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Throughput-Optimal H-QMW Scheduling
for Hybrid Wireless Networks With

Persistent and Dynamic Flows
Xiaolong Lan, Yi Chen, and Lin Cai , Senior Member, IEEE

Abstract— The well-known Queue-length-based MaxWeight
scheduling algorithm (QMW) has been proved to be throughput-
optimal for persistent flows only, which are long-lived with
infinite traffic arrival. If the flows are dynamic ones, i.e., short-
lived with finite data to transmit, QMW cannot guarantee
queue stability. Given future wireless networks may support
both persistent machine-to-machine flows and dynamic human-
to-human flows, a Flow (File) Delay based MaxWeight scheduling
algorithm (F-D-MW) has been shown to be throughput-optimal.
However, new flows have to suffer a long start-up latency after
arriving in the system. In this work, we present the definition
of the capacity region for hybrid systems with the coexistence
of persistent and dynamic flows. First, when a new arrival
dynamic flow classification is known, we propose an online
Hybrid Queue-length-based MaxWeight (H-QMW) scheduling
algorithm, and then propose a more realistic adaptive H-QMW
(A-H-QMW) scheduling algorithm for the system without the
knowledge of the classification of flows. We prove that H-
QMW can achieve throughput-optimality for hybrid systems.
Performance evaluation not only validates the throughput-
optimality of H-QMW and A-H-QMW in various types of
networks but also reveals that H-QMW and A-H-QMW can
achieve lower start-up and total latency for dynamic flows than
F-D-MW.

Index Terms— Throughput-optimal scheduling, hybrid wireless
networks, wireless resource management.

I. INTRODUCTION

A SCHEDULING algorithm is throughput-optimal if it can
always achieve the network queue stability for any traffic

arrival rate vector that lies strictly within the capacity region,
in which the queue stability means that the queue size will not
accumulate into infinity over time.
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The pioneer works of Tassiulas and Ephremides [1]–
[3] proposed the Queue-length-based MaxWeight scheduling
algorithm (QMW), and proved that QMW is a throughput-
optimal strategy for networks with persistent flows only. QMW
prioritizes the flows with the largest product of the queue
length (backlog) and the current transmission rate. It became
an active research topic since the scheduling strategy of QMW
is simple yet throughput-optimal. Although QMW presents
desirable throughput performance, one necessary condition is
that the network consists of only a fixed number of persistent
flows which are long-lived and have continuous data injec-
tion. For machine-type applications continuously monitoring
the environment, such as in the sensor networks, persistent
flows may exist. However, dynamic flows are commonly
observed for human-to-human communication applications.
Dynamic flows have a finite amount of service requests
upon arrival in the network, and leave the system once
the demanded services are fulfilled. Since flows arrive and
leave the system over time, the number of flows in the
system may change from one slot to the other. The sample
of applications with dynamic flows includes the on-demand
video service, email/text messages transfer, web browsing,
etc. In networks with dynamic flows, QMW is no longer
throughput-optimal [4].

Although there have been a few solutions to design schedul-
ing algorithms for the systems with dynamic flows [5], [6],
the majority of the existing work considered the networks
with flows of one type only, i.e., either persistent or dynamic
flows. However, the coexistence of persistent and dynamic
flows cannot be ignored in practice. In future wireless systems,
both machine-to-machine and human-to-human applications
share the same spectrum. The approach of separating the
two types of flows and scheduling them independently is
not the best choice, because separating the resources for
two types of flows will result in a lower multiplexing gain
and efficiency. The existing scheduling algorithm for hybrid
systems, Flow (or File) Delay based MaxWeight scheduling
(F-D-MW) [6], [25]–[30], can achieve throughput-optimality,
but suffer a long start-up latency for dynamic flows. Fur-
thermore, the implementation of delay-based schedulers is
difficult in practice. It motivates us to investigate alternative
optimal scheduling design for hybrid systems with both per-
sistent and dynamic flows. The contributions of this paper are
three-fold.
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• First, we present the definition of the capacity region for
the hybrid system with the coexistence of persistent and
dynamic flows.

• Second, when the classification of new arrival dynamic
flows can be known, we design an online Hybrid Queue-
length based MaxWeight (H-QMW) scheduling algorithm
with channel rate variations in the hybrid networks,
which has been proven to achieve throughput-optimality.
Moreover, we propose a more realistic adaptive H-QMW
(A-H-QMW) scheduling algorithm, in which the system
does not need to know the classification of dynamic
flow. H-QMW and A-H-QMW are easy-to-implement
online algorithms by counting the queue length rather
than tracking the latency of each flow.

• Third, through the performance evaluation, we verify
that the proposed H-QMW and A-H-QMW scheduling
algorithms can stabilize the system with traffic rates
within the capacity region, i.e., H-QMW and A-H-QMW
are throughput-optimal. Simulation results show that H-
QMW and A-H-QMW can achieve the lower start-up and
total latency for dynamic flows than F-D-MW. The results
also show that the approach of separating the two types of
flows and scheduling them independently cannot ensure
the stability of hybrid systems. Furthermore, it is shown
that the off-line MR scheduling algorithm, throughput-
optimal for dynamic flows, is not throughput-optimal
when the dynamic flows coexist with persistent flows.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the system
model, including the definition of the system capacity for
hybrid systems. In Section IV, the H-QMW scheduling algo-
rithm for hybrid systems is proposed, and its throughput-
optimality is studied. Then a more realistic A-H-QMW
scheduling algorithm is presented. Performance evaluation is
presented in Section V, followed by the concluding remarks
and further research issues in Section VI.

II. RELATED WORK

QMW has been extensively studied in the literature, such
as the delay performance [7], energy consumption [8], and
fairness [9], etc. The application of QMW has been found
in a wide range of research areas such as maximum secure
information delivery [10], smart grids [11], and wireless sensor
networks [12]. Besides QMW, queue length based throughput-
optimal scheduling has other variations [13]–[17]. It has been
revealed that all these schedulers are not throughput-optimal
if the system consists of dynamic flows [4], [18]. The authors
of [4] also proposed a scheduling algorithm to stabilize the
systems of dynamic flows, which is an off-line scheduler
requiring the knowledge of the channel profile. Subsequent
works have developed various scheduling algorithms that were
proved to be throughput-optimal for dynamic flows [19],
[20]. For example, the MaxRate scheduling algorithm (MR)
was studied in [19], which always selects the flows in the
system when they are associated with their maximum possible
transmission rates. MR is an off-line scheduling algorithm
because it needs to know the channel profile to know when the

maximum transmission rate is reached. An online alternative
was proposed in the same paper with the introduction of
a learning period to know what could be the best channel
condition. MR has been considered as the benchmark of the
throughput-optimal scheduling algorithms for systems with
dynamic flows. However, its performance in hybrid systems
with the coexistence of persistent and dynamic flows is
unknown. Other works focused on the distributed implemen-
tation of throughput-optimal schedulers [21]–[24].

Along with the queue length based scheduling algorithms,
a F-D-MW [25]–[30] has been shown to be throughput-
optimal for the persistent flows as well. F-D-MW gives the
priority to the flows (packets) with the largest product of the
delay and the current transmission rate in the system. F-D-
MW has been investigated widely in the subsequent works.
Reference [31] studied the network utility maximization with
F-D-MW in wireless systems. Reference [32] developed the
delay based back-pressure throughput-optimal scheduler for
multihop wireless networks. Considering flow-level dynam-
ics, [6] showed that F-D-MW is also throughput-optimal by
applying it to the systems of dynamic flows. Reference [33]
revealed that F-D-MW can be applied to the hybrid system
with the presence of both persistent and dynamic flows. There
are two problems remaining to be explored. First, the channel
rate variation is not considered in [33]. Second, the delay
performance of F-D-MW is not desirable. By adopting F-
D-MW, new flows in the system may suffer a long start-up
latency after arriving in the system, which is not compatible
with the existing transport layer protocols such as TCP [34]
and not desirable for many dynamic-flow applications.

Different from the existing work, we investigate an on-line
H-QMW scheduling algorithm based on the current queue
length and transmission rate. We give the analysis of the
throughput-optimality of the proposed H-QMW algorithm
with channel rate variations in hybrid networks that have both
persistent and dynamic flows.

III. SYSTEM MODEL

We consider a downlink wireless system with two types
of flows, persistent flows and dynamic flows, which share the
channel resources. For each type of flow, there can be multiple
classes of flows, which makes the system a heterogeneous one.
Within each class, the flows have independent and identically
distributed (i.i.d.) traffic arrivals and the i.i.d channel, i.e., with
the same channel rate distribution. Denote by M and K the
number of classes of persistent and dynamic flows, respec-
tively.

A. Arrival Model

As shown in Fig. 1, each persistent flow in the system
is long-lived and has continuous traffic arrival, so it has an
infinite amount of data to transmit when t → ∞. Each class
of dynamic flows has continuous flow arrivals, while each
dynamic flow has a finite amount of data to transmit upon its
arrival in the system, and leaves the system once its buffer is
empty. We focus on the flows that are backlogged in the system
which have buffered data to transmit. Let Q(p)

ij (t) and Q(d)
ij (t)
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Fig. 1. Hybrid systems with the coexistence of persistent and dynamic flows.

denote the residual queued bits waiting for transmission of
the j-th persistent flow of class-i and the j-th dynamic flow
of class-i at the beginning of time slot t, respectively. All the
persistent flows arrive during time slot t = 0 and never leave
the system. For dynamic flows, since we have the departure
of old flows and the arrival of new flows, the j-th dynamic
flow of class-i may change from one time slot to the other.
With each class of the existing dynamic flows, the flow index
j is determined according to its arrival time. Let N (p) and
N (d)(t) denote the set of persistent flows and dynamic flows
at time slot t, respectively. Let N (p) = |N (p)| =

∑M
i=1N

(p)
i

denote the number of persistent flows in the system, where
N

(p)
i is the number of persistent flows of class-i. The total

number of dynamic flows at the beginning of time slot t is
N (d)(t) = |N (d)(t)| =

∑K
i=1N

(d)
i (t), where N (d)

i (t) is the
number of class-i dynamic flows that are backlogged in the
system at time slot t.

For the j-th persistent flow of class-i, the amount of arrival
data in one slot is denoted by A(p)

ij (t) with the mean of λ(p)
i =

E[A(p)
ij (t)]. Let α(p)

i denote the number of persistent flows of

class-i in the system, and thus λ(p) =
∑M
i=1 α

(p)
i λ

(p)
i is the

average amount of arrival data from all of the persistent flows
in one slot.

For dynamic flows, let A(d)
i (t) ∈ {0}∪Z

+ denote the num-
ber of class-i dynamic flows arriving during time slot t, which
is a random variable with the mean of α(d)

i = E[A(d)
i (t)]. The

initial flow size for the j-th dynamic flow of class-i is denoted
as B(d)

ij (t). For class-i dynamic flows, we assume that B(d)
ij (t)

is a random variable and has a finite mean β(d)
i = E[B(d)

ij (t)].
Thus, the average new data amount of class-i dynamic flows
is λ(d)

i = α
(d)
i β

(d)
i , and the average amount of arrival data

from all of the dynamic flows is λ(d) =
∑K

i=1 α
(d)
i β

(d)
i .

B. Channel Model

Let R(·)
ij (t) denote the transmission rate of the wireless

channel at time t between the j-th flow of class-i and the
base station (BS). The unit of the channel rate is bit/slot.
R

(·)
ij (t) may vary over time as a result of wireless chan-

nel fading and shadowing. For class-i flows, we assume
that R

(·)
ij (t) is i.i.d. with finite supports, i.e., R

(·)
ij (t) ∈

Ri
(·) = {0,R(·)

i1 ,R(·)
i2 , . . .}, and the corresponding probability

is {P (·)
i0 , P

(·)
i1 , P

(·)
i2 , . . .} satisfying

∑
k P

(·)
ik = 1. Ri

(·) is the
set of channel rate options for class-i flows. In particular,
R

(·)
ij (t) = 0 indicates that the current signal-to-noise ratio

of the j-th flow in class-i is below a certain threshold and
the transmission is considered as failure, i.e., the lowest-
order modulation and coding scheme cannot be supported.

Different classes may have heterogeneous channel condition
distributions. The maximum possible transmission rate of
class-i flows is defined as R(·)max

i = max{0,R(·)
i1 ,R(·)

i2 , . . .}.
In addition, in this paper, we assume that the duration of each
time slot is small enough such that no resources are wasted in
any time slot.

C. System Capacity Region

The capacity region of the system with a fixed number of
persistent flows can be found in [35], which is different from
the one with dynamic flows only [4], and thus before the
transmission scheduling algorithm is investigated, the capacity
region of the hybrid system with both persistent and dynamic
flows should be addressed. The capacity region can be defined
in terms of the traffic intensity ρ, which measures the average
occupancy of the shared channel resource. In other words,
ρ is the average number of time slots that are required to
transmit the arrival traffic in one slot when the most efficient
transmission strategy is adopted. The necessary condition for
stability to be achievable is ρ < 1 [4]. Thus, if the average
amount of arrival traffic in one slot can be transmitted is less
than one time slot by the maximum possible transmission rate,
there exists at least one scheduling algorithm to achieve system
stability. If ρ > 1, on average more than one slot is required
to transmit the amount of arrival data in one slot, and the
residual data will accumulate into infinity over time which
results in instability. From this perspective, the system capacity
region is defined as ρ < 1, and any arrival rate vector in the
capacity region should be stably transmitted by throughput-
optimal algorithms.

For the hybrid system, ρ = ρ(p) + ρ(d), where ρ(p) and
ρ(d) are the traffic intensities of persistent and dynamic flows,
respectively. We discuss ρ(p) first. Without loss of generality,
we assume that R(p)

i1 > R(p)
i2 > . . . > R(p)

i|Ri
(p)|. Given a

fixed probability of each channel state, if a persistent flow
is scheduled only on the maximum channel rate, the queuing
system may not be stabilized. For instance, there is a persistent
flow with an average arrival rate of 0.71. Its channel has two
states with the rates of {1, 0.5}, and the probability of each
state is 0.5. Thus, if we schedule the persistent flow only when
the channel rate is 1, the overall service rate of this flow is
0.5 which is lower than the arrival rate. To ensure the queue
stability, the flow needs to be scheduled when its channel rate
is 0.5 sometimes. Therefore, the most efficient transmission
scheme is that the system schedules a flow to transmit data on
its n best channel states, where n is the minimum integer to
support the requirement of the arrival traffic as shown in (2).
Thus, the traffic intensity for the persistent flow of class-i,
i.e., the minimum average number of time slots allocated to
the persistent flow of class-i to achieve queue stability, can be
calculated as follows:

ρ
(p)
i =

n−1∑
k=1

P
(p)
ik +

α
(p)
i λ

(p)
i − ∑n−1

m=1 P
(p)
imR(p)

im

R(p)
in

, (1)

1We normalize the unit of arrival and service rates and then omit their units
for presentation simplicity.
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Fig. 2. Capacity region for hybrid systems when the channel rate set is
R = {1, 0.5} with probability P = {0.5, 0.5}.

where n satisfying

n−1∑
k=1

P
(p)
ik R(p)

ik < α
(p)
i λ

(p)
i and

n∑
k=1

P
(p)
ik R(p)

ik ≥ α
(p)
i λ

(p)
i . (2)

For each dynamic flow, since it has a finite amount of data
to transmit, it can always wait for the channel to be in its best
state to transfer data until its buffer is empty and it leaves the
system. Thus, the traffic intensity of class-i dynamic flows can
be given by

ρ
(d)
i = E

[∑A
(d)
i (t)

j=1 B
(d)
ij (t)

R
(d)max
i

]
=
α

(d)
i β

(d)
i

R
(d)max
i

. (3)

The traffic intensity of the dynamic flows is ρ(d) =
∑K
i=1 ρ

(d)
i .

In Fig. 2, we show the capacity region for hybrid systems
with the coexistence of persistent and dynamic flows. For this
figure, we assume that the channel rates of all flows have
two states. The channel rate set is R = {1, 0.5}, and the
corresponding probability is set to P = {0.5, 0.5}. The x-
axis and y-axis represent the arrival rate of a persistent flow
and sum of the dynamic flows, respectively. The capacity
region in Fig. 2 is drawn according to the traffic intensity
presented in (1) and (3). The shaded part in Fig. 2 shows the
arrival rate region that the system can support, i.e., ρ < 1.
In particular, the boundary surface of the capacity region is
the black solid line, i.e., ρ = 1. Besides, the dashed line
represents the maximum arrival rate that can be supported by
the approach of separating two types of flows and scheduling
them independently. Since separating the resource for two
types of flows leads to a lower multiplexing gain, so it
cannot achieve the boundary surface of the capacity region.
Furthermore, from this figure, we can find that the maximum
supported arrival rate of dynamic flows is larger than that of
persistent flows. This can be interpreted as follows: i) For each
dynamic flow, since the amount of data to be transmitted is
finite, it can always wait for being scheduled only when its
channel rate achieves its maximum value. ii) Given a sufficient
number of dynamic flows, the scheduler has the flexibility to
choose the flow in its best channel state.

IV. HYBRID QUEUE-LENGTH BASED

MAXWEIGHT SCHEDULING

In this section, we first propose a Hybrid Queue-length
based MaxWeight scheduling algorithm (H-QMW) for hybrid
systems with persistent and dynamic flows, and give the
analysis of throughput-optimality. Then, we propose a more
realistic adaptive H-QMW (A-H-QMW) scheduling algorithm
for the system without the knowledge of the classification of
dynamic flows.

A. Minimum Throughput Requirement

We assume that the BS selects a flow to transmit using
a resource block. Without loss of generality, we consider a
time slot as one resource block. The approach can be applied
in other systems where resource blocks are orthogonal in the
time, frequency, and/or code domain.

Let d
(·)
ij (t) denote the indicator function that indicates

whether the j-th flow of class-i is scheduled to transmit during
slot t, which is given by

d
(·)
ij (t) =

⎧⎪⎨
⎪⎩

1, if the j-th flow of class-i is scheduled

at time slot t,

0, otherwise.

(4)

Let d(t) =
{
d
(·)
ij (t)

}
denote the transmission scheduling

policy of the BS at time slot t. To ensure the stability of
all persistent and dynamic flows, the transmission scheduling
policy must satisfy the following minimum throughput con-
straints for each flow

lim
T→∞

1
T

T−1∑
t=0

d
(p)
ij (t)R(p)

ij (t) ≥ lim
T→∞

1
T

T−1∑
t=0

A
(p)
ij (t), ∀i, j,

(5)
t
(d)
ij +δt∑

t=t
(d)
ij +1

d
(d)
ij (t)R(d)

ij (t) ≥ B
(d)
ij (t(d)ij ), ∀i, j, (6)

where 0 < δt <∞ and t(d)ij is the initial time that the j-th of
class-i dynamic flow is added to the system. Eq. (5) indicates
that for each persistent flow, the average transmission rate is
no less than the average arrival traffic rate. Eq. (6) shows that
for each dynamic flow, data transmission should be completed
within a finite time δt.

In addition, at any given time slot t, since the BS can select
at most one flow for transmission, the transmission scheduling
policy d(t) satisfies the following interference constraint:

M∑
i=1

N
(p)
i∑
j=1

d
(p)
ij (t) +

K∑
i=1

∑
j∈N (d)

i (t)

d
(d)
ij (t) ≤ 1. (7)

B. Problem Formulation and H-QMW Scheduling Policy

In this subsection, we assume that the system can identify
the class of each flow when it arrives. Our objective is to
ensure the stability of all data queues by designing an optimal
scheduling policy, subject to the interference constraint.
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Fig. 3. Virtual queue of the class-i dynamic flow.

Since each persistent flow is long-lived and has continuous
traffic arrival, and each dynamic flow has a finite amount of
data to transmit upon its arrival in the system, the data queue
evolution of persistent and dynamic flows can be expressed as

Q
(p)
ij (t+ 1) =

(
Q

(p)
ij (t)−d(p)

ij (t)R(p)
ij (t)

)+

+A(p)
ij (t), ∀i, j,

(8)

Q
(d)
ij (t+ 1) =

(
Q

(d)
ij (t)−d(d)

ij (t)R(d)
ij (t)

)+

, ∀i, j ∈ N (d)
i (t),

(9)

respectively, where (·)+ = max{·, 0}.
For the system with persistent flows only, it has continuous

traffic arrival and data departure. We can use the Lyapunov
optimization framework to design an efficient scheduling pol-
icy that can effectively ensure the stability of the system [35].
However, it is not suitable for systems with hybrid flows.
To incorporate our analysis in the Lyapunov optimization
framework, we define Q̃(d)

i (t) as a virtual data queue of class-i
dynamic flows, which is given by

Q̃
(d)
i (t+ 1)

=
(
Q̃

(d)
i (t) −

∑
j∈N (d)

i (t)

min
{
d
(d)
ij (t)R(d)

ij (t), Q(d)
ij (t)

})+

+
A

(d)
i (t)∑
j=1

B
(d)
ij (t), ∀i, t, (10)

where Q̃
(d)
i (t) =

∑
j∈N (d)

i (t)
Q

(d)
ij (t). The size of

Q̃
(d)
i (t) reflects the total amount of data backlogged

for class-i dynamic flows. Since the duration of each
time slot is small enough such that d

(d)
ij (t)R(d)

ij (t) =
min

{
d
(d)
ij (t)R(d)

ij (t), Q(d)
ij (t)

}
, i.e., no resources are wasted in

any time slot. Therefore, the evolution of virtual queue can be
rewritten as

Q̃
(d)
i (t+ 1) =

(
Q̃

(d)
i (t) −

∑
j∈N (d)

i (t)

d
(d)
ij (t)R(d)

ij (t)
)+

+
A

(d)
i (t)∑
j=1

B
(d)
ij (t), ∀ i, t. (11)

Fig. 3 presents the queue evolution of virtual queue for
class-i dynamic flows. As shown in Fig. 3, the virtual queue
of class-i dynamic flows, Q̃(d)

i (t), can be regarded as a queue
for a persistent flow with continuous traffic arrival, in which∑A

(d)
i (t)

j=1 Bij(t) can be considered as continuous data arrival

rate of Q̃(d)
i (t), and

∑
j∈N (d)

i (t)
d
(d)
ij (t)R(d)

ij (t) can be treated

as the output of Q̃(d)
i (t). Therefore, based on these virtual

queues, the systems with hybrid flows can be approximated
as systems with virtual-persistent flows. Next, we will design
an efficient scheduling policy for systems with hybrid flows
using the Lyapunov framework.

Lemma 1: If all the persistent flow queues and virtual
queues are rate stable, i.e.,

lim
T→∞

Q
(p)
ij (T )
T

= lim
T→∞

Q̃
(d)
i (T )
T

= 0, ∀i, j, (12)

then the minimum throughput constraints can be satisified.
Proof: Based on the queue evolution in (8) and (11),

we have

Q
(p)
ij (t+ 1)

≥ Q
(p)
ij (t) − d

(p)
ij (t)R(p)

ij (t) +A
(p)
ij (t), ∀i, j, t, (13)

Q̃
(d)
i (t+ 1)

≥ Q̃
(d)
i (t) −

∑
j∈N (d)

i (t)

d
(d)
ij (t)R(d)

ij (t) +
A

(d)
i (t)∑
j=1

B
(d)
ij (t). (14)

By summing the above equations over T time slots, dividing
it by T and taking limT→∞ on both sides, we have

lim
T→∞

Q
(p)
ij (T ) −Q

(p)
ij (0)

T

≥ lim
T→∞

1
T

T−1∑
t=0

{
A

(p)
ij (t)−d(p)

ij (t)R(p)
ij (t)

}
, (15)

lim
T→∞

Q̃
(d)
i (T ) − Q̃

(d)
i (0)

T

≥ lim
T→∞

1
T

T−1∑
t=0

{A
(d)
i (t)∑
j=1

B
(d)
ij (t) −

∑
j∈N (d)

i (t)

d
(d)
ij (t)R(d)

ij (t)

}
.

(16)

Since Q(p)
ij (t) and Q̃(d)

i (t) are rate stable and the initial states
are zero, we can obtain

lim
T→∞

1
T

T−1∑
t=0

A
(p)
ij (t) ≤ lim

T→∞
1
T

T−1∑
t=0

d
(p)
ij (t)R(p)

ij (t), (17)

lim
T→∞

1
T

T−1∑
t=0

A
(d)
i (t)∑
j=1

B
(d)
ij (t)≤ lim

T→∞
1
T

T−1∑
t=0

∑
j∈N (d)

i (t)

d
(d)
ij (t)R(d)

ij (t).

(18)

Eq. (18) indicates that all the dynamic flows of class-i can be
sent out if Q̃(d)

i (t) is rate stable, i.e., (6) can be satisfied.
Lemma 1 indicates that for systems with hybrid flows,

if a scheduling policy can ensure that all the persistent flow
queues and virtual queues are stable, this scheduling policy can
satisfy the minimum throughput constraints and is throughput-
optimal.

Based on the actual data queues of persistent flows and
virtual data queues of dynamic flows, we define the quadratic
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Lyapunov function as

L(Θ(t)) =
1
2

{ M∑
i=1

N
(p)
i∑
j=1

Q
(p)
ij (t)2 +

K∑
k=1

Q̃
(d)
k (t)2

}
, (19)

where Θ(t) = [Q(p)
ij (t), Q̃(d)

k (t)] denotes the concatenated
vector of all queues at the beginning of time slot t. The
value of L(Θ(t)) measures the current data queue length of
all flows, which is defined to grow larger with the queue
system towards undesired states. L(Θ(t)) grows larger as data
queues increase. The Lyapunov drift is defined to evaluate
the expected change in the Lyapunov function between two
consecutive time slots, which is given by

Δ(Θ(t)) = E{L(Θ(t+ 1)) − L(Θ(t))|Θ(t)}, (20)

where expectation is taken over the randomness of channel
rate and the scheduling control decision given the current
queue vector Θ(t) at time slot t. To ensure that the stability
of Q(p)

ij (t) and Q̃
(d)
i (t) can be achieved, we should try to

minimize the above Lyapunov drift.
Lemma 2: The Lyapunov drift can be upper bounded by

Δ(Θ(t))

≤ B +
M∑
i=1

N
(p)
i∑
j=1

Q
(p)
ij (t)E

{
A

(p)
ij (t) − d

(p)
ij (t)R(p)

ij (t)
∣∣∣Θ(t)

}

+
K∑
k=1

Q̃
(d)
k (t)E

{A(d)
k (t)∑
l=1

B
(d)
kl (t) −

∑
l∈N (d)

k (t)

d
(d)
kl (t)R(d)

kl (t)
∣∣∣Θ(t)

}
,

(21)

where B = 1
2

(∑M
i=1

(
R

(p) max2

i + N
(p)
i A

(p) max2

i

)
+∑K

k=1

(
R

(d)max2

k + (A(d)max
k B

(d)max
k )2

))
, A(p) max

i is the

maximal arrival rate of class-i persistent flow, A(d)max
k is

the maximal number of class-k dynamic flows arriving during
each slot, and B

(d)max
k is the maximum initial flow size for

class-k dynamic flow.
Proof: Based on the queue evolution of persistent flows,

we have

Q
(p)
ij (t+ 1)2

=
((

Q
(p)
ij (t)−d(p)

ij (t)R(p)
ij (t)

)+

+A
(p)
ij (t)

)2

= Q
(p)
ij (t)2 +

(
d
(p)
ij (t)R(p)

ij (t)
)2

− 2Q(p)
ij (t)d(p)

ij (t)R(p)
ij (t)

+A(p)
ij (t)2 + 2A(p)

ij (t)
(
Q

(p)
ij (t)−d(p)

ij (t)R(p)
ij (t)

)+

(a)

≤ Q
(p)
ij (t)2 + d

(p)
ij (t)R(p) max2

i +A
(p) max2

i

+2Q(p)
ij (t)

(
A

(p)
ij (t) − d

(p)
ij (t)R(p)

ij

)
, (22)

where step (a) applies the fact that d(p)
ij (t) is a binary variable,

i.e., d
(p)
ij (t) = d

(p)
ij (t)2. Similarly, for the virtual queue

evolution of dynamic flows, we have

Q̃
(d)
i (t+ 1)2

≤ Q̃
(d)
i (t)2 + d

(p)
ij (t)R(d)max2

k +
(
A

(d)max
k B

(d)max
k

)2

+2Q̃(d)
i (t)

(A
(d)
i (t)∑
j=1

B
(d)
ij (t) −

∑
j∈N (d)

i (t)

d
(d)
ij (t)R(d)

ij (t)
)
.

(23)

Since the BS can select at most one flow for transmission at
each time slot, by substituting (22) and (23) into (20), we can
conclude Lemma 2.

Lemma 2 provides the upper bound of the Lyapunov drift,
and we solve the following optimization problem instead of
directly minimizing the Lyapunov drift item. At each time slot,
given the current data queue length Θ(t), we make decisions
on transmission scheduling policy by solving the following
optimization problem:

min
d(t)

: −
M∑
i=1

N
(p)
i∑
j=1

Q
(p)
ij (t)R(p)

ij (t)d(p)
ij (t)

−
K∑
k=1

∑
l∈N (d)

l (t)

Q̃
(d)
k (t)R(d)

kl (t)d(d)
kl (t)

s.t., d
(p)
ij (t), d(d)

kl (t) ∈ {0, 1}, ∀i, j, k, l, t,
M∑
i=1

N
(p)
i∑
j=1

d
(p)
ij (t) +

K∑
k=1

∑
l∈N (d)

i (t)

d
(d)
kl (t) ≤ 1 ∀t. (24)

We may notice that the optimization problem d
(·)
ij (t) is a binary

variable and at most one flow will be scheduled to transmit.
Thus, it is easy to solve the above optimization problem and
the scheduling rule of H-QMW is given in the following
Algorithm.

H-QMW scheduling algorithm. Given the current data
queue length Q(·)

ij (t) and transmission rate R(·)
ij (t), the Hybrid

Queue-length-based MaxWeight scheduling algorithm (H-
QMW) is given by

d
(p)
ij (t) =

{
1, if W (p) ≥W (d) ∧Q(p)

ij (t)R(p)
ij (t) = W (p),

0, otherwise,

d
(d)
ij (t) =

{
1, if W (p) ≤W (d) ∧ Q̃(d)

i (t)R(d)
ij (t) = W (d),

0, otherwise,

where W (p) = maxi,j{Q(p)
ij (t)R(p)

ij (t)} and W (d) =
maxi,j{Q̃(d)

i (t)R(d)
ij (t)}. The scheduler applies uniform tie-

breaking, if there are more than one flow satisfying the
condition. The scheduling decision is made at the beginning
of each time slot independently.

The “hybrid queue” represents the actual queue of persistent
flows and the virtual queue of dynamic flows. Based on the
scheduling rule of H-QMW algorithm, we notice that, similar
to the traditional QMW scheme, H-QMW prioritizes a flow
with the maximum product of the backlog and the current
transmission rate. However, the difference is that for dynamic
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flows of class-i, they always share the same data backlog.
In other words, the system determines whether Q(d)

ij (t) is
scheduled depending on the total amount of backlog of class-i
dynamic flow, rather than the queue length of each individual
dynamic flow Q

(d)
ij (t). If Q̃(d)

i (t) tends to be unstable, the sys-
tem prefers to selecting one of class-i dynamic flows for trans-
mission. Moreover, we observe that if Q(d)

ij (t) is scheduled,
then it must have the maximum transmission rate among the
class-i dynamic flows. In particular, we can find that the H-
QMW scheduling algorithm will degenerate to the traditional
QMW scheme when the system only has persistent flows, and
it acts similar to the Maximum Rate scheduler if the system
only has dynamic flows. In addition, to ensure the fairness of
each dynamic flow in the same class, we can classify those
dynamic flows that have the same channel state probability
distribution into the same class. Furthermore, our proposed
scheduling algorithm can be applied to general scenarios for
orthogonal resource allocation, where the orthogonality can be
in the time, frequency, or code domains. We do not need to
restrict the scheduler to schedule one flow at a time. Instead,
the scheduler can allocate each orthogonal resource block to
each flow within the scheduling period. This is inline with
the current cellular system. For instance, if the system has
N orthogonal resource blocks in the current time slot, the
scheduler only needs to perform N times of the proposed H-
QMW scheduling algorithm. When the scheduler decides to
allocate the n-th resource block to a flow, the corresponding
data queue needs to be updated. Then, this flow will continue
to participate in the (n+ 1)-th resource block allocation with
the new data queue size. Thus, multiple resource blocks can
be allocated to the same flow. After the system executes the
H-QMW scheduling algorithm N times, the system starts
to perform the actual transmission according to the obtained
scheduling strategy.

C. Stability Analysis

In this subsection, we analyze the performance of the pro-
posed H-QMW policy and prove that the proposed scheduling
algorithm is throughput-optimal.

Lemma 3: For any traffic intensity is strictly within the
capacity region, i.e., ρ < 1, the proposed H-QMW scheduling
algorithm can ensure the stability of all persistent flows
and dynamic flows, namely H-QMW scheduling algorithm is
throughput-optimal.

Proof: For ρ < 1, there exists a stationary scheduling
policy d∗(t) and � > 0 with the following features [33], [35]

E

{
A

(p)
ij (t) − d

(p)∗

ij (t)R(p)
ij (t)

∣∣∣∣Θ(t)
}

= E

{
λ

(p)
i − d

(p)∗

ij (t)R(p)
ij (t)

}
≤ −�, ∀i, j, (25)

E

{A
(d)
k

(t)∑
l=1

B
(d)
kl (t) −

∑
l∈N (d)

k (t)

d
(d)∗

kl (t)R(d)
kl (t)

∣∣∣∣Θ(t)
}

= E

{
λ

(d)
k −

∑
l∈N (d)

k (t)

d
(d)∗

kl (t)R(d)
kl (t)

}
≤ −�, ∀k. (26)

Since our scheduling policy minimizes the right hand side
of (21). Therefore, we can upper bound the right hand side of
(21) by the stationary scheduling policy d∗(t). By substitut-
ing (25) and (26) into (21), we have

Δ(Θ(t)) ≤ B −
M∑
i=1

N
(p)
i∑
j=1

Q
(p)
ij (t)�−

K∑
k=1

Q̃
(d)
k (t)�. (27)

According to the law of iterated expectation, taking expecta-
tions of both side for (27), we can obtain

E{L(Θ(t+ 1))} − E{L(Θ(t))}

≤ B −
M∑
i=1

N
(p)
i∑
j=1

E

{
Q

(p)
ij (t)

}
�−

K∑
k=1

E

{
Q̃

(d)
k (t)

}
�. (28)

Summing (28) over T time slots, dividing it by T , we have

E{L(Θ(T ))} − E{L(Θ(0))}
T

≤ B − 1
T

T−1∑
t=0

{
M∑
i=1

N
(p)
i∑
j=1

E

{
Q

(p)
ij (t)

}
+

K∑
k=1

E

{
Q̃

(d)
k (t)

}}
�.

(29)

Note that L(Θ(t)) ≥ 0 and L(Θ(0)) = 0. Taking limT→∞
for (29), we have

lim
T→∞

1
T

T−1∑
t=0

{
M∑
i=1

N
(p)
i∑
j=1

E
{
Q

(p)
ij (t)

}
+

K∑
k=1

E{Q̃(d)
k (t)}

}
≤ B

�
,

(30)

which indicates that the persistent flows and dynamic flows
can be stabilized by H-QMW.

Eq. (30) indicates that H-QMW can ensure all the queues
are strongly stable, which means that all the persistent queues
and virtual queues of dynamic flows are also rate stable.
Eq. (30) combined with Lemma 1 indicates that the pro-
posed H-QMW scheduling algorithm is throughput-optimal for
hybrid systems with the coexistence of persistent and dynamic
flows, which can effectively ensure the network queue stability
with any traffic arrival rate in the capacity region.

D. Adaptive H-QMW Scheduling Design

In realistic application scenarios, some flow identification
and classification techniques can be used to identify persistent
and dynamic flows, such as Naive Bayes estimator [36] and
machine learning [37]. For the persistent flows which are long-
lived and have continuous data injection, they typically have
fixed ports and IP addresses, and thus we can use pattern
recognition to extract features and construct an appropriate
model to identify persistent flows. However, dynamic flows
have a finite amount of services and leave the system once
the demanded services are fulfilled, which make it difficult to
identify the category of a dynamic flow once it is added in the
system. Thus, in this subsection, we propose a more realistic
adaptive H-QMW (A-H-QMW), in which the BS does not
need to know the classification of each dynamic flow. In the
proposed A-H-QMW scheduling, we regard all the dynamic
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flows as a virtual dynamic class. Let Q̃(d) denote the queue
backlog of the virtual dynamic class, which is given by

Q̃(d)(t) =
K∑
i=1

∑
j∈N (d)

i (t)

Q
(d)
ij (t), ∀t, (31)

and the corresponding queue evolution of the virtual dynamic
class is given by

Q̃(d)(t+ 1)

=
(
Q̃(d)(t+ 1) −

K∑
i=1

∑
j∈N (d)

i (t)

d
(d)
ij (t)R(d)

ij (t)
)+

+
K∑
i=1

A
(d)
i (t)∑
j=1

B
(d)
ij (t), ∀t. (32)

Intuitively, if a dynamic flow is to be scheduled for trans-
mission, it should have the maximum transmission rate in that
type of dynamic flows. However, unlike H-QMW scheduling,
all the dynamic flows are considered as a virtual class in the
proposed A-H-QMW scheduling. If using H-QMW scheduling
directly, dynamic flows of certain classes with the lower
transmission rate are always not scheduled. Thus, to address
this issue, we define the following “virtual transmission rate”
of the j-th of class-i dynamic flow

R̃
(d)
ij (t) = θij(t)R

(d)
ij (t) ∀t, (33)

where

θij(t) =
ψ

max{R(d)
ij (t(d)ij ), R(d)

ij (t(d)ij + 1), . . . , R(d)
ij (t)}

,

(34)

and t
(d)
ij is the initial time that the j-th of class-i dynamic

flow is added to the system, and ψ is a given non-negative
constant. It is worth noting that max{R(d)

ij (t(d)ij ), R(d)
ij (t(d)ij +

1), . . . , R(d)
ij (t)} is used to perceive the maximum possible

transmission rate of the j-th of class-i dynamic flow. More-
over, for any dynamic flow, if it achieves the maximum
possible transmission rate at time slot t, its corresponding
virtual transmission rates is equal to ψ, otherwise it is less than
ψ. Similar to the H-QMW scheduling, A-H-QMW prioritizes
a flow with the maximum product of the data backlog and the
current transmission rate. However, the difference is that all
the dynamic flows share the same data backlog in the A-H-
QMW scheduling such that the system does not need to know
the category of each dynamic flow, and R̃

(d)
ij (t) replaces the

actual transmission rate of the j-th of class-i dynamic flow.
Based on the idea of H-QMW scheduling, the detailed process.

From Algorithm 1, we can observe that if a dynamic flow is
scheduled, then it must have the maximum virtual transmission
rate, that is, its actual transmission rate may achieve the
maximum in the dynamic flows of the corresponding class.
Moreover, all the dynamic flows have the same maximum
virtual transmission rate, which results in each dynamic flow
can be fairly scheduled when its transmission rate is at its
maximum. Furthermore, similar to the H-QMW scheduling,
the system can adaptively decide whether to schedule a

Algorithm 1 A-H-QMW Scheduling Algorithm
Require: ψ;
Ensure: The scheduling policy d(·)

ij (t);
1: for t = 1, 2, . . . ,∞ do
2: Update θij(t)= ψ

max{R(d)
ij (t

(d)
ij ),R

(d)
ij (t

(d)
ij +1),...,R

(d)
ij (t)} for

each dynamic flow in the system;
3: Calculate the virtual transmission rate

R̃
(d)
ij (t) = θij(t)R

(d)
ij (t);

4: Calculate W (p) = maxi,j{Q(p)
ij R

(p)
ij (t)} and

W (d) = maxi,j{Q̃(d)R̃
(d)
ij (t)};

5: if W (p) > W (d) then
6: Select a persistent flow

{i∗, j∗} ∈ arg maxi,j Q
(p)
ij (t)R(p)

ij (t) for
transmission;

7: else
8: Randomly select a dynamic flow {i∗, j∗} that

satisfies {i∗, j∗} ∈ arg maxi,j{Q̃(d)R̃
(d)
ij (t)} for

transmission;
9: end if

10: Update Q(p)
ij (t), Q(d)

ij (t), and Q̃(d).
11: end for

TABLE I

MCS TABLE

persistent flow or a dynamic flow based on the data backlog
of all dynamic flows and each persistent flow. On the other
hand, we can find that the parameter ψ can be regarded as a
weighting coefficient of Q̃(d)(t), which can be used to achieve
the tradeoff between dynamic and persistent flow backlog.
If the value of ψ is large enough, the system prioritizes the
allocation of resources to dynamic flows, and vice versa.

V. NUMERICAL ANALYSIS

In this section, we evaluate the performance of H-QMW
with the existing representative throughput-optimal scheduling
algorithms, including the QMW, MR, and F-D-MW schedul-
ing algorithms. In addition, the algorithm of separating persis-
tent and dynamic flows and scheduling them independently is
also presented in our simulations. The throughput-optimal of
H-QMW has been validated by simulations in Matlab.

In the simulation, the BS adopts the adaptive Modulation
and Coding Scheme (MCS). The detailed MCSs used in the
simulation are shown in Table I. The order of each MCS
indicates that the number of packets that this MCS can transmit
in one physical resource block. We do not specify the data rate
for generality because different systems may have different
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Fig. 4. Separating persistent and dynamic flows scheduling algorithm.

frame structures. In numerical simulations, we assume a basic
data rate of 88 kb/s for the order-1 MCS as an example,
which is calculated based on the current LTE system where
each scheduling resource unit uses one physical resource block
[38]. It is assumed that all channels are i.i.d Rayleigh fading
channels, and thus the received signal-to-noise ratio (SNR) of
each flow follows the exponential distribution. The average
received SNR is set to 10 dB. The arrival process of dynamic
flows follows a Poisson process, and the average initial flow
size of dynamic flows is set to 10 Mbits. The arrival traffic rate
of the system is calculated according to the traffic intensity
in each simulation. All the presented simulation results are
obtained for T = 5 × 105 seconds which is long enough to
examine if a scheduler is throughput-optimal or not. Unless
otherwise stated, the traffic intensities for all the simulations
are 0.99, which is very close to 1 and can easily result in
instability if the adopted scheduler is not throughput-optimal.

A. Separating Persistent and Dynamic Flows Scheduling
Algorithm

In order to explore the multiplexing gain and efficiency of
the proposed H-QMW algorithm, we first introduce the sepa-
rating persistent and dynamic flows scheduling algorithm (S-
PDS). As shown in Fig. 4, for the S-PDS scheme, we assume
that the scheduler can determine whether to select a persistent
flow or a dynamic flow for transmission based on the pre-
known traffic densities ρ(p) and ρ(d). Since QMW has been
proved to achieve throughput-optimality policy for networks
with persistent flows only, and MR is a throughput-optimal
policy for the system with only dynamic flows, so when S-PDS
scheduler decides to allocate this time slot to persistent flows,
a persistent flow will be scheduled by adopting the QMW
strategy; otherwise the MR algorithm will be used to schedule
a dynamic flow for transmission. The detailed process of the
S-PDS algorithm is outlined in Algorithm 2.

It is worth noting that, different from H-QMW, S-PDS
determines which type of flows to transmit according to pre-
known traffic intensities, which is independent of the current
system backlog, resulting in a lower multiplexing gain among
different types of flows. However, H-QMW can adaptively
select a dynamic flow or persistent flow for transmission based
on the current queue length and channel rate.

Algorithm 2 S-PDS Algorithm

Given ρ(p) and ρ(d)

2: for t = 1, 2, . . . ,∞ do
Generate a random number rand() follows the
uniform distribution U(0, 1);

4: if rand() ≤ ρ(p)

ρ(p)+ρ(d) then
Select a persistent flow
{i∗, j∗} ∈ arg maxi,j Q

(p)
ij (t)R(p)

ij (t) for
transmission;

6: else
Randomly select a dynamic flow {i∗, j∗} that

satisfies {i∗, j∗} ∈ arg maxi,j
R

(d)
ij (t)

R
(d) max
i

for

transmission;
8: end if

end for

B. Performance Assessment

We first set the number of persistent flow to be one. The
system backlog, the total number of flows, and the backlog
of persistent flows with ρ(p) = {0.1, 0.5, 0.9} are shown
in Fig. 5, respectively. With ρ(p) = 0.1, H-QMW can suppress
the growth of the system backlog for all time. For H-QMW,
the number of dynamic flows and the backlog of persistent
flows are always bounded over time. However, MR, QMW,
and S-PDS fail to achieve queue stability. One may observe
that QMW can ensure the backlog of persistent flows bounded,
but the number of dynamic flows has the trend of growing
into infinity over time. This can be interpreted as a dynamic
flow has a finite amount of service requests when it arrives
at the system, and once the backlog of some dynamic flows
become smaller, these dynamic flows will be scheduled with
a very low probability according to QMW, resulting in the
number of dynamic flows is constantly increasing. The above
analysis for the instability of QMW can be verified through
Figs. 5(b)(e)(h). Also, we can find that S-PDS can guarantee
the number of dynamic flows bounded, but the backlog of
persistent flows shows an infinite growth trend over time. The
reason is that the S-PDS scheduler only determines whether
to schedule a persistent or dynamic flow based on the pre-
known traffic intensities without considering the data backlog
and channel rate state among different types of flows. This
leads to the multiplexing gain among different types of flows
is not fully utilized.

Increasing ρ(p) to 0.5, as expected, H-QMW always keeps
the total amount of system backlog bounded over time demon-
strating throughput-optimality. The number of dynamic flows
is also stabilized by H-QMW. In contrast, the total backlog
with QMW, MR and S-PDS cannot be stabilized. One inter-
esting observation is that although MR can ensure the number
of dynamic flows is bounded, the backlog of persistent flows
tends to be unstable. The reason is that as the number of
dynamic flows increases, the dynamic flows will be scheduled
with a higher probability. This leads to the dynamic flows in
MR share too much of the channel time, and thus the persistent
flow has an insufficient share of channel time to transmit the
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Fig. 5. The system backlog, the total number of flows, and the backlog of persistent flows with ρ(p) = {0.1, 0.5, 0.9}.

arrival traffic, i.e., for MR, the time allocation of the persistent
is less than ρ(p). Meanwhile, the higher share of resources
for Q(d) keeps the number of dynamic flows very low, and
thus the total number of flows, including both the persistent
and dynamic flows, is also limited to very low. As a result,
the probability of always scheduling a flow in the maximum
possible transmission rate reduces dramatically, and hence the
channel is not efficiently utilized without fully exploring the
multiuser diversity gain. The above analysis for the instability
of MR can be verified through Figs. 5(d)(e)(f).

In Fig. 5(b) with ρ(p) = 0.1, MR has the least N(t), H-
QMW and S-PDS have a much higher N(t) than MR, but it is
well bounded.N(t) of QMW cannot be stabilized. In Fig. 5(e)
with ρ(p) = 0.5, since the workload from the dynamic flows
is reduced, N(t) of MR is further reduced. However, a fewer
number of flows means less chance to transmit in Rmax, which
leads to the scheduler will take more time resources to transmit
dynamic flows and the backlog of persistent flows become

larger. As a result, MR shows instability in Figs. 5(d)(f). N(t)
of H-QMW is maintained on the same level as that in Fig. 5(b),
which gives the scheduler plenty of possibilities to choose the
flows in Rmax channel state.

Increasing ρ(p) to 0.9, the system backlog is shown
in Fig. 5(g). We can observe the same trend comparing with
that in Fig. 5(d), i.e., only H-QMW is able to stabilize the
system backlog, while QMW, MR, and S-PDS result in an
unstable system. The number of flows with ρ(p) = 0.9 is
shown in Fig. 5(h). We can observe again that N(t) of MR is
too small to fully exploit the multiuser diversity gain, and N(t)
of QMW cannot be stabilized. Although S-PDS can ensure that
N(t) is bounded, it fails to achieve stability of persistent flows.
Only N(t) of H-QMW is stabilized at a proper level so that
the multiuser diversity gain is fully used, and the throughput-
optimality is achieved.

Increasing the number of persistent flows in the system to
two and setting ρ(p) = 0.5, the system backlog and the number
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Fig. 6. The system backlog and the backlog of persistent flows with two
persistent flows and ρ(p) = 0.5.

Fig. 7. Start-up latency of dynamic flows with two persistent flows and
ρ(p) = 0.5.

of flows are shown in Fig. 6. The simulation results further
validate our conclusion that H-QMW is able to stabilize the
hybrid system with both persistent and dynamic flows. In order
to further verify this, we present the performance of F-D-MW,
which has been proven to be throughput-optimal for hybrid
systems in [33]. From Fig. 6(a), we may observe that there is
only a marginal gap between H-QMW and F-D-MW in terms
of system backlog, and their trajectory is also identical, which
validates our results. However, from Fig. 6(b), we can find
that F-D-MW has a much higher N(t) than H-QMW. This
because by adopting F-D-MW, new arrival dynamic flows in
the system may suffer a long start-up latency, resulting in a
certain amount of dynamic flows that are backlogged in the
system.

Fig. 7(a) presents the average start-up latency of dynamic
flows with different scheduling algorithms. Since QMW can-
not ensure the stability of dynamic flows, resulting in the
average start-up latency has a trend of growing into infinity
over time, so the average start-up latency of QMW is not
shown in this figure. From Fig. 7(a), we can find that F-D-
MW has the largest start-up latency and MR has the smallest
start-up latency. This is because F-D-MW always gives the
priority to the flows with the largest product of the delay
and the current transmission rate, and so new arrival dynamic
flows have to wait long enough before being scheduled for
the first time. On the other hand, as the number of dynamic
flows increases, MR will schedule the dynamic flows for
transmission with a higher probability, which leads to smaller
start-up latency. Besides, we can observe that the average start-
up latency of H-QMW is much smaller than that of F-D-MW.
The reason is that for H-QMW, if a dynamic flow is scheduled,
then it must have the maximum transmission rate, resulting
in new arriving dynamic flows have the same opportunity to
be scheduled as the previously existing dynamic flows (the

Fig. 8. Average total and queuing latency of each dynamic flow with two
persistent flows and ρ(p) = 0.5.

Fig. 9. Average time ratio allocated for dynamic flows with two persistent
flows and ρ(p) = 0.5.

wireless channel is i.i.d.). Fig. 7(b) shows the box-plot of
the average start-up latency delay for H-QMW and F-D-MW
scheduler. We can see that the H-QMW has a smaller deviation
of the start-up latency than the F-D-MW scheduling, which
indicates that the H-QMW has better fairness in scheduling
dynamic flows than the F-D-MW.

Fig. 8 shows the average total latency and queuing delay
of each dynamic flow for different scheduling policies,
in which the average total latency consists of the average
queuing delay and transmission delay. The average trans-
mission delay can be calculated by subtracting the average
queuing delay from the total latency, and thus the average
transmission delay of MR, S-PDS, F-D-MW, and H-QMW are
{21.33, 19.38, 18.86, 18.98} seconds, respectively. We can see
that MR has the smallest total latency and queuing delay, fol-
lowed by S-PDS. Also, the average total latency and queuing
delay of H-QMW are much smaller than those using F-D-MW.
Furthermore, the average transmission delay of MR is larger
than that of H-QMW and F-D-MW. This can be explained as
follows: i) For the MR scheme, since the number of dynamic
flows is much larger than that of persistent flows, the MR
scheduler prefers to selecting a dynamic flow for transmission.
From Fig. 6(b), we can find that, with MR, the number of
dynamics flows in the system is smaller than those of other
schemes, result in a lower multiuser diversity gain. Therefore,
MR may not always schedule a dynamic flow at its maximum
transmission rate, leading to a longer average transmission
delay for dynamic flows. ii) F-D-MW scheduler gives a higher
priority to the flows with the longer delay. The persistent flow
delay is defined as the sum of all the files (packets) delay in
the corresponding persistent flow queue, so F-D-MW prefers
to schedule a persistent flow for transmission.
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Fig. 10. System backlog, the total number of flows, and the backlog of persistent flows.

TABLE II

AVERAGE RECEIVED SNR (LINEAR SCALE)

Fig. 9 presents the average time ratio allocated for dynamic
flows with different scheduling policies. As expected, MR
and QMW allocate the most and the least time resources
for dynamic flows, respectively. In addition, we can observe
that the time ratio of H-QMW assigned for dynamic flows is
slightly larger than F-D-MW, combined with Fig. 8, which
explains why the average total latency of each dynamic flow
for H-QMW is smaller than F-D-MW.

Fig. 10 and Fig. 11 show the performance of the proposed
A-H-QMW scheduling. In these figures, we set the number of
classes for persistent and dynamic flows to be two and three,
respectively. All the channels are assumed to follow Rayleigh
distributions, and the corresponding average received signal-
to-noise ratio of each class is given in Table II. The arrival
process of all dynamic flows is assumed to follow a Poisson
process. The initial flow size of the first class dynamic flow
is set to a constant, which equals 5 Mbit. Each flow size
of the second and third classes dynamic flows follows the
exponential distribution with mean {10, 20} Mbit, respectively.
The traffic intensities of the persistent and dynamic flows
are set to ρ(p) = {0.2, 0.29} and ρ(d) = {0.1, 0.2, 0.2},
respectively.

Fig. 10 presents the system backlog, the number of flows,
and the backlog of persistent flows. We can easily observe
that the trajectory of the A-H-QMW is almost identical to
other throughput-optimal scheduling algorithms. Moreover, A-
H-QMW also keeps the number of flows and the backlog of
persistent flow bounded over time. All of these verify that the
proposed A-H-QMW can effectively ensure the stability of the
system without the knowledge of the class of each dynamic
flow.

Fig. 11 shows the average start-up and total latency of each
dynamic flows for different scheduling policies. We can find
that, compared to F-D-MW and H-QMW scheduling, A-H-
QMW has a smaller start-up and total latency of each dynamic

Fig. 11. Start-up and total latency of dynamic flows.

flow when ψ = 0.1, which implies that the system priorities
the allocation of resources to dynamic flows. However, when
ψ = 0.001, A-H-QMW has a larger total latency for dynamic
flows than H-QMW. Combined with Fig. 10, we can find that
A-H-QMW has the smaller backlog of persistent flows in the
system than H-QMW when ψ = 0.001. All of these indicate
that A-H-QMW can achieve the tradeoff between dynamic and
persistent flow backlog. Thus, we can design an appropriate
ψ to meet the different QoS requirements.

From all the performance evaluation, we make the following
conclusions for the schedulers in hybrid systems. First, H-
QMW and A-H-QMW are verified to be throughput-optimal.
Second, although when the system has only dynamic flows,
MR is throughput-optimal, when the system has both persis-
tent and dynamic flows, MR is not throughput-optimal. Third,
the proposed H-QMW and A-H-QMW have smaller start-up
latency and total latency of each dynamic flow than that of
F-D-MW. Finally, the approach of separating the two types of
flows and scheduling them independently cannot ensure the
stability of the hybrid system.

VI. CONCLUSION

In this work, we have investigated the scheduling algorithm
design for the coexistence of persistent and dynamic flows.
First, we present the definition of the capacity region for the
hybrid system with channel rate variation. Second, we pro-
posed an online H-QMW scheduling algorithm by introducing
the virtual queue for dynamic flows and using the Lyapunov
framework, which has been proven to achieve throughput-
optimality for hybrid systems. Third, we propose a more
realistic A-H-QMW scheduling algorithm for the scenario that
the system does not need to know the classification of dynamic
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flows. At last, we not only reveal that H-QMW and A-H-QMW
can achieve the smaller start-up and total latency for dynamic
flows than F-D-MW, but also show that the approach separat-
ing the two types of flows and scheduling them independently
cannot ensure the stability of hybrid systems. In addition,
it is shown that the MR scheduling algorithm, throughput-
optimal for dynamic flows, is not throughput-optimal when
the dynamic flows coexist with persistent flows.

In this paper, since our objective is to design a scheduling
algorithm to achieve the capacity region, the delay is not
incorporated in our design. However, the delay performance
is a sensitive QoS metric in practice. In fact, if we consider
an exact delay QoS demand, this may lead to some loss in
the achievable rate region. Therefore, there exists a tradeoff
between the stability of all queues and the average delay.
In particular, for the proposed H-QMW scheduling algorithm,
when there are no more new dynamic flows arriving at the
system, this may result in that the dynamic flow in the existing
system will not be scheduled. However, we can address this
issue if the exact delay QoS demand is incorporated in our
scheduling algorithm design. Thus, a further in-depth research
is beckon to design an efficient scheduling algorithm to
guarantee the exact delay QoS demand while satisfying the
stability of all queues.
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