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Abstract—The increasing number of connected vehicles exacer-
bates the scarcity of spectrum resources in vehicle-to-everything
(V2X) communication. To optimize the utilization of wireless
resources, it is crucial to allocate the limited spectrum blocks
to each roadside unit (RSU) based on the real-time bandwidth
demand of vehicles within their coverage. However, the complex
mobility patterns of vehicles and dynamic traffic conditions
make it challenging to accurately and promptly estimate the
bandwidth demand. To address this issue, a spatial-temporal
multi-attentional network (STMA-net) is designed to predict the
future bandwidth demand of RSUs. Based on the predicted
bandwidth demand, a prediction error-compensable proactive
bandwidth allocation algorithm is proposed to adaptively allo-
cate spectrum resources and narrow the discrepancy between
predicted and actual demand. Experimental results with realistic
traffic in Bologna demonstrate that the proposed STMA-net
achieves 11.25% higher prediction accuracy compared to state-of-
the-art methods. Furthermore, the proposed proactive bandwidth
allocation method outperforms existing methods, providing the
highest throughput and serving 5% more vehicles while reducing
the service drop rate by an order of magnitude.

Index Terms—Proactive bandwidth allocation, Spatial-
temporal mobility prediction, Prediction error compensation,
Vehicular networks.

I. INTRODUCTION

With the rapid development of connected vehicles, the
bandwidth demand for supporting vehicle-to-everything (V2X)
communication is ever-increasing. According to the report
by Automotive Edge Computing Consortium [1], connected
vehicles need to exchange MB/GB levels amount of data
to facilitate advanced services such as driving assistance
and autonomous driving. The increasing transmission rate
requirement has put a strain on the spectrum available for
V2X communication [2]. To address this escalating demand,
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wireless resources need to be allocated efficiently according
to the real-time traffic of connected vehicles. Thus, dynamic
bandwidth allocation has been considered as a promising
method to improve the utilization of scarce spectrum.

Dynamic bandwidth allocation in V2X networks is chal-
lenging due to the time-varying vehicle traffic [3], [4]. To
accurately estimate the bandwidth demand for each roadside
unit (RSU), real-time vehicle traffic volume is required. How-
ever, the traffic conditions within the coverage area of RSUs
can vary frequently due to the complex mobility patterns of
vehicles [5]. This variability necessitates frequent adjustments
in the bandwidth allocation strategy, which further increases
the complexity of designing an effective allocation strategy.
To address this issue, many researchers have increasingly
focused on proactive bandwidth allocation, which predicts
vehicle traffic to obtain future bandwidth demand and then
allocates bandwidth resources proactively [6].

The rise of artificial intelligence and machine learning
has facilitated proactive bandwidth allocation. Recently, many
prediction methods including statistical methods [7], [8], ma-
chine learning [9]–[11], and deep learning [12]–[14] have
been applied to allocate bandwidth proactively. However, the
existing proactive methods predict vehicle traffic in a divided
cell or coverage area, neglecting individual vehicle mobility
within road segments and hidden dependencies from neigh-
boring roads. As a result, the prediction accuracy in real-world
road topologies may be compromised. Besides, the impact of
performance degradation caused by the inaccurate prediction
was not well addressed yet [15]. How to design a proactive
bandwidth allocation method considering road-level feature
extraction, vehicle-level mobility prediction, and prediction
error compensation is an open issue.

To address this issue, we design the proactive bandwidth al-
location method in two steps. Firstly, a spatial-temporal multi-
attentional network is designed to predict mobility for vehi-
cles. The designed spatial-temporal multi-attentional network
(STMA-net) consists of two feature extractors, one feature
fusion module, and one classifier. The GAT network is selected
as the road feature extractor to capture the inherent spatial
correlations among multiple road traffic features. To efficiently
extract temporal correlation from driving data, GRU is selected
as the vehicle feature extractor. Due to the varying traffic
conditions, not all spatial and temporal features are equally
important. Thus, the multi-head self-attention layer is used to
fuse the extracted spatial-temporal features adaptively. Lastly,
the two-layer fully connected layer serves as a classification
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module to produce the final prediction results.
Then, the prediction results are converted into the esti-

mated bandwidth demand of each RSU by using the on-
off demand model. Based on the estimated bandwidth de-
mand, a proactive bandwidth allocation method is proposed
to allocate bandwidth adaptively. By employing the prediction
error compensation strategy, the proposed proactive bandwidth
allocation method can achieve higher throughput and serve
more vehicles while maintaining the quality of services. The
main contributions of this paper are given as follows.

• A Spatial-Temporal Multi-Attentional neural network
(STMA-net) is designed to predict mobility for vehicles,
which can achieve higher accuracy in both simple and
complex road topologies.

• A lightweight proactive bandwidth allocation method
with prediction error compensation (PBA-EC) is pro-
posed. By allocating bandwidth adaptively based on real-
time traffic conditions, the PBA-EC method can serve
more vehicles while guaranteeing the quality of services.

• Two case studies with different road topologies have
been conducted to verify the superiority of the proposed
method with the state-of-the-art methods. The results
show that the designed STMA-net can improve mobility
prediction accuracy by 11.25% and achieve the highest
throughput and demand fulfillment rate while maintaining
the lowest service drop rate.

The rest of this paper is organized as follows. Relative
work is introduced in the next Section. The system model and
problem formulation are presented in Section III. Section IV
introduced the designed STMA-net. The proactive bandwidth
allocation method is presented in Section V. The numerical
results based on the realistic vehicle trajectory in Bologna are
presented in Section VI, followed by the concluding remarks
and further research issues in Section VII.

II. RELATED WORK

Bandwidth allocation is a crucial issue in V2X networks
given high mobility and heterogeneous service requirements
for vehicular infotainment, safety, and other driving assistant
applications [16], [17]. Existing bandwidth allocation methods
can be broadly categorized into reactive and proactive.

Reactive bandwidth allocation allocates resources on de-
mand, which adjusts bandwidth resource allocation dynami-
cally based on the current network conditions [18]. Reactive
bandwidth allocation has been extensively studied in the
literature. For instance, a location-dependent opportunistic
bandwidth allocation scheme was proposed in [19] to pro-
vide higher data rates to high-mobility users. The proposed
bandwidth allocation scheme used the Markov chain to find
the optimal policy while addressing fair bandwidth shar-
ing, making a good trade-off between performance gain and
allocation fairness. Additionally, a two-level game-theoretic
approach was proposed in [20] to maximize the utility of the
network by considering the network resource distributions and
service demands. In stochastic V2I scenarios, a reinforcement
learning algorithm was designed in [21] to adaptively allocate
bandwidth based on the channel condition.

However, reactive bandwidth allocation methods may not
meet the bandwidth demand timely caused of the fast-changing
traffic conditions and high mobility of vehicles. In vehicular
networks, the bandwidth demand can vary drastically in time
and space domains depending on the density of vehicles in
each RSU. Besides, the allocation update and reconfiguration
process for RSUs and base stations can be time-consuming.
When the bandwidth allocation can not keep up with the
changing traffic conditions, the performance of the vehicular
network will deteriorate, and the quality of service can not be
ensured. To mitigate this issue, proactive bandwidth allocation
is required, where the bandwidth is allocated based on the
predicted vehicle traffic.

Proactive bandwidth allocation is a strategy that involves
predicting network conditions such as channel quality, traffic
load, and mobility patterns in advance and then allocating
bandwidth accordingly. Several methods have been proposed
to achieve efficient bandwidth utilization. A two-step proactive
bandwidth allocation method was designed in [7], which
utilizes a space-time k-nearest neighbor method for short-
term traffic prediction and the water-filling algorithm to al-
locate bandwidth. In [11], an autoregressive-moving-average
(ARMA) model is designed to extract the periodic, aperi-
odic low-frequency temporal dependencies. By using a non-
homogeneous Markov chain, the designed model can predict
spectrum occupancy accurately. Another proactive bandwidth
allocation method was proposed in [8], which uses Gaussian
process regression to estimate queue length in the future and
allocates bandwidth proportionally to each flow.

Recently, extensive works have investigated mobility predic-
tion from both spatial and temporal perspectives. To capture
complex spatio-temporal dependencies, a CNN-LSTM-based
mobility prediction method was proposed in [22]. By incor-
porating the vector autoregression model into the proposed
CNN-LSTM model, the performance of the developed network
can achieve higher accuracy in forecasting short-term traffic
flow. Similarly, a novel STFSA-CNN-GRU hybrid model was
designed in [23] to predict vehicle short-term speed. By
employing the spatial-temporal feature selection algorithm, the
designed hybrid model can focus on more important features
and ignore less relevant ones. Some works adopted graph
neural networks for mobility prediction. In [24], a relational
inductive biases-based graph neural network was proposed
for short-term prediction in a few-sample case. [25] further
incorporated graph neural network with LSTM, a spatial-
temporal graph convolution network Bi-directional LSTM was
designed to extract traffic patterns from complex real-world
traffic environments. In summary, precise mobility prediction
can facilitate bandwidth allocation, which motivates us to
integrate mobility prediction into the design of bandwidth
allocation.

Recent developments in artificial intelligence have led to
the integration of neural network-based methods into proactive
bandwidth allocation. In [12], a predictive dynamic bandwidth
allocation algorithm used two layers of a fully connected
neural network to predict the packet arrival rate and designed
a dynamic bandwidth algorithm to reduce uplink latency and
packet drop ratio. To achieve higher prediction accuracy,
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[13] further incorporated the convolutional neural networks
and residual networks to predict spatio-temporal spectrum
usage of the region. Similarly, in [14], a hybrid convolutional
neural network and LSTM architecture considered the spatial-
temporal dependencies in vehicle traffic for bandwidth pre-
diction. However, the existing prediction methods focus on
predicting vehicle density in a divided cell or coverage area
and do not consider predicting each vehicle’s mobility in the
road section or extracting hidden dependencies from adjacent
roads. This can result in lower prediction accuracy in realistic
road topologies. In addition, the existing bandwidth allocation
methods do not compensate for prediction errors, which can
significantly degrade performance.

In addition to the aforementioned works, attention mech-
anisms have gained popularity as a key technique in deep
learning. Attention mechanisms were first proposed for natural
language processing areas, and now are widely adopted in
various deep learning models [26]. For example, attention
mechanisms have been incorporated with other basic models
such as RNN and CNN to improve the model performance
[27]. Similarly, graph neural networks employ the attention
mechanism to graph tasks, which is generally known as an
efficient tool to extract nodes’ hidden dependencies [28].

In summary, the necessity arises for the development of
a proactive bandwidth allocation method that is capable of
adapting to intricate road topologies while incorporating an
effective mechanism for compensating prediction errors, which
motivates this work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

Traffic Load
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BS

Allocation Strategy

Vehicle Data and Road traffic upload

STMA-net

Mobility Prediction

Bandwidth 

Demand 

Estimation

Prediction

Results

PBA-EC

Proactive Bandwidth Allocation

Allocation Strategy UpdateAllocation Strategy Update

Segment Segment

Signal Strength Signal Strength

Segment

Wired Backhaul Link

Fig. 1. The overview of the proposed proactive bandwidth allocation
method, which includes STMA-net for mobility prediction and PBA-EC for
proactive bandwidth allocation. The RSU provides wireless access for V2X
communication, and RSUs are connected to BS through a wired backhaul
link.

The system overview is shown in Fig. 1. A base station (BS)
covers a large area comprising multiple road sections. The BS
is responsible for managing the total spectrum resources within
its coverage area and allocating bandwidth to RSUs. RSUs are
responsible for supporting V2X communication for vehicles in
a road section, and each RSU is wired connected to BS. RSU
coverage is divided into a set of road segments. Each road

segment covers several vehicles, and the channel conditions
of each segment depend on the distance to the RSU.

To obtain the vehicle and road information, we assume the
connected vehicles will upload their driving features, such
as driving speed, azimuth, and location periodically. Each
RSU also aggregates the road features within its coverage
area, including the average travel time, average speed, and
occupancy of the road lane. Then RSUs gather vehicle and
road data and send them to the BS for training the STMA-net
to extract vehicle mobility and predict the future locations of
vehicles.

After that, the prediction results will be converted to the
future bandwidth demand of each RSU. Based on estimated
demand, the proposed PBA-EC method will compensate for
the prediction error and provide the bandwidth allocation
strategy sent back to RSU. Consequently, the RSUs can obtain
the proactive bandwidth allocation strategy to facilitate V2X
communication.

B. Demand Model

In proactive bandwidth allocation, the allocated bandwidth
needs to be determined in advance. To achieve proactive
dynamic bandwidth allocation, the demand distribution of
RSU should be obtained first.

Assuming there is a set of BSs in a given area, denoted
as S, and each BS s ∈ S covers a set of RSUs, denoted as
R. Each RSU is located in the center of its respective road
section. As shown in Fig. 1, the road section ri is divided
into j smaller segments denoted as {ri,1, ri,2, ..., ri,j} ∈ ri,
and the distance between two road segments is denoted by
the distance between their central points. Suppose the total
bandwidth resource available to the BS is W , which can be
divided into z parts denoted as W =

[
w1, w2, ..., wz

]
for

allocating to RSUs.
Considering the spectrum block reuse case, the interference

of each road section includes the interference from another
road segment ri,∗ in the same RSU and other road segments
in a different RSU coverage. For road segment ri,j , the
interference can be given as

ψi,j =
∑

ri\ri,j

Phri,j ,ri,∗d
−δ
ri,j ,ri,∗ +

∑
R\ri

Phri,j ,rn,md
−δ
ri,j ,rn,m

,

(1)
where P and h denote the transmit power and small-scale
fading between the sender and receiver, respectively. The
parameter δ represents the path loss exponent and d is the
distance between two road segments.

Accordingly, the transmit signal to interference plus noise
ratio (SINR) of vehicles in ri,j can be given as

γi,j =
Phri,j ,rid

−δ
ri,j ,ri

ψi,j +N
, (2)

where N represents the power of noise.
Suppose a connected vehicle in each time slot has probabil-

ity pon requesting service with a transmission rate Rv named
on-state, and probability 1 − pon keeping silent named off-
state. If there are vi,j vehicles in ri,j in the next time slot, the
possibility of bandwidth demand can be given as
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P{X = x} =
(
vi,j
x

)
pxon(1− pon)

vi,j−x
Rv. (3)

Since the demand is a stochastic variable influenced by
the parameter pon, estimating it requires considering the
probability of service drop. It is assumed that the allocated
bandwidth resources for ri,j can achieve the transmission rate
Ri,j . In that case, the service drop possibility PD caused by
insufficient bandwidth can be expressed as

PD =

vi,j∑
x=⌊Ri,j/Rv⌋

(
vi,j
x

)
pxon(1− pon)

vi,j−x
. (4)

Generally, the service drop possibility is expected as lower
as possible, thus a service drop threshold ε is defined to
guarantee a low service drop rate. For instance, if the allocated
strategy is expected to meet demand with 99% probability,
then the threshold ε is set to 0.01. For a given threshold ε, we
have

vi,j∑
x=⌊Ri,j/Rv⌋

(
vi,j
x

)
pxon(1− pon)

vi,j−x ≤ ε. (5)

To efficiently calculate the Ri,j , the Central Limit Theorem
is used to approximate the demand distribution as a Gaus-
sian distribution with the mean value vi,jpon and variance
vi,jpon (1− pon). Then, the equation (5) can be rewritten as

∞∫
⌊Ri,j/Rv⌋

1√
2πvi,jpon (1− pon)

exp

(
−(x− vi,jpon)

2

2vi,jpon (1− pon)

)
dx ≤ ε.

(6)
Based on (6), the relation between Ri,j and ε can be given

as

1 + erf

(
Ri,j−Rvvi,jpon√
2vi,jpon(1−pon)Rv

)
2

= 1− ε. (7)

where erf(·) is Gauss error function. According to (7), Ri,j

can be expressed as

Ri,j = Rv

√
2vi,jpon (1− pon) erfinv(1− 2ε) +Rvvi,jpon.

(8)
where erfinv(·) is inverse Gauss error function. Accordingly,
the estimated bandwidth demand of RSU ri can be formulated
as

W̄i =

m∑
j=0

Rv

√
2vi,jpon (1− pon) erfinv(1− 2ε) +Rvvi,jpon

log2 (1 + γi,j)
.

(9)

C. Problem Formulation

Due to the prediction error, it is hard to obtain the exact
value of vi,j(t + 1), so let v̂i,j(t + 1) be the predicted
vehicle number, and the estimated demand W̄i,j(t + 1) is
replaced by Ŵi(t + 1). Let Φi,j =

[
ϕ1, ϕ2,..., ϕz

]
be the

bandwidth allocation indicator for ri,j , and if the bandwidth
wk is allocated to ri,j , ϕk = 1, otherwise ϕk = 0. Then the
bandwidth allocated to ri,j can be given as

Wi,j(t+ 1) =

z∑
k=0

wkϕki,j(t+ 1). (10)

Different allocation strategy leads to different interference.
Based on the Φi,j and the bandwidth vector W , the interfer-
ence can be divided into z parts corresponding to the number
of bandwidth blocks denoted as ψi,j =

[
ψ1
i,j , ψ

2
i,j , ..., ψ

z
i,j

]
.

Based on the (1) and (2) the ψk
i,j(t + 1) can be re-expressed

as

ψk
i,j(t+ 1) =

∑
ri\ri,j

ϕki,∗(t+ 1)v̂i,∗(t+ 1)Phri,j ,ri,∗d
−δ
ri,j ,ri,∗

+
∑
R\ri

ϕkn,m(t+ 1)v̂n,m(t+ 1)Phri,j ,rn,m
d−δ
ri,j ,rn,m

.

(11)

According to the (10) and (11), the transmission rate in time
slot t+ 1 can be represented as

Ri,j(t+1) =

z∑
k=0

wkϕki,j(t+ 1)log2

(
1 +

Phri,j ,rid
−δ
ri,j ,ri

ψk
i,j(t+ 1) +N

)
.

(12)
Considering the performance loss due to the prediction

error, the discrepancy function is defined as

H (t+ 1) =
∑
ri∈R

(
Wi(t+ 1)− Ŵi(t+ 1)

)2
. (13)

Accordingly, the allocation problem can be formulated as

P1 : max
ϕi,j,v̂i,j

∑
ri∈R

∑
ri,j∈ri

Ri,j(t+ 1)−H (t+ 1) (14)

s.t. ϕki,j(t+ 1) ∈ {0, 1},∀i, j, k, t, (14a)

0 ≤ v̂i,j(t+ 1),∀i, j, t, (14b)

0 ≤
z∑

k=0

wkϕki,j(t+ 1),∀i, j, k, t, (14c)

0 ≤ ε ≤ 1,∀t, (14d)
PD ≤ ε,∀t. (14e)

where constraints (14a)-(14b) guarantee that the value of the
variable is in the feasible region. Constraint (14c) restricts
the allocated bandwidth is non-negative. Constraints (14d) and
(14e) are defined to ensure the quality of service for connected
vehicles.

In summary, the formulated problem aims to minimize the
discrepancy between the allocated bandwidth and the band-
width demand while maximizing overall network throughput.
Achieving this objective requires the development of an ac-
curate demand prediction method and an error-compensable
bandwidth allocation strategy. In the next section, a spatial-
temporal multi-head attention network (STMA-net) is de-
signed to accurately predict vehicle mobility and estimate
bandwidth demand. In Section IV, a proactive bandwidth
allocation with the prediction error compensation (PBA-EC)
is proposed, which utilizes the prediction results to allocate
bandwidth resources efficiently.
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IV. MOBILITY PREDICTION

To predict the mobility of vehicles, we have developed a
spatial-temporal multi-head attention network (STMA-net) as
illustrated in Fig. 2. The STMA-net is composed of several
key components, including a graph attention (GAT) network,
a two-layer gated recurrent unit (GRU) network, a multi-head
self-attention layer, and a two-layer fully connected network.
In the following subsection, we will provide a detailed intro-
duction to each of these components and explain their roles
in the STMA-net architecture.

A. Graph Attention Networks for Spatial Feature Extraction

In this paper, the graph attention network is used to extract
road spatial features. Compared to other graph-based neural
networks such as graph neural networks and graph convolu-
tion networks, graph attention network incorporates attention
mechanisms to assign different weights to adjacent roads’
features based on their importance. This adaptability allows the
model to focus on more important road features and ignore less
relevant ones. Therefore, graph attention networks are selected
as a spatial feature extractor in this paper.

To represent the connectivity between these road segments,
the road structure is converted into a graph structure. Each
road segment’s features are considered as a vertex, denoted as
XR = {xR1 , xR2 , ..., xRi }. The xRi represents the road features
of the corresponding road segment, which includes travel
time, maximum speed, mean speed, and occupancy of the
road. An adjacency matrix A is used to define the graph
connectivity based on the connectivity of each road segment.
Then, the features of the current and three adjacent road
segments located in front, left, and right are formed into a
graph G = (XR,A), which serves as the input to the graph
attention networks.

To account for dynamic traffic conditions, different road
segments may have varying importance for mobility predic-
tion. To address this, road feature extraction adopts different
weights using the graph attention network (GAT) [22]. GAT
employs the attention mechanism to parametrize the input
feature for each node and has been widely used in traffic
prediction in recent years [23], [24]. In GAT, the attention
coefficients of input features are calculated as

eij = a
([
WxRi ∥WxRj

])
, (15)

where a(·) is the shared attentional mechanism function men-
tioned in [25], and ∥ denotes the concatenate operation. To
make coefficients easily comparable across different nodes, the
attention coefficient values are normalized using the softmax
function as

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

. (16)

To stabilize the learning process of self-attention, the multi-
head attention mechanism is used. Based on (16), the output
x̂Ri is given as

x̂Ri = ∥Kk=1σ

∑
j∈Ni

αk
ijW

kxRj

 , (17)

where K denotes the independent attention mechanisms that
execute the transformation based on the (15) and (16), then
their features are concatenated as the final output.

B. Gated Recurrent Unit for Temporal Trend Extraction

A window size τ is set to convert the vehicle data into a time
sequence XV = {xVt−τ , x

V
t−τ−1, ..., x

V
t−1}. The vehicle feature

xVt includes driving speed, azimuth, and current coordinates
of the vehicle. To extract hidden temporal inter-correlation
from sequential data, recurrent neural network (RNN) is used
as the temporal feature extractor. Among different types of
RNN, GRU has fewer parameters, faster convergence speed,
and almost the best performance compared to LSTM [26], so
GRU is chosen in this paper.

The basic GRU consists of the update gate z and the reset
gate r. The update gate z is used to decide whether to preserve
the information from previous time slots, and the reset gate
is used to decide whether to incorporate the current input
with previous information or drop previous information. The
detailed transition functions of GRU are given as follows:

zt = σ (Wz · [ht−1, xt]) ,

rt = σ (Wr · [ht−1, xt]) ,

h̃t = tanh (W · [rt ∗ ht−1, xt]) ,

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t,

(18)

where W is the model training parameters, ht is the hidden
state at time t, xt is the driving data at time t, ht−1 is the
hidden state of the layer at time t− 1, rt, zt, h̃t are the reset,
update, and new gates, respectively, and σ(·) is the sigmoid
function.

To capture long-term dependencies, two layers of GRU are
utilized. The final state of the first layer becomes the initial
state of the second layer, and the output of the first layer
serves as the input of the second layer. Dropout layers with a
probability of 0.3 are applied in each layer of GRU to prevent
overfitting. Then, the final state of the second layer will be the
extracted vehicle feature X̂V .

C. Spatio-Temporal Feature Fusion

Due to the varying traffic conditions, not all spatial and
temporal features are equally important in every time slot. For
instance, during road congestion, the vehicle speed may be
zero, making the road features more important than the vehicle
features. Thus, fusing these features equally may result in a
degradation of the prediction performance. To overcome this
issue, the multi-head self-attention mechanism is employed for
feature fusion.

First, the extracted spatial features X̂R and temporal
features X̂V are flatted as a one-dimension vector X⃗ =
{X⃗R, X⃗V } by passing a flatten layer. Then X⃗ will be the
input of the multi-head self-attention layer.
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Fig. 2. The structure of the STMA-net. The vehicle features are processed by a two-layer GRU network to extract temporal features. The road traffic features
are processed by a GAT to extract spatial features. The spatial and temporal features are then fused using a multi-head self-attention layer for mobility
prediction.

The self-attention mechanism contains three components,
the query matrix Q, the key matrix K, and the value matrix V.
Those three matrices are obtained by letting the input features
X⃗ multiply three trainable weight matrices represented as
Q = WqX⃗, K = WkX⃗, and V = WvX⃗. Then the attention
function is given by

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V, (19)

where the dk is the dimension of K. The attention function
can map a query and a set of key-value pairs to an output.
Considering two types of features, the multi-head self-attention
function is used for feature fusion represented as

MultiHead(Q,K,V) = Concat (head1, ...,headi)W
O,

(20)
where headi = Attention (Qi,Ki,Vi), and WO is the
trainable weight of attention head. By mapping the hidden
relationship between the spatial features X⃗R and temporal
features X⃗V , the importance of those two features can be
obtained by training the weight matrices. Then, two fully
connected layers are used for the final classification, which
is given as

ŷ = softmax (W2 (W1 MultiHead(Q,K,V) + b1) + b2) ,
(21)

where W and b are the training weight and bias of each layer,
and ŷ is a 1×4 vector, whose element denotes the probability
of the vehicle staying in the current segment or entering the
three adjacent segments in front, left, and right.

D. Model Training

The formulated mobility prediction problem can be taken
as a classification problem, for which the cross-entropy loss
function is represented as

Loss = −
n∑

i=1

log
exp (ŷi)

exp

(
n∑

i=1

ŷi

)yi, (22)

where y is the label value, which is constructed as a one-hot
code.

In each training epoch, the loss value for the entire training
set is forward-propagated to calculate the training loss. Then
the training loss is used to compute the gradient for back-
propagation. After each epoch of training, the validation set
is used to validate the performance of the model based on
a loss indicator. Initially, the value of the loss indicator is
set to infinity, and it will be updated if the validation loss in
the current epoch is smaller than the current loss indicator.
After 50-epoch iterations, the model with the smallest val-
idation loss is saved as the trained model. In the practical
system, the designed STMA-net can be implemented following
the principles of offline training and online prediction. The
training process is conducted offline initially to obtain the
initial model parameters, and the trained model is used for
online prediction with testing data. As newly collected data
becomes available, the STMA-net can be further trained, and
the model parameters can be updated to improve the prediction
performance. It is ensured that the model can adapt to time-
varying traffic and maintain its accuracy over time.

By training the proposed STMA-net, we obtain the predicted
probability vector ŷ, which can predict whether the vehicle
will remain in the current road segment or move forward,
left, or right at the next time slot. Then, the predictions for
all vehicles are aggregated into the estimated vehicle number
v̂(t+1). By using the on-off demand model presented before,
the estimated bandwidth demand Ŵ (t+1) for each RSU can
be obtained.

V. PROACTIVE BANDWIDTH ALLOCATION

To design a feasible allocation bandwidth algorithm, two
key issues need to be addressed. First, the bandwidth allocation
problem is known to be NP-hard [27], meaning that there is no
polynomial algorithm to find the optimal solution, and the time
complexity to find the global optimal solution is exponential.
However, to allocate bandwidth proactively, the formulated
problem must be solved within each time step. Second, due to
prediction errors, there will always be a discrepancy between
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Algorithm 1: The proactive bandwidth allocation with
prediction error compensation

Input: The estimated vehicle number v̂(t+ 1) in each
road segment

Output: Bandwidth allocation matrix ϕ(t+ 1)
1 Initializate: Randomize RSUs order; W (t+ 1)← 0;

Ŵ (t+ 1)← 0; ψ(t+ 1)← 0; ϕ(t+ 1)← 0.
2 for each RSU ri do
3 Get estimated bandwidth demand Ŵi(t+ 1) based

on v̂i(t+ 1) and the formulated demand model.
4 if Ŵ (t+ 1)! = 0 then
5 Ŵi(t+ 1)← Ŵi(t+ 1) · ζ.
6 while Wi(t+ 1) < Ŵi(t+ 1) do
7 Select the lowest interference bandwidth

block based on ψ(t+ 1).
8 Calculate drop rate PD based on (6).
9 if any RSU is dissatisfied with the drop

threshold ε then
10 Select another bandwidth block.

11 else
12 Allocate this bandwidth block to ri.
13 Update the Wi(t+ 1), ψ(t+ 1), and

bandwidth allocation matrix ϕ(t+ 1).

14 else if Ŵ (t+ 1) == 0 and W (t)! = 0 then
15 Select the lowest interference bandwidth block

based on the interference matrix ψ(t+ 1).
16 Calculate the service drop possibility PD of

other RSUs based on (6).
17 if any RSU is dissatisfied with the drop

threshold ε then
18 Select the next lowest interference

bandwidth block and return to Step 16.
19 else
20 Allocate this bandwidth block to ri.
21 Update Wi(t+ 1), ψ(t+ 1), and bandwidth

allocation matrix ϕ(t+ 1).

the estimated bandwidth demand Ŵ (t + 1) and the actual
bandwidth demand W (t + 1). This discrepancy could lead
to a severe drop in the QoS since the allocated bandwidth
resources may not be sufficient to meet the real demand.

To address these issues, we propose proactive bandwidth
allocation with the prediction error compensation (PBA-EC)
algorithm given in Algorithm 1. This algorithm enables the
efficient allocation of bandwidth blocks to RSUs under two
different conditions.

In the first condition, if there is a bandwidth demand
in an RSU based on the prediction results, the estimated
bandwidth demand Ŵ (t + 1) is scaled up by a factor of ζ
to compensate for any potential prediction errors. For each
RSU, the bandwidth block with the lowest interference level
is selected as the candidate block for allocation. To prevent
service dropping caused by over-allocation, the interference

matrix ψ(t + 1) and the drop possibility are updated after
each allocation. If reusing the candidate block would result
in any RSU’s drop possibility exceeding the drop threshold ε,
the next lowest interference bandwidth block is selected. This
process is repeated until the selected candidate block meets
the scaled bandwidth demand Ŵ (t + 1) · ζ, or none of the
available blocks can meet the demand. The second condition
occurs when there is no bandwidth demand in RSU ri at time
t + 1, but there is a bandwidth demand at time t. In this
case, a bandwidth block is reserved for RSU ri for prediction
error compensation. Similarly, the block will be chosen only
if reusing it does not violate the drop possibility requirement.

The time complexity of the proposed PBA-EC algorithm
is given as follows. For simplicity, the matrix update opera-
tion is defined as a basic operation. The proposed PBA-EC
algorithm includes two loop functions, defined as an outer
loop (lines 2-21) and an inner loop (lines 6-13). The outer
loop iterates over each RSU, whose iteration number equals
the RSU number |R|. The inner loop is a while loop, and
the number of iterations depends on whether the condition
Wi(t + 1) < Ŵi(t + 1) is satisfied. In the worst case, the
iteration number equals the bandwidth block number z. In the
inner loop, we update the bandwidth demand matrix Wi(t+1),
bandwidth allocation matrix ψ(t+1), and interference matrix
ϕ(t + 1). In conclusion, the time complexity is equal to the
product of the number of iterations in the inner loop, the
number of iterations in the outer loop, and the basic operation
count, denoted as O(|R| × z).

The PBA-EC algorithm offers two significant advantages.
First, by employing a greedy strategy and selecting the band-
width block with the lowest interference, we can achieve an ap-
proximate optimal allocation strategy. The PBA-EC algorithm
has a complexity of O(|R| × z), allowing it to be efficiently
solved within each time slot. This approach reduces the overall
complexity of the algorithm while achieving higher network
throughput. Secondly, the error compensation mechanism in
the algorithm helps mitigate the performance degradation
caused by the discrepancy between the predicted demand and
the actual demand. During periods of low demand load, idle
resources can be effectively utilized to compensate for poten-
tial performance losses. When the demand is relatively high,
the updating drop possibility calculation ensures that over-
allocation does not exacerbate the strain on limited bandwidth
resources.

VI. EXPERIMENT RESULTS

In this section, extensive experiments are conducted to
verify the performance of the proposed proactive bandwidth al-
location method. First, the prediction accuracy of the designed
STMA-net is compared with state-of-art prediction methods.
Then, the proposed PBA-EC algorithm is compared with
existing algorithms in terms of throughput, demand fulfillment
rate, and service drop rate.

A. Scenario Setting

In this paper, we evaluate the proposed method by using the
Simulation of Urban MObility (SUMO) in the real-world city
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TABLE I
SCENARIO SETTING

Description Case1 Case2
The total number of road sections 5 15
The total number of road lanes 21 32
The total number of road crosses 1 6
The total number of RSU 5 15
The total number of road segments 50 149
The road segment width 10 m 10 m
The sample number of training set 307,477 355,314
The sample number of validation set 43,925 50,759
The sample number of testing set 87,851 101,519

of Bologna. The mobility is simulated on the SUMO scenario
called “Real-World Bologna” [28], which covers a portion of
the inner city of Bologna spanning an area of 1500 × 1800
square meters. In our experiments, we selected the two most
congested areas within this scenario.

(a) Scenario of Case 1 (b) Scenario of Case 2

Fig. 3. The real-world map and the simulation scenario of Case 1 and Case
2.

The first selected area is a long straight road with an
intersection at Via Tolmino Avenue, which contains 5 road
sections with a total number of 21 lanes, as shown in Fig. 3(a).
According to the road topology, the 5 road sections are divided
into 50 road segments with a segment width of 10 meters, and
a RSU is placed in the center of each road section.

The second area has a more complex road topology, con-
sisting of roads with different lengths and complex multi-
intersections at the city center of Bologna. As shown in
Fig. 3(b), the entire area contains 15 road sections with a
total of 32 lanes. Similarly, the road sections are divided into
149 road segments with a segment width of 10 meters. The
dataset is divided into the training set, validation set, and
testing set, which consist of 70%, 10%, and 20% of total
vehicles respectively. Detailed simulation settings can be found
in Table I.

B. Performance Evaluation of Mobility Prediction

1) Neural Network Setting: For the neural network setting,
we set the epoch number to 50 and set the batch size to
256. We use Adam as the training optimizer and apply a step
learning rate to avoid over-fitting, which is initialized at 0.01
and decays every 10 epochs with a decay rate of 0.9. The
detailed parameters settings are given in Table II.

2) Performance Metric: To evaluate the performance of our
proposed prediction method, we utilize Accuracy as the per-

TABLE II
THE HYPERPARAMETERS SETTING

Parameter Value
Window size 5
Training epoch 50
Batch size 256
Learning rate 1e-2
Optimizer Adam
StepLR decay 10 epochs
StepLR gamma 0.9
Drop-out probability 0.3
Hidden size of GRU layer 8
Input channel number of GAT layer 4
Attention heads number of GAT layer 4
Attention heads number of feature fuser 2
Input size of the linear layer 32× 8/8× 4

formance metric. Accuracy is calculated using the following
formula:

Accuracy =
TP+ TN

TP+ FP + TN+ FN

where TP represents the number of true positives, FP repre-
sents the number of false positives, TN represents the number
of true negatives, and FN represents the number of false
negatives in each predicted class.

3) Compared Method: We compare the proposed method
with four state-of-the-art methods including one classical
classification method and three neural network based methods.

• ST-KNN: a spatial-temporal k-nearest neighbor classical
classification-based method proposed in [7], which uses
both historical temporal data and adjacent road data for
mobility prediction.

• LSTM: a temporal recurrent neural network adopted in
[29], which uses one LSTM layer to capture the temporal
dependencies from historical data for mobility prediction.

• CNN-LSTM: a spatial-temporal deep neural network
model designed in [14]. It uses a two-dimension convolu-
tional layer (Conv2D) to capture the spatial dependencies
and uses two layers of LSTM to capture the temporal
dependencies. Then the spatial and temporal features
are fused by two fully connected layers to obtain the
prediction results.

• EVM: a spatial-temporal deep neural network model
designed in [30]. It uses a one-dimension convolutional
layer (Conv1D) and one max-pooling layer to capture
the spatial dependencies. Then the captured features will
pass two residual-GRU layers to capture the temporal
dependencies. Finally, a fully connected layer fuses the
extracted spatial and temporal features to obtain the
prediction results.

4) Performance Evaluation on Case 1: In the simulations,
the training performance comparison is presented in Fig. 4.
The training accuracy in each epoch is given in Fig. 4, and
the performance in the training, validation, and testing sets
is shown in Table III. Since ST-KNN is a non-neural network
method and does not involve epoch iterations, it is not included
in Fig. 4.

As shown in Fig. 4, among all models, LSTM had the lowest
accuracy of 79.54% in the training set and 80.23% in the
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Fig. 4. The training accuracy comparison with three state-of-the-art methods
in Case 1 during 50 training epochs.

TABLE III
THE PREDICTION ACCURACY IN CASE 1

Model Prediction Accuracy
Training Set Validation Set Testing Set

ST-KNN [7] - - 77.49%
LSTM [29] 79.54% 80.23% 79.67%

CNN-LSTM [14] 84.09% 81.16% 80.14%
EVM [30] 84.17% 81.54% 80.97%

STMA (Proposed) 85.51% 82.55% 83.21%

validation set. This is because LSTM can only learn temporal
dependencies and lacks spatial features. CNN-LSTM and
EVM, which combine spatial and temporal features, achieved
an accuracy of up to 84.17% in the training set and 81.54%
in the validation set, and the proposed STMA achieved the
highest accuracy of 85.51% in the training set and 82.55% in
the validation set.

The testing accuracy is shown in Table III. ST-KNN had
the lowest testing accuracy of 77.49%, and LSTM had the
second-lowest testing accuracy of 79.67%. CNN-LSTM and
EVM achieved a slightly higher accuracy of up to 80.97%. By
adopting the graph neural network and attention mechanism to
extract spatio-temporal features, the proposed STMA achieved
the highest accuracy of 83.21%. Compared to the second-
highest method, the proposed STMA improved by 2.24% in
Case 1.

5) Performance Evaluation on Case 2: In this subsection,
we conduct another case study in more complex road topology
situations. Different from Case 1, Case 2 has a more complex
road topology, which contains 15 road sections with a total of
32 lanes and 6 complex multi-intersections at the city center
of Bologna. Similarly, the training performance comparison
is given in Fig. 5, and the detailed accuracy in the training,
validation, and testing sets are given in Table IV.

As shown in Fig. 5, the proposed STMA achieves the
highest training accuracy compared to other methods. LSTM
has the lowest training accuracy of 56.58%, and other spatio-
temporal methods including CNN-LSTM and EVM achieve
training accuracy up to 74.25%, and the proposed obtained
the highest accuracy of 88.61%.
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Fig. 5. The training accuracy comparison with three state-of-the-art methods
in Case 2 during 50 training epochs.

TABLE IV
THE PREDICTION ACCURACY IN CASE 2

Model Prediction Accuracy
Training Set Validation Set Testing Set

ST-KNN [7] - - 42.54%
LSTM [29] 56.58% 56.14% 54.93%

CNN-LSTM [14] 74.25% 73.62% 75.11%
EVM [30] 73.02% 72.43% 74.89%

STMA (Proposed) 88.61% 87.03% 86.36%

The significant performance gap came from the validation
set. As shown in Table IV, the temporal-based method LSTM
can only get an accuracy of 56.14% in the validation set. Other
spatio-temporal based methods including CNN-LSTM and
EVM can reach 72.43% at most, and it has a significant drop
in validation accuracy compared to the accuracy in Case 1. The
reason causes the performance degradation is that CNN-LSTM
and EVM do not extract the spatial features based on the
road topology. The convolutional network extracts the spatial
dependences through convolution kernels, and using pooling
layers aggregates features by dividing the map into small grids.
When the road topology is simple such as in Case 1, the
grids and road topology almost overlap, so the performance
is relatively close. When the road topology becomes more
complex, the grid data could not reflect the real mobility
of the vehicle, so the performance will degrade. Therefore,
by adopting the graph attention layer, the proposed STMA
achieves the highest accuracy of 87.03% in a complex road
topology scenario.

The same phenomenon also revealed in the testing set
given in Table IV. The compared methods have a significant
performance degradation compared to the performance in Case
1. The original simulation scenario of ST-KNN is on a long
straight road and predicts vehicle mobility by dividing the
map into small grids, so its accuracy drops significantly when
the road topology is complex. Similar to ST-KNN, the testing
accuracy of other compared methods can only reach 75.11%
at most. By extracting features based on the road topology,
the proposed method can achieve the highest testing accuracy
at 86.36%, which improves prediction accuracy by 11.25%
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compared to other methods.
In summary, the experiments show that the proposed

STMA-net can achieve the highest prediction accuracy com-
pared to other state-of-art methods, and can be applied to
different road topologies.

C. Performance Evaluation of Bandwidth Allocation

TABLE V
SIMULATION SETTINGS

Parameter Value
The number of RSU 5 / 15
The radio band [5895, 5925] MHz
The total spectrum blocks number 30
The bandwidth of spectrum block 1 MHz
The transmission rate requirement of vehicles 10 Mb/s
The maximum transmit power of vehicles Pv 23 dbm
The maximum transmit power of RSUs Pr 29 dbm
The background noise power -104 dbm
The total time step number 5000
The service drop threshold ε 0.01

1) Simulation Setting: The simulation settings used to eval-
uate the performance of the bandwidth allocation method are
introduced. The selected radio band is under the C-V2X stan-
dard. The maximum transmission power is set to 23 dbm for
vehicles and 29 dbm for RSU respectively, and the background
noise power spectral density equals -104 dBm according to the
thermal noise power spectral density mentioned in [31]. The
wireless link between vehicles and RSU is using the NLOS
mm-wave channel model of [32]. The detailed simulation
setting is given in Table V.
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Fig. 6. The overall throughput under different over-allocation rates from 0.1
to 2.0.

As aforementioned, an over-allocation rate ζ is used for pre-
diction error compensation. To find a suitable over-allocation
rate, an experiment is conducted on ζ in the range of [0.1,
2.0]. As shown in Fig. 6, the overall throughput increases as
ζ increases, and reaches a maximum when ζ equals 1.3, after
that the overall throughput remains constant. It shows that 1.3
is the most suitable over-allocation rate for prediction error
compensation, so ζ is set to 1.3 in the following simulations.

2) Performance Metric: In this subsection, we compare the
proposed method with three state-of-the-art methods using the
following evaluation metrics:

• Overall throughput: This metric represents the total
throughput of all vehicles in the simulated area, which
is given as:

Overall throughput =
∑
t∈T

∑
ri∈R

Ri(t),

where Ri denotes the overall transmission rate achieved
by RSU ri in each time slot.

• Demand fulfillment rate: This metric calculates the per-
centage of vehicles that are allocated sufficient bandwidth
resources for their V2X communication demands. It
indicates how well the allocation method can meet the
estimated bandwidth demands of vehicles.

Fulfillment rate =

∑
vi∈V (t)

1

(
W̄vi

(t) == Ŵvi(t)
)

∥V (t)∥
,

where W̄vi(t) and Ŵvi(t) represent the allocated band-
width resources and estimated bandwidth demand of
vehicle vi at time t. The function 1(·) is an indicator
function, which equals 1 if the allocated bandwidth meets
the requirement and 0 otherwise. ∥V (t)∥ denotes the
number of vehicles in each time slot.

• Service drop rate: This metric is defined to measure the
percentage of vehicles that have been allocated bandwidth
resources but experience service dropping due to insuffi-
cient bandwidth.

Drop rate =

∑
vi∈V (t)

1
(
W̄vi(t) < Wvi(t)

)
∑

vi∈V (t)

1

(
W̄vi

(t) == Ŵvi(t)
) ,

where Wvi(t) represents the true bandwidth demand of
vehicle vi at time t. This metric reflects the reliability of
the allocation method in maintaining service for vehicles.

The demand fulfillment rate evaluates the percentage of
vehicles that can access RSUs based on the allocated band-
width. It serves as an indicator of the overall effectiveness
of bandwidth allocation. While the service drop rate assesses
the actual QoS for those accessed vehicles. It reflects the
service drop caused by insufficient bandwidth allocation due
to prediction errors.

3) Compared Method: To evaluate the performance of the
proposed PBA-EC method, we conduct a comparative analy-
sis with three state-of-the-art proactive bandwidth allocation
methods:

• WF: a proactive bandwidth allocation method proposed
in [7], which uses ST-KNN to predict vehicle bandwidth
demand and uses the geometric water-filling method to
allocate bandwidth accordingly.

• MACA: a proactive allocation method called mobility-
aware cell association (MACA) method designed in [29],
which uses LSTM for mobility prediction and allocated
the bandwidth to the vehicles with good channel condi-
tions to achieve maximum transmission rate.

• MLP-DBA: a machine learning prediction based dynamic
bandwidth allocation method (MLP-DBA) designed in
[12], which predicted the on-off status of vehicles and

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3351772

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on May 14,2024 at 21:51:07 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX XXXX 11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Service Generation Probability pon

0

500

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (G

b)

PBA-EC (Proposed)
MLP-DBA
MACA
WF

(a) Overall throughput in Case 1
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(c) Service drop rate in Case 1
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(d) Overall throughput in Case 2
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(e) Demand fulfillment rate in Case 2
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(f) Service drop rate in Case 2

Fig. 7. Performance comparison in terms of the overall throughput, demand fulfillment rate, and service drop rate under different service generation possibility
values pon ranging from 0.1 to 1.0. Two distinct cases are considered: Case 1 has a simple road topology, while Case 2 has a complex road topology.

adaptively allocates bandwidth based on the estimated
bandwidth demand.

4) Performance Evaluation: Firstly, the performance com-
parison in terms of overall throughput, demand fulfillment rate,
and service drop rate in Cases 1 and 2 are given in Fig. 7.
The simulations are conducted on different service generation
probability pon from 0.1 to 1.0. In order to ensure fairness in
our comparison, we have set the prediction accuracy for all of
the proactive bandwidth allocation methods at 86.36%, which
is the highest accuracy achieved by our mobility prediction
method.

As shown in Fig. 7(a) and Fig. 7(d), the WF and MACA
methods exhibit lower overall throughput due to their lack
of consideration for interference from other RSUs. In con-
trast, the MLP-DBA method, which accounts for interference,
achieves higher overall throughput. However, there is still
performance loss caused by prediction errors. To address
this issue, the proposed method employs an over-allocation
strategy by assigning additional spectrum blocks to busy RSUs
with an over-allocation ratio ζ. In this way, we can further
improve the overall throughput compared to other methods.

The performance comparisons of the demand fulfillment
rate are shown in Fig. 7(b) and Fig. 7(e). For the WF and
MACA methods, the allocated bandwidth blocks are lower
than the estimated demand due to interference from intra and
intro RSUs. As a result, these methods achieve a lower demand
fulfillment rate. In contrast, the proposed method achieves the
highest demand fulfillment rate in both two cases. Even under
the highest pon, the proposed method can still achieve the
demand fulfillment of 89.31% in Case 1 and 85.37% in Case 2.
Compared to the MLP-DBA method, the proposed method
serves 5% more services in Case 1 and 3% more services in
Case 2.

Considering the discrepancy between the allocated band-

width and true demand caused by the prediction error and
error-compensation strategy, there is still a possibility for
vehicles that have been allocated bandwidth resources based
on estimated demand to experience service dropping. To eval-
uate the reliability of the allocation methods, we present the
performance comparison on drop rate in Fig. 7(c) and Fig. 7(f).
When considering a drop rate threshold of ε = 0.01, both the
WF and MACA methods exhibit higher drop rates, reaching
up to 0.26, which fails to ensure satisfactory QoS for V2X
communication. Although the MLP-DBA method achieves a
lower drop rate of 0.07 in Case1 and 0.02 in Case2, it still falls
short of meeting the required threshold. Among the compared
methods, only the proposed PBA-EC can achieve the lowest
drop rate to meet the threshold requirement. Compared to
the second-lowest drop rate method, the proposed PBA-EC
reduces the drop rate by an order of magnitude.

To further evaluate the proposed method in the high-
load conditions, the per-second performance comparison of
the highest traffic RSU under the highest service generation
probability (pon = 1.0) in two cases is given. The evaluation
uses 5000 seconds of realistic traffic data, which was collected
from the peak hour starting from 8 am to 9 am in the city of
Bologna. The high-load performance comparisons of Case 1
and Case 2 are given in Fig. 8 and Fig. 9.

The per-second performance comparison of Case 1 is shown
in Fig. 8. Fig.8(a) illustrates the average traffic in each road
segment. The RSU with the highest traffic, RSU-15, is selected
for performance evaluation, and its true bandwidth demand
and predicted demand are presented in Fig. 8(b). It shows that
during the peak time, which extends from 8:02 to 9:20, the
bandwidth demand of RSU-15 significantly increases at 8:02
and gradually decreases at 9:20.

The per-second performance comparisons of Case 1 are
given in Fig. 8(c), (d), and (e) respectively. In terms of per-
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(d) Demand fulfillment rate of RSU-3
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(e) Service drop rate of RSU-3

Fig. 8. The per-second performance comparison of the highest traffic RSU under the highest service generation probability (pon = 1.0) in Case 1. The
average number of vehicles in each road segment is given in (a). The RSU with the highest traffic (RSU-3) is selected for performance comparison, and its
prediction and true bandwidth demand are given in (b). The per-second throughput, demand fulfillment rate, and drop rate are presented in (c)-(e) respectively.

timestep throughput, the proposed PBA-EC method exhibits
the highest throughput compared to other methods as shown
in Fig. 8(c). In terms of demand fulfillment rate, as shown in
Fig. 8(d), the proposed method achieves the highest demand
fulfillment rate compared to other methods. The advantages of
employing error compensation can be observed by comparing
it with the MLP-DBA method. During non-peak time from
9:20 to 9:24, where total bandwidth resources are sufficient,
both the proposed method and MLP-DBA achieve the high-
est demand fulfillment rate. However, during peak time, the
prediction error can lead to an insufficient allocation of band-
width to meet the demand. Consequently, the gap in demand
fulfillment rate between the MLP-DBA method and the pro-
posed method widens. Although error compensation strategies
may slightly exacerbate bandwidth inefficiencies, compared to
MLP-DBA, which does not employ error compensation, the
proposed method can increase the demand fulfillment rate by
5%.

The drop rate comparison is given in Fig. 8(e). Different
from the fulfillment rate evaluation, prediction errors have
a higher impact during non-peak time. Due to the relatively
small number of vehicles during non-peak hours, even a single
prediction error can lead to a significant fluctuation in the
bandwidth allocation strategy. Without the error compensation
strategy, all the compared methods experience substantial
performance degradation during non-peak time. However, the
proposed method demonstrates the ability to maintain the
lowest drop rate, around 0.01, both during peak and non-peak

times.
The per-second performance comparison of Case 2 is shown

in Fig. 9. Similarly, the average traffic in each road segment is
shown in Fig.9(a), and the highest traffic RSU-15 is selected
for performance evaluation, and its prediction and true band-
width demand are given in Fig.9(b). The bandwidth demand
of RSU-15 increases significantly at 8:02 and then suddenly
decreases at 9:05, indicating the peak time of Case 2.

Similar to Case 1, the proposed method achieves the highest
throughput compared to other methods both during peak and
non-peak time as shown in Fig.9(c). In terms of demand
fulfillment rate, as shown in Fig. 9(d), the same trend observed
in Case 1 is observed in Case 2. During non-peak times, the
proposed method maintains a higher demand fulfillment rate
among all methods. During peak times, all methods experience
a drop in fulfillment rate due to inadequate bandwidth in high
traffic loads. By employing the error compensation strategy,
the proposed method mitigates the performance degradation
caused by prediction errors and can increase the demand
fulfillment rate by 2%. In terms of service drop rate, prediction
errors have a higher impact during non-peak time. Similar
to Case 1, the proposed method demonstrates the ability to
consistently achieve the lowest drop rate, reaching as low as
0.004. Compared to other methods, the proposed PBA-EC
method manages to reduce the drop rate in both peak and
non-peak times.

In summary, the simulation results show that the proposed
PBA-EC method can serve more vehicles and guarantee the
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(e) Service drop rate of RSU-15

Fig. 9. The performance comparison of the highest traffic RSU under the highest service generation probability (pon = 1.0) in Case 2. The average number
of vehicles in each road segment is given in (a). The RSU with the highest traffic (RSU-15) is selected for performance comparison, and its prediction and
true bandwidth demand are given in (b). The throughput, demand fulfillment rate, and drop rate are presented in (c)-(e) respectively.

lowest drop rate for communication compared to other state-
of-the-art proactive methods. Note that all compared methods
are conducted under the same prediction accuracy of 86.36%
achieved by our prediction method, when considering their
original prediction accuracy, the performance gap would be
more evident.

VII. CONCLUSION

In this paper, a mobility-aware proactive bandwidth alloca-
tion method is proposed. First, a spatial-temporal multi-head
attention mobility prediction method is designed to obtain
the estimated vehicle number in each road segment. Based
on the prediction result, a proactive bandwidth allocation
with a prediction error compensation method is proposed to
allocate bandwidth to RSUs in advance. According to the
simulation results, the proposed mobility prediction method
achieves the highest accuracy in both simple road topology
and complex road topology cases. Especially in complex road
topology cases, the proposed mobility method can improve
the accuracy by 11.25%. In terms of bandwidth allocation
performance, experimental results indicate that the proposed
method effectively mitigates the performance degradation
caused by prediction errors in proactive allocation methods.
It achieves the highest throughput and serves more vehicles
while maintaining the lowest drop rate compared to methods
with the same prediction accuracy.

An important further research issue is to collect data sets
encompassing vehicle mobility to traffic demand. In future

work, we plan to conduct in-depth research to accurately
estimate future demand and channel quality considering both
vehicle mobility and traffic demand.
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