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Expanding EV Charging Networks Considering
Transportation Pattern and Power Supply Limit
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Abstract—For EV rollout, a charging network is needed right
off the road. The charging station planning and deployment
problem should consider the increasing penetration ratio of
EVs over a long period of time, and the highly dynamic and
location-dependent demands and power grid constraints. This
paper focuses on the dynamic charging network design, i.e.,
how to optimize the charging station locations and the number
of chargers in each station at different time stages with an
increasing EV penetration ratio. For each candidate location,
we first model its coverage area to estimate the dynamic EV
charging requirements. Then, we formulate the problem at each
time stage as profit maximization, which is a mixed-integer
optimization problem. To make it tractable, we investigate the
profitability of candidate locations and derive their upper and
lower bounds on the expected profit. Then we take two steps to
transform and relax the problem to convex optimization. A fast-
converging search algorithm, named RMCL-E, is proposed. Using
real vehicle traces, simulation results show that the proposed
algorithm can make a good trade-off between the service blocking
probability and the construction cost to maximize the total profit,
which is attractive for charging service providers.

Index Terms—Electric Vehicles, Charging Services, Charging
Stations, Power Grid.

NOMENCLATURE

k k-th time stage.
t t-th time slot.
pii,t The probability that EVs in Φi will be served in charging

station i during time slot t.
pij,t The probability that EVs in Φi will move to neighboring zone

j for charging service during time slot t.
pil,t The probability that EVs in Φi leave the charging system

directly (being blocked) during time slot t.
λki,t The expected number of EVs requesting charging services in

Φi during time slot t at time stage k.
αkij,t The upper bound on transfer probability pij,t at time stage k.
αkil,t The upper bound on blocking probability pil,t at time stage k.
Φi The zone i.
C1,i The average daily cost of one charging station at location i.
C2,i The average daily cost of each charger at location i.
C3 The expected revenue for charging one EV in charging stations.
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ĈO,ki The average daily cost of operating the charging station i at
time stage k.

ĈI,ki The expected revenue of charging station i during one day at
time stage k.

Ĉk The total expected profit of the charging network during one
day at time stage k.

C
k
i The upper bound on expected daily profit Ĉk at time stage k.

Cki The lower bound on expected daily profit Ĉk at time stage k.
E The charging rate of one charger.
Lki,t The total number of EVs in Φi that leave the charging system

without being charged at time stage k.
Mk
i,t The expected number of EVs will be charged at charging

station i during time slot t at time stage k.
Ňk
i The number of existing chargers in location i at time stage k.

Ñk
i The number of chargers to be installed in location i.

Ñk
i The upper bound on Nk

i in location i at time stage k.
N̂k
i,t The number of the available chargers in charging station i

during time slot t at time stage k.
Nk
i The optimal number of chargers when Ĉk = Cki .

N
k
i The optimal number of chargers when Ĉk = C

k
i .

O(i) The set of the zones that are zone i’s neighbors.
PBi,t The blocking probability of location i during time slot t.
PBi,t The lower bound on the blocking probability PBi,t.
P
B
i,t The upper bound on the blocking probability PBi,t.

Qi,t The queue length at charging station i during time slot t.
Q̄i,t The corresponding upper bound on the queue length Qi,t.
Ri The expected charging requirement of one EV in Φi.
Ski Whether or not to build a charging station at location i.

I. INTRODUCTION

Electric Vehicles (EVs) have made rapid development re-
cently thanks to their prominent advantages in reducing green-
house gas emissions, and fuel consumption and maintenance
costs. Currently, EV charging at limited public charging infras-
tructures may take hours to fully charge the batteries due to
the low charging rate and sometimes long waiting time. As the
EV penetration continues to grow, it is difficult for the public
charging facilities to satisfy all the EV charging requirements,
especially that of EVs on the road. Thus, commercial charging
stations can be developed by charging service providers to
offer convenient charging services.

EV charging infrastructure deployment in a city should
consider several important factors: the candidate locations
and their space limits, the transportation and the charging
requirements of EVs, EV owners’ behaviors, and the stability
requirements and charging load limits in the power grid. There
is a rich set of literature aiming at addressing the EV charging
infrastructure deployment problem, and a lot of charging sta-
tion placement problems have been formulated. Flow refueling
location models have been proposed to satisfy the EV charging
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requirements as much as possible [2]–[4]. Several charging
station deployment schemes under the limit of power grid
have been proposed to minimize the total cost including power
generation, power transmission loss and construction cost of
charging stations [5]–[9], to maximize the social welfare under
the constraints of transportation and power grid [10]–[14],
or to minimize the charging station construction cost under
the constraints of EV charging requirements and charging
loads [15]–[17]. These works either aimed to satisfy all the
EV charging requirements or to maximize the social welfare.
However, these works did not consider the dynamic transfers
of EV charging requirements among charging stations due to
the transportation network, which may reduce the accuracy of
EV charging requirement model and affect the design of EV
charging networks. More importantly, these works formulated
the deployment problem from the perspective of central urban
planners rather than charging service providers who intend to
maximize their profits by building or expanding their charging
networks at the candidate locations in different time stages.

Comparing with all types of EV chargers, DC fast charger
is suitable for charging EVs on the road in high-traffic com-
mercial locations due to its high charging rate. However, DC
fast chargers are more expensive than the other chargers for
installation and operation. Consequently, how to determine the
location of charging stations and the number of chargers in
each charging station to maximize their profit is an important
open issue for charging service providers. The fast charging
stations deployment problem is somewhat similar to the gas
station deployment for fueling vehicles on road, which has
been widely studied [18]–[21]. However, these gas station
deployment schemes cannot be directly applied to the charging
station deployment problem since their features and constraints
are different [1]. As charging service providers, they need to
design EV charging networks considering the installation and
operation cost, the dynamic EV charging requirements and the
constraints of the power grid. Our previous work [1] addressed
the one-time charging networks deployment problem which
cannot deal with the expansion problem of charging networks
over time given the growing EV penetration ratio.

The main objective of charging service providers is to
maximize the total profit of the charging network at each
time stage, considering the construction cost, the increasing
EV charging requirements and the power constraint from
the power grid. To address the issue, we first formulate a
profit maximization problem at each time stage, which is a
mixed-integer problem and difficult to solve directly. Thus,
we investigate the profitability of these candidate locations to
derive the upper and lower bounds on the number of chargers
in each station at each time stage, and then obtain a necessary
condition to build or expand charging stations. Given the
profitability analysis, we transform and relax the problem to a
convex optimization problem. Then, we propose a heuristic
algorithm to build a new charging network or expand the
existing charging network based on the profitability of each
location. At last, the performance of the proposed scheme
is investigated using simulations with real traffic data. The
contributions of this paper can be summarized as follows:
• We formulate the charging network planning and de-

ployment problem as profit maximization considering the
long-term increasing and short-term highly dynamic EV
charging requirement in each area, the construction cost
and the limits of the space and charging load at each
location.

• We analyze the profitability of all candidate locations at
each time stage and classify them into three categories,
such that one of the integer variables can be removed.
Also, we prove that the transformed problem is a convex
optimization problem.

• We propose a Removing and Merging Candidate Loca-
tions with Expansion (RMCL-E) algorithm to improve
the total profit of the charging network by excluding or
merging some unprofitable and less profitable locations.

• Simulations based on the real traffic data are conducted
to demonstrate the efficiency of the proposed scheme.

The rest of the paper is organized as follows. Section II
presents the system model and the problem formulation.
A profit-based classification method has been proposed to
classify the candidate locations and exclude the unprofitable
locations, such that the primal problem can be simplified, and
then an RMCL-E algorithm has been designed to increase the
total profit of the charging network in Section III. Section IV
demonstrates the operational performance analysis based on
simulation results. Finally, Section V concludes the work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Considering a charging service provider, who plans to build
several charging stations or expand the existing charging
network at some given candidate locations in a city. Given
urban planning factors and space limits, there exist several
restrictions for each location, such as the upper bound on the
number of chargers and the charging load constraint from the
power grid. How to find the potential locations and how to
negotiate with the power grid on the upper bound on the
charging load are out of the scope of this paper. The key
problem in this paper is to identify, among the candidate
locations, where to build the charging stations, and how many
chargers should be installed in each charging station.

In the following, we first model the expected profit of
each candidate location, and then introduce the EV charging
requirement model, which depends on the location and the
transportation factors in its coverage area. Next, we introduce
the operation model for charging stations and relationships
among them. Note that, the operational model is used to
analyze the profitability of each candidate location rather than
the design of charging scheduling for the charging network.
Based on the system model, we formulate the design of the
charging network as a profit maximization problem.

A. Profit Model for Candidate Locations

To figure out the dynamic of the charging network, we used
k to denote the k-th time stage and k = {1, 2, · · · }1. Denote
by I the total number of all the candidate locations, and denote

1One time stage is a relatively long time duration, e.g., 1 ∼ 2 years when
the EV charging requirement goes up substantially, while one time slot is a
short time duration, e.g., an hour, in this paper.
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by i the i-th location. Let (Ski , Nk
i ) denote the decision of the

charging service provider at time stage k, where Ski ∈ {0, 1}
represents whether or not to build a charging station at location
i, and Nk

i ∈ {1, 2, · · · , Ñk
i } represents the number of chargers

to be installed at location i. Let Ňk
i denote the number of

existing chargers in location i and Ñk
i denote the upper bound

on Nk
i in location i due to the space limits at time stage k,

respectively. Thus, we have

Ňk
i ≤ Nk

i ≤ Ñk
i . (1)

Note that, Ski = 1 when Ňk
i 6= 0. Without loss of generality,

we have Ň1
i = 0, Ňk+1

i = Nk
i , and Ñk+1

i ≥ Ñk
i .

Once the charging station has been built, its profit depends
on the construction cost, energy cost, and the revenue for pro-
viding charging services to EVs. Generally, the construction
cost of one candidate location depends on the location and the
number of chargers, while the revenue depends on the number
of EVs that it can serve.

The cost of each candidate location depends on several
factors, such as the average daily cost, including the property
cost and fee, the amortized construction cost, other initial
construction costs, and the installation fee of each charger at
the candidate location. To simplify the analysis, we use the
average daily cost rather than the total cost. Let C1,i denote the
average daily cost of one charging station at candidate location
i and C2,i denote the average daily building and maintenance
cost of each charger at candidate location i, respectively. The
total average daily cost of operating the charging station at
candidate location i at time stage k, denoted by ĈO,ki , is

ĈO,ki = Ski (C1,i + C2,iN
k
i ), ∀i. (2)

Note that the cost ĈO,ki depends on whether the charging
station i will be installed or not, Ski , and the number of
chargers, Nk

i .
The revenue of each candidate location depends on the

total number of EVs being served in the charging station, EV
charging requirements, and the electricity cost. To characterize
the time-varying EV charging requirements, we divide a day
into T time slots and t denotes the t-th time slot. Let C3 denote
the expected revenue for charging one EV in the charging
station and Mk

i,t denote the total expected number of EVs that
are charged at charging station i during time slot t at time
stage k, respectively. The total expected revenue of charging
station i during the day at time stage k, denoted by ĈI,ki , is

ĈI,ki =
∑
t

C3M
k
i,t. (3)

Note that, the expected revenue of one charging station de-
pends on the number of EVs that can be charged at the
charging station successfully since Mk

i,t not only depends
on the EV charging requirements at time stage k, but also
depends on the service capacity of the charging station under
the constraints of the space and the power grid.

The total expected profit of the charging network during one
day at time stage k, denoted by Ĉk, can be given by

Ĉk =
∑
i

(ĈI,ki − ĈO,ki ). (4)

From the expression of Ĉk, the total expected profit depends
on the average daily cost and the revenue of each candidate
location at time stage k. To maximize the total profit, the
charging service provider could build the charging network
based on the profit model of each candidate location.

B. EV Charging Requirement Model

Generally, the EV traffic is highly dynamic and the EV
density changes with areas and time stages. In this part, we
give the EV charging requirement model for each candidate
location at each time stage.

As EVs prefer to be served in a nearby location, the whole
service area (e.g., a city) is divided into several zones centered
by the candidate locations as a Voronoi diagram [22]. Let
Φi and λki,t denote zone i and the expected number of EVs
requesting charging services in Φi during time slot t at time
stage k, respectively. According to the prediction of global
EVs on International Energy Agency [23], the penetration of
EVs will increase quickly over time. Thus, we assume that
λki,t > λk−1

i,t holds. Assuming that the arrival rate of EVs
at candidate location i during time slot t follows a Poisson
distribution with the average arrival rate of λki,t. At location i,
the probability that n EVs arriving during time slot t at time
stage k is given by

P{n} =
eλ

k
i,t(λki,t)

n

n!
, n = 0, 1, 2, · · · .

Let Ri denote the expected charging requirement of one EV in
Φi. The total amount of the expected charging requirements at
location i during time slot t is Riλki,t. Here, we assume that EV
arrivals at different locations are independent. Generally, the
EV charging requirements mainly depend on their traveling
distances, which typically follows a log-normal distribution
[24]. In different zones, EV arrivals are independent and their
charging requirements may be different [5].

C. Charging System Model

In this section, we introduce the charging model of each
charging station and define the transfer probabilities among
the charging stations based on the queue length and the traffic
among the candidate locations.

Due to the space limits of each candidate location and the
utilization of the existing facility, the total number of chargers
in candidate location i should satisfy (1). Furthermore, for the
safety and stability consideration, the power grid can issue an
upper bound on the charging load from one charging station
based on its power supply capability. Let P̄ ki,t denote the upper
bound on the charging load from charging station i during time
slot t at time stage k. Given this upper bound, the charging
station may only allow a maximum number of the chargers to
work during the time slot. The available chargers in charging
station i during time slot t, denoted by N̂k

i,t, is

N̂k
i,t = min{Nk

i , b
P̄ ki,t
α ji,t

Ec}, (5)

where E denotes the charging rate of one charger, depending
on the type of the charger, and b·c denotes the floor function.
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In this paper, all the chargers are DC fast chargers with the
similar charging rate. It can be found that the total number of
available chargers in each charging station depends on not only
the total number of chargers that are installed in the charging
station, but also the upper bound on the charging load from
the power grid during time slot t.

Given the charging rate of each charger, the expected
charging time for each EV at charging station i is Ri/E, and
the expected service rate of charging station i is N̂k

i,tE/Ri.
Since N̂k

i,t is limited, EVs need to wait in the queue when
the queue is not full. Otherwise, they may either move to
a neighboring zone, or leave the charging system directly
without being served (being blocked). Let Qi,t denote the
queue length at charging station i during time slot t and Q̄i,t
denote the corresponding upper bound on the queue length,
respectively. An EV will leave zone i during time slot t
when Qi,t > Q̄i,t. In the following, we will derive the queue
distribution in steady state.

Let O(i) denote the set of the zones that are zone i’s
neighbors. Let pii,t denote the probability that EVs in Φi
will be served in charging station i during time slot t and
pij,t denote the probability that EVs in Φi will move to a
candidate neighboring zone j, j ∈ O(i), and enter the queue
at charging station j during time slot t, respectively. Let pil,t
denote the probability that EVs in Φi leave the charging system
directly (being blocked) during time slot t. When the queue
at charging station i is not full, i.e., Qi,t ≤ Q̄i,t, all the EVs
will be charged at charging station i and pii,t = 1 holds.
Otherwise, part of EVs will leave charging station i without
being charged and 0 ≤ pii,t < 1 holds. Note that pii,t = 0
holds when Nk

i = 0, which means that charging station i has
not been built. Thus, the values of pii,t, pij,t, and pil,t satisfy
the following constraints:{

pii,t = 1, if Qi,t ≤ Q̄i,t;
0 ≤ pii,t < 1, Otherwise,

(6){
pij,t = 0 & pil,t = 0, if Qi,t ≤ Q̄i,t;
0 < pij,t ≤ αkij,t & 0 < pil,t ≤ αkil,t, Otherwise,

(7)

where αkij,t and αkil,t denote the upper bounds on the transfer
probabilities that an EV moves from charging station i to
charging station j and that leaves the charging system directly
at time stage k, respectively. The transfer probability αkij,t
satisfies the following properties:
• The value of αkij,t decreases with the increase of travel

distance dij ;
• The value of αkij,t depends on the distribution of EVs’

travel directions during time slot t at time stage k.
Furthermore, the transfer probabilities, {αkij,t, j ∈ O(i)}, of
charging station i satisfy the following constraint:∑

j∈O(i)

αkij,t + αkil,t = 1. (8)

In this paper, the value of αkij,t is derived from the time-
varying transportation data. Specially, based on the transporta-
tion data, at time slot t, the numbers of EVs in zone i and
that moved from zone i to zone j can be counted. Then, the

value of αkij,t can be calculated according to their ratio. We
define the probabilities pij,t and pil,t as

pij,t = PBi,tα
k
ij,t and pil,t = PBi,tα

k
il,t, (9)

where PBi,t denotes the blocking probability P{Qi,t ≥ Q̄i,t}.
Thus, probability pii,t can be given by

pii,t = 1− PBi,t. (10)

For the relationships among pii,t, pij,t and pil,t, we have

pii,t +
∑
j∈O(i)

pij,t + pil,t = 1, ∀i, t. (11)

According to (9), the expected number of EVs in Φj moving
to charging station i during time slot t is

λkj,tpji,t = λkj,tP
B
j,tα

k
ji,t. (12)

Thus, the total expected arrival rate at charging station i is
λki,t +

∑
i∈O(j) λ

k
j,tpji,t. We assume that, if EVs in Φj are

blocked at charging station i, they will leave the charging
station system (being blocked) due to the long travel distance.

Generally, the blocking probability PBi,t depends on the EV
charging requirements and the service ability of each charging
station. To obtain the blocking probability PBi,t, we formulate
the charging processes of each charging station as a first-in-
first-out M/M/c/N model in queuing theory2. The value of
blocking probability PBi,t can be found in Appendix A.

Since the total expected arrival rate at charging station
i is λki,t +

∑
i∈O(j) λ

k
j,tpji,t, the blocking probabilities and

arrival rate for two neighboring charging stations may affect
each other’s. It is very complicated to calculate the blocking
probabilities of the charging stations considering the transfer
probability since they are coupled. Let PBi,t and P

B

i,t denote
the lower and upper bounds on the blocking probability PBi,t.
PBi,t is the optimal blocking probability for charging station i
when the arrival rate is λki,t, while P

B

i,t is the optimal blocking
probabilities when the arrival rate is λki,t +

∑
j∈O(i) λ

k
j,tα

k
ji,t.

Since the blocking probability PBi,t is an increasing and convex

function of service rate
λk
i,t

Nk
i E/Ri

[25], PBi,t is bounded by PBi,t
and P

B

i,t. Thus, we estimate the blocking probability PBi,t by

PBi,t = PBi,t + aki,t(P
B

i,t − PBi,t), (13)

where aki,t is a weight depending on the congestion lev-
el of its neighboring locations at time stage k. General-
ly, [λkj,t − Nk

j E/Ri]
+ is used to estimate the blocking

probability of zone j and aki,t =
∑
j∈O(i) α

k
ji,t[λ

k
j,t −

Nk
j E/Ri]

+/
∑
j∈O(i) α

k
ji,tλ

k
j,t to estimate the average block-

ing probability of charging station i’s neighboring zones.
Since the EVs from another charging station j, j ∈ O(i),

may be blocked by charging station i, only part of these

2As the queueing model is not the main focus of this work, we adopt
the simple M/M/c/N model, where the service time of EV charging here
is modeled as an exponential R.V. If the service time fits other R.V., we
can extend the work by applying the M/G/c/N model to obtain the blocking
probability. From simulation results, we note that using other service time
distributions such as Gaussian distribution does not have an obvious impact
on the charging station deployment.
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transferring EVs will be charged at charging station i. The
total number of EVs that can be charged at charging station
i during time slot t is (λki,t +

∑
i∈O(j) λ

k
j,tpji,t)Pii,t, where

Pii,t = 1 − PBi,t. Note that the EVs from the other charging
stations will not affect λki and have the similar blocking
probability as the EVs in Φi. Furthermore, the EVs from
another neighboring zone j, j ∈ O(i), and being blocked at
charging station i will leave the charging system. Thus, the
expected number of EVs will be charged at charging station i
during time slot t at time stage k, Mk

i,t, can be given by

Mk
i,t = (λki,t +

∑
i∈O(j)

λkj,tpji,t)pii,t, ∀i, t. (14)

The total number of EVs in Φi that leave the charging system
without being charged at time stage k, denoted by Lki,t, is
given by

Lki,t = λki,t(pil,t +
∑
j∈O(i)

pij,tP
B
j,t). (15)

Since the detour time of EVs is small comparing with each
time slot, its impact on the charging system is omitted.

D. Problem Formulation

In this paper, we aim at maximizing the total profit of
the charging service provider at time stage k by dynamically
building or expanding the charging network based on the
increasing EV charging requirements. Based on the above sys-
tem model, we formulate the design of the charging network
as the following profit maximization problem:

P0 : max
Sk
i ,N

k
i

Ĉk (16)

S.t. : Mk
i,t = (λki,t +

∑
i∈O(j)

λkj,tpji,t)pii,t, ∀i, t, (17)

N̂k
i,t = min{Nk

i , b
P̄ ki,t
E
c}, ∀i, t, (18)

Ňk
i ≤ Nk

i ≤ Ñk
i , ∀i, (19)

Ski = {0, 1}|Ňk
i = 0, ∀i. (20)

The objective function is to maximize the total profit for
the charging service provider at time stage k by building a
new charging network or expanding the existing one. The
first constraint shows the expected number of EVs that will
be charged at each charging station. The second equation
determines the number of available chargers in each charging
station. The third and the fourth constraints define the limits
of each charging station.

From the problem formulation, the decision variables, e.g.,
{Ski , Nk

i , i ∈ I}, are integers. Furthermore, the decision
variables {Nk

i , i ∈ I} are coupled by the objective function
and the first constraint. Thus, the optimization problem is
a mixed-integer programing problem, which is difficult to
solve directly by the existing tools. To solve this problem, we
analyze the profitability of each candidate location and exclude
the unprofitable locations, such that the profit maximization
problem can be simplified.

III. PROBLEM TRANSFORMATION AND SOLUTION

In this section, we first propose a profit-based classification
method to classify the candidate locations into three categories
according to their ranges of possible profits. Since the charging
service provider only builds the charging network at the
profitable locations, the problem can be transformed into
another optimization problem. Then, we design a heuristic
RMCL-E algorithm to increase the total profit by removing the
unprofitable locations and merging the low profitable candidate
locations.

A. Classification of Charging Stations

Considering the imbalanced and time-varying EV charging
requirements in different areas, some candidate locations may
not generate profit due to low EV charging requirements in
their coverage area and/or high construction cost. Thus, we
can analyze the profitability of each candidate location and
identify the unprofitable locations.

Given a candidate location i, let C
k

i and Cki denote the
upper bound and the lower bound on its expected daily profit
at time stage k, respectively. To obtain the values of C

k

i and
Cki , we make the following two assumptions:

Assumption I: Assume that all the neighboring zones of
i except the existing charging stations are closed (no more
charging stations have been built). Thus, the EVs in Φ(j),
{j, j ∈ O(i)|Ňk

j = 0}, move to charging station i for charging
service with a probability pji,t = αkji,t while the EVs in
Φ(j), {j, j ∈ O(i)|Ňk

j 6= 0}, move to charging station i for
charging service with a probability pji,t = PBj,tα

k
ji,t. Hence,

the maximal number of EVs that could be charged at charging
station i can be obtained. The upper bound on the expected
profit of charging station i and the corresponding blocking
probability P

B

i,t can be obtained by solving Problem A1:

A1 : C
k

i = max
Nk

i

Ĉki (21)

Mk
i,t = (λki,t +

∑
i∈O(j)

λkj,tpji,t)(1− P
B

i,t), (22)

N̂k
i,t = min{Nk

i , b
P̄ ki,t
E
c}, (23)

Nk
i ≤ Nk

i ≤ Ñk
i . (24)

Assumption II: Assume that all the neighboring zones of i,
{j, j ∈ O(i)}, have been installed with sufficient chargers, and
no EVs in the neighboring zones will move to charging station
i for charging service. Hence, the minimal number of EVs
that can be charged at charging station i can be obtained. The
lower bound on the expected profit of charging station i and
the corresponding blocking probability PBi,t can be obtained
by solving Problem A2:

A2 : Cki = max
Nk

i

Ĉki (25)

Mk
i,t = λki,t(1− PBi,t), (26)

N̂k
i,t = min{Nk

i , b
P̄ ki,t
E
c}, (27)

Nk
i ≤ Nk

i ≤ Ñk
i . (28)
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According to the results in existing works [25], [26], block-
ing probability PBi,t is decreasing and convex with respect
to the number of servers Nk

i when the other parameters are
given. It is easy to prove that both Problems A1 and A2 are
convex optimization problems. Thus, the optimal solutions to
Problems A1 and A2 can be obtained in an efficient way [27].
Note that C

k

i ≥ Cki always holds for each candidate location.
Based on the values of C

k

i and Cki , we can classify all the
candidate locations into three categories:

• C1 Unprofitable location: i ∈ C1 if C
k

i < 0;
• C2 Possibly-profitable location: i ∈ C2 if C

k

i ≥ 0 and
Cki ≤ 0;

• C3 Profitable location: i ∈ C3 if Cki > 0.
Note that, before the expansion, all the existing charging
stations belong to category C3. Since only the candidate
locations in categories C2&C3 may generate profit for the
charging service provider, we have the following theorem:

Theorem 1: To maximize the total profit, the charging
service provider only builds new charging stations at the
candidate locations in categories C2&C3.

Let N
k

i and Nk
i denote the optimal number of chargers

in candidate location i by solving Problems A1 and A2,
respectively. We have the following theorem for the optimal
number of chargers, denoted by Nk∗

i , as:
Theorem 2: For the optimal Problem P0, the optimal num-

ber of chargers Nk∗
i satisfies Nk

i ≤ Nk∗
i ≤ N

k

i .
The proofs of Theorem 1 and 2 can be found in [1].
Since the charging service provider only builds charging

stations at the candidate locations in categories C2&C3, for
any given location in categories C2&C3, we can obtain
the optimal deployment decision by solving Problem P1 as
follows:

P1 : max
Nk

i ,i∈{C2&C3}
Ĉk (29)

S.t. : Mk
i,t = (λki,t +

∑
i∈O(j)

λkj,tpji,t)pii,t, ∀i, t, (30)

N̂k
i,t = min{Nk

i , b
P̄ ki,t
E
c}, ∀i, t, (31)

Nk
i ≤ Nk

i ≤ N
k

i , ∀i. (32)

Comparing to Problem P0, the variable {Ski } has been re-
moved and the range for Nk

i has been narrowed. However,
since the variables are integers, the transformed problem also
is an integer programming problem.

To solve this problem, we relax the number of chargers Nk
i

in each charging station as a continuous variable, whose range
is [Nk

i N
k

i ]. Then, the following theorem can be obtained by
analyzing the relationship among Ĉki , Nk

i , and Nk
j :

Theorem 3: The total profit Ĉki is a concave function if
{Nk

i ,∀i ∈ C2&C3} are continuous variables.
Proof: From the expression of Ĉki , it includes the total

daily cost COi , which is a linear function of Nk
i , and the

total revenue CIi , which is a linear function of Mk
i,t. All the

constraints are linear, and thus the transformed problem is a
convex optimization problem if Mk

i,t is a concave function of
the variables {Nk

i , N
k
j , j ∈ O(i)}. According to the existing

works [26], the blocking probability PBi,t is convex in the
number of servers Nk

i when the other parameters are given.
Hence, pii,t, which equals 1−PBi,t, is concave with respect to
Nk
i , and pji,t, which equals PBi,tp

k
ji,t, is convex with respect to

Nk
j . To prove one function is concave with respect to several

variables, Hessian matrix of the second partial derivatives of
the function can be employed since a negative Hessian matrix
denotes a concave function in these variables [27]. The Hessian
matrix for Mk

i,t with respect to {Nk
i , N

k
j , j ∈ O(i)} is

∂(Mk
i,t)

2

∂2Nk
i

∂(Mk
i,t)

2

∂Nk
i ∂N

k
j

. . .
∂(Mk

i,t)
2

∂Nk
i ∂N

k
m

∂(Mk
i,t)

2

∂Nk
j ∂N

k
i

∂(Mk
i,t)

2

∂2Nk
j

. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂(Mk

i,t)
2

∂Nk
m∂N

k
i

0 . . .
∂(Mk

i,t)
2

∂2Nk
m


Since

∂(Mk
i,t)

2

∂2Nk
j

> 0, j ∈ O(i) and all the other elements in the
matrix are smaller than 0, the Hessian matrix H is negative.
Thus, the total profit Ĉki for charging station i is a concave
function of the number of chargers {Nk

i , N
k
j , j ∈ O(i)}.

Thanks to its convexity, there exists only one optimal solu-
tion [27]. However, it is difficult for the existing tools to deal
with the blocking probabilities due to the factorial function
and the exponentiation function of variables. Furthermore, the
solution is obtained when the candidate locations in categories
C2&C3 are given. According to the definition of the candidate
locations in category C2 , they only can generate profit when
their neighboring locations have no charging stations or have
but with high blocking probabilities. Actually, some of the
locations in category C2 may not generate any profit or only
generate a small profit. Even for the candidate locations in
category C3, due to the high construction cost, some of them
may generate a low profit. Thus, merging some candidate
locations may increase the total profit for the charging service
provider by reducing the high construction cost. Generally
speaking, there may exist some margins to improve the total
profit for the charging service provider.

Thus, we propose a heuristic algorithm, named Removing
and Merging Candidate Locations with Expansion (RMCL-
E) based on RMPL in our previous work [1], to expand
the existing charging network, which can be summarized
as Algorithm 1. In the RMCL-E algorithm, we exclude the
unprofitable locations in categories C1&C2 and merge the can-
didate locations in categories C2&C3 if beneficial. Generally,
the algorithm can be divided into three steps: I) Removing
Candidate Locations in C1, II) Removing Candidate Locations
in C2, and III) Merging Candidate Locations in C2&C3.
Taking the profit of each candidate location as the reference,
some unprofitable candidate locations are removed in steps I)
and II) since they cannot generate any profit to the charging
network. Then, we attempt to remove each candidate location
to reduce the high construction cost, which can increase
the total profit of the charging network until removing any
candidate location will decrease the total profit. Such that, the
total profit of the charging network can be maximized.

Note that, by updating λk
′

i,t and λk
′′

i,t and the corresponding
PBi,t in each step of Algorithm 1 respectively, the lower bound
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of blocking probability PBi,t reflects the change of the blocking
probability PBi,t with different charging station deployment
strategies. When the deployment of charging stations is de-
termined, the final lower bound of blocking probability PBi,t
in the proposed RMCL-E gives the blocking probability PBi,t.

Algorithm 1 RMCL-E
1: Initialization: Input λki,t, α

k
ij,t, P̄

k
i,t, E, Q̄i,t, C1,i, C2,i, C3,

Ňk
i , Nk

i , N
k
i , and Ñk

i , for each location i at time stage k;
2: I. Removing Candidate Locations in C1
3: Set Nk

i = 0 and PBi,t = 1 if i ∈ C1;
4: For each candidate location i, i ∈ C2&C3
5: 1) Set λk

′
i,t = λki,t +

∑
j∈C1 λ

k
j,tα

k
ji,t;

6: 2) Update Nk
i , PBi,t and Cki by solving Problem A2;

7: End for and go to II.
8: II. Removing Candidate Locations in C2
9: 1) Set λk

′′
i,t = λk

′
i,t +

∑
j∈C2&C3 λ

k
j,tP

B
j,tα

k
ji,t;

10: 2) Update Nk
i , PBi,t, and Cki by solving Problem A2;

11: 3) Sort {Cki , ∀i ∈ C2&C3} from the smallest to largest;
12: 4) If Cki < 0&Ňk

i = 0, remove candidate location i from C2
and set Nk

i = 0 and PBi,t = 1; Otherwise, end and go to III.
13: III. Merging Candidate Locations in C2&C3
14: For each candidate location i, Ňk

i = 0 and i ∈ C2&C3
15: 1) Remove location i from C2&C3 and set PBi,t = 1;
16: 2) Update {Ckj , ∀j ∈ C2&C3} according to step II 1)–2);
17: 3) If the total profit increases, remove candidate location i

and set Nk
i = 0 and PBi,t = 1; Otherwise, return i to C2&C3

and recover Nk
i and PBi,t;

18: End for.
19: Return {i,Nk

i = Nk
i , i ∈ C2&C3}.

IV. CASE STUDY AND NUMERICAL SIMULATIONS

A. Case Study

In this paper, we use the traffic data in Cologne in Germany
as the case study [28]. The trace of the car traffic covers a
region of 400 square kilometers for a period of 24 hours in a
typical work day, and comprises more than 700,000 individual
car trips. From the data, we can obtain not only the real-
time traffic density information, but also the statistics of the
travel direction, the traffic volume in a certain area, etc. The
traffic densities are time-varying and the numbers of vehicles
at different locations and different time stages are different.
We set the EV penetration ratios for different time stages
change from 10% to 25% by 1%. We assume that the EV
charging requirements during different time slots are different
and the percentages of EVs requiring charging services are
5% during [6am, 10am), 8% during [10am, 2pm), and 10%
during [2pm, 9pm], respectively. The charging requirement
of one EV follows a Gaussian distribution (R, δ2), where
R = 40kWh and δ = 4kWh. Given the EV penetration ratio
and their charging requirements ratios, the total EV charging
requirement changes from 1x to 2.5x of the EV charging
requirements at time stage 1 by 10%. The charging rate for
each charger is E = 120kW and the revenue for charging one
kWh energy to EVs is C3 = $0.125/kWh.

The candidate locations and their service areas are shown
in Fig. 1. Here, the service areas are calculated using the
Voronoi diagram. Based on the construction cost estimation

TABLE I
THE CONSTRUCTION COST AND LIMITS OF CANDIDATE LOCATIONS

i 0–14, 33–39 15–18 19, 26–28 20–25 29–32
C1,i $150 $260 $220 $300 $180
C2,i $35/pile $30/pile $30/pile $40/pile $30/pile
Ñi 50 30 30 30 50
P̄ki,t 5000kW 4000kW 3500kW 3000kW 5000kW

in [29], we assume that the range of the average daily cost for
building one charging station is [$150–$300] depending on the
locations and that for building and maintaining one charger
at the candidate locations is [$30–$35]. Different locations
may have different space limits and charging load limits from
the power grid. The costs and the limits can be found in
Table I. Considering the EV owners’ behaviors, we model
the transfer probabilities based on the statistics of the traffic
between two candidate locations. The time-varying transfer
probabilities among two neighboring charging stations at 7am
and 5pm are shown in Fig. 2. The maximal queue length at
each charging station is Q̄i,t = 10 and the probability that
one EV leaving the charging system directly αkil,t is randomly
selected in [0, 0.3].
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Fig. 1. The candidate locations and their service areas in the city.
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Fig. 2. The transfer probabilities at 7am and 5pm during one day.

The decision for each step in the RMPL-E algorithm at
the first time stage with 1x EV charging requirement can be
found in Figs. 3(a)–3(c). After step I shown in Fig. 3(a), the
unprofitable locations in category C1 have been removed, e.g.,
locations No. 6 and 38. It can be found that these locations are
located in the outlying areas with low EV charging require-
ments in their service areas and few EV transfers. After step
II shown in Fig. 3(b), the unprofitable locations in category
C2, e.g., locations No. 13 and 26, have been removed due to
low EV charging requirements in their service areas and low
blocking probabilities of their neighboring locations. After step
III shown in Fig. 3(c), the candidate locations in categories
C2&C3, e.g., locations No. 10, 20, 21, and 25, have been
removed. This is because removing these locations can reduce
the high construction cost and more profit can be generated
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TABLE II
THE FINAL DECISION OF THE CHARGING SERVICE PROVIDER

Location No. 4 5 6 7 8 10 11 14 15
Ni with 1x 9 0 0 0 11 0 15 11 26
Ni with 1.5x 13 0 0 0 16 18 21 17 30
Ni with 2x 18 0 0 0 22 26 30 23 30
Ni with 2.5x 20 7 4 12 27 35 36 28 30
Location No. 16 18 19 20 21 22 23 25 26
Ni with 1x 30 24 0 0 0 11 23 0 0
Ni with 1.5x 30 30 0 0 17 15 25 16 5
Ni with 2x 30 30 0 25 23 19 25 20 5
Niwith 2.5x 30 30 9 25 25 25 25 25 6
Location No. 27 28 29 30 31 32 34 35 37
Ni with 1x 25 9 8 0 10 19 9 0 0
Ni with 1.5x 29 12 12 0 15 26 13 0 0
Ni with 2x 29 16 16 0 21 33 17 0 0
Ni with 2.5x 29 20 21 21 25 34 17 6 19

Note that Ni 6= 0 implies Si = 1 and Ni = 0 implies Si = 0.

by their neighboring charging stations. It can be found that all
the charging stations are installed at the candidate locations
with high EV charging requirements.

With the increase of EV charging requirements, the dynamic
deployment results of the charging network are shown in Fig.
3 and Table II. It can be found that both the number of
charging stations and that of chargers increase. When EV
charging requirements increase from 1x to 2.5x, most of
the existing charging stations have been expanded, and some
of them reach to the upper bounds on available chargers,
i.e., Ñi or b P̄

k
i,t

E c. Also, the minimal number of chargers in
each location has a lower bound. When the profit loss for
one location is larger than the construction cost, one new
charging station will be built. From Fig. 3, it can be found
that candidate locations, which are close to the downtown,
have been installed with more chargers. When the EV charging
requirements are doubled, all the candidate locations in the
downtown area have been installed with chargers. This is
because EV charging requirements in downtown areas are
much higher than other areas and can generate profit much
easier.

(a) After step I (1x) (b) After step II (1x) (c) After step III (1x)

(d) After step III (1.5x) (e) After step III (2x) (f) After step III (2.5x)

Fig. 3. The dynamic decision of the RMCL-E algorithm (black dots denote
the unselected location and red ones denote the selected location).

The expected blocking probabilities with different EV
charging requirements under the corresponding charging net-
work can be found in Fig. 4. Comparing the blocking proba-
bilities with different EV charging requirements, the trend of

TABLE III
DYNAMIC DEPLOYMENT OF THE CHARGING NETWORK WITH DIFFERENT

EV CHARGING REQUIREMENTS

Increment Stations Chargers Increment Stations Chargers
1x 15 240 1.1x 15 255

1.2x 15 274 1.3x 17 305
1.4x 17 318 1.5x 19 360
1.6x 19 370 1.7x 20 408
1.8x 20 426 1.9x 20 442
2x 20 458 2.1x 21 489

2.2x 24 519 2.3x 24 534
2.4x 26 573 2.5x 27 591

blocking probabilities is the same, i.e., higher blocking proba-
bilities during the rush hours and lower blocking probabilities
during the non-rush hours. Also, with higher EV charging
requirements, the charging network has more congested hours
(high blocking probabilities). It can be found that an appro-
priate congestion level can improve the utilization of chargers
and the return on investment, and increase the total profit.
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Fig. 4. The expected blocking probabilities with different EV charging
requirements under the corresponding charging networks (the blocking prob-
abilities at unselected locations are 100%).

In order to explore the variation of charging networks,
we increase the EV charging requirements by 10% from
1x to 2.5x and the deployment results are shown in Table
II. The number of charging stations increases slowly while
the number of chargers in the charging network increases in
proportion to the growth of EV charging requirements. This is
because the charging capacity of the charging network mainly
depends on the number of chargers. Furthermore, the high
construction cost of charging stations makes the new charging
station difficult to generate profit. Thus, the charging service
provider can make a trade-off between the profit loss and
the construction cost and only build one new charging station
when the profit loss is larger than the construction cost. That
also is the fundamental basis for us to remove some candidate
locations in categories C2 and C3 in Algorithm 1-III.

The number of served and blocked EVs can be found in
Fig. 5(a) while the corresponding total profit and construction
cost can be found in Fig. 5(b), respectively. It can be seen that,
with the increase of EV charging requirements, the number of
served EVs increases quickly while that of blocked EVs keeps
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at a low level. This is because the proposed RMCL-E always
makes a good trade-off between blocked EVs (profit loss)
and the construction cost. When the number of blocked EVs
reaches a certain level at some given locations, new charging
stations will be built. From Fig. 5(b), it can be found that both
the total profit and the total construction cost increase near
linearly with the increase of EV charging requirements. The
increasing rate of the total profit is much higher than that of the
total construction cost, which means that the investment yields
a higher profit. More simulation results, including the effects
of the construction cost and real-time EV transfer probabilities,
can be found in [1].
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Fig. 5. The served and blocked EVs & total profit and cost.

V. CONCLUSION

In this paper, we addressed the dynamic charging station de-
ployment problem for charging service providers, who intend
to build or expand their charging networks with the increase
of EV charging requirements. Taking the limits of candidate
locations and the power grid into consideration, as well as the
increasing EV charging requirements, we formulated a profit
maximization problem at each time stage to maximize the total
profit of charging service providers by building or expanding
their charging networks. However, the problem is a mixed-
integer problem and difficult to solve directly. By analyzing the
profitability of each candidate location at each time stage, all
the candidate locations can be classified into three categories,
and part of them can be excluded to simplify the primal
optimization problem since they cannot generate any profit.
Also, we have proved that the simplified problem is a convex
optimization problem given any candidate locations. Then, we
designed a Removing and Merging Candidate Locations with
Expansion (RMCL-E) algorithm to remove the unprofitable
candidate locations and merge some low profitable candidate
locations to reduce the total construction cost, such that the
total profit for the charging service providers can be increased.
A case study using the real vehicle traces with different
EV charging requirements has been conducted to verify the
performance of RMCL-E. The simulation results showed that
RMCL-E can build or expand the charging network in an
efficient way to increase the total profit. In our future work,
we intend to design an algorithm to determine the optimal
upper bound on the charging load for each candidate location,
such that both the charging network and the power grid can
be benefited.

APPENDIX A

Let µ denote the mean service rate of one charger, c
denote the total number of the available chargers in charging

station i during time slot t, λ denote the arrival rate of
EVs that need charging services at charging station i, and
ρ denote the utilization factor of charging station i during
time slot t, respectively. Thus, we have µ = E/Ri, c = N̂k

i,t,
λ = λki,t +

∑
j∈O(i) λ

k
j,tpji,t, ρ = λ/(cµ), and N = Q̄i,t

for charging station i. According to the M/M/c/N model, the
steady state distribution of this queue is given by

Pn =

{
1
n!

(λ
µ

)nP0, 1 ≤ n ≤ c,
1

cn−cc!
(λ
µ

)nP0, c ≤ n ≤ N, (33)

where

P0 =


[∑c−1

n=0
1
n!

(λ
µ

)n + 1
c!

(λ
µ

)c 1−ρN−c+1

1−ρ

]−1

, if ρ 6= 1,[∑c−1
n=0

1
n!

(λ
µ

)n + 1
c!

(λ
µ

)c(N − c+ 1)
]−1

, if ρ = 1.

Note that Qi,t = max(0, n−c), so the distribution of Qi,t can
be obtained from (33). The blocking probability PBi,t is

PBi,t =
1

cN−cc!
(
λ

µ
)NP0. (34)

It means that the probability of EVs in Φi to leave charging
station i during time slot t is PBi,t.
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