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Introduction

t The Fourier series and Fourier transform can be used to
obtain spectral representations for periodic and nonperiodic
continuous-time signals, respectively (see Chap. 2).

Analogous spectral representations can be obtained for
discrete-time signals by using the z transform.

t The Fourier transform will convert a real continuous-time
signal into a function of complex variable jω.

Similarly, the z transform will convert a real discrete-time
signal into a function of complex variable z .
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Introduction Cont’d

t The z transform, like the Fourier transform, comes along with
an inverse transform, namely, the inverse z transform.

Consequently, a discrete-time signal can be readily recovered
from its z transform.

t The availability of an inverse makes the z transform very
useful for the representation of digital filters and discrete-time
systems in general.
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Introduction Cont’d

t The most basic representation of discrete-time systems is in
terms of difference equations (see Chap. 4) but through the
use of the z transform, difference equations can be reduced to
algebraic equations which are much easier to handle.
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Objectives

t Definition of Z Transformt Convergence Propertiest The Z Transform as a Laurent seriest Inverse Z Transformt Theorems and Propertiest Elementary Functionst Examples
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The Z Transform

t Consider a bounded discrete-time signal x(nT ) that satisfies
the conditions

(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2r
n for n ≥ N2

where N1 and N2 are positive integers and r is a positive
constant.
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The Z Transform Cont’d

· · ·
(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2r
n for n ≥ N2
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The Z Transform Cont’d

t The z transform of a discrete-time signal x(nT ) is defined as

X (z) =
∞∑

n=−∞
x(nT )z−n

for all z for which X (z) converges.
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The Z Transform Cont’d

t Although the z transform of a signal x(nT ) is an infinite
series, in practice it can be represented in terms of a rational
function as

X (z) =
∞∑

n=−∞
x(nT )z−n

=
N(z)

D(z)
=

∑M
i=0 aiz

M−i

zN +
∑N

i=1 biz
N−i

= H0

∏M
i=1(z − zi )∏N
i=1(z − pi )

where zi and pi are the zeros and poles of the z transform and
H0 is a multiplier constant.

t In effect, z transforms can be represented by zero-pole plots.
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Example

The following z transform has the zero-pole plot shown.

X (z) =
(z2 − 4)

z(z2 − 1)(z2 + 4)
=

(z − 2)(z + 2)

z(z − 1)(z + 1)(z − j2)(z + j2)

j2

−2 −1 21

−j2

z  plane 

 j Im z

Re z
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Theorem 3.1 Absolute Convergence

If

(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2r
n for n ≥ N2

where N1 and N2 are positive constants and r is the smallest positive
constant that will satisfy condition (iii), then the z transform of x(nT ),
i.e.,

X (z) =
∞∑

n=−∞
x(nT )z−n

exists and converges absolutely if and only if

r < |z | < R∞ with R∞ →∞
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Absolute Convergence Cont’d
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Absolute Convergence Cont’d

The proofs of the Absolute Convergence Theorem and the
theorems that follow can be found in the textbook.
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The Z Transform as a Laurent Series

t The Laurent series of a function X (z) about point z = a
assumes the form

X (z) =
∞∑

n=−∞
an(z − a)−n

(see Appendix.)

t The z transform is given by

X (z) =
∞∑

n=−∞
x(nT )z−n

If we compare the above two series for X (z), we conclude that
the z transform is a Laurent series of X (z) about the origin,
i.e., a = 0, with

an = x(nT )
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The Z Transform as a Laurent Series Cont’d

t Since the z transform is a specific Laurent series, it follows
that it inherits all the properties of the Laurent series, which
are stated in the Laurent theorem as detailed in the slides that
follow.
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Laurent Theorem

(a) If F (z) is an analytic and single-valued function on two
concentric circles C1 and C2 with center a and in the annulus
between them, then it can be represented by the Laurent series

F (z) =
∞∑

n=−∞
an(z − a)−n

where

an =
1

2πj

∮
Γ
F (z)(z − a)n−1 dz

The contour of integration Γ is a closed contour in the
counterclockwise sense lying in the annulus between circles C1

and C2 and encircling the inner circle.
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Laurent Theorem Cont’d
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Laurent Theorem Cont’d

(b) The Laurent series converges and represents F (z) in the open
annulus obtained by continuously increasing the radius of C2

and decreasing the radius of C1 until each of C1 and C2

reaches a point where F (z) is singular.

z plane  

a

ŴC1

C2

(b)
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Laurent Theorem Cont’d

(c) A function F (z) can have several, possibly many, annuli of
convergence about a given point z = a and for each one a
Laurent series can be obtained.

 

a
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II

III

z plane

(c)
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Laurent Theorem Cont’d

(d) The Laurent series for a given annulus of convergence is
unique.
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Example

The function represented by the zero-pole plot at the left has three
unique Laurent series as shown at the right.
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Inverse Z Transform

t The absolute-convergence theorem states that the z
transform, X (z), of a discrete-time signal x(nT ) satisfying the
conditions

(i) x(nT ) = 0 for n < −N1

(ii) |x(nT )| ≤ K1 for − N1 ≤ n < N2

(iii) |x(nT )| ≤ K2r
n for n ≥ N2

exists and converges absolutely if and only if

r < |z | < R with R →∞
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Inverse Z Transform Cont’d

t The Laurent theorem states that a function X (z) has as many
distinct Laurent series about the origin as there are annuli of
convergence.

t One of these series converges in the outer annulus (i.e., the
largest one) which is defined as

R0 < |z | < R with R →∞

where R0 is the radius of a circle passing through the most
distant pole of X (z) from the origin.
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Inverse Z Transform Cont’d
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Inverse Z Transform Cont’d

Summarizing:t From the absolute convergence theorem, the z transform
converges in the annulus

r < |z | < R with R →∞

t From the Laurent theorem, there is a unique Laurent series of
X (z) that converges in the outer annulus of convergence

R0 < |z | < R with R →∞

t Therefore, the z transform of x(nT ) is the unique Laurent
series that converges in the outer annulus and, furthermore,
r = R0.
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Inverse Z Transform Cont’d

Summarizing:t From the absolute convergence theorem, the z transform
converges in the annulus

r < |z | < R with R →∞

t From the Laurent theorem, there is a unique Laurent series of
X (z) that converges in the outer annulus of convergence

R0 < |z | < R with R →∞

t Therefore, the z transform of x(nT ) is the unique Laurent
series that converges in the outer annulus and, furthermore,
r = R0.

Frame # 24 Slide # 31 A. Antoniou Digital Filters – Secs. 4.1 to 4.7



Inverse Z Transform Cont’d

t We conclude that signal x(nT ) can be obtained from its z
transform X (z) by finding the coefficients of the Laurent
series of X (z) that converges in the outer annulus.

t From the Laurent theorem, we have

x(nT ) =
1

2πj

∮
Γ
X (z)zn−1 dz

where contour Γ encloses all the poles of X (z)zn−1.t In DSP, this contour integral is said to be the inverse z
transform of X (z).
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Inverse Z Transform Cont’d
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Notation

t Like the Fourier transform and its inverse, the z transform and
its inverse are often represented in terms of operator notation
as

X (z) = Zx(nT ) and x(nT ) = Z−1X (z)

respectively.

Frame # 26 Slide # 35 A. Antoniou Digital Filters – Secs. 4.1 to 4.7



Z Transform Theorems

t The general properties of the z transform can be described in
terms of a small number of theorems, as detailed in the slides
that follow.

t In these theorems

Zx(nT ) = X (z) Zx1(nT ) = X1(z) Zx2(nT ) = X2(z)

and a, b, w , and K represent constants which may be
complex.
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Theorem 3.3 Linearity

t The z transform of a linear combination of discrete-time
signals is given by

Z[ax1(nT ) + bx2(nT )] = aX1(z) + bX2(z)

t Similarly, the inverse z transform of a linear combination of z
transforms is given by

Z−1[aX1(z) + bX2(z)] = ax1(nT ) + bx2(nT )
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Theorem 3.4 Time Shifting

t For any positive or negative integer m,

Zx(nT + mT ) = zmX (z)

In effect, multiplying the z transform of a signal by a negative
or positive power of z will cause the signal to be delayed or
advanced by mT s.
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Theorem 3.5 Complex Scale Change

t For an arbitrary real or complex constant w

Z[w−nx(nT )] = X (wz)

Evidently, multiplying a discrete-time signal by w−n is
equivalent to replacing z by wz in its z transform.

Similarly, multiplying a discrete-time signal by vn is equivalent
to replacing z by z/v in its z transform.
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Theorem 3.6 Complex Differentiation

t The z transform of an arbitrary signal nT1x(nT ) is given by

Z[nT1x(nT )] = −T1z
dX (z)

dz

Complex differentiation provides a simple way of obtaining the
z transform of a discrete-time signal that can be expressed as
a product nT1x(nT ).
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Theorem 3.7 Real Convolution

t The z transform of the real convolution summation of two
signals x1(kT ) and x2(nT ) is given by

Z
∞∑

k=−∞
x1(kT )x2(nT − kT ) = Z

∞∑
k=−∞

x1(nT − kT )x2(kT )

= X1(z)X2(z)

The real convolution summation is used frequently for the
representation of digital filters and discrete-time systems (see
Chap. 4).
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Theorem 3.8 Initial-Value Theorem

t The initial value of a signal x(nT ) represented by a z
transform of the form

X (z) =
N(z)

D(z)
=

∑M
i=0 aiz

M−i∑N
i=0 biz

N−i

occurs at
KT = (N −M)T

and its value at nT = KT is given by

x(KT ) = lim
z→∞

[zKX (z)]
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Theorem 3.8 Initial-Value Theorem Cont’d

· · ·
X (z) =

N(z)

D(z)
=

∑M
i=0 aiz

M−i∑N
i=0 biz

N−i

t Corollary: If the degree of the numerator polynomial, N(z), in
a z transform is equal to or less than the degree of the
denominator polynomial D(z), then we have

x(nT ) = 0 for n < 0

i.e., the signal is right-sided.
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Theorem 3.9 Final-Value Theorem

t The value of x(nT ) as n→∞ is given by

x(∞) = lim
z→1

[(z − 1)X (z)]

The final-value theorem can be used to determine the
steady-state response of a discrete-time system.
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Theorem 3.10 Complex Convolution

t If the z transforms of two discrete-time signals x1(nT ) and
x2(nT ) are available, then the z transform of their product,
X3(z), can be obtained as

X3(z) = Z[x1(nT )x2(nT )] =
1

2πj

∮
Γ1

X1(v)X2

( z
v

)
v−1 dv

=
1

2πj

∮
Γ2

X1

( z
v

)
X2(v)v−1 dv

where Γ1 (orΓ2) is a contour in the common region of
convergence of X1(v) and X2(z/v) (or X1(z/v) and X2(v)).
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Theorem 3.10 Complex Convolution Cont’d

t The complex convolution theorem can be used to obtain the z
transform of a product of discrete-time signals whose z
transforms are available.

t It is also the basis of the window method for the design of
nonrecursive digital filters (see Chap. 9).
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Theorem 3.11 Parseval’s Discrete-Time Formula

t If X (z) is the z transform of a discrete-time signal x(nT ),
then ∞∑

n=−∞
|x(nT )|2 =

1

ωs

∫ ωs

0
|X (e jωT )|2 dω

where ωs = 2π/T .

t Parseval’s formula is often used to solve a problem known as
scaling which is associated with the design of recursive digital
filters in hardware form (see Chap. 14).
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Theorem 3.11 Parseval’s Discrete-Time Formula Cont’d

t If T is normalized to 1 s, Parseval’s formula simplifies to:

∞∑
n=−∞

|x(nT )|2 =
1

2π

∫ 2π

0
|X (e jωT )|2 dω
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Elementary Discrete-Time Signals

Function Definition

Unit impulse δ(nT ) =

{
1 for n = 0

0 for n 6= 0

Unit step u(nT ) =

{
1 for n ≥ 0

0 for n < 0

Unit ramp r(nT ) =

{
nT for n ≥ 0

0 for n < 0

Exponential u(nT )e αnT , (α > 0)

Exponential u(nT )e αnT , (α < 0)

Sinusoid u(nT ) sinωnT
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Elementary Discrete-Time Signals Cont’d

nT

1.0

0 nT
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nT
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nT

1.0

0 nT

1.0

0

(e) ( f )

(a) Unit impulse, (b) unit step, (c) unit ramp, (d) increasing
exponential (e) decreasing exponential, (c) sinusoid.
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Example

Find the z transforms of the following signals:

(a) unit-impulse δ(nT )

(b) unit-step u(nT )

(c) delayed unit-step u(nT − kT )K

(d) signal u(nT )Kwn

(e) exponential signal u(nT )e−αnT

(f ) unit-ramp r(nT )

(g) sinusoidal signal u(nT ) sinωnT
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Example Cont’d

Solutions

(a) From the definitions of the z transform and δ(nT ), we have

Zδ(nT ) = δ(0) + δ(T )z−1 + δ(2T )z−2 + · · · = 1

(b) As in part (a)

Zu(nT ) = u(0) + u(T )z−1 + u(2T )z−2 + · · ·
= 1 + z−1 + z−2 + · · · = (1− z−1)−1

=
z

z − 1

(c) From the time-shifting theorem (Theorem 3.4) and part (b),
we have

Z[u(nT − kT )K ] = Kz−kZu(nT ) =
Kz−(k−1)

z − 1
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Example Cont’d

Solutions

(a) From the definitions of the z transform and δ(nT ), we have

Zδ(nT ) = δ(0) + δ(T )z−1 + δ(2T )z−2 + · · · = 1

(b) As in part (a)

Zu(nT ) = u(0) + u(T )z−1 + u(2T )z−2 + · · ·
= 1 + z−1 + z−2 + · · · = (1− z−1)−1

=
z

z − 1

(c) From the time-shifting theorem (Theorem 3.4) and part (b),
we have

Z[u(nT − kT )K ] = Kz−kZu(nT ) =
Kz−(k−1)

z − 1
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Example Cont’d

(d) From the complex-scale-change theorem (Theorem 3.5) and
part (b), we get

Z[u(nT )Kwn] = KZ

[(
1

w

)−n
u(nT )

]

= KZu(nT )|z→z/w =
Kz

z − w

(e) By letting K = 1 and w = e−αT in part (d), we obtain

Z[u(nT )e−αnT ] =
z

z − e−αT
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Example Cont’d

(d) From the complex-scale-change theorem (Theorem 3.5) and
part (b), we get

Z[u(nT )Kwn] = KZ

[(
1

w

)−n
u(nT )

]

= KZu(nT )|z→z/w =
Kz

z − w

(e) By letting K = 1 and w = e−αT in part (d), we obtain

Z[u(nT )e−αnT ] =
z

z − e−αT
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Example Cont’d

(f ) From the complex-differentiation theorem (Theorem 3.6) and
part (b), we have

Zr(nT ) = Z[nTu(nT )] = −Tz d

dz
[Zu(nT )]

= −Tz d

dz

[
z

(z − 1)

]
=

Tz

(z − 1)2
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Examples Cont’d

(g) From part (e), we deduce

Z[u(nT ) sinωnT ] = Z
[
u(nT )

2j

(
e jωnT − e−jωnT

)]
=

1

2j
Z[u(nT )e jωnT ]− 1

2j
Z
[
u(nT )e−jωnT

]
=

1

2j

(
z

z − e jωT
− z

z − e−jωT

)
=

z sinωT

z2 − 2z cosωT + 1

Frame # 46 Slide # 62 A. Antoniou Digital Filters – Secs. 4.1 to 4.7



Standard Z Transforms

x(nT ) X (z)

δ(nT ) 1

u(nT )
z

z − 1

u(nT − kT )K
Kz−(k−1)

z − 1

u(nT )Kwn Kz

z − w

u(nT − kT )Kwn−1 K (z/w)−(k−1)

z − w

u(nT )e−αnT
z

z − e−αT

r(nT )
Tz

(z − 1)2
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Standard Z Transforms Cont’d

x(nT ) X (z)

r(nT )e−αnT
Te−αT z

(z − e−αT )2

u(nT ) sinωnT
z sinωT

z2 − 2z cosωT + 1

u(nT ) cosωnT
z(z − cosωT )

z2 − 2z cosωT + 1

u(nT )e−αnT sinωnT
ze−αT sinωT

z2 − 2ze−αT cosωT + e−2αT

u(nT )e−αnT cosωnT
z(z − e−αT cosωT )

z2 − 2ze−αT cosωT + e−2αT
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This slide concludes the presentation.

Thank you for your attention.
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