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Abstract—Machine-type communications (MTC) is a key tech-
nology for Internet-of-Things (IoT) services in 5G mobile commu-
nications and beyond. An essential design problem for an MTC
network is the efficient and scalable data collection from low-power
machine-type communication devices (MTCDs). This paper uses
unmanned aerial vehicles (UAVs) to facilitate data collection from
a clustered MTC network on the ground. The notion of artificial
energy map (AEM) is introduced as a novel modeling technique
for energy efficiency analysis, which is critical to the subject of in-
vestigation here considering the limited energy of battery-powered
MTCDs and UAVs. The proposed design framework first deter-
mines the number of MTCD clusters Lopt according to a certain
criterion. A greedy learning clustering (GLC) algorithm is then
employed to divide the MTCDs intoLopt clusters. For each MTCD
cluster, an AEM is constructed, and the optimal UAV hovering
strategy within the cluster can be obtained accordingly. Finally,
the UAV stations travel across the clusters and collect data from
each cluster while hovering above it. This AEM-based modeling
technique leads to a solution that can effectively improve the
energy efficiency (EE) of UAV-enabled data collection. However,
the MTCD clustering strategy, UAV hovering strategy, and UAV
flying strategy all have impacts on the overall energy efficiency,
which results in a coupled optimization problem that is difficult
to solve. The GLC-AEM method is proposed to decouple the
original EE optimization problem into sub-problems that can be
handled easily by standard optimization techniques. Simulation
results show that the GLC-AEM algorithm can be applied to
UAV-enabled data collection scenarios with single and multiple
UAV stations, and it can improve the overall EE effectively. Besides,
the GLC-AEM algorithm shows good scalability and consistent
performance in clustered MTC networks. The more MTCDs, the
higher the achieved EE.

Index Terms—Artificial energy map, clustered MTC network,
energy efficiency, trajectory planning, UAV-enabled data collection.
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I. INTRODUCTION

MASSIVE machine-type communication (mMTC) is an
important use case of Internet-of-Things (IoT) applica-

tions in 5G, which has attracted a lot of research interests in
recent years [1]–[4]. Because of its broad coverage and large
connectivity, the mMTC network is the key enabler of scaling up
emerging IoT services such as environmental monitoring, forest
fire prevention, smart healthcare, etc. Achieving highly efficient
data collection from a huge number of low-cost, low-complexity
machine-type communication devices (MTCDs) is one key issue
that must be addressed for mMTC networks. However, support-
ing access of massive MTCDs with high dynamics and broad dis-
tribution requires significant resources and infrastructure, which
poses great challenges to legacy cellular networking [5]–[7].

Evolutional amendments to legacy cellular standards have
been proposed for cellular IoT services [8], which have partly
addressed the issues with providing scalable services to MTCDs.
To better support mMTC, as well as ultra-reliable low-latency
communication (uRLLC) applications, new disruptive technolo-
gies have to be introduced to the radio access network (RAN).
Recently, unmanned aerial vehicles (UAVs) have been exploited
as a promising airborne communication platform [9]–[11]. Due
to their mobility, hovering, low-cost and flexible deployment fea-
tures, UAVs have great potentials in providing communication
services to remote and disaster-strike areas [13]–[15], [31]. It
is a promising solution to mMTC applications, especially when
efficiency is the key consideration while latency requirement is
relaxed [16]–[18]. Specifically, the UAV stations can approach
the MTCDs and exploit the favorable line-of-sight (LoS) com-
munication links for efficient data transmission.

There has been an extensive focus on the task comple-
tion time and the age of information (AoI) for UAV-assisted
data collection. In [19], minimization of the data collection
time was achieved by jointly optimizing the UAV’s trajectory
and transmission scheduling of the ground MTCD nodes. A
mixed-integer nonlinear programming (MINLP) problem was
formulated, and a solution technique based on successive con-
vex optimization was proposed. The notion of average AoI of
ground-based sensors transmitting data to a UAV station was
introduced and minimized in [20]. The UAV was used as a
mobile data collector as well as an energy source transfer-
ring energy to the ground-based sensor nodes. A problem that
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jointly optimizes the UAV’s trajectory, the sensor nodes’ energy
harvesting and data transmission time was formulated and solved
accordingly. Consider that it is challenging to collect data from
massive MTCDs while ensuring the freshness of information
with one single UAV station, the problem of AoI-optimal data
collection enabled by multiple UAVs under energy constraints
was studied [21]. Similarly, completion time minimization for
multi-UAV-enabled data collection in wireless sensor networks
(WSNs) was investigated in [22].

Due to the low-power, low-complexity nature of the MTCDs,
energy efficiency (EE) is important performance measure for
machine-type communications. As mentioned above, when the
EE requirement outweighs the latency requirement, using UAVs
to collect data is promising for mMTC applications. In [23], the
trade-off between overall throughput and energy consumption
of UAV-IoT systems was investigated. A novel UAV-assisted
IoT network was studied in [24]. In addition to being a mobile
data collector, the UAV platform was also used as an airborne
anchor node to assist 3D positioning of the IoT devices. By
jointly optimizing the UAV’s flight trajectory and transmission
scheduling, the energy consumption was minimized, subject to
the communication reliability and positioning accuracy con-
straints. To maximize the energy efficiency for data collection,
a UAV-assisted backscatter communication scheme was studied
in [25]. A closed-form expression for average outage probability
was derived to determine the optimal UAV data collection lo-
cation. Recently, a UAV-assisted wireless sensor network with
wireless charging was studied in [26]. The ground-based sensors
are divided into multiple groups. A Markov decision problem
was formulation, and a Q-learning solution approach using a
new reward function was proposed, which hit a good balance
between average throughput, delay, and energy efficiency.

In UAV-enabled data collection over clustered mMTC net-
works, clustering strategies, transmission scheduling, UAVs’
deployment, and trajectory optimization significantly impact
data collection EE. Existing works have their advantages, but
to our best knowledge, there is no sound system modeling
that can comprehensively consider the balance between the
EE, transmission delay, and the system’s scalability. In this
paper, we study an energy-efficient and scalable UAV-enabled
data collection scheme for mMTC networks. A new modeling
technique is proposed to design the MTCDs’ clustering strategy,
UAVs’ flying and hovering strategies. The impact of system
expansion on data collection EE and delay has been investigated,
including the extension from single UAV to multiple UAVs and
the extension of system scale. Specifically, a modeling technique
based on the notion of artificial energy map (AEM) is proposed
to characterize the system from the EE perspective. To efficiently
serve a large number of MTCDs, a greedy learning clustering
(GLC) scheme based on a certain criterion is proposed to divide
the target MTCDs into clusters. A GLC-AEM algorithm for effi-
cient data collection in the large-scale and high-density mMTC
scenario is proposed and its performance is evaluated subse-
quently. The main contributions of this work are summarized in
the following.
� The AEM is proposed as a new modeling technique for

UAV-enabled data collection in mMTC networks. This

Fig. 1. The UAV-enabled data collection system model.

model describes the single-UAV, delay-insensitive data
collection system from the energy efficiency perspective,
and it can also be extended to multi-UAV scenarios.

� To improve data collection efficiency, an mMTC network
to be served is divided into cluster. A clustering number
determining (CND) algorithm finds the optimal number of
clusters Lopt according to certain principle. Two princi-
ples, namely clustering principle I (CP-I) and clustering
principle II (CP-II) are studied for the CND algorithm
design. Specifically, CP-I minimizes the number of clusters
subject to the UAV’s service radius and service capacity
constraints, while CP-II minimizes the maximum cluster
radius rmax.

� Based on the optimal number of clusters Lopt determined
by the CND algorithm, the GLC scheme is proposed to
group the MTCDs in the mMTC network intoLopt clusters
according to the channel state information (CSI) and the
task properties.

� The problem of minimizing the energy consumption
through UAV trajectory design is formulated. The problem
exhibits strong coupling between the clustering strategy,
the UAV hovering strategy, as well as the UAV flying
route. The GLC-AEM scheme is proposed to decouple the
original problem, which is shown to achieve good energy
efficiency with low complexity.

The remainder of this paper is organized as follows. The
system model under investigation and the original optimization
problem formulation are presented in Section II. The novel AEM
modeling technique is proposed in Section III. The GLC-AEM
algorithm for clustering and UAV hovering strategy design is
proposed subsequently in Section IV. The complexity of the pro-
posed algorithm is analyzed in Section V. Numerical results that
evaluate the performance of the proposed schemes are presented
in Section VI. Concluding remarks are given in Section VII.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this work, we consider a UAV-enabled data collection
system for mMTC scenario, as shown in Fig. 1. A large number
of MTCDs are distributed on the ground. The UAV collects data
from the MTCDs while flying over the target service area. By
optimizing the UAV’s trajectory, the energy consumption of this
system is minimized subject to completion of the data collection
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TABLE I
TABLE OF NOTATIONS

task. For convenience, the symbol notations used in this paper
are summarized in Table I.

A. Data Collection Scenario and Channel Model

As shown in Fig. 1, we consider an mMTC network consisting
of K ground-based MTCDs and one single UAV station. The
MTCD set is denote as K = {1, 2, . . .,K}. The UAV flies at a
constant speed v. Define the altitude of the ground as 0, and
the flying altitude of the UAV as ha. The location coordinates of
the MTCDs and the UAV are expressed asqk = (qxk , q

y
k , 0), k =

1, . . .,K and u = (ux, uy, ha), respectively.
Assume that the UAV station has all the MTCDs’ position in-

formation in advance. The UAV flies from a preset starting point
us = (ux

s , u
y
s , ha) to a preset ending point ue = (ux

e , u
y
e , ha).

It collects data from the MTCDs while flying over the service
area. All the MTCDs have fixed data transmission tasks that
should be completed before the UAV finishes its flight. The
UAV’s total flight time T is equally divided into N slots of
duration τ = T/N , where N is sufficiently large to give fine
time resolution. As a result, each time slot τ corresponding to
a trajectory anchor is small enough to guarantee approximately

constant air-to-ground wireless channels within τ . The instan-
taneous time can be expressed as tn = nτ, n = 1, . . ., N .

We use hk(tn), k = 1, . . .,K, to denote the channel coeffi-
cient between the kth MTCD and the UAV at time instance tn.
As in [27] and [28], hk(tn) adopts the form

hk(tn) =
√

βk(tn)h̃k(tn), (1)

where βk(tn) characterizes the large-scale effects such as path-
loss and shadowing, and h̃k(tn) accounts for the small-scale
fading. h̃k(tn) is generally a complex-valued random variable
with E[|h̃k(tn)|2] = 1. On the other hand, βk(tn) takes different
forms for LoS propagation and NLoS propagation, i.e.,

βk(tn) =

{
1/β0d

2
k(tn), LoS link

κ/β0d
2
k(tn), NLoS link

(2)

where dk(tn) = ‖qk − u(tn)‖2 is the MTCD-UAV link dis-
tance, β0 is the path-loss at the reference distance, and κ < 1
reflects the additional attenuation due to NLoS propagation.

At any time instance, either LoS or NLoS propagation occurs
according to certain probabilistic model. In this work, we assume
the probability of LoS propagation is given by

Pr L(tn) =
1

1 + a exp(−b[θ(tn)− a])
, (3)

where a, b are parameters determined by the radio propagation
environment, and θ = arcsin(ha

d ) is the elevation angle. The
probability of NLoS propagation is Pr NL(tn) = 1 − Pr L(tn).

B. Energy Consumption Model

The overall energy consumption consists of two parts. The
first is the data transmission energy consumption during the data
collection process. The second is the UAV’s maneuvering energy
consumption.

1) Data Transmission Energy Consumption: Denote by
Pk(tn) the instantaneous transmitting power of the kth MTCD.
Assume that the power consumption of the UAV receiver is a
constant circuit power, which does not affect the optimization
process. The energy consumption of the kth MTCD for data
transmission isEk,C =

∑N
n=1 Pk(tn)τ . The total data transmis-

sion energy is then given by

EC =

K∑
k=1

Ek,C. (4)

2) UAV Maneuvering Energy Consumption: As in [29], the
UAV maneuvering energy consumption can be calculated as

EM =

N∑
n=1

mvg

ηmηp
vτ, (5)

where mv, g are the mass of the UAV and the gravitation
constant. ηm and ηp represent efficiency of the UAV’s motor
and propellers. v and τ represent the UAV’s flying speed and
flying time slot length.
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C. Problem Formulation and the Global Optimal Trajectory

We next present the problem which maximizes the overall
energy efficiency by optimizing the UAV’s flying trajectory,
subject to completion of the data collection tasks. Orthogonal
radio resources, say different frequency bands, are assigned to
different MTCDs for uplink transmissions to avoid inter-user
interference. It is noted that if the UAV could finish the data
collection tasks, the sum of the achievable rates must satisfy the
following inequality for every MTCD.

N∑
n=1

E

[
B log2

(
1 +

Pk(tn)|hk(tn)|2
σ2

)
τ

]

≥ Bk, k = 1, . . .,K, (6)

where B denotes the communication bandwidth in hertz (Hz)
that is assigned to every MTCD. The left hand side (LHS) of (6)
is the overall data throughput of the kth MTCD over all N time
slots. σ2 denotes the additive white Gaussian noise (AWGN)
power.Bk on the right hand side (RHS) is a quantity that reflects
the data size of the kth MTCD, and the unit of Bk is Mb.

Eqn. (6), as a constraint, is difficult to handle when optimizing
the UAV trajectory for maximized energy efficiency. To circum-
vent this, a lower bounding technique is used to replace the LHS
of (6). Define λk(tn) = 1/βk(tn)|h̃k(tn)|2, log2(1 + Pk(tn)

λk(tn)σ2 )

is a convex function of λk(tn). A lower bound of the expected
throughput can be derived according to Jensen’s inequality as

E

[
B log2

(
1 +

Pk(tn)|hk(tn)|2
σ2

)]

= E

[
B log2

(
1 +

Pk(tn)

λk(tn)σ2

)]

� B log2

(
1 +

Pk(tn)

E[λk(tn)]σ2

)

=B log2

(
1+

Pk(tn)(Pr L(tn)+(1−Pr L(tn))κ)

β0σ2‖qk−u(tn)‖2
2

)
� R̄(tn).

(7)

The overall energy efficiency of the mMTC data collection sys-

tem is given by
∑K

k=1 Bk

ωCEC+ωMEM
, where ωC and ωM are adjustable

weighting parameters. Since Bk is a constant, maximizing the
energy efficiency is equivalent to minimizing the overall energy
consumption. The UAV trajectory and MTCD transmit power
optimization problem is then formulated as

P0 : minimize
{ux(tn),uy(tn),Pk(tn)}

ωCEC + ωMEM (8)

s.t. Pk(tn) ≤ Pmax, (8a)

N∑
n=1

R̄(tn)τ ≥ Bk, k = 1, . . .,K, (8b)

‖u(tn+1)− u(tn)‖2
2 ≤ (vτ)2, n = 1, . . ., N. (8c)

Constraint (8a) sets the maximum MTCD transmit power, and
constraint (8b) characterizes the data collection task for each

MTCD. Denote by v the maximum flying speed of the UAV, the
maximum flying distance of the UAV within a time duration τ is
vτ . Thus (8c) can be interpreted as the UAV mobility constraint.
Note that the start and end points of the UAV’s flight trajectory
us andue correspond to the UAV positions at time instants t1 and
tN+1, respectively. In problem P0, the constraints (8a) and (8c)
are linear and quadratic constraints. It is straightforward to show
that (8a) and (8c) are convex constraints [33]. Therefore, the
key to finding the optimal solution to P0, i.e. achieving Global
Trajectory Optimization (GTO), lies in whether the objective
function and constraints (8b) are convex.

The condition for finding the optimal solution to P0 is stated
in the following.

Lemma 1: Define rmax as the UAV station’s maximum ser-
vice radius for data collection, i.e.,

rmax = max

{√
(ux(tn)− qxk)

2 + (uy(tn)− qyk)
2
}
,

∀k = 1, . . .,K; n = 1, . . .N.

There exists a global optimal trajectory for problem P0 if the
flying altitude of the UAV satisfies ha ≥ √

3rmax. �
The proof of Lemma 1 is presented in the Appendix.
It is worth noting that ha ≥ √

3rmax indicates the elevation
angle is greater than 60 degrees. According to [32], the proba-
bility of LoS propagation is almost 1 when the elevation angle
is greater than 60 degrees, even in an urban environment. In this
case, the air-to-ground links can be viewed as LoS links and the
optimal solution of P0 gives the global optimal trajectory.

III. AEM MODELING AND PROBLEM REFORMULATION

In Section II, we have investigated single-UAV trajectory
optimization for energy minimization in an MTCD data col-
lection system. However, as stated in Lemma 1, existence of a
global optimal solution to P0 has stringent requirement on the
UAV’s flying altitude. Specifically, when the ground MTCDs
are scattered over a large area, the UAV needs to fly at a very
high altitude to guarantee theoretical global optimal solution to
P0. This leads to high propagation path-loss of the MTCD-UAV
links. Consequently, high communication energy consumption
is expected for the data collection tasks, which is undesirable
from the energy efficiency perspective.

An intuitive way to mitigate the above issue is to reduce the
UAV’s flying height so that the LoS link distance between the
UAV and the MTCDs is reduced. As a result, the UAV’s service
radius is reduced as well. It is then reasonable to serve the mMTC
network in a clustered manner, where each cluster has a relatively
small radius. The UAV station travels across the clusters and col-
lects data from each cluster while hovering above it. The problem
then breaks down to the MTCD clustering sub-problem and the
in-cluster and inter-cluster UAV flying strategy sub-problems.
In this section, we study a modeling technique named artificial
energy map (AEM) for analysis of data collection service in
the mMTC network. The GLC-AEM scheme, which adopts the
divide-and-conquer strategy, is proposed to decouple and solve
the EE optimization problem.
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A. Constructing the AEM

The radio map is an emerging channel modeling method in
UAV communications. It solves the problem that either deter-
ministic or statistical channel model can accurately describe
shadow fading. The essence of the radio map is to measure and
establish the relationship between the channel state information
(CSI) and the geographic location through the cooperation of
nodes in the system and establish a database, that is, the radio
map. Optimizing UAV communication strategies based on radio
map information has become increasingly popular [30], [31].
The radio map can be used to describe exact radio propagation
information in UAV communications. In practice, UAVs or other
cooperative nodes can establish the relationship between the
channel state information (CSI) and the geographic positions
of nodes a priori by means of spectrum sensing, machine
learning etc. A radio map can be constructed and updated
after collecting and processing sufficient measurements from
the radio propagation environment. Similarly, in this paper, the
proposed artificial energy map model studies the relationship
between the UAV’s data collection energy consumption and the
geographical positions of the MTCDs. Based on the position
and task information (PTI) of the ground-based MTCDs, we
construct an artificial energy function and then generate an AEM
that is used to optimize deployment of the UAV station.

Specifically, for a group of MTCDs that are served by a
UAV station, we first construct a location-aware energy function
according to all MTCDs’ PTI. Based on the values of the energy
function, a clustering strategy is devised to partition the MTCD
set K into a set of L subsets, i.e. clusters. We use Kl, with l =
1, . . ., L, to denote the lth MTCD cluster. The number of MTCDs
in Kl is Kl, and

∑L
l=1 Kl = K. For the convenience of the

notation, we also define a dummy variable K0 = 0. Therefore,
the MTCD index subsetKl = {∑i=l−1

i=0 Ki + 1, . . .,
∑i=l

i=0 Ki}.
The UAV flies along a trajectory from the preset starting point
us to the preset ending point ue. The trajectory must traverse
all clusters, and the UAV collects data from MTCDs within a
cluster while hovering above it. The UAV’s hovering time in
cluster l is denoted as Γl, and it uses Δl of time to fly from
the lth hovering position to the (l + 1)th hovering position.
Because the flying attitude of the UAV has a great impact on
data transmission, no data transmission from the MTCDs to the
UAV is allowed while the UAV is flying between hovering points.
The in-cluster hovering time set and the inter-cluster flying time
set are denoted by Γ = {Γl} and Δ = {Δl}, respectively. The
altitude of the ground is 0, and the flying altitude of the UAV is
ha(l) when it flies over the lth cluster. The coordinates of the
ground MTCDs and the UAV’s hovering position corresponding
to the lth cluster are then expressed as qkl

= (qxkl
, qykl

, 0) with
kl ∈ Kl, and u(l) = (ux(l), uy(l), ha(l)), respectively. Similar
to eqn. (7), the instantaneous achievable rate from thekthl MTCD
to the UAV station is

R̄kl
(u(l))

= B log2

(
1+

Pkl
(u(l)) (Pr L (u(l))+(1 − Pr L (u(l)))κ)

β0σ2‖qkl
− u(l)‖2

2

)

(9)

where Pkl
(u(l)) is the instantaneous transmit power of the kthl

MTCD in the lth cluster, and Pr L(u(l)) is the LoS occurrence
probability when the UAV’s hovering position is u(l).

Assume that the amount of data to be transmitted from the
kthl MTCD to the UAV station at the lth hovering position is

Bl
k = ΓlR̄kl

(u(l)) , kl ∈ Kl, (10)

Combining (10) and (9), the communication power consumption
of the kthl MTCD in the lth cluster is derived as

Pkl
(u(l)) =

(
2

Bl
k

Γl − 1

)
σ2

h̄kl
(u(l))

, (11)

where h̄kl
(u(l)) = (Pr L(u(l))+(1−Pr L(u(l)))κ)

β0‖qkl
−u(l)‖2

2
.

We define a communication power matrix and use it to estab-
lish the relationship between the MTCD clustering strategy and
the communication energy consumption, which is given as

Qk =

⎡
⎢⎢⎢⎣

P1(u(1)) P1(u(2)) · · · P1(u(L))
P2(u(1)) P2(u(2)) · · · P2(u(L))

...
...

. . .
...

PK(u(1)) PK(u(2)) · · · PK(u(L))

⎤
⎥⎥⎥⎦ . (12)

The number of non-zero entries in the kth column of Qk is
therefore Kl. Considering the fact that the number of ground-
to-air links a UAV station can support is limited, an upper bound
on Kl is introduced, i.e. Kl ≤ Smax. The energy function for
clustering is defined as

Ek(u(l)) =
(

2
Bk
Γl − 1

)
σ2

hk(u(l))
Γl, k = 1, . . .,K. (13)

Eqns. (12) and (13) are used to determine the clustering strategy,
which will be further discussed in detail in Section IV. Note that
when determining the clustering scheme, u(l)’s are updated as
the positions of the cluster heads.

After determining the clustering scheme, the in-cluster UAV
hovering positions for data collection should be optimized. The
following artificial energy function (AEF) is constructed, and an
AEM is generated accordingly for each cluster.

Φl=
∑
kl∈Kl

Pkl
(u(l))Γl−

∑
kl∈Kl

log (Pmax−Pkl
(u(l)))+PhΓl.

(14)

In (14),Pkl
is the transmit power of thekthl MTCD in this cluster,

and Ph =
√

(mvg)3

2πρr2
pnp

is the hovering power. The lowest AEM

point corresponds to the energy-efficient optimal UAV hovering
position in the cluster. Taking the negative gradient of the AEF
(14) as the gravitational function ϕl, we have

ϕl = −∇Φl

= −
∑
kl∈Kl

(
∂Pkl

(u(l))

∂ux(l)
+

∂Pkl
(u(l))

∂uy(l)
+

∂Pkl
(u(l))

∂Γl

)
(
Γl +

1
Pmax − Pkl

(u(l))

)
−
∑
kl∈Kl

Pkl
(u(l))− Ph.

(15)
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Fig. 2. Decomposition of the optimization problem.

The UAV adjusts its position under the action of the gravitational
function. Finally, based on the above principle, the UAV arrives
at the lowest point of the AEM and claims it the EE optimal
hovering position for data collection in the current cluster.

B. Problem Reformulation With AEM

Assume that the power consumption of the UAV receiver is
a constant circuit power, which does not affect the optimization
process. The overall communication energy consumption for
data transmission is thus given by

EC(Qk,u(l),Γl) =

L∑
l=1

∑
kl∈Kl

Pkl
(u(l))Γl. (16)

There are two maneuvering states of the UAV, hovering and
flying, in the reformulated model. As in [29], the UAVs’ ma-
neuvering energy consumption is the sum of hovering energy
consumption and flying energy consumption

EM(Γl,Δl, v) = EMf
(Δl, v) + EMh

(Γl), l = 1, . . ., L, (17)

where EMf
and EMh

are flying and hovering energies given by

EMf
(Δl, v) =

L∑
l=1

mvg

ηmηp
vΔl, (18)

EMh
(Γl) =

L∑
l=1

√
(mvg)3

2πρr2
pnpη2

mη
2
p

Γl. (19)

In (19), rp and np denote the radius and the number of the
UAV’s propellers. The total energy consumption of the mMTC
data collection system is given by the sum of the communication
energy and the UAV maneuvering energy.

E(Qk,u(l),Γl,Δl, v) = ωCEC(Qk,u(l),Γl)

+ ωMEM(Γl,Δl, v) (20)

The original problem is reformulated as

P1 : minimize
{Qk,u(l),Γl,Δl,v}

E(Qk,u(l),Γl,Δl, v) (21)

s.t. Pk(u(l)) ≤ Pmax, (21a)

Smin ≤ Kl ≤ Smax, (21b)

L∑
l=1

Kl = K. (21c)

Constraint (21a) is the per-MTCD transmit power constraint.
The inequality (21b) sets a reasonable range for the cluster size,
i.e. the number of MTCDs a UAV station serves simultaneously.
The last constraint (21c) ensures that every MTCD is served.
It can be observed from the system model that the structure of
the communication power consumption matrix Qk, the UAV
hovering position and hovering time in each cluster, the UAV’s
inter-cluster flying time, as well as the maximum flying speed all
have impacts on the overall energy consumption. It is challeng-
ing to jointly optimize all these variables analytically to achieve
total energy consumption minimization.

IV. THE PROPOSED AEM-BASED UAV TRAJECTORY

PLANNING METHOD

To solve problem P1 given by (21), we propose to decou-
ple the clustering, hovering and flying variables such that the
original problem is decomposed into sub-problems that are
tractable. The optimization objective is to minimize the total
energy consumption. The communication energy consumption,
as discussed above, is affected by the clustering strategy and the
UAV’s hovering strategy. Once the optimal hovering strategy is
obtained, the hovering energy minimization problem is solved.
On the other hand, the factors affecting the UAV’s flying energy
consumption in (18) include the UAV speed and the flying time.
Minimizing the UAV flying energy is equivalent to minimizing
the trajectory length. Therefore, once the hovering strategy is
determined, the UAV flying strategy design is essentially a
classic salesman problem that is readily solved by techniques
such as Ant Colony Optimization (ACO). To make this difficult
coupling problem solvable, we do not consider the impact of the
UAV flying strategy on the clustering and hovering strategies.
The problem decomposition process is shown in Fig. 2.

Sub-problem SP1 jointly optimizes the MTCD clustering
strategy and the UAV hovering strategy. An iterative alternating
optimization procedure can be employed to solve SP1. After
obtaining the MTCD clustering and UAV hovering schemes,
sub-problem SP2 minimizes the UAV flying energy consump-
tion through finding the optimal inter-cluster flying path. Next,
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we are going to present the detailed solution based on the above
decomposition approach.

A. GLC-AEM Algorithm for Clustering and UAV Hovering
Strategy Design

The joint optimization sub-problem SP1 for MTCD clus-
tering and the UAV hovering strategy design is given in the
following.

SP1 : minimize
{Qk,u(l),Γl}

ωCEC(Qk,u(l),Γl) + ωMEMh
(Γl)

(22)

s.t. Pk(u(l)) ≤ Pmax, (22a)

Smin ≤ Kl ≤ Smax, (22b)

L∑
l=1

Kl = K. (22c)

Problem SP1 is a non-convex optimization problem. The
optimization variables Qk, Γl and u(l) are still coupled in the
objective function (22). The MTCD clustering strategy and the
UAV hovering strategy therefore interact with each other in
SP1. To tackle this, a greedy learning approach based on the
AEM model can be used to effectively group the MTCDs from
the EE perspective, while the optimal UAV hovering strategy
within one cluster can be obtained by applying the AEM princi-
ple. We therefore propose an iterative alternating optimization
method, namely the GLC-AEM algorithm, for problem SP1.

1) The Greedy Learning Clustering (GLC) Algorithm: A
convenient yet efficient strategy based on theK-means principle
is employed for MTCD clustering. First, the distance between
adjacent MTCDs is analyzed according to the MTCDs’ spatial
distribution. The number of clusters is then determined based on
the MTCD distribution density and the UAV’s service parame-
ters. Specifically, the probability of exactly α MTCDs in an area
is given by

Pr(x = α) =
λα

α!
e−λ. (23)

Assume the MTCDs are uniformly distributed within a circle of
radius r with density ρ. The expected number of MTCDs in this
area is λ = ρπr2. Therefore,

Pr(x = α) =
(ρπr2)α

α!
e−ρπr2

. (24)

The probability of at least one MTCD in this area is

Pr(α ≥ 1) = 1 − Pr(x = 0) = 1 − e−ρπr2
. (25)

Denote by dadj the distance between adjacent MTCDs. It is
straightforward to show that

Pr(dadj ≤ r) = Pr(α ≥ 1) = 1 − e−ρπr2 .
= F (r). (26)

The probability density function of the inter-MTCD distance is

fR(r) = F ′(r) = 2πρre−ρπr2
. (27)

Algorithm 1: Clustering Number Determining (CND) Al-
gorithm.

Input: The MTCD set K, maximum and minimum
cluster size Smax and Smin, the MTCDs’ distribution
density ρ.

Output: The optimal number of MTCD clusters, Lopt.
1: Initialization: Initialize clustering number as Lini = 1.

Repeat
2: Divide the MTCDs into Lini clusters using the

K-means clustering algorithm with k = Lini.
3: Calculate the maximum cluster radius rmax according

to the clustering result and count the number of
MTCDs Kl in each cluster.

4: if rmax ≤
√

Smax

ρπ and Smin ≤ Kl ≤ Smax then
5: Lopt = Lini

6: else
7: Lini = Lini + 1
8: end if

9: Iterate this process to the preset number and choose a
Lopt and initial clustering strategy under principle CP-I
or CP-II.

The expectation of r is therefore

E[r] =

∫ +∞

0
rfR(r)dr =

∫ +∞

0
2πρr2e−ρπr2

dr

=

∫ +∞

0
e−ρπr2

dr =
1

2
√
ρ
. (28)

It can be observed that the distance between adjacent MTCDs
is related to the distribution density of the MTCDs. When the
MTCDs’ density grows large, the distance between adjacent
MTCDs approaches 0, which is intuitively correct. Therefore,
when clustering the MTCDs in an mMTC network, the number
of clusters should be determined according to the MTCD dis-
tribution density and the number of MTCDs that the UAV can
serve at the same time.

We investigate two principles for the Clustering Number
Determining (CND) algorithm, which determines the optimal
number of clusters before the MTCDs are grouped into clusters.
To collect delay-sensitive data, it is desirable to serve as many
MTCDs simultaneously as possible from the delay perspective,
subject to certain constraints. Correspondingly, the Clustering
Principle I (CP-I) is to minimize the number of clusters un-
der the constraints of the UAV’s service radius and service
capacity. The UAV station flies to the optimal hovering position
of each cluster to collect the delay-sensitive data. Conversely,
for delay-insensitive data, the Clustering Principle II (CP-II)
tries to minimize the communication energy consumption as
much as possible. The CP-II principle of CND therefore aims
to minimize the maximum clustering radius rmax so that the
energy consumption for data transmission is minimized. The
CND procedure is summarized in Algorithm 1.
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Algorithm 2: Greedy Learning Clustering (GLC) Algo-
rithm.

Input: The MTCD set K, data collection tasks Bk, the
channel coefficients hk(tn), maximum and minimum
cluster size Smax and Smin, AWGN power σ2, hovering
time set Γ.

Output: The optimal Q∗
k.

1: Initialization: Clustering obtained by applying
Algorithm 1 is used as the initial clustering L.
Calculate Qk based on L.

2: Count the number of non-zero entries in each column
of Qk as Kl, ∀l ∈ L. Repeat

3: for every MTCD k ∈ K do
4: The current cluster of the kth MTCD is recorded as lc.
5: for every cluster l ∈ L do
6: Generate the energy function of the kth MTCD as

Ek(u(l)) = (2
Bk
Γl − 1) σ2

hk(u(l))
Γl, and the set

ϑ(l) � {Ek(u(l)), l ∈ L}.
7: end for
8: while min{ϑ(l)} < Pk(u(lc)) do
9: lo = argmin ϑ(l),

10: if Klo > Smax or Klc < Smin then
11: Ek(u(lc)) = +∞
12: else
13: Modify the cluster index of MTCD k from lc to lo and

update Qk;Klo = Klo + 1, Klc = Klc − 1.
14: end if
15: while
16: endfor
17: Until the value of Qk does not change or a preset

maximum number of iterations is reached.

After obtaining an initial clustering scheme based on the
K-means principle, a Greedy Learning Clustering (GLC) al-
gorithm based on the AEM principle is proposed to iteratively
update the clusters. Specifically, an energy function based on the
initial cluster heads and the PTI of the MTCDs is constructed
as the lost function. Next, clustering of the MTCDs is updated
by learning the energy function. Then the MTCDs generate the
AEM to conduct AEM-based hovering position optimization, as
will be studied in the next part. In the next iteration of the GLC
algorithm, each cluster head is adjusted to the optimal in-cluster
UAV hovering position obtained in the last iteration. The above
process is iterated until convergence, and the optimal clustering
and UAV hovering strategies are output by the algorithm. Algo-
rithm 2 shows detailed steps of how the MTCDs learn the energy
function and adjust clustering iteratively.

2) AEM-Based Optimal UAV Hovering Strategy Design: The
in-cluster hovering position of the UAV can be optimized given
MTCDs in the mMTC network are clustered. Specifically, we
first generate an AEM according to (14) for every cluster. As
summarized in Algorithm 3, the UAV adjusts its position under
the action of the gravitational function. The UAV finally arrives
at the lowest point of the AEM under the action of the combined

TABLE II
PARAMETER VALUES OF THE SYSTEM SETTING FOR SIMULATIONS

Algorithm 3: UAV Hovering Strategy Optimization Based
on AEM Modeling.

Input: Positions of all MTCDs in cluster l, data
collection tasks Bl

k, UAV’s flying altitude ha(l), and
AWGN power σ2.

Output: Optimal UAV hovering scheme, i.e., optimal
hovering position u∗(l) and optimal hovering time Γ∗

l ,
for the lth cluster.

1: Initialization: The cluster head in Algorithm 2 is used
as the initial hovering position u(l). The hovering time

Γl = max{ Bl
k

R̄kl
(u(l))

}.

2: Repeat
3: Calculate the transmit power of the kthl MTCD as

Pkl
(u(l)) = (2

Bl
k

Γl − 1) σ2

hkl
(u(l)) ;

4: Calculate the The AEF function and generate the
AEM, the AEF function is
Φl =

∑
kl∈Kl

Pkl
(u(l))Γl −

∑
kl∈Kl

log(Pmax −
Pkl

(u(l))) + PhΓl.
5: Calculate the combined gravitational function as

ϕl = −∇Φle.
6: The UAV adjusts the hovering strategy under the

action of the combined gravitational function. Update
u(l) and Γl.

7: Until terminate at convergence or a preset maximum
number of iterations is reached.

gravitational function and claims it the optimal hovering posi-
tion. At this hovering position, the energy consumption is the
lowest for the cluster, as shown in Fig. 5.

Problem SP1 can be solved by alternately optimizing the
clustering strategy using the GLC algorithm and the UAV hov-
ering strategy using the AEM-based algorithm. It is worth noting
that in the iterative process, the cluster head in Algorithm 2 is
adaptively adjusted with the optimal hovering position of the
UAV in Algorithm 3. The data collection energy consumption
and the UAV hovering energy consumption decrease as the
GLC-AEM algorithm iterates until convergence.

B. Inter-Cluster UAV Flying Trajectory Planning

To achieve the overall optimization objective of problem P1,
we next optimize the UAV’s inter-cluster flying trajectory. The
corresponding sub-problem, according to Fig. 2, is given as

SP2 : minimize EMf
(Δl, v) (29)
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Fig. 3. Optimized clustering results by the CND algorithm under different
principles, with 100 uniformly distributed MTCDs. (a) Clustering results under
the principle of minimizing the cluster numbers (CP-I). (b) Clustering results un-
der the principle of minimizing rmax (CP-II). (c) AverageLopt and rfig2amax

under the principle of minimizing the cluster numbers (CP-I). (d) Average Lopt

and rmax under the principle of minimizing rmax (CP-II).

As mentioned at the beginning of this section, the impact of
the UAV flying strategy on the clustering and hovering strategies
is ignored. The UAV’s inter-cluster flying energy consumption
therefore only depends on the UAV’s speed and flying time.
Sub-problem SP2 can be equivalently transformed into a trav-
eling distance minimization problem, which is readily solved

Fig. 4. Optimized clustering results by the CND algorithm under different
principles, with 100 Gaussian distributed MTCDs. (a) Clustering results under
the principle of minimizing the cluster numbers (CP-I). (b) Clustering results
under the principle of minimizing rmax (CP-II). (c) Average Lopt and rmax

under the principle of minimizing the cluster numbers (CP-I). (d) Average Lopt

and rmax under the principle of minimizing rmax (CP-II).

by algorithms, e.g. ACO algorithm, for the traveling salesman
problem.

C. Extension to the Multi-UAV Scenario

It is worth noting that the proposed GLC-AEM algorithm can
be extended to multi-UAV application scenarios to overcome
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Fig. 5. Demonstration of the AEM model and the AEM-based optimal UAV
hovering strategy. (a) An Artificial Energy Map. (b) Optimal hovering strategy
obtained by convex optimization.

the drawback of the single-UAV system, i.e., the long mission
time due to the sequential operation. Deploying multiple UAVs
for data collection enables parallel operation, which significantly
reduces the mission time. In a multi-UAV MTCD data collection
system, the clustering and hovering strategies, i.e. Algorithms 1,
2 and 3, are still applicable. After the clustering and the in-cluster
hovering strategies are determined, the inter-cluster trajectory
optimization deals with a multiple travelling salesmen problem,
instead of a single salesman problem in the single-UAV scenario.
Specifically, after obtaining all hovering strategies through the
GLC-AEM algorithm, the hovering points are clustered again
by applying the K-means principle. Each UAV uses the Ant
Colony Optimization (ACO) algorithm to obtain a closed-loop
trajectory in each cluster consisting of multiple hovering points.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The complexity of the algorithms under investigation largely
depends on the scale (number of operational parameters) of the
problem. For the GTO algorithm in Section II-C, establishing
an N -step trajectory involves all the K ×N transmit power
variables Pk(tn), as well as the 2N coordinate variables of the
trajectory anchor points. The total number of operational vari-
ables involved in the GTO problem is therefore ν0 = N(K + 2).
Also, for the GTO algorithm, the number of constraints in
the optimization problem, denoted by κ0 = KN +K +N , is
another important factor. If we a gradient-based method (say,

Newton’s method) is employed to solve the convex optimization
problem, for each step of decent, we have to find the product
H−1g, where H is the ν0 × ν0 Hessian matrix, and g is a ν0 × 1
vector. The complexity of this process is O(κ0ν

2
0 ). Furthermore,

the number of iterations of Newton steps grows as
√
κ0 [33].

The GLC-AEM algorithm, on the other hand, consists of three
parts, the GLC algorithm for MTCD clustering, the AEM-based
optimization of the hovering positions, and the ACO algorithm
for obtaining the optimal inter-cluster flying path. First, the
complexity of GLC clustering is determined by the k-means
algorithm, which is given by O(c0K), where c0 is usually small
and determined by the number of clusters, the sample dimension
and the number of iterations. Next, evaluation of the complexity
of the AEM algorithm is similar to that of the GTO. Here, the
number of design variables is simply the coordinates of each
hovering point (ux(l), uy(l)) and the hovering time Γl, i.e.,
νR = 3. For each cluster, the GLC-AEM algorithm calculates
(ux(l), uy(l)) and Γl by following the AEM principle. Similar
in steps to the analysis of the GTO algorithm, we have to find
−∇Φle for adjusting the hovering strategy in each step. The
complexity of this step is O(νR), which is much lower than
that of the GTO algorithm. Finally, the complexity of the ACO
algorithm for optimal flying route selection only depends on
the number of ants and the iteration times, not on the number
of optimization variables or constraints. The complexity of the
ACO algorithm is thus not significantly affected by the size of
the problem. Therefore, the overall complexity of GLC-AEM
is lower than that of the GTO algorithm, and the system’s scale
has little impact on its complexity.

VI. SIMULATION RESULTS

In this section, we study through simulations the performance
of the proposed GLC-AEM scheme for energy-efficient deploy-
ment of UAV-enabled data collection system in clustered mMTC
networks. The simulation study consists of three parts. Firstly,
the MTCD clustering results based on the CND algorithm are
presented under both the CP-I and CP-II principles. In the
second place, the GLC-AEM strategy is simulated. Specifically,
optimization of the UAV’s in-cluster hovering position based on
construction of an AEM is demonstrated. The results of both
GLC-based and K-means-based clustering are presented. The
effect of the GLC-AEM scheme in reducing communication en-
ergy consumption and hovering energy consumption is verified
by simulations. Finally, the trajectories of the UAV determined
by the GTO and the GLC-AEM schemes are presented, and the
advantages of the proposed GLC-AEM scheme in improving en-
ergy efficiency is discussed. The energy consumption and delay
performance of applying the GLC-AEM strategy to multi-UAV
scenarios are also investigated through simulations.

System setting parameters and their values used in the simu-
lations are summarized in Table II.

A. Determining the Optimal Number of Clusters

The proposed CND algorithm basically follows one of the fol-
lowing two principles. The first principle CP-I is to minimize the
total number of clusters. By doing this, the number of MTCDs
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Fig. 6. Comparison of clustering results between the GLC and K-means algorithms. (a) Clustering of 60 uniformly distributed MTCDs by the K-means principle.
(b) Clustering of 60 uniformly distributed MTCDs by the GLC algorithm. (c) Clustering of 60 Gaussian distributed MTCDs by the K-means principle. (d) Clustering
of 60 Gaussian distributed MTCDs by the GLC algorithm.

Fig. 7. The communication and hovering energy consumption achieved by
the AEM-GLC algorithm through joint optimization of clustering and hovering
strategies. (a) Simulation with 60 uniformly distributed MTCDs. (b) Simulation
with 60 Gaussian distributed MTCDs.

served by the UAV station simultaneously is made as large
as possible, which is desirable for delay-sensitive applications.
While for collection of delay-insensitive data, the focus is more
on reducing the communication energy consumption. By em-
ploying the CP-II principle, the CND algorithm minimizes rmax

so that the link distance is made as small as possible, which in
turn minimizes the communication power. The clustering results
are shown in Figs. 3 and 4. The minimum and maximum cluster
sizes are Smin = 5 and Smax = 40. A total of 100 MTCDs are
uniformly distributed over a 100 m × 100 m geographic area in

Fig. 8. Comparison of the trajectories given by the GTO and GLC-AEM
algorithms, with 60 uniformly distributed MTCDs. (a) 3D trajectories given
by the GTO and GLC-AEM algorithms. (b) 2D horizontal trajectories given by
the GTO and GLCAEM algorithms.

Fig. 3, and the 100 MTCDs are distributed following a truncated
Gaussian distribution in Fig. 4.

As shown in Figs. 3 and 4, when the CP-I principle is adopted,
the number of clusters is small and rmax is large. As expected,
this principle tends to form large clusters to reduce the time
spent on data collection. The number of clusters Lopt and the
cluster radius rmax increase with the number of MTCDs. When
the CP-II principle of minimizing rmax is adopted, the number
of clusters is larger, and rmax is smaller, compared to the results
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Fig. 9. Comparison of the simulated trajectories given by the GTO and GLC-
AEM algorithms, with 60 Gaussian distributed MTCDs. (a) 3D trajectories given
by the GTO and GLC-AEM algorithms. (b) 2D horizontal trajectories given by
the GTO and GLCAEM algorithms.

with CP-I. As the number of MTCDs increases, the number of
clusters also increases, while rmax decreases.

B. Performance Evaluation of the GLC-AEM Algorithm

1) The AEM Model: We next demonstrate the proposed
AEM modelling technique. In the simulation, 20 MTCDs are
uniformly distributed in a 100 m × 100 m geographical area.
Randomly generated tasks following uniform distribution Bk ∼
U(0, 2.4) Mb are assigned to the MTCDs. There are three initial
horizontal hovering positions [20, 50], [50, 20] and [50, 50]. The
hovering time is fixed to 10 seconds. The simulation results are
shown in Fig. 5.

It can be observed from Fig. 5(a) that a lowest energy point
exists in the energy map generated according to the AEF (14).
Following the direction of the fastest energy decline in the AEM,
we show in Fig. 5(b) the movement of the UAV from the initial
hovering positions to the optimal hovering position. It has been
observed from the numerical results that the optimal hovering
position attained in Fig. 5(b) agrees with the lowest energy point
in the AEM, which validates the proposed AEM-based modeling
and optimization technique.

2) Greedy Learning Clustering: We next evaluate the GLC
algorithm for MTCD clustering. In Fig. 6(a) and (b), 60 MTCDs
are uniformly distributed in a 100 m × 100 m geographical area.
Similarly, 60 Gaussian distributed MTCDs are considered in

Fig. 10. The average energy consumption per MTCD. (a) Simulation with
60 uniformly distributed MTCDs. (b) Simulation with 60 Gaussian distributed
MTCDs.

Fig. 11. The average energy consumption and total mission time with different
number of UAVs. (a) Simulation with 150 uniformly distributed MTCDs. (b)
Simulation with 150 Gaussian distributed MTCDs.
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Fig. 12. Demonstration of the optimal UAV 3-D trajectories given by the GLC-
AEM algorithms in the multi-UAV scenario, with 200 uniformly distributed
MTCDs. (a) 3D trajectories given by the GLC-AEM algorithm. (b) 2D horizontal
trajectories given by the GLC-AEM algorithm.

Fig. 6(c) and (d). Let Smin = 5, Smax = 40 and a set of tasks
are randomly generated according to Bk ∼ U(0, 2.4) Mb. It is
observed that the results for GLC shown in Fig. 6(b) and (d) are
very different from that for the K-means algorithm shown in
Fig. 6(a) and 6(c). The underlying reason for the phenomenon
is that the GLC-AEM clustering strategy is determined by the
channel conditions and transmission tasks of each MTCDs,
while the initial K-means clustering strategy is solely based on
the Euclidean distance. The GLC-AEM scheme better utilizes
the factors that have impact on communication energy consump-
tion to better serve the data collection tasks. Its effect on energy
reduction will be studied in more detail later.

3) Data Collection Energy Consumption of GLC-AEM: The
optimal UAV hovering strategy in each cluster can be determined
by employing the AEM principle. And according to the GLC
algorithm, the clustering strategy of the mMTC network can
be adjusted according to the hovering strategy. Through itera-
tively alternating the GLC-based clustering and the AEM-based
in-cluster hovering optimization processes, the data collection
energy consumption and the UAV hovering energy consumption
are monotonically decreasing until convergence. The simulation
results are shown in Fig. 7. The proposed AEM-GLC algorithm
reduced the data collection energy consumption by about 44%,
compared with the original scheme based on K-means cluster-
ing. This also validates effectiveness of incorporating GLC with
the AEM-based UAV hovering strategy optimization from the
energy efficiency perspective.

C. UAV Trajectories and Total Energy Consumption

In this part, the optimized UAV trajectories are presented. The
total energy consumption achieved by the GLC-AEM strategy
is presented, which is compared with that achieved by the GTO
optimization method. Both uniformly distributed and Gaussian
distributed MTCDs were considered in the simulations.

Firstly, we show the simulated process of the UAV travers-
ing the entire data collection area based on the GLC-AEM
algorithm. In the simulation, a set of tasks were randomly
generated according to Bk ∼ U(0, 2.4) Mb. The clustering and
hovering strategies were determined by the CND and GLC-AEM
algorithms. The UAV’s flying altitude is set to ha =

√
3rmax.

After adjusting the clustering strategy and hovering strategy, the
optimal trajectory obtained by applying the ACO algorithm is
shown in Figs. 8 and 9. It can be observed that compared with
the trajectory determined by the GTO optimization method, the
proposed GLC-AEM algorithms returns a trajectory at a much
lower flying altitude. The UAV station is therefore deployed
closer to the target MTCDs, which results in more favorable
channel condition for data collection from the EE perspective.
This is validated by the results shown in Fig. 10. Specifically, the
proposed GLC-AEM algorithm on average reduced the energy
consumption by about 23% compared with the GTO method.

In Fig. 10, we compare the GLC-AEM algorithm proposed in
this paper with the hybrid hovering positions selection (HHPS)
algorithm in [16] from the energy efficiency perspective. The
HHPS uses k-medoids clustering method to cluster the ground
MTCDs and determine the hovering point of the UAV. Then
the traveling salesman problem for optimal UAV flying route
determination is solved by a heuristic algorithm. Compared
with the HHPS algorithm, the proposed GLC-AEM algorithm
reduced the energy consumption by about 18%. This is because
the HHPS algorithm does not return an optimized in-cluster
hovering point of the UAV after clustering. As the number of
MTCDs increases, the MTCDs’ average energy consumption
achieved by the GTO, HHPS and GLC-AEM algorithms is
monotonically decreasing. This can be explained by the fact that
the UAV’s maneuvering energy consumption is larger compared
with that for communications. But when the number of MTCDs
increases, the average UAV maneuvering energy consumption
per-served-MTCD gradually decreases.

Finally, we examine the performance of the proposed scheme
in the multi-UAV scenario for data collection in clustered mMTC
networks. The MTCD clustering and UAV hovering strategies
are determined by the CND and GLC-AEM algorithms, which is
the same as in the single UAV case. The flying paths of multiple
UAVs are determined by solving a multiple traveling salesmen
problem with the ACO algorithm. Simulation results in Fig. 11
show that as the number of UAVs increases, the mission time
is significantly reduced, which is favorable for delay-sensitive
tasks. However, the UAVs’ maneuvering energy consumption
increases with the number of UAVs, resulting in an increase in
the per-MTCD energy consumption. Therefore, when the data
to be collected from the mMTC network is delay-insensitive in
nature, it is more desirable to use a single UAV station from the
energy efficiency perspective.
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Assuming that there are three UAVs. In Fig. 12 we show an
example of the 3-D UAV trajectories obtained by the proposed
GLC-AEM algorithm, where K = 200, and L = 15 were used
in the simulation. Specifically, the GLC-AEM algorithm deter-
mines the optimal UAV hovering positions in the 3-D space.
After that, the 15 cluster heads are subdivided into 3 groups by
applying the K-means algorithm, corresponding to the mission
areas of the 3 UAVs, respectively. The flying trajectory of each
UAV is a closed-loop that can be obtained by applying the ACO
algorithm.

VII. CONCLUSION

This paper has studied energy-efficient design of UAV-
enabled data collection for mMTC networks. The problem of
minimizing the total energy consumption for data collection
has been formulated. It has been shown that as long as the
flying altitude of the UAV is greater than its service radius
multiplied by a constant, i.e. ha >

√
3rmax, there always exists

an optimal trajectory that can be found by solving a global
trajectory optimization (GTO) problem. However, the wireless
channel deteriorates as the UAV flies at a relatively high al-
titude and thereby hurts the communication efficiency. Then,
the AEM principle has been introduced as a new modeling
method based on evaluation of an artificial energy function.
The AEM-based modeling uses clustering technique to shorten
the distance between UAV and MTCDs, which can effectively
improves the overall energy efficiency. The overall energy con-
sumption minimization problem for joint MTCD clustering and
UAV trajectory design turned out to be a coupled non-convex
problem that is challenging to solve. The optimization problem
has been decomposed into two sub-problems by decoupling
the flying variables and the other design variables. Then, the
sub-problems deal with clustering-hovering optimization and
inter-cluster flying trajectory optimization separately. Two algo-
rithm, namely the CND and GLC-AEM, have been proposed to
solve the MTCD clustering and in-cluster hovering position opti-
mization problems through an iterative alternating optimization
procedure. The second sub-problem has been transformed into a
traveling distance minimization problem, which is readily solved
by the ACO algorithm. Simulation results have shown that the
GLC-AEM algorithm is applicable to both the single-UAV and
multi-UAV data collection systems, and it can effectively reduce
the system’s energy consumption. Besides, the GLC-AEM al-
gorithm has good scalability and better energy efficiency can be
achieved when more MTCDs should be served.

APPENDIX

We first prove the convexity of the objective function in (8).

G =

K∑
k=1

N∑
n=1

Pk(tn)τ +
∑

vτf
mvg

ηmηp
. (A.1)

In the above (A.1),
∑

vτf is equivalent to the total distance
the UAV travels. Let d(tn) denotes the distance between two

adjacent hovering positions. Eqn. (A.1) is transformed into

G =

K∑
k=1

N∑
n=1

Pk(tn)τ +
∑ mvg

ηmηp
d(tn). (A.2)

Hence, the convexity of G depends on the second order deriva-
tive of d(tn).

∂2d(tn)

∂ux(tn)2

=
(uy(tn+1)− uy(tn))

2

[(ux(tn+1)− ux(tn))2 + (uy(tn+1)− uy(tn))2)]
3
2

.

(A.3)

∂2d(tn)

∂uy(tn)2

=
(ux(tn+1)− ux(tn))

2

[(ux(tn+1)− ux(tn))2 + (uy(tn+1)− uy(tn))2)]
3
2

.

(A.4)

∂2d(tn)

∂ux(tn)∂uy(tn)
=

∂2d(tn)

∂uy(tn)∂ux(tn)

=
−(ux(tn+1)− ux(tn))(u

y(tn+1)− uy(tn))

[(ux(tn+1)− ux(tn))2 + (uy(tn+1)− uy(tn))2)]
3
2

.

(A.5)

Based on (A.3), (A.4) and (A.5), the Hessian matrix of d(tn) is
therefore written as

2d(tn) =

[
∂2d(tn)
∂ux(tn)2

∂2d(tn)
∂ux(tn)∂uy(tn)

∂2d(tn)
∂uy(tn)∂ux(tn)

∂2d(tn)
∂uy(tn)2

]
. (A.6)

From (A.3), (A.4), (A.5) and (A.6), it is straightforward to show
that ∂2d(tn)

∂ux(tn)2 ≥ 0, ∂2d(tn)
∂uy(tn)2 ≥ 0, | 2 d(tn)| = 0. Therefore,

2d(tn) is semi-definite positive. The convexity of the objective
functionG is verified based on the second-order condition of the
function.

Next, we show that constraint (8b) is convex as long as the
UAV’s flying altitude is greater than its service radius multiplied
by a constant. Define rmax as the maximum possible serving
radius of the UAV in the data collection process. We prove that
problem P1 has a global optimal UAV flying trajectory as long
as ha ≥ √

3rmax,

rmax = max

{√
(ux(tn)− qxk)

2 + (uy(tn)− qyk)
2

}
,

∀k = 1, . . .,K, n = 1, . . .N.

Proof: Let zk(tn) = 1 + Pk(tn)(Pr L(tn)+(1−Pr L(tn))κ)
β0σ2‖qk−u(tn)‖2

2
.

If zk(tn) is concave and positive, log(zk(tn)) is
concave. As a result, constraint (8b) is convex. Let
c = Pk(tn)(Pr L(tn) + (1 − Pr L(tn))κ)/β0σ

2. Assuming
that Pk(tn) and Pr L(tn) does not change when optimizing
the UAV’s flying trajectory. Then c could be considered as a
constant and as a result only the concavity of zk(tn) needs to
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be proved.

∂2zk(tn)

∂ux(tn)2

=
8c(ux(tn)−qxk)

2−2c(h2
a+(ux(tn)−qxk)

2+(uy(tn)−qyk)
2)

(h2
a+(ux(tn)−qxk)

2+ (uy(tn)−qyk)
2)3

.

(A.7)

∂2zk(tn)

∂uy(tn)2

=
8c(uy(tn)−qyk)

2−2c(h2
a+(ux(tn)−qxk)

2+(uy(tn)−qyk)
2)

(h2
a+(ux(tn)−qxk)

2 + (uy(tn)−qyk)
2)3

.

(A.8)

∂2zk(tn)

∂ux(tn)∂uy(tn)
=

∂2zk(tn)

∂uy(tn)∂ux(tn)

=
8c(ux(tn)− qxk)(u

y(tn)− qyk)

(h2
a + (ux(tn)− qxk)

2 + (uy(tn)− qyk)
2)3

. (A.9)

From (A.7), (A.8) and (A.9), the Hessian matrix of zk(tn) is

2zk(tn) =

[
∂2zk(tn)
∂ux(tn)2

∂2zk(tn)
∂ux(tn)∂uy(tn)

∂2zk(tn)
∂uy(tn)∂ux(tn)

∂2zk(tn)
∂uy(tn)2

]
. (A.10)

Let the first-order principal minors of2zk(tn) be non-positive,
we have

h2
a ≥ 3(ux(tn)− qxk)

2 − (uy(tn)− qyk)
2, (A.11)

h2
a ≥ 3(uy(tn)− qyk)

2 − ((ux(tn)− qxk)
2. (A.12)

Then let the second-order principal minors be non-negative and
obtain

h2
a ≥ 3[(ux(tn)− qxk)

2 + (uy(tn)− qyk)
2]. (A.13)

Consequently, in order to guarantee concavity of zk(tn), there
must be ha ≥ √

3rmax. Therefore, we can obtain the optimal
solution of P1 given the above condition is satisfied. It is
worth noting that ha ≥ √

3rmax means that the elevation angle
is greater than 60 degrees. According to [32], the occurrence
probability of LoS is approximately equal to 1 when the elevation
angle is greater than 60 degrees even in an urban environment.
In this cases, the air-to-ground links can be viewed as LoS
links. Therefore, the assumption that Pr L(tn) is constant at the
beginning of this proof is reasonable. �
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