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Channel State Information Prediction for Adaptive
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Abstract—In underwater acoustic (UWA) adaptive communica-
tion system, due to time-varying channel, the transmitter often
has outdated channel state information (CSI), which results in
low efficiency. UWA channels are much more difficult to estimate
and predict than terrestrial wireless channels, given the more
severe multipath environments with varying propagation speeds
in different locations, non-linear propagation paths, several-order
higher propagation latency, mobile transceiver and obstacles in the
sea, etc. To handle the complexity, this paper proposes an efficient
online CSI prediction model for UWA CSI prediction considering
the complicated correlationship of UWA channels in both the time
and frequency domains. This paper designs a learning model called
CsiPreNet, which is an integration of a one-dimensional convo-
lutional neural network (CNN) and a long short term memory
(LSTM) network. The performance is compared with the widely
used recursive least squares (RLS) predictor, the approximate lin-
ear dependency recursive kernel least-squares (ALD-KRLS), and
two common conventional deep neural networks (DNN) predictors,
i.e., back propagation neural network (BPNN) and LSTM network
using the measured data recorded in the South China Sea. To
validate the efficacy of prediction, we investigate the prediction
of CSI in simulated downlink UWA orthogonal frequency division
multiple access (OFDMA) systems. Specifically, the measured UWA
channel is used in the OFDMA system. A joint subcarrier-bit-
power adaptive allocation scheme is used for resource allocation.
To further improve the performance, we develop an offline-online
prediction scheme, enabling the prediction results to be more stable.
Simulation and experimental results show that the CsiPreNet has
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superior performance than the existing solutions, thanks to its ca-
pability in capturing both the temporal and frequency correlation
of the UWA CSIs.

Index Terms—Underwater acoustic (UWA) channel, adaptive
communication system, channel state information (CSI) prediction,
deep neural network (DNN), orthogonal frequency division
multiple access (OFDMA).

I. INTRODUCTION

DUE to the low speed of sound propagation underwater
(about 1500 m/s), limited bandwidth, serious multipath

and Doppler effects, etc., underwater acoustic (UWA) channels
are one of the most challenging communication media [1].
Specifically, UWA channels exhibit larger time dispersions (on
the order of hundreds of milliseconds), several-order higher
than those with terrestrial radio channels. As such, UWA chan-
nels often experience severe inter symbol interference, which
requires sophisticated and computationally expensive equal-
ization techniques [2], [3]. Moreover, small-scale phenomena,
e.g., scattering caused by surface waves, also contribute to the
fast temporal variability of UWA channels [4]. Time-varying
multipath propagation and limited bandwidth severely affect the
performance of the UWA communication system. To improve
spectrum utilization, adaptive communication technology is ap-
plied to UWA communication system [5]–[10].

The performance of the adaptive communication systems
depend on the knowledge of channel state information (CSI)
provided by the feedback of the receiver. Specifically, CSI
determines the physical-layer parameters and setting of adaptive
UWA communications. For example, the transmitter needs to
implement low-order modulation schemes at the physical layer
in the case of poor channel status, and vice versa. Obviously,
inaccurate CSI can lead to improper modulation schemes which
in turn leads to low communication efficiency. Furthermore, CSI
also has a significant impact on resource allocation [11]–[13] in
adaptive UWA orthogonal frequency division multiple access
(OFDMA) systems. Therefore, obtaining accurate CSI is im-
portant for improving the performance of the adaptive UWA
communication systems.

However, because of the large propagation delay and rapid
changing of UWA channel, CSI received by the transmitter
is usually outdated. Especially, in the UWA communication
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networks, the central node needs to take more time to obtain the
CSIs from all users. This makes the problem of outdated CSI
even more severe. In recent years, many researches have stud-
ied the performance of adaptive UWA communication systems
using outdated CSI. In [14], an adaptive UWA communication
scheme for multiantenna transmissions based on the partial CSI
was proposed. In [12], long-term statistics of CSI were consid-
ered for channel feedback to mitigate the impact of outdated
CSI. In [13], the CSI used for feedback was selected between
instantaneous CSI and average CSI for system performance
improvement. In addition to the extensive research on how to
deal with the negative impact of the outdated CSIs, it is found
that channel prediction is a desirable method to fully address
the problem. Since the speed of sound is very low, the ability
to predict the CSI at least one transmission round ahead highly
affects the performance of the adaptive communication systems.
It is indeed challenging for UWA communications in the range of
several kilometers, which significant limits the use of feedback.

With a reasonable tracking ability and simple design, a lin-
ear predictor applying the recursive least-squares (RLS) al-
gorithm has been widely used for UWA channel impulse re-
sponses (CIRs) prediction [8], [15]–[18]. For seasonal UWA
time-varying channels, autoregressive (AR) processs [20] and
Holt-Winters [21], [24] were introduced to model the seasonal
correlation. An efficient adaptive predictor operating in the
delay-Doppler domain for UWA time-varying channels was
proposed in [25], which does not require any prior knowledge
of channel dynamic model and noise statistics.

For adaptive UWA OFDM and OFDMA systems, existing
channel predictors were often realized at several significant
channel taps in the time domain [8], [17]–[19]. Few researchers
applied the predictor to each OFDM subcarrier in the frequency
domain. This is because the variation at each subcarrier is a
combined variation of multiple taps, which makes it difficult to
predict using a linear predictor. Moreover, prediction on a large
number of OFDM subcarriers leads to high complexity. The
traditional linear predictor can not handle frequency domain
prediction well. Kernel adaptive filtering (KAF) methods are
rapidly gaining popularity to solve a wide variety of prediction,
identification and regression problems, since they provide state-
of-the-art performance in many real-world applications [22]. In
particular, the kernel RLS (KRLS) algorithm based on the RLS
algorithm is one of the most popular algorithms in KAF [23], and
shows good performance in channel prediction [22]. The rapid
development of deep neural networks (DNNs) [26], [27], [31],
[32] also makes it possible to perform channel prediction in the
frequency domain. As long as there are sufficient data to train
the neural network, DNNs can capture the complex correlation
between different data in both the time and frequency domains.
In the past thirty years, DNNs have been widely applied in
wireless communications [28]. Reasonable application of
DNNs can effectively optimize wireless communication and
network system [29]. DNNs will be an indispensable tool for
the design and operation of future wireless communication
networks [30]. It convinces us that DNNs will also be promising
for future research in UWA communications and networks. In
wireless communications, many researches focused on channel
prediction based on DNNs [33]–[37]. Although some studies

have applied DNNs to UWA communications [38], to the best
of our knowledge, no research ever used DNNs for channel
prediction in UWA communication systems.

UWA channels are much more difficult to predict than ter-
restrial wireless channels, given the more severe multipath envi-
ronments with varying propagation speeds in different locations,
non-linear propagation paths, several-order higher propagation
latency, mobile transceiver and obstacles in the sea, etc. The
existing CSI prediction approaches, e.g., the RLS/KRLS-based
prediction methods, only consider the amplitude of the channel
tap, and do not consider the variety of the phase. However,
when predicting UWA channel, the variety of channel delay
cannot be ignored. In addition, due to the requirement of low
power consumption of UWA communication hardware design,
its computing power is far less than that of wireless commu-
nication system, which makes the traditional CSI prediction
approaches not fully applicable for UWA channel prediction. In
UWA networks, such as the Internet of underwater things (IoUT)
with extremely large-scale deployment of sensor nodes [39], the
above difficulties are more serious. To handle the complexity,
in this paper, we propose an DNN-based efficient online CSI
prediction model for CSI prediction and study the performance
according to measured UWA channels in South China Sea. To
validate the efficacy of prediction, we investigate the prediction
of the measured channels in the simulated UWA OFDMA sys-
tem. Furthermore, an offline-online prediction scheme is devel-
oped to improve system performance. The main contributions
of this paper are three-fold.
� We design a learning model called CsiPreNet for UWA

CSI prediction, that is a combination of a one-dimensional
convolutional neural network (CNN) and a long short
term memory (LSTM) network. The proposed CsiPreNet
can exploit the complicated frequency-temporal correla-
tionship of UWA channels to conduct the CSI prediction
effectively. The prediction performance is evaluated with
measured channel data recorded in South China Sea. The
proposed CsiPreNet has excellent performance on UWA
CSI prediction, based on its ability to capture the informa-
tion in both the frequency and time domains.

� We design a simulated downlink UWA OFDMA sys-
tem, and investigate the impact of CSI prediction. Specif-
ically, the measured UWA channels are used in the
simulated OFDMA system as ground truth. A joint
subcarrier-bit-power adaptive allocation scheme is used
for resource allocation by using the predicted CSI for
feedback.

� We design an offline-online prediction scheme to improve
the stability of the developed learning models when apply-
ing it to the simulated OFDMA system. A large amount
of historical CSI is input into the offline part to train
the learning models, and the trained model is applied to
the online part for CSI prediction. The predicted CSI is
used as feedback for resource allocation. Furthermore, we
update the training data of the offline part after several
transmission rounds to ensure the stability of the learning
models. Simulation results demonstrate the superior per-
formance of the proposed offline-online prediction based
on CsiPreNet model.
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The rest of this paper is organized as follows. Section II
introduces the related work. In Section III, we describe the
downlink UWA OFDMA system, the UWA channel model,
and the measured data recorded in sea test. In Section IV, we
propose the BPNN, LSTM, and CsiPreNet prediction models. In
Section V, we present the joint subcarrier-bit-power allocation
scheme, the limited feedback for UWA OFDMA system, and
the proposed offline-online prediction scheme. In Section VI, we
analyze the prediction performance of the three DNN prediction
models using measured CSI, and apply these three models to
the simulated downlink UWA OFDMA system for performance
evaluation, and then analyze the computational complexity and
the running time of all models, followed by the concluding
remarks and further research issues in Section VII.

II. RELATED WORK

Due to the fast changing nature and the extremely limited
bandwidth of the UWA channels, an outdated CSI can lead to
severe performance degradation, so accurate channel prediction
is critical. Although many scholars have studied channel pre-
diction in terrestrial wireless communications [33]–[37], [40],
[41], [43], the prediction of UWA channels has received little
attention until recent years [8], [15]–[21], [24], [25].

The prediction methods are generally divided into two cat-
egories, i.e., model-based and non-model-based. The model-
based methods assume that certain knowledge and variation
about the channel are known, then the correctly defined model
can improve the prediction accuracy. For example, the channel
variations and parameters were based on an AR model and
tracked by an extended Kalman filter in [40], and it assumed
that the channel tap coefficients are uncorrelated. By contrast,
in [41], it used the RLS algorithm with a postfilter for channel
tracking, and considered the multipath correlation. If the real
channel does not match the assumed model, the performance
of the above-mentioned methods can not be satisfactory. On the
contrary, the non-model-based adaptive prediction methods do
not rely on the prior knowledge of the channel. Thus it is more
suitable for the real communication systems [8], [15]–[21], [24],
[25]. Generally speaking, the adaptive predictors can adaptively
track channel variations and adjust itself. Least Mean Square
(LMS) and RLS are two widely used adaptive algorithms for CSI
prediction [8], [15]–[19], [43]. Compared with LMS algorithm,
RLS algorithm has the better tracking ability at the cost of a
higher computational complexity [42]. The common method
using RLS predictor for time domain prediction is shown in
Fig. 1 [18], [43]. However, these studies only considered the
variety of channel taps and assumed that the delay of channel
taps is stable for a certain period of time.

On the other hand, the rapid development of DNNs makes
it possible to capture complex channel variations accurately.
In wireless communications, DNNs has been used to predict
channel [33]–[37]. It inspires us to apply DNNs to channel pre-
diction in UWA communication systems, which have drastically
different channel characteristics.

Obviously, combining the channel prediction with the adap-
tive UWA communication system can significantly improve the

Fig. 1. Time domain predictor for sparse channel based on RLS algorithm.

Fig. 2. System model: (a) Downlink UWA OFDMA system, (b) OFDMA
handshaking process.

system performance. In [8], RLS predictor was embedded in
an adaptive UWA OFDM system. In [19], a precoding based
channel prediction scheme was designed for UWA OFDM sys-
tem. In [25], the adaptive delay-Doppler spreading function
(DDSF) prediction scheme was proposed, and used for UWA
communication system under several simulated UWA channels.
There is currently no deep learning based prediction model for
adaptive UWA communication systems. This work is motivated
to fill the gap.

III. SYSTEM MODEL AND DATASET DESCRIPTION

The UWA channel is time-spatial correlated, but in a very
complicated way. Due to the characteristics of the long prop-
agation delay (in seconds), curved propagation ray due to dif-
ferent acoustic velocity in different height, relative motions and
changing propagation multi-paths, lack of synchronization in
UWA channels [1], the parameter design and experiment setup
for UWA communication is important.

A. Downlink UWA OFDMA System

As shown in Fig. 2(a), we consider a simulated downlink
UWA OFDMA system with U spatially separated users and a
central node.

Consider an OFDMA setup, where a total number of K
subcarriers are allocated to all users. Ku non-overlapping sub-
carriers are allocated to user u, where

∑U
u=1 Ku = K. The

OFDM symbol period is T , the cyclic prefix (CP) length is
Tcp, and the subcarrier interval is 1/T . The center frequency
is fc, and then the subcarrier frequency fk = fc + k/T , k =
−K/2, . . .,K/2 − 1. Define d[k] as the coded information on
the k-th subcarrier, and then the transmitted signal is

xu(t) = Re

{∑
k∈S

d[k]exp(j2πfkt)

}
, t ∈ [0, T ], (1)
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where S is the subcarrier index set, including the data subcarrier
index setSD and the comb pilot index setSP ,S = SD ∪ SP . All
users use the same pilot symbols for channel estimation, and the
k-th subcarrier can only be allocated to one user, where k ∈ SD.
The candidate modulation schemes of d[k] are binary phase
shift keying (BPSK), quadrature phase-shift keying (QPSK),
8-quadrature amplitude modulation (8QAM), and 16-quadrature
amplitude modulation (16QAM) with 2-D Gray mapping. In
other words, for the k-th subcarrier, where k ∈ SD, the modu-
lation level Mk ∈ {2, 4, 8, 16}, and if no data are transmitted,
Mk = 1. We assumed that the pilot symbols (k ∈ SP ) use the
modulation scheme of QPSK.

Assuming that the receiver (useru) has correctly compensated
for the Doppler frequency offset caused by the relative motion,
the time-varying UWA multipath channel model transmitted
from the central node to user u in a CP-OFDM block can be
expressed as

hu(τ, t) =

Np,u∑
p=1

Ap,u(t)δ(τ − τp,u(t)), (2)

whereNp,u is the number of channel paths from the central node
to user u; Ap,u(t) is the attenuation coefficient of the p-th path
in a CP-OFDM block; τp,u(t) is the time delay corresponding
to the p-th path. Assuming that the CP length Tcp is longer than
the maximum multipath delay, the signal received by user u is

y(t) =

Np,u∑
p=1

Ap,u(t)xu(t− τp,u(t)) + w(t), (3)

where w(t) is the additive noise. Substituting (1) into (3), after
removing CP and undergoing discrete fourier transform (DFT)
transformation, the frequency domain baseband reception vector
of user u on the k-th subcarrier can be obtained by

zu[k] = Hu[k]du[k] + vu[k], (4)

where zu[k] and du[k] represent the received data and the
transmitted data on the k-th subcarrier allocated to user u,
respectively. Hu[k] represents the channel gain of user u on
the k-th subcarrier. vu[k] is the frequency domain additive noise
in the frequency domain. CSI can be measured in the form of
Signal-to-noise ratio (SNR), which can be expressed as

γu[k] =
|Hu[k]|2σ2

s

σ2
u

, (5)

where σ2
s is the symbol energy, and σ2

u is the noise variance of
user u.

Therefore, based on the knowledge of the transmitted and
received signals, i.e., d[k] and z[k], the CSI can be estimated. So
far, scholars have developed several CSI estimation methods,
e.g., maximum likelihood (ML), minimum mean square error
(MMSE), least squares (LS), and compressed sensing (CS)
methods. In this paper, we use the orthogonal matching pursuit
(OMP) algorithm [44] for CSI estimation, which is one of the
CS methods.

Furthermore, the handshaking process of this adaptive down-
link UWA OFDMA system is shown in Fig. 2(b). The CSI of
each user is estimated by the request-to-send (RTS) packet, and

Fig. 3. Experimental setup: (a) The geometry and the setup of the commu-
nication system. (b) Structure of one frame OFDM signal. (c) Organized CSI
image.

then embedded into the clear-to-send (CTS) packet. The central
node collects all users’ CSIs, and performs the adaptive resource
allocation scheme based on them. Furthermore, the allocation
table is embedded in the announcement (ANC) packet, and
broadcasted with the DATA packet to all users. Upon reception,
each user decodes its own data based on the allocation table.
Therefore, the CSI embedded in a CTS packet is the CSI based
on the RTS packet in slot T1, which outdates while using it for
resource allocation in slot T3, under time-varying UWA channel.

B. Experimental Dataset Description

We carried out the sea trial in Lingshui Bay, South China Sea
on May 8, 2014. In the experiment, two ships were used for
communication. The sea depth was 70 meters. One ship was the
transmitter with a transducer deployed 27 meters depth. Another
ship was the receiver with a four-element line array deployed
at the depth of 30 meters, and array element spacing was 0.6
meters. Transmission distance ranged from 1 km to 5 km. The
geometry of the experiment and the setup of the system are given
in Fig. 3(a).

As shown in Fig. 3(b), the transmitter sends frames of CP-
OFDM blocks. Each frame contains 8 OFDM blocks. One
OFDM block has 681 subcarriers, which contains 595 data sub-
carriers and 86 pilot subcarriers, and the pilot interval is 8. CSI
is estimated from the pilot subcarriers. CP length, block length
and frame length areTcp=25 milliseconds (ms),Tblock=171 ms,
and Tframe=1.568 seconds (s), respectively. The transmission
interval between two adjacent frames is 4 s. The bandwidth is
4 kHz (kHz), and the central frequency is 8 kHz. LFM A signal
is used for signal synchronization, while LFM B signal and LFM
C signal are the same signal that are used for Doppler estimation.

The channel of each block can be estimated by the pilot
signal in the block. The time interval between two channels
of the same block in adjacent frames is 4 s. We record a large
amount of measured UWA CSI. We organize the CSI into a
two-dimensional image as shown in Fig. 3(c). One dimension is
the frequency dimension, representing the k-th subcarrier, and
another dimension is the time dimension, representing the time t.
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Fig. 4. Training process of DNN model.

We can also express the CSI image as a matrix

CSIimg = [C1,C2, . . .,Ct, . . .,CT ]
T , (6)

Ct = [Ct,1, Ct,2, . . ., Ct,k, . . ., Ct,K ], (7)

where Ct,k represents the CSI of the k-th subcarrier at the time
t.

This paper selects two different measured channels with a
transmission distance of 3 km and 5 km for analysis. In this
case, the two ships anchored at a distance of 3 km and 5 km,
respectively. But the ships still drift randomly in a small range
with the water surface waves, resulting in time-varying of the
channel. The analytical results will be presented in Section VI.

IV. PREDICTION MODEL BASED ON DNN

The long propagation delay makes it critical to conduct accu-
rate channel prediction, while the complicated mobile UWA en-
vironment makes the traditional solutions less effective. There-
fore, we investigate the deep-learning approach for UWA chan-
nel prediction.

In this section, we will introduce three DNN models, i.e.,
BPNN, LSTM, and the proposed CsiPreNet. We use these three
models for CSI prediction. Fig. 4 shows the training process
of a typic DNN. Generally speaking, a DNN prediction model
consists of two parts, the training part and the prediction part.
Before the prediction part works, the network must be trained by
the training symbols in the training part. First, the training sam-
ples are input into the neurons in the hidden layers and then are
propagated to the output layer. If the learning errors between the
DNN output results and the desired outputs are not reached the
training threshold, the learning errors will be back-propagated
from the output layer to the hidden layers. Meanwhile, the
weights and biases in the neurons will be updated according
to the learning errors. The training part will be repeated until
the training threshold are reached, such as a given number of
training rounds have been completed, or a certain learning error
has been met. Finally, the well-trained model is used for CSI
prediction.

A. Back Propagation Neural Network (BPNN)

BPNN can be described as a multilayer perceptron (MLP)
neural network with multiple hidden layers trained by the back
propagation algorithm [45], [46]. Fig. 5 illustrates a typical

Fig. 5. Typical architecture of BPNN model.

Fig. 6. Typical architecture of LSTM cell.

BPNN, which includes an input layer, multiple hidden layers,
and an output layer.

Then the back propagation algorithm [45], [46] is used to
update the weights U and biases v in the neurons according
to the learning errors. As shown in Fig. 5, the training part of
the BPNN can be summarized as the forward propagation of
training symbols and the back propagation of updating errors.

The update of BPNN can be briefly summarized as follows

y = BPNN(x, P ), (8)

where BPNN(·) presents all propagation process of BPNN, and
P represents all the parameters in the BPNN.

For the CSI prediction, we replace x and y with
Ct,Ct−1, . . .,Ct−n and Ct+1 defined in (7), respectively. The
prediction expression can be expressed as

Ct+1 = BPNN(Ct,Ct−1, . . .,Ct−n, P ). (9)

B. Long Short Term Memory (LSTM)

The LSTM network is explicitly designed to handle the
long-term dependency problem, which is suitable for time series
prediction [48]. LSTM network uses the approximate gradient
calculation algorithm, which updates the weight matrices after
each time step. However, the back-propagation algorithm can be
used to calculate the entire gradient.

In a typical LSTM network, each cell has four gates, interact-
ing in a special way. Fig. 6 illustrates a single LSTM memory
cell.
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Fig. 7. Structure of CsiPreNet.

The same as the BPNN model, we can summarize the update
of each LSTM unit as

ht = LSTM(ht−1,xt, P ), (10)

where LSTM(·) presents all propagation process of LSTM, and
P refers to all the parameters in the LSTM network.

Similar to (9), the update of each LSTM unit for CSI predic-
tion can be expressed as

ht = LSTM(ht−1,Ct, P ). (11)

At last, a fully-connected softmax layer is used to generate a
probability distribution of the prediction result as follows

Ŝt = softmax(Uht + v). (12)

C. Csiprenet

Considering the correlations in the frequency, time, and space
domains, we develop a learning model called CsiPreNet, a
combination of the CNN [49] and the LSTM, to exploit the
frequency-temporal relationship of the CSI. Fig. 7 shows the
architecture of this learning model, which consists of a 1D
CNN model, and an LSTM model. The 1D CNN model is
used to extract the frequency correlation from the CSI between
adjacent subcarriers, which includes a 1D convolutional layer, a
1D max-pooling layer, and a flatten layer. Followed by an LSTM
model that is used to extract temporal correlation and perform
prediction.

CNN has excellent performance in image processing. This
inspired us to organize the raw CSI data in a similar way with
the image. Specifically, the CSI on each subcarrier can act as a
pixel of the image. The organized CSI image data is described
in Section III-B. As shown in Fig. 7, the k-th row, t-th column
pixel represents the CSI of the k-th subcarrier at time t.

To capture the frequency correlation, we propose a 1D CNN
model to process the CSI first. Generally, a CNN model has
several parallel filters for processing the CSI images by a set of
weights. We describe the CNN model with one filter for simple.
U is defined as the weight of a convolutional filter. The filter
strides through the CSI images along one dimension to calculate
the convolutional result. After a set of CSIs C pass the filter, the
convolutional result C∗ can be calculated as follows

C∗ = f(C⊗U+ v), (13)

where v is the bias and f(·) is the activation function. Then a 1D
max-pooling layer is used to capture the most salient features in
C∗ as follows

C∗ = max(C∗). (14)

The filters go through each time line of the CSIs to obtain the
feature image CSI∗img as follows

CSI∗img = [C∗
11, C

∗
12, . . ., C

∗
tn, . . ., C

∗
T 1, C

∗
T 2, . . ., C

∗
Tn], (15)

where n is the number of filters and t is the time.
Furthermore, a flatten layer is used to combine and flatten the

output results of all filters into a vector as follows

C∗
t = flatten(C∗

t1, C
∗
t2, . . ., C

∗
tn), (16)

where flatten(·) represents the flattening process.
We use conv1D(·) to represent the entire 1D convolution

process. Thus the 1D CNN model can be briefly described as
follows

[C∗
1,C

∗
2, . . .,C

∗
T ] = conv1D(CSIimg). (17)

Then, an LSTM model is used to predict the current vector,
since it is good at learning long-term dependencies. Based
on (11), we can obtain the output values of the LSTM model
as shown below

ht = LSTM(ht−1,C
∗
t , P ). (18)

Same as (12), a fully-connected softmax layer is followed

Ŝt = softmax(Uht + v). (19)

To sum up, BPNN can be described as an MLP, and uses
the backpropagation algorithm to update network parameters,
which is the most basic and widely used DNN model. Since the
ability of learning long-term dependencies, LSTM can better
handle time series and solve the problem of vanishing gradient.
The CsiPreNet combines the advantages of CNN in spatial
information processing and the advantages of LSTM in temporal
information processing. We will evaluate the performance of
CsiPreNet in Section VI.

V. ADAPTIVE RESOURCE ALLOCATION BASED

ON PREDICTED CSI

In this section, we introduced how to combine the DNN
based CSI prediction model with a real-time adaptive UWA
communication system. Since the training time of DNN is long,
we train the model offline, and the trained model is used for CSI
prediction online. Meanwhile, a limited feedback mechanism is
used to feed back the predicted CSI.

A. Joint Subcarrier-Bit-Power Allocation Scheme

Considering the computational complexity, power consump-
tion and system performance, as well as the particularity of
UWA communication environment, a joint subcarrier-bit-power
allocation scheme is used for resource allocation in the proposed
OFDMA system, where users take turns to be assigned an
additional bit which consumes the least power at each iteration
round until the data rate requirement is satisfied.
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� δu[k] is defined as the subcarrier allocation factor, which
means that the k-th subcarrier is allocated to the user u.
δu[k] = 1 represents that the k-th subcarrier is allocated to
the user u, otherwise, δu[k] = 0.

� bu[k] is defined as the bit loading factor, which repre-
sents that a certain number of bits are loaded on the k-th
subcarrier for the user u, and determines the modulation
constellation.

� βu[k] is defined as the power scaling factor, which deter-
mines the transmission power on the k-th subcarrier for
user u. If there is no variation in power scaling, βu[k] = 1.

Assuming that one data subcarrier can only be allocated to
one user, we have

U∑
u=1

δu[k] = 1, (20)

U∑
u=1

∑
k∈SD

δu[k] = KD. (21)

All subcarriers allocated to user u can be expressed as

Su = {k|δu[k] = 1, k ∈ SD}. (22)

The data rate of user u is

Ru =
∑
k∈SD

δu[k]bu[k] =
∑
k∈Su

bu[k]. (23)

Thus the total data rate of the OFDMA system can be ex-
pressed as

R =
∑U

u=1
Ru. (24)

Consider the power scaling factor, (4) can be written as
follows [9]

zu[k] = Hu[k]
√

βu[k]du[k] + vu[k], k ∈ Su. (25)

Then CSI γu[k] can be obtained by (5).
The total transmission power can be expressed as

Ptotal = σ2
s

U∑
u=1

K∑
k=1

δu[k]βu[k]. (26)

Different modulation levels are adopted and the constellation
mapping factor g(·) can be written as [50]

g(b) =

{ 6
5×2b−4 , b = 1, 3, 5. . .

6
4×2b−4 , b = 2, 4, 6. . .

. (27)

The resource allocation algorithm is described in detail in
Algorithm 1. The first process is to initialize the parameters to
appropriate values. The power required to load the first bit on
the k-th subcarrier of the user u is calculated in (28). The second
process is to iteratively allocate subcarriers and bits to each user.
In each iteration, each user takes turns loading one bit with the
lowest power consumption to a subcarrier that is not occupied
by other users. The final step is to calculate the power scaling
factor, which determines the transmission power loaded on each
subcarrier.

Fig. 8. Structure of online-offline prediction model in adaptive downlink UWA
OFDMA system.

B. Limited Feedback for Adaptive UWA Systems

We assume that a limited-feedback channel is available for
conveying information from all users to the central node. Each
user has the knowledge of the CSI from the central node to itself.

We consider to feed back the CSI of K subcarriers, where
K = 681. If we feed back the CSI of all 681 subcarriers, this
will bring a large feedback overhead. If the CSI changes slowly
across frequencies, we can cluster multiple adjacent subcarriers
and share the same suitable CSI. In such a case, it is not necessary
to feed back the CSI for each subcarrier.

We cluster 20 subcarriers into one cluster, so we only need to
feed back the CSI of 34 subcarrier clusters (the last 21 subcarriers
are clustered into one cluster). We calculated the average CSI of
each cluster of subcarriers to represent the CSI of all subcarriers
in this cluster. Hence, the total number of bits fed back can be
reduced by 20 times. Moreover, a 16-order uniform quantization
algorithm is used to perform CSI quantization [51].

C. Offline-Online Prediction Scheme

Because the DNN training process requires a lot of time,
we need to train the model in advance, and then the trained
model will be directly used for CSI prediction. Due to the
rapid time-varying of UWA channel, the trained model may
be outdated after several transmission rounds. To solve this
problem, we develop an offline-online prediction scheme for the
adaptive OFDMA system to improve the stability of the DNN
models described in Section IV, as shown in Fig. 8. The offline
part is to train, store, and update the historical CSI, and the online
part is to integrate CSI prediction and measurement. When a CSI
prediction request arrives, the online part first collects real-time
received signal, then estimates the CSI, and finally inputs the CSI
into the well-trained DNN models to perform the CSI prediction.
In the following, we describe the offline part and online part in
detail.

For the offline part, we first use historical CSI data to train
the learning model, and the well-trained model will be used for
CSI prediction in the online part. In the communication process
of the OFDMA system, the offline part continuously stores the
measured CSIs estimated by the user in the online part, and
updates the training data in the learning model after several
transmission rounds to retrain the model.
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Algorithm 1: Joint Subcarrier-Bit-Power Allocation
Scheme.

1: Input: CSI γu[k];
2: Output: Subcarrier allocation factor δu[k], bit loading

factor bu[k], power scaling factor βu[k];
3: procedure Initialization parameters
4: Set Ru and PE to the target values Rtarget and

Ptarget;
5: Set bu[k] and Pu[k] to 0;
6: for u from 1 to U do
7: for k from 1 to Kd do
8: Calculate the power consumption of loading the

first bit

ΔPu[k] =
− ln(5Ptarget)

g(1)γu[k]
; (28)

9: end for
10: end for
11: end procedure
12: procedure Subcarrier allocation and bit loading
13: for i from 1 to Rtarget do
14: for u from 1 to U do
15: Find the subcarrier with the least power

consumption for user u and load one bit

Su = {k|δū[k] = 0, ∀ū �= u}; (29)

k̂ = {k|min{ΔPu[k], k ∈ Su}}; (30)

δu[k̂] = 1; bu[k̂] = bu[k̂] + 1; (31)

Pu[k̂] = Pu[k̂] + ΔPu[k̂]; (32)

16: Calculate the power consumption of loading an
additional bit

ΔPu[k̂] =
− ln(5Ptarget)

γu[k̂]

(
1

g(bu[k̂] + 1)

− 1

g(bu[k̂])

)
; (33)

17: end for
18: end for
19: end procedure
20: procedure Power scaling
21: for u from 1 to U do
22: for k from 1 to Kd do
23: Power scaling factor calculation

βu[k] =
δu[k]Pu[k]∑

u

∑
k

δu[k]Pu[k]
Kd; (34)

24: end for
25: end for
26: return{δu[k], bu[k], βu[k]}∀u,∀k
27: end procedure

Fig. 9. Measured time-varying channel impulse response of (a) Channel A
and (b) Channel B.

For the online part, each user obtains real-time received CSI
through channel estimation and store these CSI in the offline
part. At the same time, CSI prediction is performed by the well-
trained model. Finally, the predicted CSI is fed back to the central
node for resource allocation.

VI. PERFORMANCE EVALUATION

In this section, we present numerical results of the three pro-
posed DNN, the RLS-based and ALD-KRLS-based predictors,
simulation results on the performance of the proposed adaptive
OFDMA system, and experimental results on the measured data.
The numerical and experimental results are based on the channel
measurement data described in Section III-B, and the simulation
results are from the simulated OFDMA system designed in
Section III-A. Channel measurements are used in the simu-
lated OFDMA system, and the offline-online prediction scheme
described in Section V-C is embedded in the CSI prediction
model. Two different measured time-varying channels are shown
in Fig. 9. Fig. 9(a) and Fig. 9(b) show the time-varying UWA
channel with a transmission distance of 3 km (Channel A) and
a transmission distance of 5 km (Channel B), respectively. The
vertical axis is time and the horizontal axis is time delay. The
amplitude and delay of channel tap are time-varying. Specifi-
cally, UWA channel impulse responses (CIRs) often have the
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sparse structure in the sense that most paths can be neglected
due to overly low energy leaving only few dominant paths to be
considered [52].

A. Parameter Settings of the Prediction Models

We deployed the BPNN, LSTM, and proposed CsiPreNet
models for training and predictive analysis. RLS predictor pro-
posed in [8], [15]–[19] is a benchmark for performance com-
parison. ALD-KRLS predictor [23] is also applied to predict
the UWA channel. For RLS, the order is set to 8 and the
forgetting factor is set to 0.75. The sensitivity threshold ν of
the ALD-KRLS is set to 0.000 001, and a Gaussian kernel with
σ = 5.1 is used. The prediction models were trained according
to the measured CSI. We have 10 584 samples of Channel A and
4448 samples of Channel B. Each sample has 8 data flows and 1
data label, i.e, we used 8 time-step CSIs to predict the next one.
70% of the CSI data were allocated to the training phase, and
the remaining part were used for the test and generalization.
All the DNN frameworks were implemented in Python, and
“Keras” [53] library was used to build the three DNN models’
architecture.

For the BPNN model, two hidden layers containing 64 and
256 neurons were used to extract the frequency and temporal
correlation in CSI. For the LSTM model, the stacked LSTM
layers were exploited for the CSI prediction, which consisted of
two hidden layers, containing 64 and 256 units, respectively. A
dropout of 0.5 was applied to the two hidden layers of the model
to avoid over-fitting. For the CsiPreNet, two one-dimensional
convolutional layers with 40 filters (filter size is 1× 2) were used
to extract frequency information, followed by the LSTM layers,
which consisted two hidden layers for temporal prediction, and
the two hidden layers contained 64 and 256 units, respectively.
A dropout of 0.5 was applied to the two hidden layers of the
model to avoid over-fitting. The learning rate and batch size of
all DNN models were 0.0005 and 128, respectively. The loss
function was the mean absolute error (MAE). The activation
function and the optimization algorithm that were used in the
training phase are “relu” and “adam,” respectively. Based on the
size of CSI images, the size of input layer and output layer for
all DNN models are 8 × 34 × 1 and 34 × 1, respectively.

The hyper-parameter optimization algorithm used in this pa-
per is random search [54], and each hyper-parameter was tested
by “RandomizedSearchCV” function in “sklearn” [55] library.
Each parameter was tested with a set of different values, and the
best performance value was selected.

B. Prediction Results

We put the training samples of CSI into the DNN models.
After multiple rounds of training, we obtained the MAE loss
and training rounds, as shown in Fig. 10.

Through comparative experiments, in both the training set and
the validation set, the CsiPreNet achieved a faster convergence
rate and less losses than the BPNN and LSTM models for both
Channel A and B. The performance of the BPNN is the worst. In
Fig. 10(a), the train loss curve decreases as the training rounds
increases, but the validation loss curve firstly decreases as the
training rounds increases, and reaches the lowest value when the

Fig. 10. MAE loss of three DNN models perform training on (a) Channel A
and (b) Channel B.

training rounds in the range from 50 to 100, and then increases.
In Fig. 10(b), the train loss curve decreases as the training rounds
increases, but the validation loss curve firstly decreases as the
training rounds increases, and when the training rounds exceed
100, it stays stable. Thus in order to avoid overfitting, in the
following analysis, we set the training rounds to 75 for Channel
A, and the training rounds to 100 for Channel B. The MAE loss
of the RLS-based predictor after the iteration are 0.1287 and
0.1315 for Channel A and Channel B, respectively, higher than
the three DNN prediction models.

Fig. 11 shows the prediction results of the CSI by applying
the BPNN, LSTM, RLS, ALD-KRLS, and CsiPreNet models.
Fig. 11(a) and Fig. 11(b) shows the prediction results of Channel
A and Channel B, using the five prediction models. Fig. 12 shows
the absolute prediction error of them. As shown in Fig. 11 and
Fig. 12, the prediction results of all the prediction methods look
good, and the prediction error of the CsiPreNet is slightly better
than the other four models, and the RLS-based prediction model
has the highest prediction error for both Channel A and Chan-
nel B. It is worth noting that the performance of ALD-KRLS
method is close to that of LSTM method, and better than that
of BPNN and RLS methods in both Channel A and Channel B.
Moreover, it has more advantages when the amount of data is
smaller. Compared with the traditional RLS algorithm, KRLS
algorithm expands the processing ability of nonlinear data. Thus,
KRLS algorithm has stronger processing ability for complex
time-varying sequences.
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TABLE I
ERROR COMPARISON OF DIFFERENT PREDICTION MODELS

Fig. 11. Prediction result by using different DNN models for (a) Channel A
and (b) Channel B.

The cumulative distribution functions (CDF) of the absolute
prediction error for the five prediction models are shown in
Fig. 13. The probability of a smaller prediction error is higher
in the CsiPreNet compared to the other four methods.

Mean absolute percentage error (MAPE) and root mean
square error (RMSE) are used measure error. The formula of
MAPE and RMSE are

MAPE = 100 × 1
N

N∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣, (35)

RMSE =

√√√√ 1
N

N∑
t=1

(yt − ŷt)
2, (36)

where yt, ŷt, and N are the real data, the predicted one, and
its length, respectively. Table I shows the prediction errors of
different prediction models.

Same as the above analysis, the prediction errors of the
CsiPreNet are the lowest, and the RLS-based prediction model
has the highest prediction errors. No matter which DNN model
is used, prediction errors of Channel A are lower than that of
Channel B. This is because there are more training samples of
Channel A than Channel B. Generally speaking, more training
samples means a better trained model.

C. OFDMA Performance Analysis

The proposed downlink UWA OFDMA system described
in Section III-A is used to evaluate the performance gain ap-
plying channel prediction. Measured Channel A and Channel
B are used as the channels for two users. The offline-online
prediction scheme proposed in Section V-C is also embedded
in the proposed OFDMA system. Each data packet is a frame
of OFDM signal and contains 8 OFDM blocks. The simulated
OFDM parameters are the same as the experimental parameters
described in Section III. For the three proposed DNN models,
we input enough data to train the model in the offline part. Then
the trained model is used for CSI prediction in the online part,
and we update the training set every 5 minutes. All simulation
results are statistical values after 200 transmission rounds, and
the time interval between two adjacent handshaking rounds
(each transmission round has three handshaking rounds, i.e.,
RTS, CTS, and data transmission) is 4 s.

Fig. 14 shows the RMSE of the prediction results from
different predictors. The prediction accuracy of all predictors
increases with SNR increases. The same as the result of the
previous analysis, the CsiPreNet has the highest prediction
accuracy, no matter whether Channel A or Channel B, followed
by the LSTM and ALD-KRLS models. RLS has the worst
prediction performance. The DNN models in Channel A perform
better than Channel B, because we have more data for model
training of Channel A. KRLS and RLS predictors do not require
model training, it only needs to update the parameters adaptively
according to the input data, so the prediction errors in Channel
A and Channel B by using RLS predictor are almost the same.
Thus, the gap of prediction errors between Channel A and
Channel B by using the RLS predictor is small, so does the
ALD-KRLS method.

Fig. 15(a) shows the BER performance of the OFDMA
system by using different predictors. The fixed interlaced
subcarrier allocation (modulation scheme is QPSK) and the
resource allocation based on outdated CSI and current CSI are
used for comparison. Specifically, the “current CSI” is an ideal
benchmark (not practical) for comparison, and is defined as the
CSIs at the time slot T3 in Fig. 2(b), which means that the CSIs
are current and not outdated. The BER of all adaptive allocation
methods is lower than that of fixed interlaced subcarrier alloca-
tion, and BER based on predicted CSI is lower than that based
on outdated CSI, but higher than that based on current CSI. The
BER of all DNN models is lower than that of the RLS predictor.
The ALD-KRLS model has the same BER performance as
the LSTM model, but the better BER performance than the
BPNN model. The CsiPreNet has the lowest BER, and has
1.5 dB and 2 dB performance improvements under the case of
BER= 10e− 3, compared with the BPNN model and the RLS
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Fig. 12. Absolute prediction error.

Fig. 13. CDF of the absolute prediction error for different prediction models.

Fig. 14. RMSE of different prediction model through SNR.

predictor, respectively. But the performance gap between the
CsiPreNet and the LSTM/ALD-KRLS is small.

Fig. 15(b) shows the effective throughput of the OFDMA sys-
tem by using the different predictors. The effective throughput
is defined as: the amount of valid data successfully sent in a unit
of time. We assume that when the bit error rate exceeds 0.01,
the packet will be dropped. The results are similar to the BER
performance analysis. The effective throughput of all adaptive
allocation methods is higher than that of fixed interlaced subcar-
rier allocation, and effective throughput based on predicted CSI
is higher than that based on outdated CSI, but lower the that based
on current CSI. The effective throughput of all DNN models
is higher than that of RLS. The ALD-KRLS model has the
same throughput as the LSTM model, but the higher throughput

(a)

(b)

Fig. 15. (a) BER performance and (b) Effective throughput of OFDMA system
based on different predictor.

than the BPNN model. The CsiPreNet has the highest effective
throughput, and has 0.8 dB and 1 dB performance improvements
under the case of SNR in the range of 4−8 dB, compared with
the BPNN model and the RLS predictor, respectively. Again, the
performance gap between CsiPreNet and LSTM/ALD-KRLS is
also small.

D. Experimental Results

Furthermore, we use the sea trial data described in Section III-
B for performance evaluation. We define the data transmitted
on Channel A as Data A, and the data transmitted on Channel
B as Data B. According to the outdated CSI, the current CSI,
and the predicted CSI based on the RLS and DNN models,
we perform adaptive subcarrier allocation (modulation scheme

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on January 26,2023 at 04:48:17 UTC from IEEE Xplore.  Restrictions apply. 



9074 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 9, SEPTEMBER 2021

TABLE II
BER COMPARISON OF DIFFERENT PREDICTION MODELS

TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT PREDICTION MODELS

is QPSK) on Data A and Data B. Moreover, fixed interleaved
subcarrier allocation is used for comparison. A rate-1/2 64-state
convolution code is used for encoding. Finally, we demodulate
the data separately on the subcarriers allocated to Data A and
Data B. Table II shows the statistical results of BER based on
200 frame signals.

As Table II shown, the BER of all adaptive allocation methods
are lower than that of fixed interleaved subcarrier allocation, and
the allocation scheme while using DNN models, have better
BER performance than using the outdated CSI and the CSI
predicted by the RLS method. The ALD-KRLS model has the
same BER performance as the LSTM model, but the better BER
performance than the BPNN model. The CsiPreNet still has the
best performance.

To sum up, the above results have shown that based on
a large amount of historical data, comparing with the RLS
predictor, our proposed DNN models have better performance.
Due to the enhancement of nonlinear data processing ability, the
ALD-KRLS method in this experiment has similar performance
to the LSTM method. Especially, the CsiPreNet has the best
performance, which sheds the light that the CSI prediction
does not only depend on the temporal information but also the
frequency information, and the CsiPreNet can well capture the
correlation of information in time and frequency domain.

E. Computational Complexity Discussion

In this subsection, we compare the computational complexity
of the prediction methods used in this paper. The computing
complexity of LSTM layer is O(4nli × nlh + 4nlh

2 + 3nlh +
nlh × nlo), where nli, nlo, and nlh are the number of inputs,
outputs, and hidden layer units, respectively. The computing
complexity of CNN layer is O((nmx × nmy)× (nfx × nfy)×
nci × nco), where nmx × nmy and nfx × nfy are the size
of filter and feature map, and nci and nco are the number of
input and output channels. The computational complexity of
the fully connected layer is O(nfci × nfch + nfch × nfco),
where nfci, nfch, and nfco are the number of neurons
in input layer, hidden layer, and output layer, respec-
tively. Therefore, the computing complexity of BPNN,
LSTM, and CsiPreNet are O(nfci × nfch + nfch × nfco),

O(4nli × nlh + 4nlh
2+3nlh + nlh × nlo + nfci × nfch +

nfch × nfco), and O((nmx × nmy)× (nfx × nfy)× nci ×
nco + 4nli × nlh + 4nlh

2+3nlh + nlh × nlo + nfci ×
nfch + nfch × nfco), respectively. In Table III, we use
O(LSTM), O(LSTM) and O(LSTM) to simplify the
computing complexity of the three DNN models. The computing
complexity of the RLS algorithm is of the order O(n2

r), where
nr is the length of the control filter. The computing complexity
of the ALD-RLS algorithm is O(D2

s), where Ds is the size of
the dictionary.

Based on the above analysis, the computing complexity of the
DNNs depends on the depth of the network and the number of
neurons, while the computing complexity of the RLS algorithm
depends on the length of the control filter. In the training process,
all deep learning methods have high computational complexity,
i.e.,M × S ×O(N), whereM andS are the number of training
rounds and training samples, and O(N) is the computational
complexity of deep learning method. If the training process
is processed offline and we only consider the prediction part
(M = 1, S = 1), and even reduce some parameters (such as
the number of hidden layers and neurons), the computational
complexity can be reduced a lot. In this paper, we run all the
models on a computer with 16 GB RAM and a 2.2 GHz Intel(R)
Core(TM) i7–8750H CPU. Take Channel A as an example, the
training phase (75 training rounds) of the BPNN, LSTM, and
CsiPreNet models take around 8.31 s, 110.44 s, and 293.09 s,
respectively, while the running time of the RLS model and
ALD-KRLS model are 1.04 s and 3.19, respectively. During
the prediction phase, the running time of the BPNN, LSTM,
and CsiPreNet models take around 0.034 ms, 0.455 ms, and
0.981 ms, respectively. Therefore, in the case of a large number
of training samples trained offline, the DNN models can be
applied to the real-time UWA communication system accord-
ing to the short prediction time. The intuitive computational
complexity comparison is shown in Table III.

VII. CONCLUSION

In this paper, for adaptive downlink UWA OFDMA system
over time-varying UWA channels, we investigate the possibility
of predicting an UWA channel in the frequency domain. The
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DNN models are considered to capture complex nonlinear rela-
tionships for channel prediction in the frequency domain. First,
we design a learning model called CsiPreNet, which combines
the CNN and LSTM networks and is used to capture the temporal
correlation and frequency correlation on UWA CSIs. Second, we
further develop an offline-online prediction scheme, enabling
the prediction results to be more stable when applying it to the
adaptive downlink UWA OFDMA system. The offline part is
used to train a large number of collected CSI, and then the
well-trained model is used for CSI prediction in the online
model. Finally, a simulated downlink UWA OFDMA system is
designed to evaluate performance. Two measured channels are
used for two users in this OFDMA system. The offline-online
prediction scheme is embedded in the OFDMA system. The
predicted CSI is used for resource allocation. Simulation and
experimental results that are obtained with measured channels
and simulated OFDMA system, respectively, show that DNN
prediction models can effectively estimate the future CSI, and
their performance is better than the existing RLS predictor. The
CsiPreNet has the best performance, because it can better capture
the correlation of CSI not only in the time domin, but also in the
frequency domain.

This work leads us to conclude that DNN based prediction
models may be viable for reliable adaptive UWA communi-
cation systems. To the best of our knowledge, this is the first
paper that designs DNN models for UWA CSI prediction links
with measured experimental data. Applying the DNN models
to a real-time at-sea UWA communication systems will be
an important further research issue, e.g., how to store a large
amount of channel data, hardware design, and the balance be-
tween the computational complexity and system performance.
Considering critical CSI-relevant features (e.g., frequency band,
location, temperature, etc.) in the learning process may improve
the prediction accuracy, which beckons further research.
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