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Differential Private Noise Adding Mechanism and Its
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Abstract—Differential privacy is a formal mathematical frame-
work for quantifying the degree of individual privacy in a statistical
database.To guarantee differential privacy, a typical method is to
add random noise to the original data for data release. In this
paper, we investigate the conditions of differential privacy (single-
dimensional case) considering the general random noise adding
mechanism, and then apply the obtained results for privacy analysis
of the privacy-preserving consensus algorithm. Specifically, we
obtain a necessary and sufficient condition of ε-differential privacy,
and the sufficient conditions of (ε, δ)-differential privacy. We apply
them to analyze various random noises. For the special cases with
known results, our theory not only matches with the literature, but
also provides an efficient approach to the privacy parameters’ esti-
mation; for other cases that are unknown, our approach provides a
simple and effective tool for differential privacy analysis. Applying
the obtained theory on privacy-preserving consensus algorithm,
we obtain the necessary condition and the sufficient condition to
ensure differential privacy.

Index Terms—Random mechanism, noise adding process,
average consensus, differential privacy.

I. INTRODUCTION

D IFFERENTIAL privacy, a popular and widely used pri-
vacy concept, aims to minimize the chances of identifying

a single record in a release of a large database [2]. Differential
privacy means that the presence or absence of any individual
record in the database will not affect the statistics significantly
[3]. Thus, the adversary has a low chance to identify the indi-
vidual’s record with the released information and any auxiliary
information under differential privacy. Differential privacy has
been a formal framework to quantify the degree to which each
individual’s privacy is preserved while releasing useful statisti-
cal information about the database. We refer the readers to [4],
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[5] by Dwork et al. for the detailed introduction of differential
privacy, including the motivation, background, the important
developments of its theories and applications. More recently,
Cortes et al. [6] introduced a system and control perspective
on the topic of privacy-preserving data analysis, showing the
importance of differential privacy in network control and signal
processing area.

There are two kinds of differential privacy concepts which
have been widely investigated in the literature. The first is
ε-differential privacy. The parameter ε expresses the degree
of the privacy protection, and a smaller value of ε can guar-
antee a stronger privacy. Based on ε-differential privacy, an
adversary cannot gain significant information about the data
function of any individual agent based on the observation
of the data output. The typical approach to preserving ε-
differential privacy is adding Laplacian noise to original data
for information release. The second is (ε, δ)-differential pri-
vacy, which is a relaxed notion of privacy. In this privacy
definition, the parameter ε represents the privacy degree and
δ represents the probability of violating the privacy. For both
parameters, smaller values correspond to higher privacy [10].
To ensure (ε, δ)-differential privacy, an often-used approach
is adding Gaussian noise to the pure data value for query
output.

Although random noise adding mechanism has been widely-
used, how to design and analyze the effectiveness of various
types of noises remains a challenge. Existing works mostly
focused on a few well-known noise distributions (e.g., Lapla-
cian and Gaussian). Therefore, it is worth to study the general
properties of differential privacy or the basic conditions of the
noise which guarantee differential privacy. Then, we can analyze
the privacy of any given noise distribution and find the best noise
distribution in terms of the degree of the privacy protection. To
fill this gap, in this paper, we first investigate the basic conditions
for the random noise adding mechanism, under which differen-
tial privacy can be guaranteed. We then obtain the conditions to
determine whether the differential privacy is guaranteed by the
noise adding mechanism. To show this statement, we analyze
the well-known noise adding mechanisms, e.g., Laplacian and
Gaussian. For the special cases with known results, our theory
matches with the literature; for other cases that are unknown,
our approach provides a simple and effective tool for differential
privacy analysis. In addition, we apply the theory to analyze the
privacy of the privacy-preserving consensus algorithms, a hot
topic in the control and optimization area recently, and obtain
the necessary condition and the sufficient condition to ensure
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differential privacy. The main contributions of this paper are
summarized as follows.
� We investigate the conditions of a general random noise

adding mechanism to guarantee differential privacy. We
obtain a necessary and sufficient condition of ε-differential
privacy, and the sufficient conditions of (ε, δ)-differential
privacy. Meanwhile, we provide the computation approach
to estimate the values of privacy parameters ε and δ, respec-
tively.

� We show that the obtained theory provides an efficient
and simple approach for the analysis of both ε-differential
privacy and (ε, δ)-differential privacy. Using the obtained
results, it is easy to obtain the properties of differential
privacy for any adding noise, even when the probability
density function is unknown.

� We apply the theorems of differential privacy to analyze the
privacy of general privacy-preserving consensus algorithm.
We obtain the necessary condition and the sufficient con-
dition for the algorithm under which differential privacy is
achieved. Based on these conditions, the privacy of exist-
ing privacy-preserving consensus algorithms is analyzed.
Also, it is proved that achieving the average consensus and
ε-differential privacy simultaneously is impossible.

Different from the existing work, we obtain more general
properties and conditions of differential privacy mathematically,
and the proposed results can be used to analyze the privacy
property of the random noise adding mechanism with any noise
distributions.

The remainder of this paper is organized as follows. Section II
formulates the problem. In Section III, we provide the basic
theoretical results of differential privacy. Section IV studies the
application on privacy-preserving consensus algorithm. The re-
lated works are given in Section V. Conclusions are summarized
in Section VI.

II. PRELIMINARY AND PROBLEM FORMULATION

A. Preliminary

Let V = {1, 2, ..., n} be the set of nodes (users). Following
[25]–[28], we define σ-adjacency and differential privacy, re-
spectively, as follows.

Definition 2.1 (σ-adjacency): Given σ ∈ R+, the state vec-
tor x and y are σ-adjacent if, for some i0 ∈ V ,

|xi − yi| ≤
{
σ, if i = i0;

0, if i �= i0,
(1)

for i ∈ V , where x, y ∈ Rn.
From the above definition, it follows that a pair of σ-adjacent

vectors x and y have at most one different element, and the
difference is no more than σ. For example, x = [0, 1] and
y = [1, 1] are 1-adjacent vectors. It should be pointed out that
in the standard setting of multi-dimensional differential privacy,
global sensitivity is defined using L1 or L2 norm. This paper
uses σ-adjacency to characterize the sensitivity, under which
the multi-dimensional problem can be reduced to a single-
dimensional case, which makes the problem much easier to

TABLE I
NOTATIONS

solve. Thus, the resulting theoretical conclusion of conditions
on differential privacy can be of an explicit form, and can further
facilitate future research on more general cases.

Definition 2.2 ((ε, δ)-differential privacy): A randomized
mechanism A with domain Ω is (ε, δ)-differentially private if,
for any pair x and y (x, y ∈ Ω ⊆ Rn) of σ-adjacent state vector
and any set O ⊆ Ra(A), where Ra(A) is the domain of the
output under mechanism A,

Pr{A(x) ∈ O} ≤ eε Pr{A(y) ∈ O}+ δ. (2)

If δ = 0, we say that A is ε-differentially private.
In the above privacy definition, there are two key parameters,

ε and δ, which represent the privacy cost and the probability
of violating the privacy cost, respectively. For both of these
parameters, smaller values imply stronger privacy guarantees.
Typically, the values of δ should be less than the inverse of any
polynomial in the size of the database [5]. ε-differentially pri-
vate usually provides a stronger privacy than (ε, δ)-differential
privacy. Compare with the original definition of differential
privacy given in [2], the above definition can also be used to
the continuous and infinite dimensional data.

Table I summarizes a few important notations in this paper
for easy reference.

B. Problem Formulation

General Random Mechanism: We consider a general ran-
dom noise adding mechanism. Assume that the randomized
mechanism A : Ω → Ra(A) satisfies

A(x) = x+ θ, ∀ x ∈ Ω, (3)

where θ ∈ Θ is a random noise vector with fθi(z) as the PDF
of its i-th element θi, and Θ ⊆ Rn. Then, we have Ra(A) =
Ω⊕Θ, where ⊕ denotes the Minkowski sum between two set,
i.e., any element in Ra(A) will equal to the sum of two elements
in sets Ω and Θ. In this paper, we consider the case that Ω is
not a discrete set and fθi(z) is not a probability mass function.
Thus, we have the following three basic assumptions:
A1: the set of all possible values of nodes’ state at least

contains an almost surely continuous interval.
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A2: each fθi(z) is an almost surely continuous or piecewise
continuous function.

A3: θi and θj are independent from each other for ∀i �= j
(nodes can add noises independently in applications).

The random mechanism A defined in (3) is a general contin-
uous noise adding mechanism, where x could be substituted by
a general invertible function of x with Lipschitz condition and θ
could also be a function of random variables.1 Thus, most of the
existing random mechanisms can be mathematically modeled
to this noise adding process, e.g., widely used Laplacian noise
adding mechanism [5], [28].

When the noises’ probability density functions (PDF) are well
known functions, e.g., Laplacian and Gaussian, it is not difficult
to prove that, whether they are ε-differential privacy or not,
using the definition of the differential privacy. This is mainly
because that these functions have well properties, e.g., easy to
calculation. However, when the PDF becomes more complicate
or even cannot be expressed in a closed form. It is hard to prove
it. Considering the following examples.

Example 2.3: The PDF of the noise in (3) follows

fθi(z) =

⎧⎪⎨
⎪⎩

z

2
e−z, z ≥ 0;

−z

2
ez, z ≤ 0,

(4)

Example 2.4: The PDF of the noise in (3) satisfies fθi(z) =∑m
k=1 νkfk(z), where νk is the weight and each fk(z) follows

an Gaussian distribution. Clearly, fθi(z) is a mixed Gaussian
distribution function.

It is not easy to determine or prove that whether A achieves
ε-differential privacy or not. Furthermore, how to make a good
estimation of the values of ε and δ is also an interesting and
challenging problem.

Problem of Interests: Motivated by the above analysis, there-
fore, the goal of this paper is to investigate the following issues:
i) What are general properties of differential privacy consider-
ing (3), i.e., what kinds of conditions (e.g., the sufficient and
necessary conditions of differential privacy) can guarantee the
differential privacy of the randomized mechanism A. And, how
to estimate the values of the corresponding privacy parameters,
i.e., ε and δ, when the noise’ distribution is given. ii) Can we
find a noise distribution such that A is ε-differentially private for
any small ε. iii) How to extend and apply the obtained results for
privacy analysis on the privacy-preserving consensus algorithm,
an important distributed iterative algorithm in the cooperative
control area. We solve these problems in the following two
sections.

1Consider a more general mechanism as follows

A(x) = g(x) + h(θ), ∀ x ∈ Ω, θ ∈ Θ,

where g(x) is a function of x satisfying |g(x)− g(y)| ≤ L|x− y| (where L
is a Lipschitz constant) and g(x) �= g(y) when x �= y and h(θ) is a function
of θ. We can use the similar analytical approach given in this paper to analyze
differential privacy of the above mechanism.

III. CONDITIONS OF DIFFERENTIAL PRIVACY

In this section, the basic conditions of differential privacy
considering A defined in (3) are obtained first, followed by
the estimations of the privacy parameters. Then, we show that
the obtained conditions provide efficient criteria of differential
privacy through case studies, where the Laplacian, Gaussian,
and Uniform noises are investigated, by using the developed
theoretical results. In the remainder part of this paper, we let
{·}
0 = ∞ for any {·} �= 0.

A. Necessary and Sufficient Condition

In this subsection, considering the mechanism A, we give a
necessary and sufficient condition of ε-differentially private in
the following theorem.

Theorem 3. 1: A is ε-differentially private if and only if (iff)
the following two conditions hold,
c1: let Φ0

i = {z|fθi(z) = 0, z ∈ R}, then for ∀i ∈ V , there
� a continuous interval [a, b] such that

[a, b] ⊆ Φ0
i , (5)

where a, b ∈ R and b > a;
c2: there ∃ a positive constant cb such that

sup
σ̂∈[−σ,σ],fθi (z) �=0,i∈V

fθi+σ̂(z)

fθi(z)
= cb, (6)

where ε = log(cb), and cb is an increasing function of σ.
The above theorem indicates a relationship among ε, σ and ε.

Since a smaller ε provides a stronger privacy guarantee, it shows
that ε → 0 if cb → 1, i.e., a stronger privacy can be guaranteed
when cb becomes smaller. Meanwhile, since cb is a supremum
satisfying (6), it is a constant when the distribution functions
and parameter σ are given. On the other hand, when σ becomes
larger, it is not difficult to infer that cb becomes larger, so the
value of cb is an increasing function of σ. In addition, we have
that

sup
σ̂∈[−σ,σ],fθi (z) �=0

fθi+σ̂(z)

fθi(z)
= cb

⇔ sup
σ̂∈[−σ,σ],fθi (z) �=0

log(fθi+σ̂(z))− log(fθi(z)) = log(cb).

Thus, the condition c2 in Theorem 3.1 is equivalent to the
following condition.
c′2: log(fθi(z)) is a uniformly bounded function for ∀i ∈ V

and fθi(z) �= 0. When the changing interval size of the
variable z is no more than σ, the upper bounded of all
log(fθi(z)) for ∀i ∈ V and fθi(z) �= 0, is log(cb).

The proof is straightforward to obtain, so it is omitted. Thus,
c′2 can be applied to determine whether c2 is true or not.

Remark 3. 2: In the above Theorem 3.1, c1 ensures that any
pair of the adjacency vectors cannot have totally different outputs
in the probability sense. Hence, the privacy attacker cannot
determine whether an element in the input or not from the
observed outputs, thus the differential privacy is ensured. c2
decides the values of ε and ensures that ε is a bounded constant
and will not go to infinity at any point.
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Fig. 1. The staircase-shaped PDF guarantees that A is log( 1� )-differentially
private.

Based on Theorem 3.1, users can directly verify whether the
mechanism is differentially private or not through verifying the
property of noise distribution function. It is different from the ex-
isting work (e.g., [3], [5]), focusing on specific mechanisms (e.g.,
Laplace mechanism and Exponential mechanism), where the
privacy was proved from the original definition of ε-differential
privacy.

It is well known that a smaller ε provides a stronger privacy
guarantee. Based on the above theoretical results, we will find a
random distribution which can guarantee any small ε-differential
private. From the above corollary, we note that ε → 0 if cb →
1, i.e., a stronger privacy can be guaranteed when cb becomes
smaller. For any cb > 1, we construct a staircase-shaped PDF for
each random variable used the noise adding mechanism, such
that the conditions c1 and c2 can be satisfied. The PDF is

f(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1− �

2a
�k, z ∈ [ka, (k + 1)a];

1− �

2a
, z ∈ [−a, a];

1− �

2a
�k, z ∈ [−ka− a,−ka],

(7)

where � ∈ (0, 1) and k is a positive integer and a is a positive
constant. A staircase-shaped PDF is shown in Fig. 1. For the
above staircase-shaped function f(z), we obtain that∫ +∞

−∞
f(z)dz = (1− �) + 2

∞∑
k=1

1− �

2
�k = 1,

and thus it is a PDF function for a random variable. In this case,
when σ ≤ 1, it follows that

sup
σ̂∈[−σ,σ],fθi (z) �=0

fθi+σ̂(z)

fθi(z)
=

1

�
,

which ensures that A is log( 1� )-differentially private. Note that
� could be any value in (0, 1), which means that cb could be any
value in (1,∞) by setting � = 1

cb
. Hence, for any small ε > 0,

we can find a staircase-shaped PDF (i.e., using (7) as the PDF
and setting � = 1

eε and a = 1) for the adding noise such thatA is
ε-differentially private. Meanwhile, it is noted from [3] that given
the privacy constraint, the optimal noise probability distribution
has a staircase-shaped probability density function in terms of
minimizing the data publishing cost (where the cost function is
symmetric and increasing). The detailed shape depends on the
cost function, and both the length and height of the stairs are

different from (7). On the other hand, using Theorem 3.1, for
any staircase noise design, it is not difficult to calculate the value
of the privacy parameter ε, and then verify whether the privacy
constraint is satisfied or not. In a word, the staircase-shaped noise
is a good choice for the random noise adding mechanism in the
application.

Next, we provide another necessary condition and sufficient
condition of ε-differentially private, respectively.

Theorem 3. 3: If A is ε-differentially private, then ∀i ∈ V ,
there � co ∈ (−∞,+∞), such that

lim
z→c0

fθi(z) = 0. (8)

Clearly, (8) is actually a necessary condition of c2, which can
be easily proved by contradiction. This further explains why (8)
is necessary to ε-differential privacy.

Theorem 3. 4: A is ε-differentially private with ε = log(cb),
if, ∀i ∈ V , there exists a positive constant cb such that

sup
σ̂∈[−σ,σ]

fθi+σ̂(z)

fθi(z)
= cb. (9)

Note that (9) is a stronger condition than conditions c1 and
c2. Thus, (9) is a sufficient but not necessary condition.

For the above three theorems, all the conditions only depend
on the property of the noise distribution function. One can use
them to verify the ε-differential privacy of the mechanism easily.
This is different from most of the existing results in the literature
that proved the privacy of the mechanism based on the original
definition.

B. Sufficient Condition for (ε, δ)-Differential Privacy

In this subsection, we study the relaxed differential privacy,
named (ε, δ)-differential privacy. We obtain the sufficient con-
ditions to guarantee that A provides (ε, δ)-differential privacy,
followed by the estimations of both the parameters ε and δ.

Theorem 3. 5: If (6) holds, then A is (ε, δ)-differentially
private, where ε and δ satisfy ε = log(cb) and

δ = max
i∈V

∮
Φ0

i

fθi(z + σ)dz. (10)

Moreover, if (5) holds, δ = 0, i.e., A is ε-differentially private.
From Theorem 3.5, it is known that (6) is a sufficient condition

of (ε, δ)-differential privacy. However, it should be pointed out
that (6) is not a necessary condition of (ε, δ)-differential privacy
(though it is a necessary condition of ε-differential privacy). An
example is Gaussian noise, which is (ε, δ)-differentially private
noise [3], [4], but (6) no longer holds for Gaussian noise. The
detailed analysis will be given in the next subsection. Then, we
give the other useful sufficient condition of (ε, δ)-differential
privacy, which can be used to prove that Gaussian noise ensures
(ε, δ)-differential privacy.

Theorem 3. 6: Let Θ = Θ0 ∪Θ1. Assume that∮
Θ0

fθi(z)dz ≤ δ, ∀i ∈ V (11)
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and (6) holds when θ ∈ Θ1, i.e.,

sup
σ̂∈[−σ,σ],θ∈Θ1

fθi+σ̂(z)

fθi(z)
= cb. (12)

Then, A is (ε, δ)-differentially private, where ε = log(cb).
Considering the conditions in Theorem 3.6, for any kinds of

noise random distribution, we have

lim
μ(Θ0)→μ(Θ)

∮
Θ0

fθi(z)dz = 1,

and

lim
μ(Θ1)→0

sup
σ̂∈[−σ,σ],θ∈Θ1

fθi+σ̂(z)

fθi(z)
= 1.

Hence, it follows from Theorem 3.6 that using any kinds of
random noise, A is (0, 1)-differentially private. This can also
shown from the fact that

Pr{A(x) ∈ O} − Pr{A(y) ∈ O} ≤ 1

holds for any kinds of noise adding mechanism (because 0 ≤
Pr{·} ≤ 1 always holds true). Thus, it is meaningless to consider
a (0, 1)-differentially private mechanism, since it can be satisfied
by any random distributions. Note that if Θ = Θ0(k) ∪Θ1(k)
and Θ0(k) ⊂ Θ0(k + 1), where Θ1(∞) = Θ, then we have∮

Θ0(k)

fθi(z)dz ≤
∮
Θ0(k+1)

fθi(z)dz

≤
∮
Θ0(∞)

fθi(z)dz = 1

while

sup
σ̂∈[−σ,σ],θ∈Θ1(k)

fθi+σ̂(z)

fθi(z)
≥ sup

σ̂∈[−σ,σ],θ∈Θ1(k+1)

fθi+σ̂(z)

fθi(z)

≥ sup
σ̂∈[−σ,σ],θ∈Θ1(∞)

fθi+σ̂(z)

fθi(z)
= 1,

where we have used the fact that Θ1(∞) = ∅. It means
that there exists an increasing sequence δ(k) and an de-
creasing sequence ε(k) = log(c(k)) satisfying limk→∞ δ(k) =
1 and limk→∞ ε(k) = 0, respectively, such that (ε(k), δ(k))-
differential privacy is guaranteed by A. However, it should
be pointed out that different noise distribution can guarantee
the different smallest δ and different corresponding ε of (ε, δ)-
differential privacy. In Theorem 3.5, the estimation of the upper
bounds for δ and ε can be tighten for some special distributions
(e.g., uniform distribution), which will be illustrated in the
following subsection.

C. Case Studies

From the theoretical results obtained in above two subsec-
tions, it is not difficult to determine whether the added noise
can guarantee the differential privacy of a random mechanism
or not. In the following, we analyze differential privacy of some
random noises.

First, for Example 2.3, it is not obvious to analyze its dif-
ferential privacy directly from the definition. But, from Theo-
rem 3.3, we easily infer that it is not ε-differentially private, since

Fig. 2. Laplacian noise: ε-differentially private.

Fig. 3. Gaussian noise: (ε, δ)-differentially private.

limz→0 fθi(0) = 0, and thus it does not satisfy the necessary
condition given in the theory.

Then, we consider the Laplacian noise adding mechanism.

Assume that the PDF is fθi(z) =
1
2be

− |z−a|
b , where a and b are

two constants. We check the conditions c1 and c2, respectively.
From Fig. 2, it is clear that c1 holds true due to the continuity
and positivity of the PDF of Laplacian noise. Note that for ∀σ̂ ∈
[−σ, σ], we have∣∣∣∣fθi+σ̂(z)

fθi(z)

∣∣∣∣ =
1
2be

− |z−σ̂−a|
b

1
2be

− |z−a|
b

= e
|z−a|−|z−σ̂−a|

b ≤ e
|σ|
b .

It means that c2 condition also holds true. Hence, from
Theorem 3.1, it follows that Laplacian noise is an ε-differentially

private noise, where ε = log e
|σ|
b = |σ|

b .
Next, we consider Gaussian noise. Assume that the PDF of

the noise is fθi(z) =
1

b
√
2π

e−
(z−a)2

2b2 . Similarly, one infers that c1
holds true for Gaussian noise. Note that

∣∣∣∣fθi+σ̂(z)

fθi(z)

∣∣∣∣ =

1
b
√
2π

e−
(z−σ̂−a)2

2b2

1
b
√
2π

e−
(z−a)2

2b2

= e
(z−a)2−(z−σ̂−a)2

2b2

= e
σ̂(2z−σ̂−2a)

2b2 ,

which means that

sup
σ̂∈[−σ,σ],fθi (z) �=0

fθi+σ̂(z)

fθi(z)
≥ lim

z→∞ e
σ̂(2z−σ̂−2a)

2b2 = ∞.

Hence, from Theorem 3.1, it follows that Gaussian noise is not
an ε-differentially private noise. However, as shown in Fig. 3,
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Fig. 4. Uniform noise: (0, δ)-differentially private.

there exists a large constant M such that ε is bounded by

ε ≤ ln(max e
σ̂(2z−σ̂−2a)

2b2 ) ≤ σ(2M − σ)

2b2
,

for z ∈ [−M,M ], and δ is bounded by

δ ≤
∮
(−∞,−M ]∪[M,∞)

fθi(z)dz

=
1

b
√
2π

∮
(−∞,−M ]∪[M,∞)

e−
(z−a)2

2b2 dz, (13)

which is a small value. It means that the conditions in
Theorem 3.6 can be satisfied. Thus, we infer from Theorem
3.5 that Gaussian noise is an (ε, δ)-differentially private noise,
where ε = log σ(2M−σ)

2b2 and δ satisfies (13). For Example 2.4,
although it is hard to prove its DP from the definition, similar to
the above analysis, one infers that condition c2 of Theorem 3.1
cannot be satisfied. Thus, the mixed Gaussian distribution noise
given in this example cannot guarantee ε-differentially privacy.

Lastly, consider the uniform distribution noise with its PDF
as 1

b−a . Clearly, c1 is not true due to the zero-point set includes
continuous interval. Hence, uniform distribution is not an ε-
differentially private noise. Then, we check the conditions in
Theorem 3.5. As shown in Fig. 4, it is found that for an uniform
distribution noise

sup
σ̂∈[−σ,σ],fθi (z) �=0

fθi+σ̂(z)

fθi(z)
=

1
b−a
1

b−a

= 1

and

max
i∈V

∮
Φ0

i

fθi(z + σ)dz =
σ

b− a
.

It means that the upper bounds of both ε and δ in Theorem 3.5
are tight. Thus, one infers that uniform noise is an (ε, δ)-
differentially private noise, where ε = 0 and δ = σ

b−a . Then, it
is noted that δ is a decreasing function of b− a and satisfies

lim
b−a→∞

δ = 0.

Hence, for any small δ, we can find a corresponding (0, δ)-
differentially private uniform noise. But, it should be pointed
out that when the value of b− a increases, the variance of the
uniform distribution (= (b−a)2

12 ) increases.
Remark 3. 7: The above analysis shows that our method can

determine the differential privacy of the randomized mechanism

with any given distribution (even the closed-form of the distribu-
tion is unknown) of noise by checking the conditions, and thus
it is an efficient criterion of differential privacy analysis. This is
the main advantage of the propose method. Meanwhile, using
our theory can obtain the same results for well-known noise
distributions, as those proved in the existing work, which verifies
the effectiveness of the proposed theory. More importantly, it
should be pointed out that using the propose theory, we can also
obtain the values of ε and δ directly. This is the other advantage
of our method.

IV. APPLICATION ON PRIVACY-PRESERVING

CONSENSUS ALGORITHM

Consensus algorithm is an efficient distributed computing and
control algorithm, which refers to the action that nodes in the
network reach a global agreement regarding a certain opinion us-
ing their local neighbors’ information only [16]–[18]. Consensus
algorithm has been applied in a variety of areas, e.g., distributed
energy management [19], scheduling[20], and clock synchro-
nization [21]–[23]. Recently, the privacy-preserving consensus
problem has been studied, which aims to guarantee that the
privacy of initial state is preserved and at the same time a
consensus can still be achieved [24], [28], [30]. The basic
idea is to add random noises to the real state value during
the communication for privacy preservation, the same as (3).
This motivates us to adopt the developed theories in the above
section to analyze differential privacy of the privacy-preserving
consensus algorithm.

A. Privacy-Preserving Consensus Algorithm

A network is abstracted by an undirected and connected graph,
G = (V,E), where V is the set of nodes and E is the set
of the communication links (edges) between nodes. An edge
(i, j) ∈ E iff nodes i and j can communicate with each other.
Let Ni be the neighbor set of node i, defined by Ni = {j|j ∈
V, (i, j) ∈ E, j �= i}. Let |V | = n ≥ 3 be the number of nodes
in the network and xi(0) ∈ R be the initial state of node i. Let
x(0) = [x1(0), ...., xn(0)]

T ∈ Ω0
x ⊆ Rn.

For a general consensus algorithm, each node will commu-
nicate with its neighbor nodes and update its state based on the
received information. The iteration equation is

xi(k + 1) = wiixi(k) +
∑
j∈Ni

wijxj(k), ∀i ∈ V, (14)

which can be written in the matrix form as

x(k + 1) = Wx(k), (15)

where wii and wij are weights, and W is the weight matrix. It
is well known from [35] that, if, i) wii > 0 and wij > 0; and ii)
W is a doubly stochastic matrix, then an average consensus can
be achieved by (15), i.e.,

lim
k→∞

x(k) =

∑n
�=1 x�(0)

n
1 = x̄. (16)

Privacy-preserving Consensus (PC) Algorithm: When the
privacy of nodes’ initial states are concerned, each node may
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be unwilling to release its real state to the neighbor nodes at
each iteration. To preserve the privacy of nodes’ initial states, a
widely used approach is to add a random noise to the real state
when a node needs to communicate with its neighbor nodes [30].
Hence, we introduce a common privacy-preserving consensus
algorithm as follows:

PC :

⎧⎨
⎩
x+(k) = x(k) + θ(k)

x(k + 1) = Wx+(k)
(17)

A privacy-preserving average consensus algorithm is to de-
sign the adding noise process (including the noise distribution
and the correlations among noises in different iterations), such
that the goal of (16) is achieved under (17).

B. Privacy Conditions of Consensus

We define the input and the output sequences of each node
i in privacy-preserving consensus algorithm (17) until iteration
k as

Iin
xi
(k) = {xi(0), θi(0), ..., θi(k)}, (18)

and

Iout
xi

(k) = {x+
i (0), ..., x

+
i (k)}, (19)

respectively. Then, Iin
x (k) = {x(0), θ(0), ..., θ(k)} is the sys-

tem input and Iout
x (k) = {x+(0), ..., x+(k)} is the system out-

put. Let the information set of the adding noises for node i
be Iin

inoise
(k) = {θi(0), ..., θi(k)}. Let fθi(k)(z) be the PDF of

θi(k). Then, we have Ra(PC) = Ω0
x ⊕Θ(0)⊕ ...⊕Θ(k)⊕ ...,

where ⊕ denotes the plus of two sets.
By referring to [28], we introduce the definition of (ε, δ)-

differential privacy for a consensus algorithm as follows.
Definition 4.1: A PC algorithm (17) is (ε, δ)-differentially

private if, for any pair x and y of σ-adjacent initial state vector
and any set O ⊆ Rn×∞,

Pr
{Iout

x (∞) ∈ O} ≤ eε Pr{Iout
y (∞) ∈ O}

+ δ. (20)

If δ = 0, we say that (17) is ε-differentially private.
First, we give the necessary condition of ε-differential privacy

for algorithm (17).
Theorem 4. 2: If algorithm (17) is ε-differentially private,

then ∀k ≥ 0, the random noise vector
∑k

l=0 W
k−lθ(l) should

satisfy conditions c1 and c2.
Then, the sufficient conditions of differential privacy for

algorithm (17) is obtained in the following theorem.
Theorem 4. 3: Suppose that the added noise sequence

θ(1), θ(2), ..., θ(k), ...., is independent from both θ(0) and x(0).
Then, if θ(0) satisfies conditions c1 and c2, algorithm (17) pro-
vides ε-differential privacy; if θ(0) satisfies (6) or (both (11) and
(12) simultaneously), algorithm (17) provides (ε, δ)-differential
privacy, where ε = log(cb) and δ satisfies (11).

C. Privacy Analysis of PC Algorithms

We first give the necessary condition of average consensus for
algorithm (17).

Theorem 4. 4: Using algorithm (17), if

Pr

{
lim
k→∞

x(k) = x̄

}
= 1, (21)

i.e., the average consensus is achieved almost surely, then

Pr

{
lim
k→∞

k−1∑
l=0

W k−lθ(l) = 0

}
= 1,

and Pr{limk→∞ Wθ(k) = 0} = 1, i.e., the added noise should
equal 0 or be the eigenvector of 0 when k → ∞.

Next, by comparing the necessary conditions of ε-differential
privacy and average consensus, an impossibility result is given
as follows.

Impossibility Result: From Theorem 4.4, one infers that the
added noise θ(k) should converge to 0 or the 0-eigenvector of
W , denoted byλ0, i.e., limk→∞ θ(k) = 0 or limk→∞ θ(k) = λ0.
Note that

lim
k→∞

k∑
l=0

W k−lθ(l) = lim
k→∞

[
k−1∑
l=0

W k−lθ(l) + θ(k)

]
.

Then, we have

Pr

{
lim
k→∞

k∑
l=0

W k−lθ(l) = 0 or λ0

}
= 1.

Thus, the conditions c1 and c2 no longer hold for the added noise∑k
l=0 W

k−lθ(l)when k → ∞. It contradicts with the necessary
condition in Theorem 4.2, and thus ε-differential privacy cannot
be guaranteed. It means that the necessary condition of differ-
ential privacy and the necessary condition of average consensus
are conflicted, which leads to the impossibility result. Hence,
using (17), nodes cannot simultaneously converge to the average
of their initial states and preserve ε-differential privacy of their
initial states.

The above impossibility result is proved by using the condi-
tions of differential privacy given in Theorem 3.1. It can also be
proved from the original definition of differential privacy, see
[28]. From our proof, however, it is found that the necessary
condition of differential privacy and the necessary condition of
average consensus are conflicted, which leads to the impossibil-
ity result.

Also, it is not difficult to analyze differential privacy of the
existing privacy-preserving consensus algorithm. For example,
in [26], [28], the privacy-preserving consensus algorithms are
designed by adding independent and Laplacian noise to the
consensus process, and thus the sufficient conditions in The-
orem 4.3 are satisfied. Hence, these privacy-preserving con-
sensus algorithms proposed in [26], [28] are ε-differentially
private, while the exact average consensus cannot be guaranteed
by these algorithms. In [30], the exponentially decaying and
zero-sum normal noises are adopted in the privacy-preserving
consensus algorithm. Since the sum of all added noises equals
0, the necessary condition in Theorem 4.2 cannot be satisfied.
Hence, the algorithm proposed in [30] is not ε-differentially
private. The authors used the disclosed subspace to quantify
the privacy, and proved that with the proposed algorithm, the
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Fig. 5. The consensus performance under different noise adding mechanisms.

disclosed space of an agent with m neighbors is of dimension
m+ 1. That is, as long as an agent cannot listen to agent i
and all its essential neighbors, it cannot estimate the initial
condition xi(0) perfectly. It means that the system parameters,
e.g., topology parameter, link weights, are also important to state
privacy. Katewa et al., in [38] have concerned the privacy of
topology and eigenvalues of the network, and designed the novel
noise adding mechanism to ensure the privacy. However, what
the fundamental relationships among these system parameters,
system dynamics, and the state privacy, and the tradeoff among
them, are still open issues. Next, we conduct the simulation to
compare the performance of consensus using different noises.
Figure 5 compares the performance of the consensus algorithm
by adding normal distributed, uniformly distributed, and Laplace
distributed noises, respectively. Where the noises are with zero
mean and exponentially decaying variance (decay ration is 0.9),
and added independently in each iteration. It is not difficult to
prove the convergence of the consensus algorithm with such
noises referring the results in existing work, e.g., [30], [31].
However, as shown in Fig. 5(a), it is found that the error between
the nodes’ states and the average will not converge to zero,
i.e., limk→∞

∑
i∈V | xi(k)− x̄ |�= 0. Then, 1,000 simulation

runs are conducted. The results are shown in Fig. 5(a). It is
observed that adding Laplace distribution noise resulting in the

worst performance in terms of the convergence accuracy (where
the accuracy is defined by limk→∞

∑
i∈V | xi(k)− x̄ |), since

it has the highest frequency distribution within the large error
interval. However, from Theorem 4.3, adding Laplace noise can
ensure ε-differential privacy while normal and uniformly noises
cannot, i.e., Laplace noise ensure the strongest privacy. There-
fore, it is a tradeoff between the privacy and the convergence
accuracy.

Remark 4. 5: In this paper, the differential privacy is consid-
ered in open-loop systems. Considering the differential privacy
in closed-loop control systems, it becomes more difficult since
the added noise will be involuted in the feedback which may
change the system stability, observability, and the controllability.
How to design the noise to maintain these performance while
ensuring the differential privacy, is challenging and still open,
and thus needs extensive further research. In a specific system,
if we can quantify how the system dynamics and outputs change
the distribution or decrease the uncertainty of the noise, then
we can use the obtained theorems to analyze the privacy of the
system states.

V. RELATED WORKS

The concept of differential privacy (including ε-differential
privacy and (ε, δ)-differential privacy) was first introduced by
Dwork et al. [2], [4]. Since then, differential privacy has attracted
substantial attention throughout computer science, control and
communication communities, including areas like deep learning
[9], optimization [8], [27], dynamic systems [24] and more.
There are also some other privacy definitions, e.g., identifiability
and mutual-information privacy, and we refer the readers to [36]
for the relationship among privacy concepts.

Dwork et al. [2] showed that the Laplacian mechanism, i.e.,
adding random noise with Laplace distribution proportional to
the global sensitivity of the query function to perturb the query
output, can preserve ε-differential privacy. Also, it was shown
that the exponential mechanism [11] and staircase mechanism
[12] can preserve ε-differential privacy for general query func-
tions. It was shown that adding random noise with Gaussian
distribution can preserve the (ε, δ)-differential privacy for both
real valued query functions [4] and infinite dimensional query
functions [15]. For the work on enforcing differential privacy in
optimization, linear programs are solved in a framework that
allows for keeping objective functions or constraints private
[7]. This work was extended by the authors of [8], and they
considered a similar setting wherein some affine objectives
with linearly constrained problems are solved while keeping the
privacy of the objective functions. To keep inputs private from an
adversary observing a system’s outputs, differential privacy has
been adapted to dynamical systems, which introduces the pri-
vacy concerns in the context of systems theory [24]. Wasserman
and Zhou in [34] proposed a statistical framework for differential
privacy, where the differential privacy is investigated from a
statistical perspective. Nissim et al. in [37] introduced a new
generic framework for private data analysis, which allows one
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to release functions f of the data with instance-specific additive
noise.

Recently, privacy issues are concerned in multi-agent systems,
and mainly investigating the privacy-preserving consensus prob-
lem and its applications [13], [14], [39], [40]. Theoretically, the
objective is to guarantee that the agents’ initial states (or objec-
tive functions) are private and the average consensus is achieved
[24], [26]–[30], [32]. In [27], the authors solved distributed con-
sensus problems while keeping the agents’ objective functions
private, and in [26] the same authors solved similar problems
while keeping the privacy of each agent’s initial state. In these
works, differential privacy is guaranteed by adding independent
and Laplacian noises to the consensus process. More recently,
Nozari et al. [28] obtained and proved an interesting impossi-
bility result that achieving average consensus and differential
privacy simultaneously is impossible by contradiction via the
definition of differential privacy. This result is also proved in
this paper by comparing the necessary conditions of differential
privacy and of the average consensus. More recently, the privacy
issue was concerned in cloud-based control [40], and Akyol
et al., [41] have considered the privacy in game theory. Hence,
more and more researchers have paid attention on the privacy
different theories and applications.

Different from the existing work, in this paper, we obtain a
necessary and sufficient condition of ε-differential privacy, and
the sufficient conditions of (ε, δ)-differential privacy. Thus, more
general properties of differential privacy are obtained, and they
can be used to analyze the random noise adding mechanism with
any distribution.

VI. CONCLUSION

In this paper, we provided different conditions of differential
privacy for a generally random noise mechanism. We obtained
the conditions for determining differential privacy of random
noise mechanism, followed by an application study on privacy-
preserving consensus algorithm. Specifically, considering a gen-
erally random noise adding mechanism, we obtained a necessary
and sufficient condition of ε-differential privacy, and two useful
sufficient conditions of (ε, δ)-differential privacy of the noise
adding mechanism. We also provided the estimations of the
upper bounds of the parameters ε and δ. Then, we showed
that the obtained theory provides efficient and simple criteria of
differential privacy using case studies. In addition, we applied
the obtained result to obtain the necessary condition and the
sufficient condition for the privacy-preserving consensus algo-
rithm, under which differential privacy is achieved.

There are still many open issues worth further investigation.
For example, in this paper, we focus on the privacy analysis, and
do not consider the accuracy of queries from statistical databases
under the random noise adding mechanism. How the distribu-
tion of the adding noise affect the accuracy of queries needs
further investigation. Meanwhile, the relationship between the
parameters in differential privacy (ε and δ), the parameters of the
PDF of the adding noise (mean and variance) also needs further
investigation.

APPENDIX A
PROOF FOR THEOREM 3.1

Proof: ⇐: We prove the necessity by contradiction.
First, we prove that (5) is a necessary condition. Assume that

there exists an interval [a, b] such that (5) holds for one i0. Then,
there ∃ interval [a, b], s.t.,

fθi0 (z) = 0, for z ∈ [a, b]; fθi0 (z) > 0, for z ∈ [b, c] (22)

with c > b or fθi0 (z) > 0 for z ∈ [c, a] with a > c. Without
loss of generality, suppose fθi(z) > 0 holds for z ∈ [b, c] in the
following proof.

Since the set of all possible values of every node’s state at
least contains an almost surely continuous interval, i.e., Ω is not
a discrete set, it follows that there exists a pair of σ-adjacent
state vector, x and y, satisfying xi0 = yi0 − σ1 and xi = yi
(when i �= i0), where 0 < σ1 ≤ b− a and σ1 ≤ σ. With (3),
we have A(xi0) = xi0 + θ and A(yi0) = yi0 + θ. Define a sub-
setOi0 = [yi0 + a, yi0 + b], which satisfiesOi0 ⊆ Ra(A(xi0)).
From (22), it follows that

Pr{A(xi0) ∈ Oi0} =

∫ yi0
+b

yi0
+a

fxi0
+θi0

(z)dz

=

∫ yi0
+b−xi0

yi0
+a−xi0

fθi0 (z)dz =

∫ b+σ1

a+σ1

fθi0 (z)dz

=

∫ b

a+σ1

fθi0 (z)dz +
∫ b+σ1

b

fθi0 (z)dz

≥
∫ b+σ1

b

fθi0 (z)dz > 0,

while

Pr{A(yi0) ∈ Oi0} =

∫ yi0
+b

yi0
+a

fyi0
+θi0

(z)dz

=

∫ b

a

fθi0 (z)dz = 0.

Hence, it follows that

Pr{A(x) ∈ O}
Pr{A(y) ∈ O}

=
Pr{A(xi0) ∈ Oi0}

∏n
i=1,i�=i0

Pr{A(xi) ∈ Oi}
Pr{A(yi0) ∈ Oi0}

∏n
i=1,i�=i0

Pr{A(yi) ∈ Oi}

=
Pr{A(xi0) ∈ Oi0}
Pr{A(yi0) ∈ Oi0}

= ∞, (23)

where Oi is the domain of the i-th element in O. It contradicts
with the definition of ε-differential privacy. Thus, one obtains
that (5) is a necessary condition if A is ε-differentially private.

Second, we prove that (6) is also a necessary condition.
Suppose that

sup
σ̂∈[−σ,σ],fθi (z) �=0

fθi+σ̂(z)

fθi(z)
= ∞,
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which means that for any given large constant M , there ∃ z0 and
σ̂ ∈ [−σ, σ], s.t., fθi(z0) �= 0 and

fθi(z0 + σ̂)

fθi(z0)
≥ M.

We can assume that fθi0 (z) is a continuous function in a small
interval around z0 and around z0 + σ̂. Then, we have that there
exists a small positive constant ε0 such that

max
z∈[z0,z0+ε0]

fθi0 (z) ≤ 2fθi(z0)

and

min
z∈[z0+σ̂,z0+σ̂+ε0]

fθi0 (z) ≥ (M − 1)fθi(z0).

Then, we construct a pair of σ̂-adjacent state vector x and y
with xi0 = yi0 − σ̂ and xi = yi (when i �= i0). Define the set
O0

i0
= [yi0 + z0, yi0 + z0 + ε0], where ε0 ≤ σ̂. Based on (3),

we have

Pr{A(xi0) ∈ O0
i0
}

Pr{A(yi0) ∈ O0
i0
} =

∫ yi0
+z0+ε0

yi0
+z0

fxi0
+θi0

(z)dz∫ yi0
+z0+ε0

yi0
+z0

fyi0
+θi0

(z)dz

=

∫ z0+σ̂+ε0
z0+σ̂ fθi0 (z)dz∫ z0+ε0
z0

fθi0 (z)dz
≥ (M − 1)fθi(z0)ε0

2fθi(z0)ε0

≥ (M − 1)

2
.

Similar to (23), one infers that

Pr{A(x) ∈ O}
Pr{A(y) ∈ O} ≥ (M − 1)

2
.

Note that M could be an arbitrarily large constant, which im-
plies that A is not ε-differentially private. Hence, (8) is also a
necessary condition for ε-differentially private.
⇒: Next, we prove the sufficiency. Let Oi be the domain/set

of i-th element in O. Under (3), we have

Pr{A(x) ∈ O} = Pr{x+ θ ∈ O}

= Pr{xi0 + θi0 ∈ Oi0}
n∏

i=1,i�=i0

Pr{xi + θi ∈ Oi} (24)

and

Pr{A(y) ∈ O} = Pr{y + θ ∈ O}

= Pr{yi0 + θi0 ∈ Oi0}
n∏

i=1,i�=i0

Pr{yi + θi ∈ Oi}. (25)

Since xi = yi, i �= i0, we have
n∏

i=1,i�=i0

Pr{xi + θi ∈ Oi} =

n∏
i=1,i�=i0

Pr{yi + θi ∈ Oi}.

(26)

Meanwhile, with the condition c2, it follows

Pr{xi0 + θi0 ∈ Oi0} =

∮
Oi0

fxi0
+θi0

(z)dz

=

∮
Oi0

fyi0
−σ̂+θi0

(z)dz ≤
∮
Oi0

cbfyi0
+θi0

(z)dz

= cb Pr{yi0 + θi0 ∈ Oi0}, (27)

where we have used the fact of (6). Substituting (26) and (27)
into (24) yields

Pr{A(x) ∈ O} ≤ cb Pr{A(y) ∈ O}
= elog(cb) Pr{A(y) ∈ O}.

Thus, A is ε-differentially private with ε = log(cb). Note that in
condition c2, the bound cb depends on the adjacency parameter
σ, and clearly we have

sup
σ̂∈[−σ1,σ1],fθi (z) �=0

fθi+σ̂(z)

fθi(z)
≤ sup

σ̂∈[−σ2,σ2],fθi (z) �=0

fθi+σ̂(z)

fθi(z)

holds for σ1 ≤ σ2. It implies that cb is increasing with σ. �

APPENDIX B
PROOF FOR THEOREM 3.3

Proof: Suppose that there exists a bounded constant c0 ∈
(−∞,+∞), such that limz→c0 fθi0 (z) = 0. Since (5) holds, we
can set fθi0 (c0) = 0 and suppose that fθi0 (z) is a continuous
function in a small interval around c0. Then, there exists an
interval [c0, c1] and a small σ̂ ≤ c1−c0

2 such that

max
z∈[c0,c0+σ̂]

fθi0 (z) ≤ ε̂(σ̂), max
z∈[c0+σ̂,c1]

fθi0 (z) > ε̂(σ̂),

where ε̂(σ̂) satisfies limσ̂→0 ε̂(σ̂) = 0. Then, we construct a
pair of σ̂-adjacent state vector x and y with xi0 = yi0 − σ̂ and
xi = yi (when i �= i0). Define the set Ok

i0
= [yi0 + c0, yi0 +

c0 + σ̂(k)], where σ̂(k) ≤ σ̂. Based on (3), we have

Pr{A(xi0) ∈ Ok
i0
}

Pr{A(yi0) ∈ Ok
i0
} =

∫ yi0
+c0+σ̂(k)

yi0
+c0

fxi0
+θi0

(z)dz∫ yi0
+c0+σ̂(k)

yi0
+c0

fyi0
+θi0

(z)dz

=

∫ c0+σ̂+σ̂(k)

c0+σ̂ fθi0 (z)dz∫ c0+σ̂(k)

c0
fθi0 (z)dz

≥ ε̂(σ̂)σ̂(k)

ε̂(σ̂(k))σ̂(k)
≥ ε̂(σ̂)

ε̂(σ̂(k))
.

Let σ̂(k) → 0, one obtains

lim
σ̂(k)→0

Pr{A(xi0) ∈ Ok
i0
}

Pr{A(yi0) ∈ Ok
i0
} ≥ lim

σ̂(k)→0

ε̂(σ̂)

ε̂(σ̂(k))
= +∞,

which implies that A is not ε-differentially private. It leads to
a contradiction. Thus, (8) is a necessary condition when A is
ε-differentially private, which completes the proof. �

APPENDIX C
PROOF FOR THEOREM 3.4

Proof: Note that if (9) can guarantee both conditions c1 and
c2, then this theorem can be proved from Theorem 3.1.

First, we prove that (9) guarantees condition c2. By comparing
(6) and (9), we note that the constraint fθi(z) �= 0 in (6) is
removed in (9), which means that (9) provides a more general
result than (6). Hence, one infers that condition c2 is guaranteed
by (9) directly.
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Then, we prove that (9) can also guarantee condition c1.
First, suppose that c1 is not true, then there exists a continuous
interval such that fθi(z) = 0 for z in this interval. Second, since
fθi(z) is a PDF of a random variable, we have fθi(z) ≥ 0 and∫∞
−∞ fθi(z)dz = 1. Thus, there exists a continuous interval such

that fθi(z) > 0 holds in this interval. Then, we further infer that
there exist two continuous intervals (a, b) and (b, c) such that
fθi(z) = 0 for z ∈ (a, b) and fθi(z) > 0 for z ∈ (b, c). It means
that

sup
σ̂∈[−σ,σ]

fθi+σ̂(z)

fθi(z)
≥ sup

σ̂∈[−σ,σ]

fθi(b+
σ̂
2 )

fθi(b− σ̂
2 )

= ∞, (28)

which leads to a contradiction. Therefore, we have that c1 is also
true under (9). �

APPENDIX D
PROOF FOR THEOREM 3.5

Proof: Similarly, assume the σ-Adjacency state vectors x
and y satisfy yi0 = xi0 + σ and xi = yi, i �= i0, and define Ol

to be the l-th column element of O for l = 1, ..., n. Then, we
have that (24), (25) and (26) still hold true.

First, we consider the case that the condition c1 is not true.
Then, (27) no longer holds but we obtain

Pr{xi0 + θi0 ∈ Oi0} =

∮
Oi0

fxi0
+θi0

(z)dz

=

∮
Oi0

fyi0
−σ+θi0

(z)dz ≤
∮
Oi0

cbfyi0
+θi0

(z)dz

+

∮
{Φ0

i0
+yi0

}∩Oi0

fyi0
−σ+θi0

(z)dz

≤ cb Pr{yi0 + θi0 ∈ Oi0}+
∮
{Φ0

i0
+yi0

}
fyi0

−σ+θi0
(z)dz

≤ cb Pr{yi0 + θi0 ∈ Oi0}+
∮
Φ0

i0

fθi0 (z + σ)dz, (29)

where we have used the fact that fθi0−σ(z) = fθi0 (z + σ).
Then, one infers from (24), (25), (26) and (29) that

Pr{A(x) ∈ O} =

n∏
l=1

Pr{A(xl) ∈ Ol}

= Pr{A(xi0) ∈ Oi0}
n∏

l=1,l �=i0

Pr{A(xl) ∈ Ol}

≤ cb Pr{A(yi0) ∈ Oi0}
n∏

l=1,l �=i0

Pr{A(yl) ∈ Ol}

+

∮
Φ0

i0

fθi0 (z + σ)dz
n∏

l=1,l �=i0

Pr{A(yl) ∈ Ol}

≤ cb Pr{A(y) ∈ O}+max
i∈V

∮
Φ0

i

fθi(z + σ)dz,

which means that A is (ε, δ)-differentially private.

Next, if c1 holds, it is not difficult to obtain that

δ = max
i∈V

∮
Φ0

i

fθi(z + σ)dz = 0,

i.e., A is ε-differentially private. �

APPENDIX E
PROOF FOR THEOREM 3.6

Proof: Given any σ-adjacent state vectors x and y satisfying
xi0 = yi0 − σ and xi = yi (when i �= i0), we have

Pr{A(x) ∈ O} =
n∏

l=1

Pr{A(xl) ∈ Ol}

= Pr{A(xi0) ∈ Oi0}
n∏

l=1,l �=i0

Pr{A(xl) ∈ Ol}

≤ [Pr{A(xi0) ∈ Oi0 |θ ∈ Θ0}+ Pr{A(xi0) ∈ Oi0 |θ ∈ Θ1}]

×
n∏

l=1,l �=i0

Pr{A(yl) ∈ Ol}

≤ cb Pr{A(yi0) ∈ Oi0}
n∏

l=1,l �=i0

Pr{A(yl) ∈ Ol}

+

∮
Θ0

fθi(z)dz
n∏

l=1,l �=i0

Pr{A(yl) ∈ Ol}

≤ cb Pr{A(y) ∈ O}+ δ.

Thus, we have completed the proof. �

APPENDIX F
PROOF FOR THEOREM 4.2

Proof: Let On×k ⊆ Rn×k for k > 0 and On×0 ⊆ Rn for
k = 0. For any pair x and y of σ-adjacent initial state vectors,
we have

Pr{Iout
x (∞) ∈ O} ≤ eε Pr{Iout

y (∞) ∈ O}, ∀O ⊆ Rn×∞

⇔ Pr{Iout
x (k) ∈ On×k} ≤ eε Pr{Iout

y (k) ∈ On×k},
(30)

∀k ≥ 0,On×k ⊆ Rn×k

⇒ Pr{x+(k) ∈ On×1} ≤ eε Pr{y+(k) ∈ On×1},
∀k ≥ 0,On×k ⊆ Rn×k. (31)

From (17), we have

x+(k) = x(k) + θ(k)

= W [x(k − 1) + θ(k − 1)] + θ(k)

= W kx(0) +
k∑

l=0

W k−lθ(l)

= x(0) + (W k − I)x(0) +

k∑
l=0

W k−lθ(l), (32)
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where I is an identity matrix. From (30), (32) and Theorem 3.1,
we infer that (W k − I)z +

∑k
l=0 W

k−lθ(l), z = x, y should
satisfy conditions c1 and c2 for any σ-adjacent state vectors
x and y. It follows that

∑k
l=0 W

k−lθ(l) satisfies conditions c1
and c2. �

APPENDIX G
PROOF FOR THEOREM 4.3

Proof: Given any O ⊆ Rn×∞, we let Oι
l be the set of the

l-th to ι-th column vectors of O for l, ι ∈ N+. Then,

Pr{Iout
x (∞) ∈ O}

= Pr{x+(0) ∈ O1
1}Pr{Iout

x (1,∞) ∈ O∞
2 |x+(0) ∈ O1

1}

=

∮
O1

1

fθ(0)(z − x) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

and

Pr{Iout
y (∞) ∈ O}

= Pr{y+(0) ∈ O1
1}Pr{Iout

y (1,∞) ∈ O∞
2 |y+(0) ∈ O1

1}

=

∮
O1

1

fθ(0)(z − y) Pr{Iout
y (1,∞) ∈ O∞

2 |z}dz

Since θ(1), θ(2), ..., θ(k), ...., are independent from both θ(0)
and x(0), for any given same vector z, we have

Pr{Iout
x (1,∞) ∈ O∞

2 |z} = Pr{Iout
y (1,∞) ∈ O∞

2 |z}.
When θ(0) satisfies conditions c1 and c2, we have∮

O1
1

fθ(0)(z − x) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

=

∮
O1

1

fθ(0)(z − y + σ) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

=

∮
O1

1

fθi0 (0)(zi0 − yi0 + σi0)

n∏
i=1,i�=i0

fθi(0)(zi − yi)

× Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

≤
∮
O1

1

cbfθ(0)(z − y) Pr{Iout
y (1,∞) ∈ O∞

2 |z}dz,

whereσ ∈ Rn is a vector withσio = σ and all the other elements
equal to 0, which means that

Pr{Iout
x (∞) ∈ O} ≤ eε Pr{Iout

y (∞) ∈ O}.
Thus, (17) provides ε-differential privacy.

When θ(0) satisfies (6), we have∮
O1

1

fθ(0)(z − x) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

≤
∮
O1

1

cbfθ(0)(z − y) Pr{Iout
y (1,∞) ∈ O∞

2 |z}dz

+

∮
Ô1

1

fθ(0)(z − x) Pr{Iout
y (1,∞) ∈ O∞

2 |z}dz

≤
∮
O1

1

cbfθ(0)(z − y) Pr{Iout
y (1,∞) ∈ O∞

2 |z}dz

+

∮
Ô1

1

fθ(0)(z − x)dz

where Ô1
1 = {z|z ∈ O1

1, fθi0 (0)(zi0 − yi0) = 0, fθi0 (0)(zi0 −
xi0) �= 0}. Then, we have

Pr{Iout
x (∞) ∈ O} ≤ eε Pr{Iout

y (∞) ∈ O}+ δ.

Thus, (17) provides (ε, δ)-differential privacy.
If θ(0) satisfies both (11) and (12) simultaneously, then there

also exists Θ0 and Θ1 such that θ(0) + x satisfies (11) and (12).
Hence, we have

Pr{Iout
x (∞) ∈ O}

=

∮
O1

1

fθ(0)(z − x) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

=

∮
O1

1∩Θ0

fθ(0)(z − x) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

+

∮
O1

1∩Θ1

fθ(0)(z − x) Pr{Iout
x (1,∞) ∈ O∞

2 |z}dz

≤
∮
Θ0

fθ(0)(z − x)dz

+ cb

∮
O1

1∩Θ1

fθ(0)(z − y) Pr{Iout
y (1,∞) ∈ O∞

2 |z}dz

≤ δ + log(cb) Pr{Iout
y (∞) ∈ O}.

It means that (17) provides (ε, δ)-differential privacy.
Thus, we have completed the proof. �

APPENDIX H
PROOF FOR THEOREM 4.4

Proof: Under algorithm (17), we have

lim
k→∞

x(k) = lim
k→∞

[
W kx(0) +

k−1∑
l=0

W k−lθ(l)

]

= lim
k→∞

W kx(0) + lim
k→∞

k−1∑
l=0

W k−lθ(l)

= x̄+ lim
k→∞

k−1∑
l=0

W k−lθ(l),

where set
∑−1

l=1(·) = 0. Then, from (21), it follows that

Pr

{
lim
k→∞

k−1∑
l=0

W k−lθ(l) = 0} = Pr{ lim
k→∞

[x(k)− x̄] = 0

}

= 1.

Then, note that when
∑k−1

l=0 W k−lθ(l) = 0, we have Wθ(∞) =
0. Hence, we have Pr{limk→∞ Wθ(k) = 0} = 1. �
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