
3336 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

Loss-Aware Throughput Estimation Scheduler
for Multi-Path TCP in Heterogeneous

Wireless Networks
Wenjun Yang , Graduate Student Member, IEEE, Pingping Dong ,

Lin Cai , Fellow, IEEE, and Wensheng Tang
Abstract— Multi-path TCP (MPTCP) is increasingly popular

with the widespread usage of multihomed devices. MPTCP
allows data streams to be delivered across multiple simultane-
ous connections, providing higher bandwidth aggregation and
throughput in comparison with single-path TCP. However, due to
the path heterogeneity and packet losses, the occurrence of Out-
of-Order (OFO) packets is inevitable for MPTCP. Although many
approaches have been proposed to mitigate OFO, most of them
focused on compensating path delay differences but not consid-
ered the impact of packet loss. In this paper, we take the first step
towards analyzing the impact of packet loss on OFO, and propose
Loss-Aware Throughput Estimation scheduler, LATE. LATE
comprehensively considers each subflow’s path characteristics
and protocol parameters including Round Trip Time (RTT),
congestion window (cwnd), and loss rate, to predict the data
amount that can be sent over each subflow at a given time and
determine wisely which segments should be allocated to which
subflows. Experimental results show that LATE achieves a gain
of 5.13% in mean goodput with long-lasting flows while reducing
the completion time of short flows by about 26.68% compared
to the state-of-the-art scheduler for MPTCP.

Index Terms— Multipath TCP, lossy network, out-of-order,
scheduling policy, RTO.

I. INTRODUCTION

MOBILE devices gain popularity, while the majority of
them are equipped with multiple interfaces (e.g., 4G

Manuscript received June 8, 2020; revised October 17, 2020; accepted
December 28, 2020. Date of publication January 12, 2021; date of current
version May 10, 2021. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC), in part by
the Compute Canada, in part by the China Scholarship Council (CSC), in part
by the National Natural Science Foundation of China under Grant 61602171,
and in part by the Hunan Province’s Strategic and Emerging Industrial Projects
under Grant 2018GK4035. The associate editor coordinating the review of this
article and approving it for publication was L. Zhao. (Corresponding author:
Pingping Dong.)

Wenjun Yang is with the Hunnan Provincial Key Laboratory of Intelligent
Computing and Language Information Processing, Hunan Normal University,
Changsha 410081, China, and also with the Department of Electrical and
Computer Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
(e-mail: wenjunyang@uvic.ca).

Pingping Dong and Wensheng Tang are with the Hunnan Provincial
Key Laboratory of Intelligent Computing and Language Information Process-
ing, Hunan Normal University, Changsha 410081, China, also with the
College of Information Science and Engineering, Hunan Normal University,
Changsha 410081, China, and also with the Hunan Xiangjiang Artificial
Intelligence Academy, Changsha 410081, China (e-mail: ppdong@csu.edu.cn;
tangws@hunnu.edu.cn).

Lin Cai is with the Department of Electrical and Computer Engi-
neering, University of Victoria, Victoria, BC V8P 5C2, Canada (e-mail:
cai@ece.uvic.ca).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2021.3049300.

Digital Object Identifier 10.1109/TWC.2021.3049300

and Wi-Fi), preferring multipath transport protocols that can
leverage multiple wireless paths to transfer data concurrently.
Multi-path TCP (MPTCP) [1], a representative multipath
transport protocol, has been proposed and adopted by IETF
to not only enhance reliability in dealing with path failures
but also achieve higher end-to-end throughput by concurrent
multipath transfer (CMT) [2].

However, out-of-order packets at the receiver is a common
problem for MPTCP [3]–[5]. Given the different character-
istics of different paths in terms of path delay, bandwidth,
and loss probability, packets transmitted over different paths
may experience a different end-to-end delay, so a packet with
a higher sequence number may arrive at the receiver earlier
than that with a lower sequence number, namely, the Out-of-
Order (OFO) problem [6]–[8]. The high transmission error
rate in wireless networks is another cause of OFO [9]–
[11]. If a packet with a lower sequence is lost and cannot
arrive at the receiver timely, a receiver may have to store a
large number of out-of-order packets while waiting for the
lost one.

When the receiver buffer is limited, the OFO packets
may eventually occupy the entire buffer, stalling the
sender’s transmission, resulting in the Head-of-Line Blocking
(HoL-Blocking) problem [12]–[15]. It indicates that path het-
erogeneity and packet losses largely impair the performance
of MPTCP, which is sensitive to OFO in heterogeneous lossy
networks.

Recently, several solutions have been proposed to miti-
gate these problems. First, changing the receiver buffer, e.g.,
expanding it [14], [16] or splitting it [17], [18], is useful
to store more out-of-order packets. However, using a larger
receive buffer may lead to longer delay, not desirable for
real-time data transmission [8].

Another category of solutions focused on the design of a
packet pre-allocation policy that intentionally sends packets
out of order while ensuring they arrive at the receiver in
order. Sarwar et al. [19] presented DAPS to carefully choose
and send packets based on the delay of the associated paths
to receive packets in order. The principle of OTIAS [20] is
the same as that in [19]. Ferlin et al. [12] showed, both
analytically and experimentally that DAPS and OTIAS were
unable to react upon network changes promptly due to high
heterogeneity in subflow delays, and they presented BLEST
to estimate whether a path will cause HoL-Blocking and
dynamically adapt scheduling to prevent blocking. As these
proposals did not fully address the influence of the lossy

1536-1276 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5361-7731
https://orcid.org/0000-0003-0222-6815
https://orcid.org/0000-0002-1093-4865
https://orcid.org/0000-0003-1137-1758

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3337

network, Xue et al. [21] proposed DPSAF, which considers
packet loss and uses the information in SACK to detect and
prevent out-of-order packets. However, with severe packet
losses, MPTCP may suffer from retransmission timeout (RTO)
especially when transmitting short flows [22], [23], which is
not considered by DPSAF. J. Padhye et al. [24] observed
that there are more timeout events than fast retransmit events
in almost all of their experimental traces, and the majority
of window decreases are due to time-outs, rather than fast
retransmits.

In this paper, we first analyze the impact of packet losses
on in-order arrival. Then we develop a novel Loss-Aware
Data Estimation scheduler for MPTCP, LATE, by considering
subflow’s characteristics including round trip time (RTT),
congestion window (cwnd), and loss rate, to predict the data
amount that can be sent out over each subflow at a given time.
Therefore, we schedule different numbers and sequences of
packets into each subflow ensuring in-order arrivals.

The main contributions of this paper are three-fold.

• We first theoretically and experimentally study the exist-
ing MPTCP performance, which indicates that the loss
rate plays an important role in predicting each subflow’s
transmission capacity within a certain time.

• To improve prediction accuracy, we propose a transmis-
sion model that comprehensively considers the situation
of fast retransmission and RTO to calculate the data
amount that can be sent out. Besides, all the transmission
parameters, including time offset, RTT, cwnd, slow start
threshold (sst) and loss rate, are also taken into consid-
eration in the proposed estimation model.

• We not only implement LATE scheduler based on
MPTCP-enabled Linux kernel to validate its performance
in heterogeneous wireless networks consisting of both 4G
and WiFi channels in the real world, but implement LATE
on basis of Network Simulator 3 (NS3) [25] to gain some
insights about how LATE behaves whenever the number
of subflows is greater than 2. The experimental results
show that LATE outperforms the state-of-the-art DPSAF
in reducing the completion time of short flows by 26.68%
and increasing the mean goodput of long flows by 5.13%
respectively.

The rest of this paper is organized as follows. Section II
introduces the related work. Section 3 analyzes the impact of
packet losses on in-order arrival and introduces our motiva-
tion for this paper. Section 4 proposed the LATE scheduler.
Section 5 presents the evaluation of LATE under different
experimental scenes. Finally, section 6 concludes this paper.

II. MPTCP AND RELATED WORK

MPTCP has been proposed for supporting multi-homing,
which can offer high bandwidth and reliability [26]. In prac-
tice, its performance is impaired by several factors [27].
To mitigate the impairment, various multipath algorithms have
been proposed recently in two main categories: congestion
control and path scheduling.

The congestion control algorithms of MPTCP mainly
focuses on adjusting the transmission rate of each subflow and

shifting traffic from more congested paths to less congested
ones, thereby improving the throughput and link utilization.
A large number of congestion control algorithms have been
developed such as Linked Increases Algorithm (LIA) [28],
Opportunistic Linked-Increases Algorithm (OLIA) [29],
Balanced Linked Adaptation (Balia) [30], Weighted Vegas
(wVegas) [31], mVeno [32]. These algorithms rely on an
arithmetic model to control the increase of each subflow’s
cwnd, to balance the congestion level of them.

On the other hand, the path scheduling policy is designed
to rationally split data packets over multiple paths to improve
MPTCP performance [22]. There are many scheduling algo-
rithms, such as the Lowest-RTT-First (minRTT) scheduler,
Constraint-based proactive scheduling (CP) [33], Highest
Sending Rate (HSR), Largest Window Space (LWS), and
Lowest Time/Space (LTS) [34].

Although the MPTCP performance can be enhanced with
these proposals, it still suffers from serious OFO problems,
especially in lossy networks. To mitigate the impact of OFO
packets on throughput, an intuitive solution is buffer man-
agement, namely, expanding the receiver buffer [14], [16],
splitting the buffer space of receiver [17], [18] or predicting
the appropriate buffer size over time [35] to accommodate
much more OFO packets, so the receiver cache will not be
fully occupied and stalled by a large amount of OFO packets.
These solutions consider the trade-off between large buffer size
and fixed capacity with limited buffer size. However, using a
larger receive buffer may lead to longer delay, not desirable
for real-time data transmission [8].

Then, researchers start to focus on designing a pre-allocate
packet policy that intentionally sends packets out of order to
arrive in order. Delay-Aware Packet Scheduler (DAPS) [19]
determines which segments should be sent over which sub-
flows by considering both forward delay and cwnd of each
subflow, to make segments arrive in order. OTIAS [20] eval-
uated and extended the idea of DAPS to schedule more
segments on a fast subflow. Queues may build up at each
subflow under the assumption that these segments will be
sent as soon as there is space in the cwnd for the subflow.
However, no consideration is given to segment reinjection if
a certain path is blocking the connection [12]. This situation
motivates Ferlin et al. [12] to present BLEST to resolve the
problem of HoL-Blocking caused by OFO packets. Rather
than stopping the slow subflows, BLEST estimates whether the
slow path will cause HoL-blocking and dynamically schedules
the packets over certain subflows to prevent blocking. These
existing algorithms can reduce OFO number and improve net-
work throughput, yet they suffer from significant performance
degradation when the path heterogeneity is too large or losses
occur frequently. Thus, Xue et al. [21] proposed DPSAF,
which combines a loss-based throughput estimation model and
SACK information to detect and prevent out-of-order packets.
However, DPSAF considers only two cases: no packet loss
and fast retransmission but not RTO, where RTO is typically
set to several times of RTT, leading to severe performance
degradation. On the other hand, DPSAF chooses the maxi-
mum probability of different cases to conduct the estimation,
which cannot appropriately show the expected value of data

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

3338 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

Fig. 1. The impact of packet loss on OFO.

amount and lose some accuracy accordingly. Although the
analysis on TCP’s average throughput has been heavily investi-
gated [36]–[38], for MPTCP, the analytical model should
capture the instantaneous rate and latency, which remains an
open issue and motivates this work. In this paper, we develop
a new prediction model that comprehensively considers slow
start, congestion avoidance, lost recovery phases to assist the
scheduler to ensure in-order arrival at the receiver side.

III. MOTIVATION

We first study the performance of the state-of-the-art
scheduling algorithm BLEST, to analyze the problems of those
prediction algorithms which do not consider packet loss.

BLEST mainly pursues the goal of making segments arrive
in order, thus mitigating the problem of HOL-Blocking caused
by OFO packets. BLEST is formulated for a scenario with two
classes of subflows, i.e., fast subflow (subflowi) and slow
subflow (subflowj). The basic idea of BLEST is to prevent
the amount of data being sent from the sender from surpassing
the available space of the receiver buffer, so it introduces
a variable named total MPTCP send window (MPTCPsw),
which equals to the receiver window (rwnd). BLEST specifies
that the sum of cwnd of subflowi and that of subflowj cannot
exceed MPTCPsw.

See Fig. 1a for an example, assume that the available send
window MPTCPsw is 20 packets at packet scheduling time t,
the RTT of subflowi and subflowj are 10 ms and 20 ms
respectively, and both of the cwnds are 5 packets. According to
the estimation of BLEST, subflowi’s cwnd is increased by 1
for every RTTi as it is in congestion avoidance, this will last
for two rounds within RTTj as the value of RTTj /RTTi is two,
and the amount of data Xi that will be sent on subflowi within
RTTj would be 11 packets (5 packets in the first round and

6 packets in the second round). Since MPTCPsw is greater
than 11, subflowj is allowed to be allocated Xj packets,
where Xj is calculated by min{MPTCPsw − Xi, cwndj}.
Consequently, segments from 1 to 11 will be in flight on
subflowi, and segments from 12 to 16 will be in flight
on subflowj . Ideally, at time t’ when packets 1-11 arrive
at the receiver, new packets 12-16 also arrive at the same
time, so there is no disordered packet at the receiver at
time t’.

However, in the lossy heterogeneous network, this ideal
situation discussed above may not hold. We assume that a
packet (e.g., packet 1) is lost during the transmission over
subflowi, MPTCP sender has to recover the lost one in
the next round through the recovery mechanism, namely fast
retransmission or RTO. No matter which recovery mechanism
is used, packets 6-11 cannot all reach the receiver earlier
than packets 12-16, as described in Fig. 1b, as the MPTCP
sender has to retransmit the lost packet but not to send new
packets 6-11 in the second round. Therefore, these estimation
models are not suitable for lossy networks.

We further conduct some experiments based on the Linux
testbed to verify the impact of loss rate on BLEST. Here the
file size of the transmitted data is set to 1MB, and the loss
rates are set to 0, 0.5%, 1%, 3%, 5% respectively.

As shown in Fig. 2, with the increase of packet loss
rate, the mean goodput of both TCP and BLEST decreases,
while BLEST achieves a higher average goodput than
TCP as it can leverage multiple paths to transmit data
concurrently. However, when the loss rate goes up to
a high value, the average goodput of BLEST decreases
more drastically than TCP. We can observe that the mul-
tipath transmission protocol is more susceptible to packet
loss.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3339

Fig. 2. The mean goodput of each algorithm under different loss rates.

Fig. 3. The number of OFO packets of each algorithm under different loss
rates.

To reveal this cause of BLEST’s performance degradation,
we count the number of OFO packets at the receiver to make a
comparison between TCP and BLEST. The results are shown
in Fig. 3. Compared with BLEST algorithm, the number of
OFO packets of TCP is always lower. When the loss rate is
small (e.g., 0 or 0.5%), the number of OFO packets is 20 at
most, it is not enough to occupy all of the receiver caches
to block transmission progress as the default receiver buffer
size is 65536 bytes in Linux kernel, so it has little influence
on BLEST in terms of the mean goodput in this situation.
However, when the packet loss rate exceeds 1%, the number
of OFO packets increases significantly, and a large number
of OFO packets occupy the cache of the receiving side.
The sender window, which is given by min{rwnd, cwnd},
consequently becomes extremely small, and the mean goodput
of BLEST decreases largely.

Based on the above analysis, we conclude that utilizing RTT
only to schedule packets over each subflow is insufficient.
It motivates us to design a more accurate model to pre-allocate
data packets out of order to minimize OFO arrival.

IV. THE PROPOSED ALGORITHM LATE

To effectively reduce the OFO number at the receiver within
a certain period T j

i which is visually reflected in Fig. 1,
i.e., the elapsed time from time t to t’ that can be roughly
set as RTTj/2, in this section, we first utilize MPTCP with

two subflows, i.e., subflowi and subflowj , to formulate a
loss-based transmission model that accurately estimates the
amount of data transmitted over fast subflow (subflowi).
Without loss of generality, we then elaborate on how LATE
works for MPTCP with more than two subflows, as well as
how it selects packets from the sending pool for each subflow
based on the former prediction.

A. Packet Loss vs Round Trip Time

During MPTCP transmission process, four intertwined
phases, i.e., slow start, coupled congestion avoidance, fast
retransmit, and RTO, involve in congestion control and data
recovery. To estimate the data amount of subflowi at a given
time, here we first give a discussion about these phases.

According to the TCP transmission model, if there is no
packet loss in one round, all packets of this round would
arrive at the receiver successfully after RTTi/2, and the next
round will step into the slow start or congestion avoidance
phase accordingly. This situation is shown in Fig. 4a. However,
if one packet loss happens, the MPTCP sender has to recover
from the lost one through fast retransmit or RTO. Once
the MPTCP sender receives a certain number (i.e., three) of
duplicated ACKs (dupACKs), it reacts quickly to retransmit
the lost packets, namely fast retransmit, which spends almost
RTTi + RTTi/2 to deliver all the packets of the current
round to the receiver successfully. Fig. 4b briefly illustrates
this process. Last but not least, when transmitting a small
amount of data, the more the number of paths being utilized,
the fewer the number of packets being scheduled into each
path. If any packet is lost, there may not have enough
dupACKs, so the MPTCP sender has to rely on RTO to
retransmits all un-ACKed packets after the timeout. In this
situation, it takes RTOi + RTTi/2 to transmit all packets
successfully. This situation is shown in Fig. 4c.

Based on the above analysis, we redefine the complete round
r is the process that includes new packet transmission and
lost retransmission if possible, ensuring that all new packets
are delivered successfully to the receiver within this round.
Therefore, the duration of one round varies in a different loss
situation.

B. The Proposed LATE Estimation Model

The throughput estimation model is at the heart of
Loss-Aware Throughput Estimation scheduler (LATE). The
variables used in this model are listed in Table I where w and
sst represent the congestion window and slow start threshold,
respectively.

Given specific path characteristics such as cwnd, RTT and
loss rate, this model aims at calculating the number of data
packets (N(T j

i)) that can be delivered to the receiver over
the subflow (i.e., subflowi) with a smaller RTT during the
period of T j

i . For instance, there might be multiple rounds the
sender can run in time T j

i , we initially count the time t1 the
sender will cost to make all packets of the first round arrive
at the receiver successfully. After that, if there is still time left
(i.e., T j

i − t1 > 0), we further calculate the second round of
data amount N(T j

i − t1) by obtaining parameters from the

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

3340 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

Fig. 4. The different situations during the transmission process.

TABLE I

THE PARAMETERS AND THEIR PHYSICAL SIGNIFICANCE IN THE LATE TRANSMISSION MODEL

former round and repeat this cycle until the total time T j
i

runs out. Therefore, the calculation of the total number of
packets N can be written as

N(T j
i) = n1 + N(T j

i − t1). (1)

where the n1 is the number of packets that reach the receiver
during the first round.

According to (1), the calculation of N(T j
i) is a recursive

process. Without loss of generality, we use variable T (r) to

denote the remaining time when the r-th (r = 1, 2, 3, . . .)
round starts, and N (r)(w(r)) to denote the number of packets
can be delivered successfully to the receiver within T (r),
where w(r) is the cwnd when the r-th round transmission
started. For different values of T (r), there are four conditions
as follows.

1) T (r) < RTTi/2: The time is too limited to transmit
a new packet. In other words, no packet can reach the

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3341

receiver. Then we have

N (r)(w(r)) = 0. (2)

2) RTTi/2 ≤ T (r) < 3 · RTTi/2: The time is enough
to transmit new packets in the r-th round, but not enough to
recover the lost packets through retransmission or start the
(r + 1)-th round of transmission. Denoted by P (x|w(r)) the
probability of x packets being lost when the current cwnd
is w(r). As the loss rate of subflowi is l and packet losses are
independent of each other [38]–[40], the value of P (x|w(r))
obeys the Bernoulli formula shown in (3).

P (x|w(r)) =
�

w(r)
x

�
∗ lx ∗ (1 − l)w(r)−x. (3)

We can calculate the number of packets that can be suc-
cessfully transmitted. That is,

N (r)(w(r)) = w(r) −
w(r)�
x=0

P (x|w(r)) ∗ x. (4)

3) 3 ·RTTi/2 ≤ T (r) < RTOi +RTTi/2: This means that
the time is enough for the sender to complete the current round
of transmission and even start the next round of transmission.
However, if there are lost packets, it can be recovered through
fast retransmission but not RTO retransmission. The cwnd
change behavior of this situation is illustrated by means of the
TCP-based Markov chain diagram [39], [40] shown in Fig. 5,
in which every state consists of two elements (w(r), sst), but
for ease of reading, only w(r) is shown in the circles, sst is
labeled at the bottom of each column and the states in the same
column have the same sst. Note that the end nodes with W
notation are assumed to model the largest cwnd, whose value
depends on the bandwidth-delay product (BDP) and the buffer
size of the network bottleneck [41]. Given certain (cwnd, sst),
there could be three state transition directions as follows:

• Slow Start (SS) or Congestion Avoidance (CA): All
packets are transmitted successfully and no loss occurs
in the r-th round. The number of packets arrived at the
receiver during the r-th round is w(r) and the duration
of the r-th round is RTTi. The remaining time T1(r +1)
is abundant to start the (r + 1)-th round in the SS or
CA state, and thus the state changes from (w(r), sst) to
(2 ∗ w(r), sst) or (w(r) + 1, sst) with a transition rate
of p1(r). We can obtain p1(r) and other parameters as
follows.

p1(r) =
�

w(r)
0

�
∗ l0 ∗ (1 − l)w(r), (5)

T1(r + 1) = T (r)−RTTi, (6)

w1(r + 1) =

�
2 ∗w(r), w(r) < sst(r)
w(r) + 1, w(r) ≥ sst(r),

(7)

sst1(r + 1) = sst(r). (8)

Note that w1(r + 1) and sst1(r + 1) are the definitions
of cwnd and sst when the (r + 1)-th round starts,
respectively. Then we have

N̂
(r)
1 (w(r)) = p1(r) ∗ w(r) + N̂

(r+1)
1 (w1(r + 1)). (9)

Fig. 5. State transitions of each MPTCP subflow.

where N̂
(r)
1 (w(r)) is the equivalent of N (r)(w(r)) in the

first category.
• Fast Retransmission (FR): m lost packets in the r-th

round would have the chance to be recovered through FR
if m is less than or equal to w(r)− 3. It implies that the
triggering of FR requires a current cwnd of at least 4,
as any loss in states (2, 2) and (3, 2) shown in Fig. 5
leads to RTO only, not FR. In Fig. 5, the rightmost
column with thick circles refers to states undergoing
fast retransmission, the states change from (w(r), sst) to
(�w(r)/2�, �w(r)/2�). Since the sst(r+1) has nothing to
do with sst(r), this rightmost column should be identical
for sst = 2, 4, 8. To keep the figure readable, only the
case for sst = 2 is shown. Since this situation takes
3·RTTi/2 to ensure lost packets arriving the receiver end
and the next round will take place after 2 · TTi, we have
the probability p2(r) of this state transition and the next
round parameters as below

p2(r) =
w(r)−3�
m=1

�
w(r)
m

�
∗ lm ∗ (1− l)w(r)−m,

(10)

T2(r + 1) = T (r)− 2 ∗RTTi, (11)

w2(r + 1) = �w(r)/2�, (12)

sst2(r + 1) = �w(r)/2�, (13)

N̂
(r)
2 (w(r)) = p2(r) ∗w(r) + N̂

(r+1)
2 (w2(r + 1)).

(14)

• RTO: The triggering condition of FR is as opposed
RTO which happens when there are more than w(r) - 3
lost packets in the r-th round, as instantiated in Fig. 5,
every state is possible to jump into RTO phase with
a huge cwnd reduction and consequently performance

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

3342 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

degradation. The importance of RTO consideration is
also stressed by J. Padhye et al. [24], as they verified
that timeout events happen more frequently than fast
retransmits events, and majority of window decreases
are due to timeouts, rather than fast retransmits. The
probability p3(r) of RTO occurrence is yield by

p3(r) =
w(r)�

m=w(r)−2

�
w(r)
m

�
∗ lm ∗ (1− l)w(r)−m. (15)

However, in this case, T (r) is not large enough to trigger
RTO and the next round (r+1) would not start up. T3(r+
1) is zero and the total number of packets N̂

(r)
3 (w(r)) is

N̂
(r)
3 (w(r)) =

w(r)�
m=w(r)−2

�
w(r)
m

�
∗ lm ∗ (1− l)w(r)−m

∗ (w(r) −m). (16)

Based on the above analysis, we can conclude that, given the
specific T (r), the recursive process is going to go through all
three situations with corresponding probability. After several
iterations, the value of N (r)(w(r)) can be obtained by

N (r)(w(r)) =
3�

i=1

N̂
(r)
i (w(r)). (17)

4) T (r) ≥ RTOi + RTTi/2: In this condition, T (r) is
large enough to finish the r-th round transmission, as well as
retransmit the lost packets through fast retransmission or RTO.
Apparently, the transmission process of this condition includes
the similar three categories as condition 3), while the RTO
situation here differs from that of condition 3). Below we only
have the distinct RTO situation discussed.

Because the time is enough to recover the packets through
RTO, w(r) packets are able to reach the receiver within
RTOi+RTTi/2. In comparison of condition 3 where T (r) <
RTOi + RTTi/2, the RTO probability p3(r) is the same,
but sender can deliver w(r) packets in r-th round rather than
w(r)−m (m = w(r)− 3, . . . , w(r)), and the next new round
(r + 1) will start with the following parameters:

p3(r) =
w(r)�

m=w(r)−2

�
w(r)
m

�
∗ lm ∗ (1− l)w(r)−m,

(18)

T3(r + 1) = T (r)− (RTOi + RTTi/2), (19)

w3(r + 1) = 1, (20)

sst3(r + 1) = �w(r)/2�. (21)

The value of N̂
(r)
3 (w(r)) has changed accordingly, i.e.,

N̂
(r)
3 (w(r)) = p3(r) ∗ w(r) + N̂

(r+1)
3 (w3(r + 1)). (22)

By merging equations (2) (4) (17), we re-formulate
N (r)(w(r)) calculation as below. Consequently, all behaviors
caused by packet loss are involved in (23), shown at the bottom
of the next page, leading to a more accurate estimation on data
amount subflowi can process within a given period.

C. Scheduling Policy of LATE

The key idea of LATE is to first employ the transmission
model proposed above to estimate the data amount N that
each subflowi can deliver, given the parameters set P =
{T j

i , RTT, cwnd, ssthresh, l} of each round. Then, it will
schedule packets adaptively into different subflow based on
their transmission capacity to make in-order arrival.

The pseudo-code of the LATE algorithm is given in
Algorithm 1. To generalize LATE to the scenario where there
are n (n ≥ 2) subflows in networks, two concepts, i.e., master-
subflow and slave-subflow, are introduced. Master-subflow
stands for the subflow with the largest RTT among n subflows,
the rest of the subflows with smaller RTT constitute its
slave-subflows set. To make sure the packets ran over all
slave-subflows arrive at the receiver no later than those over
master-subflow, LATE algorithm operates in two folds.

The first step is to determine the subflow order of data
reception and initialize the modeling time T j

i for all slave-
subflows. As illustrated in line 2 of Algorithm 1, given the
initial subflow set P = {P1, P2, . . . , Pk, . . . , Pn}, LATE sorts
subflows based on RTT of each subflow to obtain the sub-
flow set P � = {P1

�, P2
�, . . . , Pk

�, . . . , Pn
�} in the ascending

order based on RTT. Therefore, for master-subflow Pn
�, its

slave-subflow set includes P1
� up to Pn−1

�. By inheriting the
setting of T j

i in two-subflows scenario which is RTTj/2,
the T j

i for n − 1 slave-subflows can be set to RTTn
�/2,

where RTTn
� is RTT of Pn

�, this process is done by line 8
of Algorithm 1.

The next step is to derive packet sequence number to trans-
mit per path using expected reception order. By employing
Eq. 23 to recursively calculate N (r)(w(r)), LATE obtains
how many packets (Ni) each subflowi (i ∈ [1, n-1]) can
deliver within T j

i . Note that t(ri) located at the line 13 of
Algorithm 1 stands for the expected duration of round ri.
Afterwards, as shown in line 15 of Algorithm 1, LATE will
select Ni packets from the start point of the sending buffer
and append those packets sequence to SEGPi

� to transmit.
After traversing through all subflowi, LATE returns the sum
of each Ni, namely Smin whose physical meaning is the
last sequence number of SEGPn−1

� , the segment allocated
for master-subflow would start from Smin + 1 and end with
Smin + wn. Eventually, LATE obtains the whole segment
set S = {SEGP1

� , SEGP2
� , . . . , SEGPn

�}, and schedules
corresponding segments from the sending buffer to fill the
cwnd of each subflow, thereby ensuring the arrival of packets
in sequence.

LATE scheduler is repeatedly launched after receiving
ACKs with master-subflow, i.e., after around the RTTn

� inter-
val, LATE will refresh parameters of n subflows and obtain the
new modeling time T j

i to start the next scheduling decision.
In this way, LATE can dynamically respond to the change of
path characteristics, effectively offsetting the estimation error
in the previous round.

V. EVALUATION

In this section, we conduct a series of experiments to
validate the performance of the proposed LATE. To reveal

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3343

Algorithm 1 The Proposed LATE Algorithm
Input : A set of established paths

P = {P1, P2, . . . , Pk, . . . , Pn} with given path
parameters.

Output: A set of segment sequences
S = {SEGP1

� , SEGP2
� , . . . , SEGPn

�} that
selected for delivery.

1 Initialization at time t
2 Generate P � = {P1

�, P2
�, . . . , Pk

�, . . . , Pn
�} by sorting

RTT of P in the ascending order
3 Smin = 0
4 Tj ← maxRTT (P �)/2
5 for each Pi

� ∈ P �(i ∈ [1, n− 1]) do
6 SEGPi

� ← InitializeSeg()
7 ri = 0
8 T j

i (ri) = Tj

9 SEGPn
� ← InitializeSeg()

10 for each Pi
� ∈ P � (i ∈ [1, n− 1]) do

11 while T j
i (ri) ≥ RTTi/2 do

12 Ni+ = N (ri)(w(ri))
13 T j

i (ri + 1)− = t(ri)
14 ri ← ri + 1

15 SEGPi
� ← Append(SEGPi

� , [Smin + 1, Smin + Ni])
16 Smin ← Smin + Ni

17 SEGPn
� ← Append(SEGPn

� , [Smin + 1, Smin + wn])
18 Return S = {SEGP1

� , SEGP2
� , . . . , SEGPn

�}

the effect of each algorithm in terms of OFO reduction,
we modify the Linux kernel to implement BLEST, DPSAF,
and LATE, to compare these algorithms with the default
MPTCP scheduler minRTT in different scenarios. In addition,
to observe LATE’s behaviors under networks where there are
more than 2 subflows, we implemented LATE based on NS3 to
make some further analyses.

A. Testbed Construction and Experimental Methodology

In this subsection, we first demonstrate how we construct
the testbed to match real networks. As shown in Fig. 6a,
we deploy a typical multi-homing scenario (i.e., a client having
two access network like WLAN/4G) [12], [42] where we
can set different loss rate and RTT for different paths, and
then examine whether LATE can alleviate the impairment
of path loss and path heterogeneity to reduce OFO packets
at the receiver. Another scenario is that TCP and MPTCP
controlled flows coexist and share the same bottleneck as

Fig. 6. Experimental topology for the real-world traffic emulations.

shown in Fig. 6b, probably causing severe buffer overflow
and packet loss problems at the bottleneck link if the traffic is
bursty or heavy. Therefore, we conduct a series of experiments
over the scenario shown in Fig. 6b to validate the behavior
of LATE.

To enable multi-path communication between client and
server shown in Fig. 6, these machines are running Linux
Ubuntu 12.10 OS with kernel version 3.14.33 that have already
applied the MPTCP-enabled protocol patches. The client uses
a stock version of MPTCP kernel and runs on DELL Optiplex
745, equipped with Intel PentiumD 3.4G processor, 512MB
RAM and 160 GB hard disk. The server uses a modified
version including the BLEST, DPSAF, LATE, as well as
default minRTT schedulers, running on Dell T1500, equipped
with Intel Xeon E5620 (2.4GHz/12M), 16 GB RAM, and
a 600 GB Hard Disk. The two subflows (i.e., subflowwlan

and subflow4g) are established between MPTCP client and
MPTCP server by equipping with two Gigabit network inter-
face cards. The multiple connected routers shown in Fig. 6
run WANem to construct a two-way bottleneck link, where
WANem is a wide area network emulator that supports various
wide area network characteristics such as bandwidth limita-
tion, latency, packet loss, network disconnection, and so on.

Next, to evaluate the impact of the number of subflows,
we implemented LATE scheduler by employing NS3 modeling
and simulations, based on the NS3 open source MPTCP imple-
mentation [43]. Fig. 7 shows that M applications run between

N (r)(w(r)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, T (r) < RTTi/2

w(r) −
w(r)�
x=0

P (x|w(r)) ∗ x, RTTi/2 ≤ T (r) < 3 ·RTTi/2

3�
i=1

N̂
(r)
i (w(r)), T (r) ≥ 3 · RTTi/2.

(23)

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

3344 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

Fig. 7. The NS3-based topology to investigate the LATE performance when
there are more than 2 MPTCP subflows between sender and receiver.

C0 and S0 which are connected through n routers, where
C0 and S0 are equipped with MpTcpPacketSink and MpTcp-
BulkSender applications respectively, thus forming N(N =
1, 2, 3, 4 . . .) independent MPTCP subflows between them.
The communication uses a point-to-point model and all nodes
are connected using links with configurable data rate and delay.

B. Experimental Results Based on Real-Network Emulations

We investigate the behavior of different schedulers
with real-network experiments in the following two cases:
1) None-shared Bottleneck. As shown in Fig. 6a, this is
the typical scenario where the mobile client is connected to
the server by two disjoint subflows without a shared bottle-
neck. 2) Competing traffic. As shown in Fig. 6b, the regular
TCP background traffic competes with MPTCP traffic for path
resources. We compare the performance of each algorithm in
terms of goodput, flow completion time, the RTO rate as well
as the number of OFO packets at the receiver.

1) None-Shared Bottleneck: In this scenario where the link
bandwidth is configured to 100 Mbps and RTT ranges from
10 ms to 100 ms according to prior work [44], we explore the
performance of each algorithm under the impact of different
metrics including loss rate, RTT difference and the size of
transmitted file.

First of all, the impact of the loss rate is evaluated. Fig. 8
describes the behavior of each algorithm with different loss
rate during the transmission of 20 concurrent 1MB files.
Fig. 8a shows the change of goodput each algorithm achieved,
and Fig. 8b counts the corresponding number of OFO packets
at the receiver.

From Fig. 8a, we observe that the larger the loss rate,
the smaller the goodput and the more OFO packets exist.
This is because as the packet loss rate increases, the network
becomes more dynamic and the accuracy of any prediction
scheduling policy will be reduced. However, DPSAF and
LATE perform better than BLEST and minRTT in the presence
of packet loss. On the other hand, compared with DPSAF,
LATE is more accurate in terms of accuracy of throughput
estimation within each time slot, thus making a reasonable
way of packet allocation. This illustrates the truth that LATE
outperforms DPSAF.

To further explore the reason why LATE appears such
performance enhancement compared to DPSAF, especially to
BLEST and minRTT, we measure the ratio of RTO retrans-
mission times to the total number of packets, as well as the
number of OFO packets at the receiver, the results are shown

Fig. 8. The impact of loss rate over long-lasting flows.

in Fig. 8b and Fig. 8c respectively. According to Fig. 8b,
the RTO rate of each algorithm is similar because none of
these schedulers considers how to mitigate this problem, and
their value goes up quickly when the packet loss rate is larger
than 3%. Consequently, the existing schedulers (i.e., minRTT,
BLEST, DPSAF) have large estimation errors, leading to more
OFO packets, as shown in Fig. 8c. According to Fig. 8c,
the number of OFO packets of LATE is the least, because
LATE comprehensively considers both loss rate, fast retrans-
mission, RTO retransmission to guarantee in-order arrival.

The RTT difference among subflows is another direct factor
that leads to the occurrence of OFO packets. The estima-
tion model of LATE dynamically measures the ratio of fast
subflow’s RTT to slow subflow’s RTT to determine which
sequence number of packets should be scheduled over the
slow path and the fast path. During the RTT test, the RTT
of router1 shown in Fig. 6 is fixed at 10 ms, while the
RTT value of router2 ranges from 10 ms to 100 ms.
Fig. 9 shows the performance of each algorithm with varying
RTT ratio of fast subflow to slow subflow.

As shown in Fig. 9a, with the RTT difference among sub-
flows increases, namely, the ratio of RTT1 to RTT2 increases,
and the corresponding goodput of each algorithm decreases.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3345

Fig. 9. The impact of RTT over long-lasting flows.

Specifically, minRTT, performs worst, followed by BLEST,
while the goodput achieved by LATE is always the largest.
According to Fig. 9b, the larger the RTT difference, the more
OFO packets the minRTT corresponds to, as minRTT does
not consider the RTT ratio when scheduling data. Although
the RTT difference is considered in BLEST as that in DPSAF
and LATE, the OFO packets of BLEST are more than that of
DPSAF and LATE due to the lack of loss rate consideration.

Finally, we track how each algorithm performs when trans-
mitting different sizes of files. It is known that using MPTCP
to transmit short flow is prone to RTO, which aggravates the
occurrence of OFO packets at the receiving end. To validate
that LATE performs better for both short and long flows,
we test the different sizes of files ranging from 25KB to
5MB. Fig. 10 shows the comparison of each algorithm under
different traffic sizes, where the loss rate is set to 0.5%.

According to Fig. 10a which compares the average com-
pletion time of each algorithm with different traffic sizes,
LATE possesses the least completion time both for short
flows and long flows compared to the other three scheduling
algorithms. Specifically, LATE reduces the completion time
of short flow (around tens of KB) by about 37.36% against
minRTT, and improves goodput of long flow (larger than 1MB)
by about 19.84%. In addition, LATE outperforms DPSAF in
reducing the completion time of short flows by 26.68% and
improving the goodput of long flows by 5.13%. We further
take the RTO retransmission rate and OFO number as metrics
to compare, where RTO retransmission rate is given by the
ratio of the total number of RTO occurrences to the total
number of packets at the sender. As shown in Fig. 10b, with
the high packet loss rate, the RTO retransmission rate remains
high, especially when transmitting short flows, because the
lost packets cannot be recovered through fast retransmission
when using multiple paths to transmit short flows [22], [23].
Therefore, it is important for an estimation-based algorithm
to consider the RTO case, which results in the superior
performance of LATE. Fig. 10c shows the number of OFO
at the receiver with varying traffic size. If the traffic size is
small, the corresponding OFO number of LATE is far less
than the other three algorithms. However, when traffic size is
larger than 1MB, the performance gap between DPSAF and

Fig. 10. The performance of each algorithm under the influence of different
flow size.

LATE gradually decreases, that is, both DPSAF and LATE
perform well in terms of reducing OFO number as the RTO
rate decreases.

2) Competing Traffic: In the real network, it is common for
TCP background traffic and MPTCP traffic to share the same
bottleneck to compete for resources, as described in Fig. 6b.
In this case, when there is a large number of competing TCP
flows, the cache of the bottleneck router will overflow, leading
to packet loss and an increased number of OFO packets.
To verify LATE’s robustness in this condition, we conduct a
series of experiments in this scenario where the bandwidth
capacity and path delay are fixed at 10 Mbps and 20 ms
respectively. By configuring WANem, the setting of the packet
loss rate is 0.5% by default unless specifically stated.

Firstly, we analyze the performance of each algorithm with
varying data amount of TCP traffic by changing the number
of concurrent TCP flows. Fig. 11 depicts the mean goodput
of MPTCP flows and the number of OFO packets at the
receiver when 20 concurrent 1MB MPTCP flows compete with
varying numbers of 1MB TCP flows through two subflows.
As shown in Fig. 11a, with the increasing number of TCP
flows, the goodput of each algorithm decreases, because the

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

3346 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

Fig. 11. The performance of each algorithm under the influence of different
numbers of concurrent TCP flows.

more TCP traffic that competes with MPTCP flows, the more
congested the bottleneck router will be and the higher fre-
quency of packet losses. LATE outperforms the other three
algorithms. From Fig. 11b, we observe that OFO number of
each algorithm increases quickly especially when the number
of concurrent TCP flows is 20, the OFO number of LATE is
the least, leading to the highest goodput.

We further conduct experiments to explore the impact of
traffic models on each algorithm. There are four competing
traffic models, i.e., both MPTCP and TCP servers with long
flows (L/L model), MPTCP server with long flows while
TCP server with short ones (L/S model), MPTCP server with
short flows while TCP server with long ones (S/L model),
both MPTCP and TCP servers with short flows (S/S model).
In these experiments, the number of MPTCP flows and that of
TCP competing flows are set to 20 and 10 respectively, and
we select the 1MB files as long flow and 57KB file as short
flow according to the real-world Web traffic model in [45].

Fig. 12 describes the performance of each algorithm when
MPTCP transmits long flows competing with long TCP flows
and short TCP flows respectively. It is clear that the long
TCP flows have a greater impact on MPTCP flows as the
total goodput of L/L model is smaller than that of L/S model
as shown in Fig. 12a. However, LATE performs the best
compared with the other algorithms in terms of improved
goodput and reduced OFO packets as shown in Fig. 12b.

Similarly, Fig. 13 describes the completion time of each
algorithm when transmitting short flows with TCP background
traffic. Since the long TCP flows take up most of the bottleneck
buffer, the bottleneck router gets congested and short flows

Fig. 12. The performance of each algorithm in L/L and L/S model: (a) mean
goodput, (b) number of OFO packets.

of MPTCP are prone to packet loss consequently, leading to
the higher RTO rate of S/L model shown in Fig. 11(b), and
consequently increased number of OFO shown in Fig. 11(c).
It explains the fact shown in Fig. 11(a) that S/S model
consumes less time than S/L. Meanwhile, we observe that
LATE has the lowest OFO packets both under S/L and S/S
models due to its RTO consideration.

Small buffer size will induce more packet losses due to
buffer overflow [46], we finally test how each scheduler works
with the changing of the buffer size of the bottleneck router.
In our emulations, the BDP, i.e., the product between the
bandwidth capacity of the bottleneck link and the average
round trip time of each path, is about 18 packets when
bandwidth is set to 10 Mbps, RTT is 20 ms and loss rate
is 0.5%, and the rule of thumb for the choice of router buffer
size was at least BDP according to [47]. Therefore, we set the
bottleneck buffer size ranging from 10 packets to 60 packets
to evaluate our algorithm. Fig. 14 shows the goodput of each
scheduler when 20 concurrent MPTCP flows (1MB per-flow)
compete with 10 TCP background flows (1MB per-flow) under
different buffer sizes of the bottleneck router.

As shown in Fig. 14, the goodput of LATE is always
the largest. In addition, as the buffer size increases, the cor-
responding goodput of each algorithm gradually increases.
But when the buffer size exceeds 40 packets, their goodput
does not change much. We further count the number of OFO
packets at the receiver under different buffer size, it turns out
that when the buffer size is larger than 2 times of BDP (around
36 packets), the number of OFO packets of each algorithm
remains stable. Moreover, the results show that when the buffer
is small enough, the OFO number of LATE is significantly less
than the other algorithms, indicating that the LATE estimation
model is effective.

C. The Impact of the Number of Subflows

In this subsection, to validate the performance of LATE
subjected to the impact of number of subflows, we compare
LATE against minRTT based on the scenario in Fig. 7, where
we set M , the number of applications to 20. Specifically, each
application on host S0 transfers binary documents ranging

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3347

Fig. 13. The performance of each algorithm in S/L and S/S model: (a) mean completion time, (b) RTO rate, (c) number of OFO packets.

Fig. 14. The performance of each algorithm under the influence of different
sizes of the bottleneck buffer.

Fig. 15. The performance of each algorithm in L/L and L/S model.

from 50KB to 1MB to client C0. For simplicity, the data rate
of all subflows is set to 1Mbps while the delay of each subflow
varies from 20 ms to 100 ms. On basis of these configurations,
Some brief comparison results are discussed as follows.

First of all, the impact of the number N of subflows on
OFO packets is investigated and then we have Fig. 15 where
shows the results for N ∈ [3, 8], the more the number of
subflows MPTCP scheduler uses, the more the number of
OFO packets at the receiver, because the multipath transfer

Fig. 16. The performance of each algorithm in S/L and S/S model: (a) mean
completion time, (b) number of OFO packets.

is characterized by OFO. Meanwhile, compared to minRTT,
the results appear an overall reduction of OFO number for
LATE, revealing the truth that LATE outperforms minRTT
especially when the number of subflows is high.

Then, we fix the number of subflows N at 8 and evaluate
network performance with different loss rates and file sizes.

Fig. 16 is associated with a situation where 20 applica-
tions generate 100KB traffic and transfer to C0 concurrently,
Fig. 16a records the average completion time and standard
deviation under different loss rate, Fig. 16b refers to the cor-
responding OFO records. Based on the average value of com-
pletion time in Fig. 16a, we observe that LATE outperforms
minRTT in each case, the reason can be further realized by
combining the standard deviation, as well as the OFO results

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

3348 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 5, MAY 2021

in Fig. 16b. Since minRTT scheduler allocates data to the
subflow with lowest RTT all the time, it’s good for the packets
that arrive first, whereas others who arrive late will be blocked
if the best path gets congested under big traffic load, thus
increasing the deviation of arriving time and probability of
packet loss and the number of OFO packets. However, LATE
differs from minRTT in that LATE considers both RTT and
loss rate to make an accurate estimation, spreading packets
into multiple paths out-of-order for the in-order arrival.

VI. CONCLUSION

Packet loss and disorder packets are rather rule than excep-
tion with MPTCP. In this paper, we investigate the relationship
between packet loss and disorder packet and go further to
analyze the state-of-the-art algorithms aiming at mitigating
this issue. We found neither performs well in lossy network
scenarios. Therefore, we present LATE, a new scheduler that
consists of a loss-based transmission model and packet seg-
ments scheduling policy. By comparing LATE with minRTT,
as well as the alternative BLEST, LATE has better performance
in the lossy network as it directly leverages the loss rate as a
metric to minimize. Compared with the loss-based prediction
algorithm DPSAF, LATE achieves higher prediction accuracy
due to the RTO consideration. Theoretical analysis backed up
by experimental validation shows that our approach is adaptive
and good enough to reduce OFO packets in networks with
varied loss rates, and those advantages can be sustained and
even highlighted in the scenario where there are more than
2 subflows.

REFERENCES

[1] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions
for Multipath Operation With Multiple Addresses, document RFC 6824,
Jan. 2013. [Online]. Available: https://tools.ietf.org/html/rfc6824

[2] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath
transfer using SCTP multihoming over independent end-to-end paths,”
IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[3] B.-H. Oh and J. Lee, “Feedback-based path failure detection and buffer
blocking protection for MPTCP,” IEEE/ACM Trans. Netw., vol. 24, no. 6,
pp. 3450–3461, Dec. 2016.

[4] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An
MPTCP path scheduler to manage heterogeneous paths,” in Proc. 13th
Int. Conf. Emerg. Netw. Exp. Technol., 2017, pp. 147–159.

[5] S. Ferlin, S. Kucera, H. Claussen, and O. Alay, “MPTCP meets FEC:
Supporting latency-sensitive applications over heterogeneous networks,”
IEEE/ACM Trans. Netw., vol. 26, no. 5, pp. 2005–2018, Oct. 2018.

[6] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He, “CAPS: Coding-
based adaptive packet spraying to reduce flow completion time in data
center,” in Proc. IEEE INFOCOM - Conf. Comput. Commun., Apr. 2018,
pp. 2294–2302.

[7] K. Gao, C. Xu, J. Qin, S. Yang, L. Zhong, and G.-M. Muntean, “QoS-
driven path selection for MPTCP: A scalable SDN-assisted approach,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2019, pp. 1–6.

[8] W. Wei, K. Xue, J. Han, D. S. L. Wei, and P. Hong, “Shared bottleneck-
based congestion control and packet scheduling for multipath TCP,”
IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 653–666, Apr. 2020.

[9] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A fountain
code-based multipath transmission control protocol,” IEEE/ACM Trans.
Netw., vol. 23, no. 2, pp. 465–478, Apr. 2015.

[10] Q. Liu, F. Ke, Z. Liu, and J. Zeng, “Loss-aware CMT-based multipathing
scheme for efficient data delivery to heterogeneous wireless networks,”
Int. J. Digit. Multimedia Broadcast., vol. 2019, pp. 1–8, Feb. 2019.

[11] E. Dong, M. Xu, X. Fu, and Y. Cao, “A loss aware MPTCP scheduler for
highly lossy networks,” Comput. Netw., vol. 157, pp. 146–158, Jul. 2019.

[12] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Block-
ing estimation-based MPTCP scheduler for heterogeneous networks,”
in Proc. IFIP Netw. Conf. (IFIP Netw.) Workshops, May 2016,
pp. 431–439.

[13] K. W. Choi, Y. S. Cho, Aneta, J. W. Lee, S. M. Cho, and J. Choi, “Opti-
mal load balancing scheduler for MPTCP-based bandwidth aggregation
in heterogeneous wireless environments,” Comput. Commun., vol. 112,
pp. 116–130, Nov. 2017.

[14] K. Xue, J. Han, H. Zhang, K. Chen, and P. Hong, “Migrating unfairness
among subflows in MPTCP with network coding for wired–wireless
networks,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 798–809,
Jan. 2017.

[15] B. Y. L. Kimura, D. C. S. F. Lima, and A. A. F. Loureiro, “Packet
scheduling in multipath TCP: Fundamentals, lessons, and opportunities,”
IEEE Syst. J., early access, Jan. 27, 2020, doi: 10.1109/JSYST.2020.
2965471.

[16] C. Raiciu et al., “How hard can it be? Designing and implementing
a deployable multipath TCP,” in Proc. 9th USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2012, pp. 399–412.

[17] H. Adhari, T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen,
“Evaluation of concurrent multipath transfer over dissimilar paths,” in
Proc. IEEE Workshops Int. Conf. Adv. Inf. Netw. Appl., Mar. 2011,
pp. 708–714.

[18] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tuxen, “On the use
of concurrent multipath transfer over asymmetric paths,” in Proc. IEEE
Global Telecommun. Conf. GLOBECOM, Dec. 2010, pp. 1–6.

[19] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Miti-
gating Receiver’s buffer blocking by delay aware packet scheduling in
multipath data transfer,” in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl.
Workshops, Mar. 2013, pp. 1119–1124.

[20] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in Proc. 28th Int. Conf. Adv.
Inf. Netw. Appl. Workshops, May 2014, pp. 749–752.

[21] K. Xue et al., “DPSAF: Forward prediction based dynamic packet
scheduling and adjusting with feedback for multipath TCP in lossy
heterogeneous networks,” IEEE Trans. Veh. Technol., vol. 67, no. 2,
pp. 1521–1534, Feb. 2018.

[22] P. Dong et al., “Reducing transport latency for short flows with multipath
TCP,” J. Netw. Comput. Appl., vol. 108, pp. 20–36, Apr. 2018.

[23] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A multipath
transport protocol for data centers,” in Proc. IEEE INFOCOM - 35th
Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016, pp. 1–9.

[24] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc. ACM
SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput. Commun.,
1998, pp. 303–314.

[25] NS3 Simulator. Accessed: 2020. [Online]. Available:
https://www.nsnam.org

[26] Q. Peng, A. Walid, and S. H. Low, “Multipath TCP algorithms: Theory
and design,” ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 1,
pp. 305–316, 2013.

[27] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in Proc. ACM SIGCOMM
Workshop Capacity Sharing Workshop, Aug. 2014, pp. 27–32.

[28] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. NSDI, vol. 11, 2011, p. 8.

[29] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “MPTCP is not
Pareto-optimal: Performance issues and a possible solution,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[30] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
design, and implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 596–609, Feb. 2016.

[31] W. Guo et al., “Delay-based congestion control for multipath
TCP,” in Proc. Adv. Multimedia, Commun. Netw., Dec. 2013,
pp. 1–10.

[32] P. Dong, J. Wang, J. Huang, H. Wang, and G. Min, “Performance
enhancement of multipath TCP for wireless communications with
multiple radio interfaces,” IEEE Trans. Commun., vol. 64, no. 8,
pp. 3456–3466, Aug. 2016.

[33] B.-H. Oh and J. Lee, “Constraint-based proactive scheduling for
MPTCP in wireless networks,” Comput. Netw., vol. 91, pp. 548–563,
Nov. 2015.

[34] B. Y. L. Kimura, D. C. S. F. Lima, and A. A. F. Loureiro, “Alternative
scheduling decisions for multipath TCP,” IEEE Commun. Lett., vol. 21,
no. 11, pp. 2412–2415, Nov. 2017.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/JSYST.2020.2965471
http://dx.doi.org/10.1109/JSYST.2020.2965471

YANG et al.: LOSS-AWARE THROUGHPUT ESTIMATION SCHEDULER FOR MULTI-PATH TCP 3349

[35] Q. Tan, X. Yang, L. Zhao, X. Zhou, and T. Dreibholz, “A statistic
procedure to find formulae for buffer size in MPTCP,” in Proc. IEEE 3rd
Adv. Inf. Technol., Electron. Autom. Control Conf. (IAEAC), Oct. 2018,
pp. 900–907.

[36] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” ACM SIGCOMM Comput.
Commun. Rev., vol. 30, no. 4, pp. 43–56, Oct. 2000.

[37] L. Cai, X. Shen, J. Pan, and J. W. Mark, “Performance analysis of TCP-
friendly AIMD algorithms for multimedia applications,” IEEE Trans.
Multimedia, vol. 7, no. 2, pp. 339–355, Apr. 2005.

[38] L. Cai, X. Shen, J. Mark, and J. Pan, “Performance modeling and analy-
sis of window-controlled multimedia flows in wireless/wired networks,”
IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1356–1365, Apr. 2007.

[39] C. Casetti and M. Meo, “A new approach to model the stationary
behavior of TCP connections,” in Proc. IEEE INFOCOM . Conf. Com-
put. Communications. 19th Annu. Joint Conf. IEEE Comput. Commun.
Societies, Mar. 2000, pp. 367–375.

[40] S. Fu and M. Atiquzzaman, “Performance modeling of SCTP multihom-
ing,” in Proc. GLOBECOM IEEE Global Telecommun. Conf., Mar. 2005,
p. 6

[41] N. Dukkipati et al., “An argument for increasing TCP’s initial congestion
window,” ACM SIGCOMM Comput. Commun. Rev., vol. 40, no. 3,
pp. 26–33, Jun. 2010.

[42] R. Barik, M. Welzl, S. Ferlin, and O. Alay, “LISA: A linked slow-
start algorithm for MPTCP,” in Proc. IEEE Int. Conf. Commun. (ICC),
May 2016, pp. 1–7.

[43] MPTCP NS3 Code. Accessed: 2020. [Online]. Available: https://code.
google.com/archive/p/mptcp-ns3/

[44] S. Barré, C. Paasch, and O. Bonaventure, “Multipath TCP: From theory
to practice,” in Proc. Int. Conf. Res. Netw. Berlin, Germany: Springer,
2011, pp. 444–457.

[45] C. I. N. I. Centre. (2017). China Statistical Report on Internet
Development. Accessed: Jul. 3, 2017. [Online]. Available: http://cnnic.
cn/hlwfzyj/hlwxzbg/hlwtjbg/201701/P020170123364672657408.pdf

[46] S. Pack, X. Shen, J. W. Mark, and L. Cai, “Throughput analysis of
TCP-friendly rate control in mobile hotspots,” IEEE Trans. Wireless
Commun., vol. 7, no. 1, pp. 193–203, Jan. 2008.

[47] J. Sommers, P. Barford, A. Greenberg, and W. Willinger, “An SLA
perspective on the router buffer sizing problem,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 35, no. 4, pp. 40–51, Mar. 2008.

Wenjun Yang (Graduate Student Member, IEEE)
received the M.S. degree in information science
and engineering from Hunan Normal University,
Changsha, China, in 2019. He is currently pursuing
the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Victoria,
Victoria, BC, Canada. His current research interests
include next generation of network architecture and
related issues, such as multipath TCP, multihoming,
and mobility.

Pingping Dong received the B.S., M.S., and Ph.D.
degrees from the School of Information Science
and Engineering, Central South University, China.
She is currently an Associate Professor with the
College of Information Science and Engineering,
Hunan Normal University, Changsha, China. Her
research interests include protocol optimization and
protocol design in wide area networks (WANs) and
wireless local area networks (WLANs).

Lin Cai (Fellow, IEEE) received the M.A.Sc. and
Ph.D. degrees in electrical and computer engineering
from the University of Waterloo, Waterloo, ON,
Canada, in 2002 and 2005, respectively. Since 2005,
she has been with the Department of Electrical and
Computer Engineering, University of Victoria. She is
currently a Professor. Her research interests include
several areas in communications and networking,
with a focus on network protocol and architecture
design supporting emerging multimedia traffic and
the Internet of Things. She is also an NSERC E.W.R.

Steacie Memorial Fellow. In 2020, she was elected as a member of the Royal
Society of Canada’s College of New Scholars, Artists, and Scientists. She was
also elected as a 2020 “Star in Computer Networking and Communications”
by N2Women. She was a recipient of the NSERC Discovery Accelerator
Supplement (DAS) Grants in 2010 and 2015, respectively, and the best paper
awards of IEEE ICC 2008 and IEEE WCNC 2011. She awarded Outstanding
Achievement in Graduate Studies. She has co-founded and chaired the IEEE
Victoria Section Vehicular Technology and Communications Joint Societies
Chapter. She has been elected to serve the IEEE Vehicular Technology
Society Board of Governors since 2019. She has served as an Area Editor
for IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, a member of the
Steering Committee for the IEEE TRANSACTIONS ON BIG DATA (TBD)
and IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC), an Associate
Editor for the IEEE INTERNET OF THINGS JOURNAL, IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS, IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, IEEE TRANSACTIONS ON COMMUNICATIONS, EURASIP
Journal on Wireless Communications and Networking, International Journal
of Sensor Networks, and Journal of Communications and Networks (JCN),
and as the Distinguished Lecturer for the IEEE VTS Society. She has also
served as a TPC Co-Chair for IEEE VTC2020-Fall, and a TPC Symposium
Co-Chair for IEEE Globecom’10 and Globecom’13. She is also a Registered
Professional Engineer in British Columbia, Canada.

Wensheng Tang received the B.S. degree from
Hunan Normal University, Changsha, China,
in 1992, and the M.S. and Ph.D. degrees from
the National University of Defense Technology,
Changsha, in 1997 and 2009, respectively. He is
currently a Professor with Hunan Normal University.
His research interests include protocol optimization,
cloud computing, information security, and quantum
cryptography.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on June 06,2021 at 23:43:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

