature

where N is the total number of time slots; data(i) is the data
in the i-th slot; the denominator is used to normalize the data
difference.

The average fluctuation for CMPC, SPDW and uncontrolled
cases are 0.0028, 0.0123 and 0.0166, respectively. We find
the proposed algorithm has a much smaller AF value which
mainly because of the following three reasons. First, if the
HVAC buffer capacity may not be enough in the future, the
proposed algorithm will get prepared by changing the water
level gradually, so the average fluctuation can be reduced.
Second, the HVAC models in the proposed algorithm are
assumed to use any amount of energy during the time slot
while the SPDW algorithm only controls the ON/OFF states
of the HVACs. We will discuss the performance of the
proposed distributed MPC algorithm with ON/OFF support
(DMPCOF) later. Third, the HVACs in the proposed algorithm
are controlled directly by the central controller while the
SPDW algorithm only control the set-point of all HVACs
which indirectly affect the ON/OFF states of HVACs.

Fig. 4 (a) shows the temperature variation of a typical room
using the proposed CMPC algorithm. The set-point is not an
integer because we set random set-point for each house. As
can be seen, CMPC can effectively guarantee user comfort
level by restricting room temperature’s variation within a range
of the set-point. Fig. 4 (b) represents the set-point of all the
controlled HVACs by SPDW. Note that the individual house
temperature is allowed to deviate from the set-point for 0.5
Celsius, so the temperature variation range of a house is the
same as that in CMPC. Comparing these two figures, we will
find the temperature variation of the proposed algorithm is
much smoother which leads to a higher user comfort level.

For the DMPC and DMPCOF algorithms, we set the number
of local controllers to be 4, and each local controller manages
8 to 12 HVACs, with a total number of 40. The prediction
horizon is also 30 minutes.

Fig. 5 illustrates the zoomed-in load of SPDW, CMPC,
DMPC and DMPCOF algorithms. The load of CMPC is
slightly below the others due to different water levels. Since
the control actions and system model are a bit different, the
water level of CPMC and DMPC may not be the same all
the time. The curve of DMPCOF contains more fluctuations
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Fig. 5. Load comparison of proposed three algorithms

TABLE I
AVERAGE FLUCTUATION

Prediction
Horizon

DMPC
with 40 HVACS

DMPCOF
with 40 HVACS

DMPCOF
with 80 HVACS

10min 0.0032 0.0058 0.0052
20min 0.0030 0.0052 0.0048
30min 0.0029 0.0050 0.0046

because the load change is discrete rather than continuous.
However, the fluctuation is still much smaller than that of
SPDW.

The AF of DMPC and DMPCOF are 0.0029 and 0.0050
respectively, and slightly larger than that of CMPC but still
much smaller than that of SPDW and the uncontrolled cases.
The reason why the AF of CMPC is smaller may be that
DMPC has fewer control variables for the central controller.

In addition, we define the user comfortable influence factor
(UIF) as the root mean square of all the room temperature
deviation from the set-point.

We find the UIF of DMPC and DMPCOF are about 8.23%
and 72.4% larger than that of CMPC. The reason is that CMPC
minimizes UIF directly while DCMP and DCMPOF minimize
it indirectly by controlling the energy buffer state for each
local controller. Besides, the HVACs of DCMPOF can only
be turned ON or OFF which makes its UIF even larger.

With a different prediction horizon, the total load for the
conventional power plants is anticipated to be different. Fig. 6
shows the situation when the prediction horizon is 10 minutes
and 30 minutes, respectively. The total number of HVACs are
both 40.

From Fig. 6, the curve DMPC-30 (corresponding to 30-
minute prediction horizon) is smoother than that of DMPC-
10 (corresponding to 10-minute prediction horizon) because
it contains fewer ups and downs. The reason is that with a
longer prediction horizon, the controller has more information
about the future load change and thus can get prepared earlier.

Table I shows the average fluctuation for DMPC, DMPCOF
with 40 HVACs and DMPCOF with 80 HVACs (4 groups,
each group has 16 to 24 HVACs). Obviously, the average
fluctuation of DMPCOF is larger than that of DMPC with the
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same prediction horizon, and with a longer prediction horizon
the average fluctuation is smaller. We also notice that with
more HVACs, the average fluctuation of DMPCOF is smaller
under the same prediction horizon too. The reason is that
with more HVACs to be controlled in a group, the amount
of actual HVAC load can have a better chance to be closer to
the reference HVAC load value.

VIII. CONCLUSION

In this paper, we have proposed two algorithms to control
HVACs for demand response based on MPC. The centralized
approach directly controls all the HVACs while the distributed
approach uses a hierarchical architecture. Both of them can
effectively reduce load fluctuations while keeping all the room
temperature within a range of the set-point. Moreover, the
proposed distributed algorithm has been extended under a
more practical assumption that each HAVC can only support
ON and OFF.

There are several open issues left behind. First, how to
extend the current MPC algorithms to control other types of
elastic load requires further investigation. The key difference
is that the initial states of HVACs are already known, while
for other types of elastic load, such as PHEV, the arrival
time and departure time in the future may not be available.
Second, the water level change rate µ in Algorithm 1 is
determined empirically and is a constant in this paper. If
we can adjust µ w.r.t. history statistic information, such as
peak time etc., we may achieve an even better performance.
Third, the computational complexity will increase with more
control variables. Therefore, how to make a tradeoff between
the number of groups, the size of each group, load fluctuation,
and the influence to user comfort level is also an important
problem left to future research.
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